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Many figures courtesy Kevin Murphy’s textbook, 
Machine Learning: A Probabilistic Perspective 



Directed Graphical Models    
Chain rule implies that any joint distribution equals: 

Directed graphical model implies a restricted factorization: 

pa(t) → parents with edges pointing to node t

nodes → random variables

Valid for any directed acyclic graph (DAG): 
equivalent to dropping conditional 
dependencies in standard chain rule 



Example: Shading & Plate Notation 

Naïve Bayes Inference: 

Convention:  Shaded nodes are observed, open nodes are latent/hidden 
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Plates denote 
replication of 
random variables 



Learning and Unknown Parameters 
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Supervised Learning 
Generative ML or MAP Learning: 
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Discriminative ML or MAP Learning: 
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Unsupervised Learning 
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Clustering: 

Dimensionality Reduction: 

zi

•! No notion of training and test data: labels are never observed 
•! As before, maximize posterior probability of model parameters 
•! For hidden variables associated with each observation, we 

marginalize over possible values rather than estimating 
•! Fully accounts for uncertainty in these variables 
•! There is one hidden variable per observation, so cannot 

perfectly estimate even with infinite data 
•! Must use generative model (discriminative degenerates) 



Gaussian Mixture Models 
•! Observed feature vectors: 
 
•! Hidden cluster labels: 

•! Hidden mixture means: 

•! Hidden mixture covariances: 

•! Hidden mixture probabilities: 

xi ∈ Rd, i = 1, 2, . . . , N

µk ∈ Rd, k = 1, 2, . . . ,K

zi ∈ {1, 2, . . . ,K}, i = 1, 2, . . . , N

Σk ∈ Rd×d, k = 1, 2, . . . ,K

πk,

K∑

k=1

πk = 1

•! Gaussian mixture marginal likelihood: 

p(xi | π, µ,Σ) =
K∑

zi=1

πziN (xi | µzi ,Σzi)

p(xi | zi, π, µ,Σ) = N (xi | µzi ,Σzi)



Gaussian Mixture Models 

Mixture of 3 Gaussian 
Distributions in 2D 

Contour Plot of Joint Density, 
Marginalizing Cluster Assignments 
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Gaussian Mixture Models 

Surface Plot of Joint Density, 
Marginalizing Cluster Assignments 



Gaussian Discriminant Analysis 
class label in {1,!,C}, observed in training 

observed features to be used for classification 

y

prior 
distribution 

likelihood 
function 

x ∈ Rd

discriminant analysis 
is a generative classifier! 

p(y, x | π, θ) = p(y | π)p(x | y, θ)

p(y | π) = Cat(y | π)

p(x | y = c, θ) = N (x | µc,Σc) θc = {µc,Σc}
•! Derive posterior distribution via Bayes’ rule: 

•! Gaussian naïve Bayes model assumes diagonal covariances 

p(y = c | x, θ, π) = p(y = c | π)p(x | y = c, θ)
∑C

c′=1 p(y = c′ | π)p(x | y = c′, θ)



Quadratic Discriminant Analysis 
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Some Linear, Some Quadratic

Optimal decision boundaries are quadratic functions 



Linear Discriminant Analysis 
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Optimal decision boundaries are linear functions if Σc = Σ



Clustering with Gaussian Mixtures 

C. Bishop, Pattern Recognition & Machine Learning 
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by True Cluster Assignments 

Incomplete Data: 
Points to be Clustered 

With complete data, learning is Gaussian discriminant analysis. 



Inference Given Cluster Parameters 
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rik = p(zi = k | xi, π, θ) =
πkp(xi | θk)∑K
�=1 π�p(xi | θ�)



Unsupervised Learning Algorithms 
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Unsupervised 
Learning 

•! Initialization: Randomly select starting parameters 
•! Estimation: Given parameters, find likely hidden data 

•! Equivalent to testing phase of supervised learning 
•! Learning: Given hidden & observed data, find likely parameters 

•! Equivalent to training phase of supervised learning 
•! Iteration: Alternate estimation & learning until convergence 

z1, . . . , zN
π, θ parameters (define cluster location and shape) 

hidden data (group observations into clusters) 



Expectation Maximization (EM) 
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Unsupervised 
Learning 

•! Initialization: Randomly select starting parameters 
•! E-Step: Given parameters, find posterior of hidden data 

•! Equivalent to test inference of full posterior distribution 
•! M-Step: Given posterior distributions, find likely parameters 

•! Distinct from supervised ML/MAP, but often still tractable 
•! Iteration: Alternate E-step & M-step until convergence 

z1, . . . , zN
π, θ parameters (define cluster location and shape) 

hidden data (group observations into clusters) 



EM Algorithm 

C. Bishop, Pattern Recognition & Machine Learning 
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EM Algorithm 
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EM Algorithm 

C. Bishop, Pattern Recognition & Machine Learning 
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EM Algorithm 
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EM Algorithm 
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EM Algorithm 

C. Bishop, Pattern Recognition & Machine Learning 
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EM for (Gaussian) Mixture Models 

p(xi | π, µ,Σ) =
K∑

zi=1

πziN (xi | µzi ,Σzi)

p(xi | zi, µ,Σ) = N (xi | µzi ,Σzi)
p(zi | π) = Cat(zi | π)

N 
xi

π

θ

zi

rik = p(zi = k | xi, π, θ) =
πkp(xi | θk)∑K
�=1 π�p(xi | θ�)

E-Step: 

M-Step: 
θ̂k = argmax

θk

[
log p(θk) +

N∑

i=1

rik log p(xi | θk)
]

rik ∈ {0, 1}What happens when posteriors are perfectly confident: 



Singularities: ML for Gaussian Mixtures 

C. Bishop, Pattern Recognition & Machine Learning 
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We are hoping EM will find a good local optimum! 



Numerical Instability: Gaussian Mixtures 
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Label Switching in Mixture Models 

Histogram of 200 samples 
from a mixture of two  

1D Gaussians 
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mixture likelihood surface 

as function of means,  
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