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Preview of Decision Theory 
Many figures courtesy Kevin Murphy’s textbook, 

Machine Learning: A Probabilistic Perspective 



Bayes Rule (Bayes Theorem) 
unknown parameters (many possible models) 

observed data available for learning 

prior distribution (domain knowledge) 

likelihood function (measurement model) 

posterior distribution (learned information) 

θ
D

p(θ)

p(D | θ)
p(θ | D)

p(θ,D) = p(θ)p(D | θ) = p(D)p(θ | D)

∝ p(D | θ)p(θ)

p(θ | D) =
p(θ,D)

p(D)
=

p(D | θ)p(θ)∑
θ′∈Θ p(D | θ′)p(θ′)



Continuous Random Variables 
CDF: cumulative 
distribution function 

PDF: probability 
density function 



Moments of Random Variables 
Mean 

Variance 

second moment 

standard deviation 

Moments & Conditional Moments 

E[g(X)] =

∫

X
g(x)p(x) dx E[g(X) | Y = y] =

∫

X
g(x)p(x | y) dx



Gaussian (Normal) Distributions 

E[X] = µ V[X] = σ2

Mode[X] = argmax
x∈R

N (x | µ, σ2) = µ

N (x | µ, σ2) =
1√
2πσ2

exp

{
− (x− µ)2

2σ2

}
Φ(x | µ, σ2) =

∫ x

−∞
N (z | µ, σ2) dz



Gaussian (Normal) Distributions 

Summaries:  Mean, median, mode, variance, standard deviation 



Learning Binary Probabilities 
Bernoulli Distribution:  Single toss of a (possibly biased) coin   

0 ≤ θ ≤ 1

Xi ∼ Ber(θ), i = 1, . . . , N

•! Suppose we observe N samples from a Bernoulli 
distribution with unknown mean: 

•! What is the maximum likelihood parameter estimate? 

p(x1, . . . , xN | θ) = θN1(1− θ)N0

Ber(x | θ) = θI(x=1)(1− θ)I(x=0)

θ̂ = argmax
θ

log p(x | θ) = N1

N



Beta Distributions 

Probability density function: x ∈ [0, 1]

Γ(k) = (k − 1)!

Γ(x+ 1) = xΓ(x)



Beta Distributions 

E[x] =
a

a+ b
V[x] =

ab

(a+ b)2(a+ b+ 1)

Mode[x] = arg max
x∈[0,1]

Beta(x | a, b) = a− 1

(a− 1) + (b− 1)



Bayesian Learning of Probabilities 
Bernoulli Likelihood:  Single toss of a (possibly biased) coin   

0 ≤ θ ≤ 1Ber(x | θ) = θI(x=1)(1− θ)I(x=0)

p(x1, . . . , xN | θ) = θN1(1− θ)N0

Beta Prior Distribution: 

p(θ) = Beta(θ | a, b) ∝ θa−1(1− θ)b−1

p(θ | x) ∝ θN1+a−1(1− θ)N0+b−1 ∝ Beta(θ | N1 + a,N0 + b)

Posterior Distribution: 

•! This is a conjugate prior, because posterior is in same family 
•! Estimate by posterior mode (MAP) or mean (preferred) 
•! Here, posterior predictive equivalent to mean estimate 



Sequence of Beta Posteriors 
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Multinomial Simplex 



Constrained Optimization 

θk ≥ 0

K∑

k=1

θk = 1

θ̂ = argmax
θ

K∑

k=1

ak log θk ak ≥ 0

subject to 

θ̂k =
ak
a0

a0 =

K∑

k=1

ak•! Solution: 

•! Proof for K=2:  Change of variables to unconstrained problem 
•! Proof for general K:  Lagrange multipliers (see textbook) 



Learning Categorical Probabilities 
Multinoulli Distribution:  Single roll of a (possibly biased) die 

Cat(x | θ) =
K∏

k=1

θxk

k X = {0, 1}K ,

K∑

k=1

xk = 1

p(x1, . . . , xN | θ) =
∏K

k=1 θ
Nk

k

•! If we have Nk observations of outcome k in N trials: 

•! The maximum likelihood parameter estimates are then: 

•! Will this produce sensible predictions when K is large? 

θ̂ = argmax
θ

log p(x | θ) θ̂k =
Nk

N



Dirichlet Probability Densities 
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E[xk] =
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Dirichlet Probability Densities 



Dirichlet Samples 

Dir(θ | 0.1, 0.1, 0.1, 0.1, 0.1) Dir(θ | 1.0, 1.0, 1.0, 1.0, 1.0)



Bayesian Learning of Probabilities 

Dirichlet Prior Distribution: 

Posterior Distribution: 

•! This is a conjugate prior, because posterior is in same family 

Multinoulli Distribution:  Single roll of a (possibly biased) die 

Cat(x | θ) =
K∏

k=1

θxk

k X = {0, 1}K ,

K∑

k=1

xk = 1

p(x1, . . . , xN | θ) =
∏K

k=1 θ
Nk

k

p(θ) = Dir(θ | α) ∝
K∏

k=1

θαk−1
k

p(θ | x) ∝
K∏

k=1

θNk+αk−1
k ∝ Dir(θ | N1 + α1, . . . , NK + αK)



Learning a Naïve Bayes Model 

•! Assume we have N training examples independently 
sampled from an unknown naïve Bayes model: 

p(θ | y, x) ∝ p(θ, y, x) = p(θ)p(y | θ)p(x | y, θ)
model class features 

p(θ | y, x) ∝ p(θ)

N∏

i=1

p(yi | θ)p(xi | yi, θ)

∝ p(θ)

N∏

i=1

p(yi | θ)
D∏

j=1

p(xij | yi, θ)

observed class label for training example i 

value of feature j for training example i 

yi
xij

•! Learning:  ML estimate, MAP estimate, or posterior prediction 



Naïve Bayes:  ML & Bayes 

Nc number of examples of training class c 

•! Maximizing the sum of functions of independent parameters 
can be done by maximizing them independently: 

•! Similarly, if the parameters for different features are 
independent under the prior, they remain independent under 
the posterior, and Bayesian analysis decomposes 

   y          p  
if Maximum 

Likelihood 



Generative Classifiers 
class label in {1,!,C}, observed in training 

observed features to be used for classification 

parameters indexing family of models 

y
x ∈ X

θ
p(y, x | θ) = p(y | θ)p(x | y, θ)

prior 
distribution 

likelihood 
function 

•! Compute class posterior distribution via Bayes rule: 

•! Inference:  Find label distribution for some input example 
•! Classification:  Make decision based on inferred distribution 
•! Learning:  Estimate parameters      from labeled training data 

p(y = c | x, θ) = p(y = c | θ)p(x | y = c, θ)
∑C

c′=1 p(y = c′ | θ)p(x | y = c′, θ)

θ



Decision Theory 
unknown hidden state of “nature” 

observed data 

set of possible actions we can take 

real-valued loss function:  the price we pay if we 
choose action a, and y is the true hidden state 

y ∈ Y
x ∈ X
a ∈ A
L(y, a)

•! Goal:  Choose the action which minimizes the expected loss 

•! Some averaging is necessary because we don’t know y 
•! Two notions of expectation:  Bayesian versus frequentist 

•! Some communities speak of maximizing expected utility, 
which is equivalent if utility equals negative loss 



Losses for Classification 
unknown class or category, finite set of options 

observed data, can take values in any space 

action is to choose one of the categories 

table giving loss for all possible mistakes 

y ∈ Y
x ∈ X

L(y, a)
A = Y

•! Most common default choice is the 0-1 loss: 

•! For the special case of binary classification: 


