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Gaussian Mixture Models
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Mixture models describe a single, “flat” dataset.



Probabilistic Mixture Models

057

Or = {1k, Xk} O

p(zi | m) =Cat(z; | m) o 05 I

Mixture models describe a single, “flat” dataset.



Collections of Mixture Models

« Many applications involve multiple “groups” of data
* Multiple documents in a text corpus
* Multiple images in a photo repository
« Multiple users with their own spam filtering decisions
» Multiple hospitals in a clinical trial
« Multiple companies in a financial market
« How can we jointly model this data?
* Lumping into single large dataset ignores group
differences
« Modeling groups independently can be ineffective,
especially when limited data about any one group
 Hierarchical Bayesian models share between groups



Multiple Gaussian Mixtures

Use data to learn set of shared
_/\_ mixture identities, and their

frequencies across groups
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Admixture or Topic Models:
Multiple Multinomial Mixtures
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Example Data for a Topic Model

Poisoning by ice-cream.

RNA Editing and the
arthr
No chemist certainly would suppose that the same Evolution of Parasites ete Chaotic Beetl move aver the surfaceof the attactor, setsof
poison exists in all samples of ice-cream which have woul aotic beetles adjacent trajectories are pulled apart, then
produced untoward symptoms in man. Mineral poi- L ) . ‘heli strct(]:l?cd and ({wldrd, so that litlwco{mm im-
sons, copper, lead, arsenic, and mercury, have all arry Simpson and Dmitri A. Maslov pothe Charles Godfray and Michael Hassell e the future. The stremth of the mixing
been found in ice cream. In some instances these mitoc - that gives rise to the cxtreme sensitiviry to
have been used with criminal intent. In other cases Sk “Xx:{ﬂ t[im\u::::\(mx El: ‘Tx:rm;;l\ ,I\;.ld:,
. . - . ematically estimating the Liapunov expo-
their presence l?as been accidental. Likewise, that The kinetoplastid flagellaes, together tral, but there is disagreement on the na-  cent Ecologists have known since the pioneering — convincing evidence to date of nent, which is positive for cha-
vanilla is sometimes the bearer, at least, of the poi- with their sister group of euglenoids, repre-  ture of the primary parasitic host. The “in-  nucle work of May in the mid-1970s (1) that the  complex dynamics and chaos otic. dynamics and nonposi-
son, is well known to all chemists. Dr. Bartley’s sent the carliest extant lineage of eukaryor-  vertebrate first” model (10, 11) states that  as an population dynamics of animals and plants  in a biological population—of tiveorherise. Therehave been
. . . s ic organisms containing mitochondria (1).  the initial parasitism was in the gut of pre-  tical can be exceedingly complex. This complex-  the flour beetle, olium many attempts to estimate at-
idea that the poisonous properties of th_e cream wl}lch Within the kinetoplastids, there arc two ~ Cambrian invertebrates. Coevolution of . Trybe ity arises from two sources: The tangled weh  castaneum (see figure). tactor dimension and Liap
he examined were due to putrid gelatine is certainly major l;;;rr(ziups, }t‘he}‘pnnrly ;m?iﬁd lbofdomlds— Saxas;)(c and l\?st would have ;IiEd to a wide Lhe : of mmu\gtunns ll‘h{l Cunslllul; L\lf\\,;l]kllure\tl . llt' has proven :mcmch, \:.{— o ctxpunu;'\(s from tme se
- . P - . cryptobiids, which consist of both free- istributi @ t sects o community provide a myriad of differens icult to demonstrate complex ries data, and some candidate
a rational theory. The poisonous principle might in e paraitic. cells, and the berrvr  and loeches. In this theery. digenctie e fih ' pathways for species to interact, both di-  dynamics in populations in. the chaotic population have been
this case arise from the decomposition of the gelatine ; known trypanosomatids, which are obligate  cycles (alternating invertebrate and verte-  tutes recly and ncirecly. And even {n isolated - feld. By s very nature, 3 cha- identified {some insects z0-
or with the gelatine there may be introduced into the parasites (2). brate hosts) evolved later as a result of the  trypay populations the nonlinear feedback pro-  otically fluctuating population onis, and _most convin-
A Y 5 . . . cesses present in all natural populations can  will superficially resemble a ingly, human childhood dis-
Perhaps because of the antiquity of the  acquisition by soi hemiprs d F Pop
milk a ferment, by the growth of which a poison is P becn o b bl t0 e o oroe result in complex dynamic hehavior. Natural - stable or eyelic population buf- cases), but the staristical diffi-
produced trypanosomaric Hneage, (hese cells possess - dipterans of the ability to feed on the blo separi populations can show persistent oscillatory — feted by the normal random per- culties preclude any broad
P h hich T ined £ th several unique genetic - fea- dynamics and chaos, the latter characte turbations experienced by all generalization (3)
But in the cream w ich I examined, none of the tures (see accompanying Per- by extreme sensitivity to initial condirions. If  specics. Given a long enough An alternative approach is
above sources of the poisoning existed. There were spective ;\%\Iﬁﬂ»‘;")ﬂ'}f of oo such chaotic dynamics were common inna- time series,  dingnostic  tools population
: : . : : which is editing of mi- 5-Edited Maxicircle ture, then this would have important ramifi-  from nonlinear mathematics from natural
1o wineral poisons present. No gelatine of any kind tochondrial transeripts. This cryptogene one cations for the management and conserva-  can be used to identify the tell- populations and then compare
had been used in making the cream. The vanilla RNA editing function (3-7) A tion of natural resources. On page 389 of this  tal tures of chaos. Inphase ~ Cannibalism and chaos.  their predictions with the dy-
used was shown to be not poisonous. This showing creates open reading frames [ isue, Costantino ecal. (2) provide the most space, chaotic majectories come 1% 1000 beole, 750 yamics i the field. This tech-
. . . - in “cryptogenes” by insertion | to lie on “strange attractors,” v e nique has been gaining popu-
was made, not by a chemical analysis, which might (or occasional deletion) of e Crious geomertic objects with s 25 % ariy nrecent years, helped by
not have been conclusive, but Mr. Novie and I drank uridine (U) residues at a few m—— e h et R e fractal structure and hence  of cannipalem ie ahored  statistical advances in pa
of the vanilla extract which was used, and no ill re- specific sites within the cod- re-ex noninteger dimension. As they  in a mathematical model.  rameter estimation. Good ex-
2 N H |
sults followed. Still, from this cream we isolated o bl o SCIENCE « VOL. 275 = 17 JANUARY 1997 a23
the same poison which I had before found in poison- cific sites throughout the
ous cheese (Zeitschrift fiir physiologische chemie, x, mRNA  (pan-editing). The gl Recombination

e Our data are the pages Science from 1880-2002 (from JSTOR
e No reliable punctuation, meta-data, or references.
e Note: this is just a subset of JSTOR’s archive.

D. Blei, 2008



Example Output: 4 Topics

human evolution disease computer
genome evolutionary host models
dna species bacteria information
genetic organisms diseases data
genes life resistance computers
sequence origin bacterial system
gene biology new network
molecular groups strains systems
sequencing  phylogenetic control model
map living infectious parallel
information diversity malaria, methods
genetics group parasite networks
mapping new parasites software
project two united new
sequences common tuberculosis simulations

Columns sorted by probability of word given topic.
D. Blei, 2008



LDA: Intuition

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does anforganism need to
survive! Last week at the genome meeting
here,™ two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed for life.
One research team, using computer analy-
ses to compare known genomes, concluded
that today’s organisms can be sustained with
just 250 genes, and that the carliest life forms
required a mere 128 venes. The o
other researcher mapped genes o
in a simple parasite and esti

mated that for this organism, ~ genome
800 genes are plenty to do the ‘\ o s

/. _ Haemophitus

“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu-
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
SOC number. Bur coming up with a consen-
sus answer may be more than just a cenctic
numbers game, particularly as more and
more genomes are completely mapped and
sequenced. “It may be a way of organizing
any newly sequenced genome,” explains
Arcady Mushegian, a compurtational mo
lecular biologist at the National Center

\ tor Biotechnology Information (NCBI)

\ in Bethesda, Maryland. Comparing an
]
]

Redundant and Related and

/‘ : o
: At i . . /  Genes parasite-specific modern genes &)
Jo_b but that anything short j  Genes Hanes romaved dern ger 2
ot 100 wouldn’t be enough. for S‘(gch“g;‘ca‘ -4 genes ~122 genes 5
‘ s Q
Although the numbers don't o\ v22 genes z \ ! 5
. . . | Mlmmeﬂ w
match precisely, those predictions Mycoplasma | sEsm— gif,is 3 '  gene set ’ Lﬁis) T
; genome / {250 genes/ \ g
* 469 genes / Ancestr dl <

gene set

Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes.

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8 to 12.

SCIENCE e VOL. 272 »

Every document discusses a mixture of multiple topics.
D. Blei, 2008

24 MAY 1996



LDA: Generative Model

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many cenes does an/organism negd to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed for life:
One rescarch team, using computer analy-
ses to compare known genomes, concluded
that today’s organisms can be sustained with
just 250 wenes, and that the earliest life forms
required a mere 128 genes. The
other researcher mapped genes
ina simplc parasite and esti-
mated that for this organism,
800 genes are plenty todo the
job—but that anything short
of 100 wouldn’t be enough.
Although the numbers don't
match precisely, those predictions

Haemophitus
genome
= ?O_g_g'en_ps:'

Mycoplasma
genome
469 genes

* Genome Mapping and Sequenc-

“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu-
nome, notes Siv Andersson QBT

University in Swesimee ke
3001 ©T. But coming up with acc

sus answer may be more than just a_gueeTC
numbers 9 o ticularly e More and

MOre YENOMes are g C apped a
sequenced. “It may be a way of organizime
any newly sequenced genome,” explains
Arcady Mushegian, a computational mo-
lecular biologist at the Natiggal Center
for Biotechnology Information weCBI)
] in Bethesda, Maryland. Comparing a
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c
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fa)
| \ fimat) g
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ing, Cold Spring Harbor, New York,

Stripping down. Computer analysis yields an esti-
May 8 to 12,

mate of the minimum modern and ancient genomes.

SCIENCE o VOL. 272 « 24 MAY 1996

o Cast these intuitions into a generative probabilistic process
e Each document is a random mixture of corpus-wide topics

e Each word is drawn from one of those topics
D. Blei, 2008



LDA: Graphical Model
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D. Blei, 2008



LDA: Graphical Model
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© Draw each topic g ~ Dir(y), fori e {1,..., K}.
@® For each document:
@ Draw topic proportions 84 ~ Dir(a).
@® For each word:
© Draw Z; , ~ Mult(y).
® Draw W, , ~ Mult(ﬁzd,n).
D. Blei, 2008



Geometry of Topic Models

1 n P(wordl)

® = topic

O = observed
document

® = generated
document

I P(word2)

, P(word3)

 Documents are multinomial distributions over some
predefined vocabulary of (tens of thousands) of words

 Topics are multinomial distributions on same vocabulary

« Generative model: Each document is (nearly) a convex
combination of the topic distributions



LDA: Learning via EM Algorithm?

OO0 OO

. O | Zan Wan N o N
D K

M-Step: Maximize likelihood bound with respect to global
topic usage distribution « and topic-word distributions [y
E-Step: Find posterior distribution of document-specific
topic frequencies 6; and word token assignments zgs,

Problem: Posterior is intractable for large N

Variational methods: Create a looser but more tractable log-
likelihood bound by constraining form of posterior approx.
Alternative: Markov Chain Monte Carlo (MCMC)



Uses of Monte Carlo Methods

20~ p(z) B = [ ) d:

« Basic goals: Sampling or estimation of expectations

* Instead of learning by optimization, do simulation

» Given estimated parameters for some statistical model,
quantitatively or qualitatively assess accuracy of fit

« Parameter estimation when closed forms unavailable

« Parameter estimation for models with hidden “nuisance”
variables (alternative to the EM algorithm)

* General approach to applying computational resources
to solve statistical learning problems...



Random Number Generation
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Chaotic dynamical systems generate sequences of pseudo-random
numbers approximately distributed uniformly on [0,1]



Monte Carlo Estimators

Eplf(z)] :f flz)p(z)dz {I(EJ}EL:l Z’aﬁgleel?gdent
L

Zf (z0) = B[f()] 3o) = 73 6(,2)
=1

Good propertles if L sufficiently large:

« Unbiased for any sample size
 Variance inversely proportional to sample size
(and independent of dimension of space)
« Weak law of large numbers
« Strong law of large numbers
* Problem: Drawing samples from complex distributions...

Alternatives for hard problems:

* Importance sampling
« Markov chain Monte Carlo (MCMC)



