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Mercer Kernel Functions 
X arbitrary input space (vectors, functions, strings, graphs, !) 

•! A kernel function maps pairs of inputs to real numbers: 

k : X × X → R k(xi, xj) = k(xj , xi)

Intuition:  Larger values indicate inputs are “more similar” 

•! A kernel function is positive semidefinite if and only if for 
any             , and any                                       , 
the Gram matrix is positive semidefinite: 

n ≥ 1 x = {x1, x2, . . . , xn}

K ∈ Rn×n Kij = k(xi, xj)

•! Mercer’s Theorem:  Assuming certain technical conditions, 
every positive definite kernel function can be represented as 

k(xi, xj) =
d∑

�=1

φ�(xi)φ�(xj)
for some feature mapping       
(but may need                ) d → ∞

φ



Exponential Kernels 
X real vectors of some fixed dimension 

k(xi, xj) = exp

{
−
(
|xi − xj |

σ

)γ}

We can construct a covariance matrix by evaluating kernel at any 
set of inputs, and then sample from the zero-mean Gaussian 
distribution with that covariance.  This is a Gaussian process. 

0 < γ ≤ 2



String Kernels 
X strings of characters from some finite alphabet, of size A 

•! Feature vector:  Count of number of times that every 
substring, of every possible length, occurs within string 

•! Using suffix trees, the kernel can be evaluated in time 
linear in the length of the input strings 

Amino 
Acids 

x

x′

D = A+A2 +A3 +A4 + · · ·



Kernelizing Learning Algorithms 
•! Start with any learning algorithm based on features 
 
•! Manipulate steps in algorithm so that it depends not directly on 

features, but only their inner products: 
•! Write code that only uses calls to kernel function 
•! Basic identity: Squared distance between feature vectors 

φ(x)
(Don’t worry that computing features might be expensive or impossible.) 

k(xi, xj) = φ(xi)
Tφ(xj)

•! Feature-based nearest neighbor classification 
•! Feature-based clustering algorithms (later) 
•! Feature-based nearest centroid classification: 

||φ(xi)− φ(xj)||22 = k(xi, xi) + k(xj , xj)− 2k(xi, xj)

ŷtest = argmin
c

||φ(xtest)− µc||2

µc =
1

Nc

∑

i|yi=c

φ(xi)
mean of the Nc training 
examples of class c 



Perceptron MARK 1 Computer 

Frank Rosenblatt, late 1950s 
Decision Rule: ŷi = I(θTφ(xi) > 0)

Learning Rule: If ŷk = yk, θk+1 = θk
If ŷk �= yk, θk+1 = θk + ỹkφ(xk)

ỹk = 2yk − 1 ∈ {+1,−1}



Kernelized Perceptron Algorithm 
Decision Rule: 

Learning Rule: If ŷk = yk, θk+1 = θk
If ŷk �= yk, θk+1 = θk + ỹkφ(xk)

ỹk = 2yk − 1 ∈ {+1,−1}
Problem:  May be intractable to compute/store  φ(xk), θk

ŷtest = I(θTφ(xtest) > 0)

Decision Rule: 

Learning Rule: 

ŷtest = I

(
N∑

i=1

ŝik(xtest, xi) > 0

)

If ŷk = yk, sk,k+1 = sk,k
If ŷk �= yk, sk,k+1 = sk,k + ỹk

Representation: 
D feature weights 

Initialize with               .  By induction, for all k θ0 = 0

θk =

N∑

i=1

sikφ(xi) for some integers sik

Representation: 
N training 
example weights 



Gaussian Processes 
•! Linear regression models predict outputs by a linear function 

of fixed, usually non-linear features: 

•! Consider Gaussian prior on weight vector for regularization: 

•! What is the joint distribution of the predictions for any inputs? 

f(x) = wTφ(x) φ(x) ∈ Rm×1

p(w) = N (w | 0, α−1Im) w ∈ Rm×1

x = {x1, x2, . . . , xn}

p(f) = N (f | 0, α−1ΦΦT ) = N (f | 0,K)

Kij = α−1φ(xi)
Tφ(xj)

•! This is a Gaussian process:  Not a single Gaussian distribution, 
but a family of Gaussian distributions, one for each n and x 

f = [f(x1), . . . , f(xn)]
T = Φw



Gaussian Process Regression 

•! Feature-based regression estimates m-dim. feature vector 
•! GP regression estimates n-dim. function at training data: 

x = {x1, x2, . . . , xn}

Kij = α−1φ(xi)
Tφ(xj)

f = [f(x1), . . . , f(xn)]
T = Φw

p(yi | fi) = N (yi | fi, β−1)
noisy observation of 
unobserved function 

p(f) = N (f | 0,K)

p(y) = N (y | 0, C) C = K + β−1In

•! To make a prediction for a test point, we don’t need to know 
the underlying weight vector, only the distribution 

•! Mean and covariance computed by applying standard 
formulas for Gaussian conditionals to covariance matrix C 

p(yn+1 | xn+1, x, y) = N (yn+1 | m(xn+1), σ
2(xn+1))



1D Gaussian Process Regression 
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Squared exponential kernel or radial basis function (RBF) kernel 



2D Gaussian Processes 
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Gaussian Process Hyperparameters 

−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

How should we fit to data? 

•!Cross-validation 
•!Maximize marginal likelihood 
(empirical Bayes, tractable 
for GP regression) 



Hyperparameter Marginal Likelihoods 
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Example: CO2 Concentration Over Time 

Mauna Loa Observatory in Hawaii, analyzed by Rasmussen & Williams 2006 



Mixing Kernels for CO2 GP Regression 
Smooth global trend 

Seasonal periodicity 

Medium term irregularities 

Correlated Observation Noise 



Generalized Linear Models 
•! Recall parametric generalized linear models (GLMs): 

p(yi | xi, w) = exp {yifi −A(fi)}
fi = wTφ(xi)

any exponential 
family distribution 

p(w) = N (w | 0, α−1Im) w ∈ Rm×1

•! Gaussian processes lead to nonparametric GLMs: 
any exponential 
family distribution p(yi | xi, fi) = exp {yifi −A(fi)}

p(f) = N (f | 0,K) Kij = k(xi, xj)

•! The Mercer kernel function corresponds to some set of 
underlying features, but we need not know or compute them 

•! The model is “nonparametric” because the number of 
underlying features, and hence parameters, can be infinite 



Gaussian Process Classification 

Bernoulli 
distribution p(yi | xi, fi) = exp {yifi −A(fi)}

p(f) = N (f | 0,K) Kij = k(xi, xj)

yi ∈ {0, 1}
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p(yi | xi, fi) = Ber(yi | sigm(fi))

•! Equivalent to logistic regression, but 
uses kernels rather than features 

•! Gaussian prior on weights replaced by 
Gaussian prior on training log-odds 

•! As in logistic regression, cannot 
exactly average of parameters to 
compute test data predictions 

•! Use Gaussian approximations instead 



Laplace Approximations 
Log−Unnormalised Posterior
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Log Posterior Distribution Laplace (Gaussian) Approximation 

•! Logistic regression approximates M-dim. distribution of weights w 
•! GP classification approximates N-dim. distribution of training log-odds f 
•! Both require similar gradient descent algorithms 



Kernels or Features? 
number of training examples N

M

L

number of features 

cost of kernel function evaluation, at worst 

•! Feature-based linear regression: 
•! Kernel-based GP regression: 
•! Roughly, the difference corresponds to using either 

•! Relative costs of logistic regression and GP classification 
are similar, per iteration of optimization-based learning 

•! What if N and M are both large??? 

O(NM2 +M3)

O(LN2 +N3)

O(M)

Φ NxM matrix evaluating each feature for all training data 

(ΦTΦ)−1 (ΦΦT )−1

Approximate!!!  Endless options, none perfect! 


