
Introduction to
Machine Learning

Brown University CSCI 1950-F, Spring 2012
Prof. Erik Sudderth

Lecture 16:
Kernels & Perceptrons

Gaussian Process Regression & Classification

Many figures courtesy Kevin Murphy’s textbook,
Machine Learning: A Probabilistic Perspective

Mercer Kernel Functions
X arbitrary input space (vectors, functions, strings, graphs, !)

•! A kernel function maps pairs of inputs to real numbers:

k : X × X → R k(xi, xj) = k(xj , xi)

Intuition: Larger values indicate inputs are “more similar”

•! A kernel function is positive semidefinite if and only if for
any , and any ,
the Gram matrix is positive semidefinite:

n ≥ 1 x = {x1, x2, . . . , xn}

K ∈ Rn×n Kij = k(xi, xj)

•! Mercer’s Theorem: Assuming certain technical conditions,
every positive definite kernel function can be represented as

k(xi, xj) =
d∑

�=1

φ�(xi)φ�(xj)
for some feature mapping
(but may need) d → ∞

φ

Exponential Kernels
X real vectors of some fixed dimension

k(xi, xj) = exp

{
−
(
|xi − xj |

σ

)γ}

We can construct a covariance matrix by evaluating kernel at any
set of inputs, and then sample from the zero-mean Gaussian
distribution with that covariance. This is a Gaussian process.

0 < γ ≤ 2

String Kernels
X strings of characters from some finite alphabet, of size A

•! Feature vector: Count of number of times that every
substring, of every possible length, occurs within string

•! Using suffix trees, the kernel can be evaluated in time
linear in the length of the input strings

Amino
Acids

x

x′

D = A+A2 +A3 +A4 + · · ·

Kernelizing Learning Algorithms
•! Start with any learning algorithm based on features

•! Manipulate steps in algorithm so that it depends not directly on

features, but only their inner products:
•! Write code that only uses calls to kernel function
•! Basic identity: Squared distance between feature vectors

φ(x)
(Don’t worry that computing features might be expensive or impossible.)

k(xi, xj) = φ(xi)
Tφ(xj)

•! Feature-based nearest neighbor classification
•! Feature-based clustering algorithms (later)
•! Feature-based nearest centroid classification:

||φ(xi)− φ(xj)||22 = k(xi, xi) + k(xj , xj)− 2k(xi, xj)

ŷtest = argmin
c

||φ(xtest)− µc||2

µc =
1

Nc

∑

i|yi=c

φ(xi)
mean of the Nc training
examples of class c

Perceptron MARK 1 Computer

Frank Rosenblatt, late 1950s
Decision Rule: ŷi = I(θTφ(xi) > 0)

Learning Rule: If ŷk = yk, θk+1 = θk
If ŷk �= yk, θk+1 = θk + ỹkφ(xk)

ỹk = 2yk − 1 ∈ {+1,−1}

Kernelized Perceptron Algorithm
Decision Rule:

Learning Rule: If ŷk = yk, θk+1 = θk
If ŷk �= yk, θk+1 = θk + ỹkφ(xk)

ỹk = 2yk − 1 ∈ {+1,−1}
Problem: May be intractable to compute/store φ(xk), θk

ŷtest = I(θTφ(xtest) > 0)

Decision Rule:

Learning Rule:

ŷtest = I

(
N∑

i=1

ŝik(xtest, xi) > 0

)

If ŷk = yk, sk,k+1 = sk,k
If ŷk �= yk, sk,k+1 = sk,k + ỹk

Representation:
D feature weights

Initialize with . By induction, for all k θ0 = 0

θk =

N∑

i=1

sikφ(xi) for some integers sik

Representation:
N training
example weights

Gaussian Processes
•! Linear regression models predict outputs by a linear function

of fixed, usually non-linear features:

•! Consider Gaussian prior on weight vector for regularization:

•! What is the joint distribution of the predictions for any inputs?

f(x) = wTφ(x) φ(x) ∈ Rm×1

p(w) = N (w | 0, α−1Im) w ∈ Rm×1

x = {x1, x2, . . . , xn}

p(f) = N (f | 0, α−1ΦΦT) = N (f | 0,K)

Kij = α−1φ(xi)
Tφ(xj)

•! This is a Gaussian process: Not a single Gaussian distribution,
but a family of Gaussian distributions, one for each n and x

f = [f(x1), . . . , f(xn)]
T = Φw

Gaussian Process Regression

•! Feature-based regression estimates m-dim. feature vector
•! GP regression estimates n-dim. function at training data:

x = {x1, x2, . . . , xn}

Kij = α−1φ(xi)
Tφ(xj)

f = [f(x1), . . . , f(xn)]
T = Φw

p(yi | fi) = N (yi | fi, β−1)
noisy observation of
unobserved function

p(f) = N (f | 0,K)

p(y) = N (y | 0, C) C = K + β−1In

•! To make a prediction for a test point, we don’t need to know
the underlying weight vector, only the distribution

•! Mean and covariance computed by applying standard
formulas for Gaussian conditionals to covariance matrix C

p(yn+1 | xn+1, x, y) = N (yn+1 | m(xn+1), σ
2(xn+1))

1D Gaussian Process Regression

−5 0 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−5 0 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Samples from Prior Posterior Given 5
Noise-Free Observations

Squared exponential kernel or radial basis function (RBF) kernel

2D Gaussian Processes

!2
0

2

!2
0

2
!2

!1

0

1

2

input x1input x2

ou
tp

ut
 y

!2
0

2

!2
0

2
!2

!1

0

1

2

input x1input x2

ou
tp

ut
 y

!2
0

2

!2
0

2
!2

!1

0

1

2

input x1input x2

ou
tp

ut
 y

Gaussian Process Hyperparameters

−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

How should we fit to data?

•!Cross-validation
•!Maximize marginal likelihood
(empirical Bayes, tractable
for GP regression)

Hyperparameter Marginal Likelihoods

100 101

10!1

100

characteristic lengthscale

no
is

e
st

an
da

rd
 d

ev
ia

tio
n

!5 0 5!2

!1

0

1

2

input, x

ou
tp

ut
, y

!5 0 5!2

!1

0

1

2

input, x

ou
tp

ut
, y

Global
Minimum

Local
Minimum

Example: CO2 Concentration Over Time

Mauna Loa Observatory in Hawaii, analyzed by Rasmussen & Williams 2006

Mixing Kernels for CO2 GP Regression
Smooth global trend

Seasonal periodicity

Medium term irregularities

Correlated Observation Noise

Generalized Linear Models
•! Recall parametric generalized linear models (GLMs):

p(yi | xi, w) = exp {yifi −A(fi)}
fi = wTφ(xi)

any exponential
family distribution

p(w) = N (w | 0, α−1Im) w ∈ Rm×1

•! Gaussian processes lead to nonparametric GLMs:
any exponential
family distribution p(yi | xi, fi) = exp {yifi −A(fi)}

p(f) = N (f | 0,K) Kij = k(xi, xj)

•! The Mercer kernel function corresponds to some set of
underlying features, but we need not know or compute them

•! The model is “nonparametric” because the number of
underlying features, and hence parameters, can be infinite

Gaussian Process Classification

Bernoulli
distribution p(yi | xi, fi) = exp {yifi −A(fi)}

p(f) = N (f | 0,K) Kij = k(xi, xj)

yi ∈ {0, 1}

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p(yi | xi, fi) = Ber(yi | sigm(fi))

•! Equivalent to logistic regression, but
uses kernels rather than features

•! Gaussian prior on weights replaced by
Gaussian prior on training log-odds

•! As in logistic regression, cannot
exactly average of parameters to
compute test data predictions

•! Use Gaussian approximations instead

Laplace Approximations
Log−Unnormalised Posterior

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8
Laplace Approximation to Posterior

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Log Posterior Distribution Laplace (Gaussian) Approximation

•! Logistic regression approximates M-dim. distribution of weights w
•! GP classification approximates N-dim. distribution of training log-odds f
•! Both require similar gradient descent algorithms

Kernels or Features?
number of training examples N

M

L

number of features

cost of kernel function evaluation, at worst

•! Feature-based linear regression:
•! Kernel-based GP regression:
•! Roughly, the difference corresponds to using either

•! Relative costs of logistic regression and GP classification
are similar, per iteration of optimization-based learning

•! What if N and M are both large???

O(NM2 +M3)

O(LN2 +N3)

O(M)

Φ NxM matrix evaluating each feature for all training data

(ΦTΦ)−1 (ΦΦT)−1

Approximate!!! Endless options, none perfect!

