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Bayesian Logistic Regression 

p(ytest | xtest, ytrain, xtrain) =

∫

Θ

p(ytest | xtest, θ)p(θ | ytrain, xtrain) dθ

Posterior Predictive Distribution 

θ̂ = argmax
θ

∑

i

log p(yi | xi, θ)

Posterior Parameter Estimation 
p(ytest | xtest, ytrain, xtrain) ≈ p(ytest | xtest, θ̂)

θ̂ = argmax
θ

log p(θ) +
∑

i

log p(yi | xi, θ)

•! No closed form for logistic regression, must approximate. 

MAP: 

ML: 

•! Gradient algorithms can be used to optimize both objectives 
•! Convexity guarantees there is a single, global optimum 



Logistic Regression: Bayes Prediction 
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φ(xi) = xi

σ(z) = sigm(z) =
1

1 + e−z

Goal:  Find true posterior predictive distribution, 
integrating over posterior uncertainty in weights 

p(w) = N (w | 0, α−1I)

•! The posterior distribution of the weight vector, under the 
logistic regression likelihood, is not a member of any 
standard, parametric family of distributions 

•! There is no closed form expression for marginal likelihood 



Logistic Regression Likelihood 
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data Log−Likelihood
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Linearly Separable Data Log-likelihood Function 

f(w) = − log p(y | x,w) = −
N∑

i=1

[yi logµi + (1− yi) log(1− µi)]



MAP Prediction Rule 
Log−Unnormalised Posterior
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Log Posterior Distribution Prediction from MAP Estimate 

ŵ = argmax
w

log p(w) +
∑

i

log p(yi | xi, w)



True Predictive Marginal Distribution 

Samples from Posterior Numerical Averaging over 
Monte Carlo Samples 



Laplace (Gaussian) Approximations 
•! Perform Taylor expansion of posterior energy function: 

•! Suppose we expand around a posterior mode      : 
•! Gradient will be zero 
•! Hessian will (for many priors) be positive definite 

θ∗



Laplace Approximation of LR Posterior 
Log−Unnormalised Posterior

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8
Laplace Approximation to Posterior
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Log Posterior Distribution Laplace (Gaussian) Approximation 



Exponential Families of Distributions 

fixed vector of sufficient statistics (features), 
specifying the family of distributions 
unknown vector of natural parameters, 
determine particular distribution in this family 

φ(x) ∈ Rd

θ ∈ Θ

normalization constant or partition function, 
ensuring this is a valid probability distribution 
reference measure independent of parameters 
(for many models, we simply have                 ) h(x) = 1h(x) > 0

Z(θ) > 0

To ensure this construction is valid, we take 

Θ = {θ ∈ Rd | Z(θ) < ∞}



Why the Exponential Family? 

•! Many standard distributions are in this family, and by studying 
exponential families, we study them all simultaneously 

•! Explains similarities among learning algorithms for different 
models, and makes it easier to derive new algorithms: 
•! ML estimation takes a simple form for exponential families: 

moment matching of sufficient statistics 
•! Bayesian learning is simplest for exponential families: 

they are the only distributions with conjugate priors 
•! They have a maximum entropy interpretation:  Among all 

distributions with certain moments of interest, the exponential 
family is the most random (makes fewest assumptions) 



Examples of Exponential Families 

•! Bernoulli and binomial (2 classes) 
•! Categorical and multinomial (K classes) 

•! Scalar Gaussian 
•! Multivariate Gaussian 

•! Poisson 

•! Dirichlet and beta 
•! Gamma and exponential 
•! ! 

φ(x) = [I(x = 1), . . . , I(x = K − 1)]

φ(x) = I(x = 1) = x

φ(x) = [x, x2]

φ(x) = [x, xxT ]

h(x) =
1

x!
, φ(x) = x



Non-Exponential Families 
•! Uniform distribution 

Unif(x | a, b) = 1

b− a
I(a ≤ x ≤ b)

•! Laplace and Student-t distributions 

Lap(x | µ, λ) = λ

2
exp(−λ|x− µ|)



Log Partition Function 

•! Derivatives of log partition function have an intuitive form: 

∇θA(θ) = Eθ[φ(x)]

∇2
θA(θ) = Covθ[φ(x)] = Eθ[φ(x)φ(x)

T ]− Eθ[φ(x)]Eθ[φ(x)]
T

•! Important consequences for learning with exponential families: 
•! Finding gradients is equivalent to finding expected 

sufficient statistics, or moments, of some current model 
•! The Hessian is positive definite so           is convex 
•! Learning is a convex problem:  No local optima! 

A(θ)



Learning in Exponential Families 

•! For maximum likelihood estimation, we find the unique set 
of parameters which satisfy: 

•! Special cases we’ve seen:  Categorical, Gaussian, ! 

Eθ[φ(x)] =
1

N

N∑

i=1

φ(xi)

•! For Bayesian estimation, there are convenient properties: 
•! Except for a few “odd” exceptions, exponential families are 

the only distributions with conjugate priors 
•! Leads to more tractable posteriors and marginal likelihoods 
•! There is a simple formula for constructing these priors: 

Beta-Bernoulli, Dirichlet-categorical, Gaussian-Gaussian, ! 



Generalized Linear Models 
•! General framework for modeling non-Gaussian data with 

linear prediction, using exponential families: 
•! Construct instance-specific natural parameters: 

•! Observation comes from exponential family: 

θi = wTφ(xi)

p(yi | xi, w) = exp {yiθi −A(θi)}

•! Special cases:  linear regression and logistic regression 
•! ML and MAP estimation is generally straightforward 
•! Many possible extensions: 

•! Multivariate responses with more parameters 
(biggest difficulty is notation and indexing) 

•! Link functions to allow more flexibility in how (w, xi) → θi


