Introduction to Machine Learning

Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth

Lecture 2:
Probability: Discrete Random Variables
Classification: Validation \& Model Selection

Many figures courtesy Kevin Murphy's textbook, Machine Learning: A Probabilistic Perspective

What is Probability?

If I flip this coin, the probability that it will come up heads is 0.5

- Frequentist Interpretation: If we flip this coin many times, it will come up heads about half the time. Probabilities are the expected frequencies of events over repeated trials.
- Bayesian Interpretation: I believe that my next toss of this coin is equally likely to come up heads or tails. Probabilities quantify subjective beliefs about single events.
- Viewpoints play complementary roles in machine learning:
- Bayesian view used to build models based on domain knowledge, and automatically derive learning algorithms
- Frequentist view used to analyze worst case behavior of learning algorithms, in limit of large datasets
- From either view, basic mathematics is the same!

Probability of Two Events

 $p(A \cup B)=p(A)+p(B)-p(A \cap B)$
$A \cap B$
 $\bar{A} \cap \bar{B}$

$p(A \cap B)=p(A \mid B) p(B) \quad p(A \mid B)=\frac{p(A \cap B)}{p(B)}$

Discrete Random Variables

$X \longrightarrow$ discrete random variable $\mathcal{X} \longrightarrow$ sample space of possible outcomes, which may be finite or countably infinite
$x \in \mathcal{X} \longrightarrow$ outcome of sample of discrete random variable $p(X=x) \longrightarrow$ probability distribution (probability mass function) $p(x) \longrightarrow$ shorthand used when no ambiguity

$$
0 \leq p(x) \leq 1 \text { for all } x \in \mathcal{X} \quad \sum_{x \in \mathcal{X}} p(x)=1
$$

uniform distribution

$$
\mathcal{X}=\{1,2,3,4\}
$$

Marginal Distributions

Conditional Distributions

X

$$
p(x, y \mid Z=z)=\frac{p(x, y, z)}{p(z)}
$$

Independent Random Variables

$$
P(x, y)
$$

for all $x \in \mathcal{X}, y \in \mathcal{Y}$

Equivalent conditions on conditional probabilities:

$$
\begin{aligned}
& p(x \mid Y=y)=p(x) \text { and } p(y)>0 \text { for all } y \in \mathcal{Y} \\
& p(y \mid X=x)=p(y) \text { and } p(x)>0 \text { for all } x \in \mathcal{X}
\end{aligned}
$$

$$
\begin{gathered}
\text { Bayes Rule (Bayes Theorem) } \\
\begin{array}{c}
p(x, y)=p(x) p(y \mid x)=p(y) p(x \mid y) \\
p(x \mid y)=\frac{p(x, y)}{p(y)}=\frac{p(y \mid x) p(x)}{\sum_{x^{\prime} \in \mathcal{X}} p\left(x^{\prime}\right) p\left(y \mid x^{\prime}\right)} \\
\propto p(y \mid x) p(x)
\end{array}
\end{gathered}
$$

- A basic identity from the definition of conditional probability
- Used in ways that have nothing to do with Bayesian statistics!
- Typical application to learning and data analysis:
$X \longrightarrow$ unknown parameters we would like to infer
$Y=y \longrightarrow$ observed data available for learning
$p(x) \longrightarrow$ prior distribution (domain knowledge)
$p(y \mid x) \longrightarrow$ likelihood function (measurement model)
$p(x \mid y) \longrightarrow$ posterior distribution (learned information)

Binary Random Variables

Bernoulli Distribution: Single toss of a (possibly biased) coin

$$
\begin{aligned}
\mathcal{X} & =\{0,1\} \\
0 & \leq \theta \leq 1 \\
\operatorname{Ber}(x \mid \theta) & =\theta^{\delta(x, 1)}(1-\theta)^{\delta(x, 0)}
\end{aligned}
$$

Binomial Distribution: Toss a single (possibly biased) coin n times, and record the number k of times it comes up heads

$$
\begin{aligned}
\mathcal{K} & =\{0,1,2, \ldots, n\} \\
0 & \leq \theta \leq 1
\end{aligned}
$$

$\operatorname{Bin}(k \mid n, \theta)=\binom{n}{k} \theta^{k}(1-\theta)^{n-k} \quad\binom{n}{k}=\frac{n!}{(n-k)!k!}$

Binomial Distributions

Categorical Random Variables

Multinoulli Distribution: Single roll of a (possibly biased) die

$$
\begin{aligned}
\mathcal{X} & =\{0,1\}^{K}, \sum_{k=1}^{K} x_{k}=1 \quad \begin{array}{c}
\text { binary vector } \\
\text { encoding }
\end{array} \\
\theta & =\left(\theta_{1}, \theta_{2}, \ldots, \theta_{K}\right), \theta_{k} \geq 0, \sum_{k=1}^{K} \theta_{k}=1 \\
\operatorname{Cat}(x \mid \theta)=\prod_{k=1}^{K} \theta_{k}^{x_{k}} &
\end{aligned}
$$

Multinomial Distribution: Roll a single (possibly biased) die n times, and record the number n_{k} of each possible outcome
$\operatorname{Mu}(x \mid n, \theta)=\binom{n}{n_{1} \ldots n_{K}} \prod_{k=1}^{K} \theta_{k}^{n_{k}} \quad n_{k}=\sum_{i=1}^{n} x_{i k}$

Aligned DNA Sequences

cg at ac g g g gt cg a a
ca a tccgag a $\quad \mathrm{c} c \mathrm{~g} \mathrm{c}$ a
ca at cc gt gt t g g ga
ca at cg g c at g c g g g
cg a g c cg cg ta cg a a
c at ac g ga g ca cg a a
ta a tccgggc at gt a
cg a g c c ga gt ac ag a
cc at c cg c gt a ag c a
g ga ta cg ag at g ac a

Poisson Distribution for Counts

Modeling assumptions reduce number of parameters

Machine Learning Problems

Supervised Learning Unsupervised Learning

classification or categorization	clustering
regression	dimensionality reduction

1-Nearest Neighbor Classification

 1

1

0
1
1

o

0

Curse of Dimensionality

Overfitting \& K-Nearest Neighbors

$$
p(y=c \mid \mathbf{x}, \mathcal{D}, K)=\frac{1}{K} \sum_{i \in N_{K}(\mathbf{x}, \mathcal{D})} \mathbb{I}\left(y_{i}=c\right)
$$

How should we choose K?

Training and Test Data

Data

- Several candidate learning algorithms or models, each of which can be fit to data and used for prediction
- How can we decide which is best?

Approach 1: Split into train and test data

Training Data

Test Data

- Learn parameters of each model from training data
- Evaluate all models on test data, and pick best performer

Problem:

- Over-estimates test performance ("lucky" model)
- Learning algorithms can never have access to test data

Example: K Nearest Neighbors

Training, Test, and Validation Data

Data

- Several candidate learning algorithms or models, each of which can be fit to data and used for prediction
- How can we decide which is best?

Approach 2: Reserve some data for validation

\section*{| Training Data | Validation | Test Data |
| :--- | :--- | :--- |}

- Learn parameters of each model from training data
- Evaluate models on validation data, pick best performer

Problem:

- Wasteful of training data (learning can' t use validation)
- May bias selection towards overly simple models

Cross-Validation

- Divide training data into K equal-sized folds
- Train on K-1 folds, evaluate on remainder
- Pick model with best average performance across K trials

How many folds?

- Bias: Too few, and effective training dataset much smaller
- Variance: Too many, and test performance estimates noisy
- Cost: Must run training algorithm once per fold (parallelizable)
- Practical rule of thumb: 5-fold or 10-fold cross-validation
- Theoretically troubled: Leave-one-out cross-validation, K=N

