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What is Probability? 
If I flip this coin, the probability that it will come up heads is 0.5 

•! Frequentist Interpretation:  If we flip this coin many times, it 
will come up heads about half the time.  Probabilities are 
the expected frequencies of events over repeated trials. 

•! Bayesian Interpretation:  I believe that my next toss of this 
coin is equally likely to come up heads or tails.  Probabilities 
quantify subjective beliefs about single events. 

•! Viewpoints play complementary roles in machine learning: 
•! Bayesian view used to build models based on domain 

knowledge, and automatically derive learning algorithms 
•! Frequentist view used to analyze worst case behavior of 

learning algorithms, in limit of large datasets 
•! From either view, basic mathematics is the same! 



Probability of Two Events 

A B 
0 ≤ p(A) ≤ 1

p(Ā) = 1− p(A)

Ā ∩ B̄A ∩B

p(A ∪B) = p(A) + p(B)− p(A ∩B)

p(A ∩B) = p(A | B)p(B) p(A | B) =
p(A ∩B)

p(B)



Discrete Random Variables 
X

X

p(X = x)
p(x)

0 ≤ p(x) ≤ 1 for all x ∈ X
∑

x∈X
p(x) = 1

discrete random variable 
sample space of possible outcomes, 
which may be finite or countably infinite 

x ∈ X outcome of sample of discrete random variable 
probability distribution (probability mass function) 

shorthand used when no ambiguity 

uniform distribution degenerate distribution 

X = {1, 2, 3, 4}



Marginal Distributions 

p(x, y) =
∑

z∈Z
p(x, y, z) p(x) =

∑

y∈Y
p(x, y)



Conditional Distributions 

p(x, y | Z = z) =
p(x, y, z)

p(z)



Independent Random Variables 

p(x, y) = p(x)p(y)

X ⊥ Y

for all x ∈ X , y ∈ Y

Equivalent conditions on conditional probabilities: 
p(x | Y = y) = p(x) and p(y) > 0 for all y ∈ Y
p(y | X = x) = p(y) and p(x) > 0 for all x ∈ X



Bayes Rule (Bayes Theorem) 
p(x, y) = p(x)p(y | x) = p(y)p(x | y)

p(x | y) = p(x, y)

p(y)
=

p(y | x)p(x)∑
x′∈X p(x′)p(y | x′)

•! A basic identity from the definition of conditional probability 
•! Used in ways that have nothing to do with Bayesian statistics! 
•! Typical application to learning and data analysis: 

X unknown parameters we would like to infer 

observed data available for learning 

prior distribution (domain knowledge) 

likelihood function (measurement model) 

posterior distribution (learned information) 

Y = y
p(x)

p(y | x)
p(x | y)

∝ p(y | x)p(x)



Binary Random Variables 
Bernoulli Distribution:  Single toss of a (possibly biased) coin   

Ber(x | θ) = θδ(x,1)(1− θ)δ(x,0)

X = {0, 1}
0 ≤ θ ≤ 1

Binomial Distribution:  Toss a single (possibly biased) coin 
n times, and record the number k of times it comes up heads 

0 ≤ θ ≤ 1
K = {0, 1, 2, . . . , n}

Bin(k | n, θ) =
(

n
k

)
θk(1− θ)n−k

(
n
k

)
=

n!

(n− k)!k!



Binomial Distributions 
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Categorical Random Variables 
Multinoulli Distribution:  Single roll of a (possibly biased) die 

X = {0, 1}K ,

K∑

k=1

xk = 1

θ = (θ1, θ2, . . . , θK), θk ≥ 0,

K∑

k=1

θk = 1

binary vector 
encoding 

Cat(x | θ) =
K∏

k=1

θxk

k

Multinomial Distribution:  Roll a single (possibly biased) die 
n times, and record the number nk of each possible outcome 

nk =

n∑

i=1

xikMu(x | n, θ) =
(

n
n1 . . . nK

) K∏

k=1

θnk

k



Aligned DNA Sequences 



Multinomial Model of DNA 
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Poisson Distribution for Counts 

X = {0, 1, 2, 3, . . .}

Poi(x | θ) = e−θ θ
x

x!
Modeling assumptions reduce number of parameters 

θ > 0



Machine Learning Problems 

Supervised Learning Unsupervised Learning 
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classification or 
categorization 

regression 

clustering 

dimensionality 
reduction 



1-Nearest Neighbor Classification 



Curse of Dimensionality 
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Overfitting & K-Nearest Neighbors 
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How should we choose K? 



Training and Test Data 
Data 

•!Several candidate learning algorithms or models,  
each of which can be fit to data and used for prediction 
•!How can we decide which is best? 

Training Data Test Data 

Approach 1:  Split into train and test data 

•!Learn parameters of each model from training data 
•!Evaluate all models on test data, and pick best performer 

Problem: 
•!Over-estimates test performance ( lucky  model) 
•!Learning algorithms can never have access to test data 



Example: K Nearest Neighbors 



Training, Test, and Validation Data 
Data 

•!Several candidate learning algorithms or models,  
each of which can be fit to data and used for prediction 
•!How can we decide which is best? 

Problem: 
•!Wasteful of training data (learning can t use validation) 
•!May bias selection towards overly simple models 

Training Data Test Data 

Approach 2:  Reserve some data for validation 

•!Learn parameters of each model from training data 
•!Evaluate models on validation data, pick best performer 

Validation 



Cross-Validation 
•!Divide training data into 
K equal-sized folds 
•!Train on K-1 folds, 
evaluate on remainder 
•!Pick model with best 
average performance 
across K trials 

How many folds? 
•!Bias:  Too few, and effective training dataset much smaller 
•!Variance:  Too many, and test performance estimates noisy 
•!Cost:  Must run training algorithm once per fold (parallelizable) 
•!Practical rule of thumb:  5-fold or 10-fold cross-validation 
•!Theoretically troubled:  Leave-one-out cross-validation, K=N 


