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Lecture 2:
Probability: Discrete Random Variables
Classification: Validation & Model Selection

Many figures courtesy Kevin Murphy’s textbook,
Machine Learning: A Probabilistic Perspective



What is Probability?

If | flip this coin, the probability that it will come up heads is 0.5

* Frequentist Interpretation: If we flip this coin many times, it
will come up heads about half the time. Probabilities are
the expected frequencies of events over repeated trials.

« Bayesian Interpretation: | believe that my next toss of this
coin is equally likely to come up heads or tails. Probabilities
quantify subjective beliefs about single events.

* Viewpoints play complementary roles in machine learning:

« Bayesian view used to build models based on domain
knowledge, and automatically derive learning algorithms

* Frequentist view used to analyze worst case behavior of
learning algorithms, in limit of large datasets

* From either view, basic mathematics is the same!



Probability of Two Events
p(AUB) =p(A) +p(B) —p(AN B)
AN B AHE

l




Discrete Random Variables

X —— discrete random variable

sample space of possible outcomes,
X ” which may be finite or countably infinite

r € X —— outcome of sample of discrete random variable
p(X — g;) —— probability distribution (probability mass function)
p(ax) — shorthand used when no ambiguity
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Marginal Distributions

p(x,y)
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Conditional Distributions




Independent Random Variables

P{x.y)

X1lY

p(z,y) = p(z)p(y)

foralz e X,y e )Y

Equivalent conditions on conditional probabilities:

px|Y =y)=p(x) and p(y) >0 for all y € Y
ply| X =x)=p(y) and p(x) >0 for all z € X



Bayes Rule (Bayes Theorem)
p(z,y) = p(x)p(y | ©) = p(y)p(z | y)

_plzy)  ply | x)p(x)
p(x | y) o o / /
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x p(y | z)p(x)
« A basic identity from the definition of conditional probability
* Used in ways that have nothing to do with Bayesian statistics!
« Typical application to learning and data analysis:
X —— unknown parameters we would like to infer

Y = ) —— observed data available for learning
p(aj) — prior distribution (domain knowledge)

p(y | :)j) —— likelihood function (measurement model)

p(az ‘ y) — posterior distribution (learned information)



Binary Random Variables

Bernoulli Distribution: Single toss of a (possibly biased) coin
X =1{0,1
0<0<1
Ber(z | §) = 0°®1 (1 — 9)°=0)

Binomial Distribution: Toss a single (possibly biased) coin
n times, and record the number k of times it comes up heads

K=4{0,1,2,...,n}
0<0<1

Bin(k | n,0) = ( Z )9k(1 —0)"" ( v ) ~ _n/!f)!k!



Binomial Distributions
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Categorical Random Variables

Multinoulli Distribution Single roll of a (possibly biased) die
X = {0, 1}, z Oy
) = (91,92,... 9 ), 05 > 0, Zek — 1
Cat(x | ) = H hT*

k=1
Multinomial Distribution: Roll a single (possibly biased) die

n times, and record the number n, of each possible outcome
K
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Aligned DNA Sequences

w M M O M M M M M (O

T U DODOaodmop OO0 0
oo oD D@

D OO D DO W D O O

o oo 8 a8 R
O M4 4 300 B 2 n
oo ood Do DD DD
ol D D B
oo DD oD DD
E): B B L ;e R R
W OB U D0 U 8
T R BN S R B o LI IS A BN R RS
o ™ ™ © ™42 o o O o
OO @ @ O M g o0 O
5 T O 4 R T TR



Multinomial Model of DNA
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Poisson Distribution for Counts
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933
Poi(z | 0) = e ¥ — 0 >0
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Modeling assumptions reduce number of parameters



Continuous Discrete

Machine Learning Problems

Supervised Learning  Unsupervised Learning

classification or

o clustering
categorization

dimensionality

regression )
J reduction




1-Nearest Neighbor Classification




Curse of Dimensionality
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Overfittin
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Training and Test Data
‘ Data

« Several candidate learning algorithms or models,
each of which can be fit to data and used for prediction
* How can we decide which is best?

Approach 1: Split into train and test data

Training Data Test Data

 Learn parameters of each model from training data
 Evaluate all models on test data, and pick best performer

Problem:

 Over-estimates test performance (“lucky” model)
 Learning algorithms can never have access to test data



Example: K Nearest Neighbors
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Training, Test, and Validation Data
‘ Data ‘

« Several candidate learning algorithms or models,
each of which can be fit to data and used for prediction
* How can we decide which is best?

Approach 2: Reserve some data for validation

Training Data Validation Test Data

 Learn parameters of each model from training data
« Evaluate models on validation data, pick best performer

Problem:

« Wasteful of training data (learning can’ t use validation)
* May bias selection towards overly simple models



Cross-Validation

run 1

* Divide training data into -
K equal-sized folds run 2
e Train on K-1 folds, 3
evaluate on remainder
* Pick model with best

average performance -: run 4

run 3

across K trials

run 5

How many folds?

* Bias: Too few, and effective training dataset much smaller

 Variance: Too many, and test performance estimates noisy

« Cost: Must run training algorithm once per fold (parallelizable)
5-fold or 10-fold cross-validation

» Theoretically troubled: Leave-one-out cross-validation, K=N



