Introduction to Machine Learning

Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth

Lecture 2: Probability: Discrete Random Variables Classification: Validation & Model Selection

> Many figures courtesy Kevin Murphy's textbook, Machine Learning: A Probabilistic Perspective

What is Probability?

If I flip this coin, the probability that it will come up heads is 0.5

- Frequentist Interpretation: If we flip this coin many times, it will come up heads about half the time. Probabilities are the expected frequencies of events over repeated trials.
- *Bayesian Interpretation:* I believe that my next toss of this coin is equally likely to come up heads or tails. *Probabilities quantify subjective beliefs about single events.*
- Viewpoints play complementary roles in *machine learning:*
 - Bayesian view used to build models based on domain knowledge, and automatically derive learning algorithms
 - Frequentist view used to analyze worst case behavior of learning algorithms, in limit of large datasets
- From either view, basic mathematics is the same!

Discrete Random Variables

- → discrete random variable
- sample space of possible outcomes,
- $\mathcal{X} \longrightarrow$ which may be finite or countably infinite
- $x \in \mathcal{X} \longrightarrow$ outcome of sample of discrete random variable
- $p(X = x) \longrightarrow$ probability distribution (probability mass function)

 $p(x) \longrightarrow$ shorthand used when no ambiguity

Marginal Distributions

Х

$$p(x,y) = \sum_{z \in \mathcal{Z}} p(x,y,z)$$

 $p(x) = \sum p(x, y)$ $y \in \mathcal{Y}$

Conditional Distributions

Х

 $p(x, y \mid Z = z) = \frac{p(x, y, z)}{p(z)}$

Independent Random Variables P(x,y) $X \perp Y$ p(x, y) = p(x)p(y)for all $x \in \mathcal{X}, y \in \mathcal{Y}$

Equivalent conditions on conditional probabilities:

 $p(x \mid Y = y) = p(x) \text{ and } p(y) > 0 \text{ for all } y \in \mathcal{Y}$ $p(y \mid X = x) = p(y) \text{ and } p(x) > 0 \text{ for all } x \in \mathcal{X}$

Bayes Rule (Bayes Theorem)

$$p(x,y) = p(x)p(y \mid x) = p(y)p(x \mid y)$$

$$p(x \mid y) = \frac{p(x,y)}{p(y)} = \frac{p(y \mid x)p(x)}{\sum_{x' \in \mathcal{X}} p(x')p(y \mid x')}$$

$$\propto p(y \mid x)p(x)$$

- A basic identity from the definition of conditional probability
- Used in ways that have nothing to do with Bayesian statistics!
- Typical application to learning and data analysis:

 $\begin{array}{cccc} X & \longrightarrow & \text{unknown parameters we would like to infer} \\ Y = y & \longrightarrow & \text{observed data available for learning} \\ p(x) & \longrightarrow & \text{prior distribution (domain knowledge)} \\ p(y \mid x) & \longrightarrow & \text{likelihood function (measurement model)} \\ p(x \mid y) & \longrightarrow & \text{posterior distribution (learned information)} \end{array}$

Binary Random Variables

Bernoulli Distribution: Single toss of a (possibly biased) coin

$$\mathcal{X} = \{0, 1\}$$
$$0 \le \theta \le 1$$
$$\operatorname{Ber}(x \mid \theta) = \theta^{\delta(x, 1)} (1 - \theta)^{\delta(x, 0)}$$

Binomial Distribution: Toss a single (possibly biased) coin *n* times, and record the number *k* of times it comes up heads

$$\mathcal{K} = \{0, 1, 2, \dots, n\}$$
$$0 \le \theta \le 1$$
$$\operatorname{Bin}(k \mid n, \theta) = \binom{n}{k} \theta^k (1 - \theta)^{n-k} \binom{n}{k} = \frac{n!}{(n-k)!k!}$$

Binomial Distributions

Categorical Random Variables

Multinoulli Distribution: Single roll of a (possibly biased) die \mathcal{K}

$$\begin{aligned} \mathcal{X} &= \{0, 1\}^{K}, \sum_{k=1}^{K} x_{k} = 1 & \underset{K}{\text{binary vector}} \\ \theta &= (\theta_{1}, \theta_{2}, \dots, \theta_{K}), \theta_{k} \ge 0, \sum_{k=1}^{K} \theta_{k} = 1 \\ \operatorname{Cat}(x \mid \theta) &= \prod_{k=1}^{K} \theta_{k}^{x_{k}} \end{aligned}$$

Multinomial Distribution: Roll a single (possibly biased) die *n* times, and record the number n_k of each possible outcome

$$\operatorname{Mu}(x \mid n, \theta) = \left(\begin{array}{c} n\\ n_1 \dots n_K \end{array}\right) \prod_{k=1}^K \theta_k^{n_k} \qquad n_k = \sum_{i=1}^n x_{ik}$$

Aligned DNA Sequences

cgatacggggtcgaa caatccgagatcgca caatccgtgttggga caatcggcatgcggg cgagccgcgtacgaa catacggagcacgaa taatccgggcatgta cgagccgagtacaga ccatccgcgtaagca ggatacgagatgaca

Poisson Distribution for Counts

Modeling assumptions reduce number of parameters

Machine Learning Problems

	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
Continuous	regression	dimensionality reduction

1-Nearest Neighbor Classification

0

Curse of Dimensionality

Overfitting & K-Nearest Neighbors

$$p(y = c | \mathbf{x}, \mathcal{D}, K) = \frac{1}{K} \sum_{i \in N_K(\mathbf{x}, \mathcal{D})} \mathbb{I}(y_i = c)$$

How should we choose K?

Training and Test Data

Data

- Several candidate learning algorithms or models, each of which can be fit to data and used for prediction
- How can we decide which is best?

Approach 1: Split into train and test data

Training Data	Test Data
---------------	-----------

- Learn parameters of each model from training data
- Evaluate all models on test data, and pick best performer

Problem:

- Over-estimates test performance ("lucky" model)
- Learning algorithms can *never* have access to test data

Example: K Nearest Neighbors

Training, Test, and Validation Data

Data

- Several candidate learning algorithms or models, each of which can be fit to data and used for prediction
- How can we decide which is best?

Approach 2: Reserve some data for validation

Training Data	Validation	Test Data
---------------	------------	-----------

- Learn parameters of each model from training data
- Evaluate models on validation data, pick best performer

Problem:

- Wasteful of training data (learning can't use validation)
- May bias selection towards overly simple models

Cross-Validation

- Divide training data into K equal-sized *folds*
- Train on K-1 folds, evaluate on remainder
- Pick model with best average performance across K trials

How many folds?

- *Bias:* Too few, and effective training dataset much smaller
- Variance: Too many, and test performance estimates noisy
- Cost: Must run training algorithm once per fold (parallelizable)
- Practical rule of thumb: 5-fold or 10-fold cross-validation
- Theoretically troubled: Leave-one-out cross-validation, K=N