(Formerly CSCI1950-F)

Machine Learning

Offered this year and every year

Spring 2023

How can artificial systems learn from examples and discover information buried in data? We explore the theory and practice of statistical machine learning, focusing on computational methods for supervised and unsupervised learning. Specific topics include empirical risk minimization, probably approximately correct learning, kernel methods, neural networks, maximum likelihood estimation, the expectation maximization algorithm, and principal component analysis. This course also aims to expose students to relevant ethical and societal considerations related to machine learning that may arise in practice.

Location:Metcalf Auditorium
Meeting Time:K hr: TTh 2:30pm-3:50pm
Exam Group:0-MAY-2023 02:00 PM