
Dissecting Performance of Production QUIC
Alexander Yu∗
Brown University

alexander_yu@brown.edu

Theophilus A. Benson
Brown University
tab@cs.brown.edu

ABSTRACT
IETF QUIC, the standardized version of Google’s UDP-based layer-4
network protocol, has seen increasing adoption from large Internet
companies for its benefits over TCP. Yet despite its rapid adoption,
performance analysis of QUIC in production is scarce. Most existing
analyses have only used unoptimized open-source QUIC servers
on non-tuned kernels: these analyses are unrepresentative of pro-
duction deployments which raises the question of whether QUIC
actually outperforms TCP in practice.

In this paper, we conduct one of the first comparative studies on
the performance of QUIC and TCP against production endpoints
hosted by Google, Facebook, and Cloudflare under various dimen-
sions: network conditions, workloads, and client implementations.

To understand our results, we create a tool to systematically
visualize the root causes of performance differences between the
two protocols. Using our tool we make several key observations.
First, while QUIC has some inherent advantages over TCP, such as
worst-case 1-RTT handshakes, its overall performance is largely
determined by the server’s choice of congestion-control algorithm
and the robustness of its congestion-control implementation un-
der edge-case network scenarios. Second, we find that some QUIC
clients require non-trivial configuration tuning in order to achieve
optimal performance. Lastly, we demonstrate that QUIC’s removal
of head-of-line (HOL) blocking has little impact on web-page per-
formance in practice. Taken together, our observations illustrate the
fact that QUIC’s performance is inherently tied to implementation
design choices, bugs, and configurations which implies that QUIC
measurements are not always a reflection of the protocol and often
do not generalize across deployments.

CCS CONCEPTS
• Networks→ Protocol testing and verification.

KEYWORDS
QUIC, HTTP/3, Transport Protocol, Multiplexing, Congestion Con-
trol

ACM Reference Format:
Alexander Yu and Theophilus A. Benson. 2021. Dissecting Performance of
Production QUIC. In Proceedings of the Web Conference 2021 (WWW ’21),
April 19–23, 2021, Ljubljana, Slovenia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3442381.3450103

∗Work was done prior to joining Amazon.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3450103

1 INTRODUCTION
Due to the growing dependence on online services, e.g., Zoom or
Netflix, web performance has become a crucial concern for online
service providers and online content providers, such as, Google,
Facebook, Amazon, and Netflix. Given its importance, it is no sur-
prise that we have witnessed significant innovations in the design
of web protocols, e.g., HTTP2 and HTTP3.

One of the core protocols, QUIC, has gained increased adoption
and is currently the foundation for emerging protocols, e.g., HTTP3.
Given QUIC’s importance, there has been tremendous effort to
analyze and benchmark its performance [10, 17, 23, 39, 42, 45, 50, 52].
Unfortunately, much of this work either focuses on unoptimized
deployments [10, 45, 46] or explores a limited set of payloads [42,
50, 52]. There is a need for more practical and realistic tools for
benchmarking QUIC. This need is growing increasingly important
as we witness an explosion in the number of distinct and different
QUIC implementations [3]. Unfortunately, the lack of general tools
which interoperate between different deployments and clients has
led to contradictory results and claims between researchers with
some stating that QUIC outperforms TCP and others stating the
exact opposite [14, 16, 25, 40, 53].

In this paper, our goal is to develop a simple and lightweight
but general tool for benchmarking practical QUIC deployments
and identifying implementation idiosyncrasies which lies at the
cause of performance problems. Our approach builds on the follow-
ing core principles: First, rather than explore open-source QUIC
implementations which are largely unoptimized, we analyze pro-
duction endpoints of popular web-services, e.g., Google and Face-
book. These endpoints allow us to take advantage of closed-source
code, configuration, and kernel optimizations. Second, to capture
a more holistic view of QUIC performance, we not only compare
server implementations but also compare and analyze multiple
QUIC clients.

To support these principles, we develop a testing harness that
emulates different network conditions, thus enabling us to ana-
lyze implementation behavior across a broad range of scenarios.
In addition, we design diagnosis scripts that analyze protocol be-
havior such as bytes acknowledged over time in order to facilitate
identification of the root-cause of problems.

Taken together, our approach reflects a fundamental shift in
how QUIC is benchmarked and analyzed. We focus on production
deployments, employ heterogeneous client-side implementations,
and provide open-source scripts for root-cause diagnosis. This ap-
proach enabled us to identify the non-trivial impact of client side
implementations on performance. More importantly, it also enabled
us to identify problems in Facebook’s implementation and work
with their team in fixing them.

To illustrate the strength and versatility of our tool, we use it
to analyze three production QUIC deployments and three distinct

https://doi.org/10.1145/3442381.3450103
https://doi.org/10.1145/3442381.3450103


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yu and Benson

QUIC clients. In analyzing these implementations, we make the
following observations:

• QUIC’s inherent 1 RTT advantage over TCP for secure con-
nection establishment gives QUIC an edge for small pay-
loads.

• For larger payloads, the server’s congestion control has a
much larger impact on performance rather than QUIC’s
design itself.

• Separate packet number spaces, which is QUIC’s unique
mechanism to logically separate packets with different en-
cryption levels, introduces novel edge-cases that can severely
impact congestion control behavior.

• QUIC clients are not necessarily configured with the same
TLS options, which leads to performance issues when QUIC
servers are configured with specific clients in mind.

• QUIC’s removal of HOL (head-of-line) blocking has little
impact on Page Load Time and Speed Index relative to con-
gestion control for real-world web-pages.

Our observations show that care must be taken to account for
implementation and operational (i.e., configuration) choices when
benchmarking and analyzing QUIC. In particular, our study identi-
fies many edge-cases where implementations perform poorly due
to non-optimal configuration or coding bugs rather than proto-
col design. As a result, we demonstrate that even for large content
providers, significant engineering efforts must still be made to make
QUIC as robust as TCP.

2 QUIC OVERVIEW
QUIC, at its core, is essentially multiplexed TCP and TLS combined
into a single transport protocol built on top of UDP. In other words,
QUIC provides the same guarantees as TCP, such as reliable delivery
of data and strict flow control, while also incorporating security
and stream multiplexing directly into its design. In this section, we
describe some of QUIC’s key differences with TCP and discuss their
potential effects on application performance.

Multiplexed Streams. Unlike TCP, QUIC incorporates stream
multiplexing directly into its transport protocol design. Having
this feature loosens the ordering constraints on packet delivery, as
data only needs to be delivered in-order at the stream level rather
than at the connection level. Consequently, QUIC alleviates TCP’s
head-of-line (HOL) blocking problem, where a lost packet contain-
ing data from one stream prevents the receiver from processing
subsequent packets containing data from other streams, which is
illustrated in Figure 1. However, the same figure also demonstrates
that QUIC’s stream multiplexing does not necessarily impact the
total time to process all data1. As a result, care must be taken to
design appropriate experiments to dissect and analyze the impact
of QUIC’s multiplexing on application performance.

ConnectionEstablishment.Another advantageQUIC has over
TCP+TLS1.3 is that it requires one less round trip to establish a
secure connection for a new or existing session. Unlike QUIC, TCP
does not have TLS negotiation built into its protocol, meaning that
it must always complete its own handshake, which takes 1 round
trip, before initiating the TLS handshake, which also takes 1 round
trip. Consequently, because QUIC is designed to use TLS by default,
1Assuming that both the TCP sender and receiver enable the TCP SACK option.

(a) TCP: Application layer can only read data from streams 1 and
2 until the 2nd flight of packets arrive since TCP has no built-
in stream-multiplexing and treats all packets as part of a single
‘stream’. Thus, the lost packet at the ‘head of the line’ is blocking
subsequent packets from being processed.

(b) QUIC: Application layer can read data from streams 1 and
2 by the 1st flight of packets since QUIC has built-in stream-
multiplexing. The lost packet at the ‘head of the line’ belongs to
stream 0, so it does not block in-order packets from streams 1 and
2 from being processed.

Figure 1: Head-of-line (HOL) Blocking.

it does not require a separate non-TLS handshake to synchronize
the sender and receiver. This means that QUIC should always take
at least one less RTT to complete an HTTPS request compared to
TCP.

Loss-recovery.QUIC’s loss-recovery design builds upon decades
of TCP deployment experience as it utilizes and simplifies many of
TCP’s most effective recovery mechanisms, e.g., Fast Retransmit [9],
Selective Acknowledgement (TCP SACK) [34], Recent Acknowl-
edgement (TCP RACK) [15], etc. For instance, QUIC introduces
monotonically-increasing packet numbers in order to differenti-
ate between fresh and retransmitted data, which greatly simplifies
RTT measurements. Overall, QUIC’s recovery mechanisms should
ensure that it handles loss as well as, if not better than, a state-of-
the-art TCP stack.

HTTP/3 (H3). QUIC also enables a new application protocol,
HTTP/3, to take full advantage of QUIC’s stream-multiplexing
capabilities. H3 differs from its predecessor, HTTP/2 (H2), in that
it removes stream metadata from its header, uses a new header
compression algorithm, and adopts a new prioritization scheme [47].
Combined, these features should improve QUIC’s performance as
they reduce H3’s payload size compared to that of H2 and make
resource prioritization under H3 more accessible.

User-space. QUIC’s user-space nature presents unique oppor-
tunities in terms of configuration and experimentation at the trans-
port layer. Using QUIC allows implementers to easily test and de-
ploy a variety of flow-control and congestion-control strategies
to fit their needs. However, such heterogeneity can also translate
to significant performance discrepancies across implementations,
creating the need for a broad, general analysis of QUIC performance
across independent deployments.



Dissecting Performance of Production QUIC WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Author QUIC
Version

Prod-
uction
end-

points

Root
Cause
Analy-
sis

Results Explanation

Google [27] h3-29 ✓ ✗ QUIC improved client desktop throughput by 3%,
decreased search latency by 2%, and decreased

video rebuffer rates by 9%.

None provided.

Facebook [35] N/A2 ✓ ✗ QUIC reduced request errors by 6%, reduced tail
latency by 20%, and reduced

mean-time-between-rebuffering (MTBR) by 22%.

QUIC’s state-of-the-art
recovery mechanisms
improves tail metrics.

Cloudflare [50] h3-27 ✓ ✗ H3’s performance was 1-4% worse than H2’s
across multiple POP locations.

Different congestion control
used for TCP and QUIC.

Saif [45] h3-27 ✗ ✗ In a local environment, QUIC performed worse for
all network conditions except high loss.

Code churn and unoptimized
open-source implementation.

Codavel [10] h3-20 ✗ ✗ During packet loss, QUIC performed better for
small payloads (250KB) but substantially worse for

large payloads (17MB)

Unoptimized open-source
implementation and different

congestion control.
This work h3-29 ✓ ✓ QUIC performed favorably for Google under all

network scenarios but had mixed results for
Facebook and Cloudflare.

QUIC’s performance is largely
determined by its congestion
control implementation.

Table 1: Existing QUIC (HTTP3) vs. TCP (HTTP2) Benchmarks.

3 RELATEDWORKS
Most related work [12, 14, 25–27, 41, 44, 53] on QUIC performance
focuses on gQUIC (Google’s version of QUIC) which is significantly
different from the subsequent IETF version of QUIC [49]. These
differences imply that the conclusions drawn from previous works
are not applicable to amajority of today’s QUIC. In short, limitations
of these approaches motivate a need for a more up-to-date study.

The standard approach to experiment design has focused on us-
ing Chromium’s open-source gQUIC server in a local environment.
With this approach, experimenters have full control over various
dimensions that impact performance, e.g., payload distribution and
network conditions. However, they are also responsible for tuning
kernel and application settings. Consequently, configuration dif-
ferences between studies have led to conflicting claims between
researchers with some stating that gQUIC outperforms TCP and
others stating the exact opposite [14, 16, 25, 40, 44, 53]. These issues
highlight the need for general approaches which can benchmark
production deployments.

In terms of root cause analysis, these studies cite gQUIC’s 0-
RTT connection establishment [12, 25], removal of HOL block-
ing [26, 53], congestion control [14, 25], and improved recovery
mechanisms [16, 25, 27] as the main factors behind gQUIC and
TCP’s different performance outcomes. Our study covers some of
these aspects but differs by separating the QUIC protocol from the
implementation.

Differentiating between protocol and implementation was not
necessary for prior gQUIC studies since only Google’s implemen-
tation was serving substantial user traffic at the time [29]. With
the recent explosion in QUIC implementations [3], brought on by
many content providers’ decision to develop in-house solutions,

2Facebook did not share a specific QUIC version in their blog post but they have
deployed IETF QUIC since at least h3-9 [23].

there is now a need to compare across these versions in order to
gain a more holistic view of QUIC.

The lack of variety among gQUIC implementations has actu-
ally led to misleading root cause analysis as well. For instance,
when discussing congestion control, researchers have often used
the phrase, “QUIC’s congestion control..." [12, 14, 25], which is inac-
curate considering that there is no standard congestion control for
QUIC. In our work, we even show that the same congestion control
algorithm on separate QUIC stacks can lead to vastly different per-
formance outcomes based on their implementation quality. With
this in mind, our approach allows us to highlight key implemen-
tation aspects that lead to different performance outcomes across
production deployments.

Along the topic of production deployments, more general stud-
ies by content providers have identified various metrics that QUIC
improves upon, which we highlight in Table 1. However, none of
these content providers have shared any root cause analysis for
QUIC’s improvements over TCP, leaving those outside these com-
panies with little information on how such improvements were
achieved. Furthermore, this absence of detailed analysis makes it
difficult to explain the lack of cohesion between their conclusions.
It is precisely this problem of explaining QUIC’s performance het-
erogeneity that we address with our more general approach using
client-based tools.

4 METHODOLOGY
In this section, we describe our methodology for benchmarking
QUIC and TCP. Given our emphasis of analyzing production en-
vironments, we are only able to benchmark these protocols by
selecting appropriate application protocols. Specifically, to bench-
mark QUIC, we analyzed servers using the HTTP/3 (H3) protocol
(which runs atop QUIC) and to benchmark TCP, we analyzed the



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yu and Benson

Figure 2: Testbed setup.

HTTP/2 (H2) protocol (which runs atop TCP). The benchmarking
tools we used for our experiments are open-sourced and can be
found at https://github.com/triplewy/quic-benchmarks.

4.1 Testbed
4.1.1 Server-side Setup. For the server-side, we used publicly-
available endpoints from Google, Facebook, and Cloudflare. To the
best of our knowledge, these were the only companies that served
QUIC in production as of December 2020. We tested QUIC version
29, which will closely resemble the final specification consider-
ing that changes made since have had little impact on the overall
protocol [21]. Thus, our benchmark results and analysis will be
applicable for future QUIC versions.

We benchmarked two types ofworkloads: single-object resources,
which allowed us to analyze raw protocol behavior, and, multi-
object web-pages which allowed us to explore protocol behavior
during the page load process. For both types of workloads, we
chose static resources (e.g., images and text files) or static pages
(e.g., about pages, blog posts) that were accessible without user
credentials in order to avoid triggering user-based business logic
that could have impacted performance measurements.

4.1.2 Client-side Setup. We conducted our experiments using a
Macbook Air (OSX 10.13.6, Intel Core i5 1.3 GHz, 8 GBmemory) on a
home internet connection. The RTT between our client and content
providers’ endpoints was consistently between 10-20ms, as our
router always resolved their domain names to Point-of-Presences
(POPs) near Boston.

For our H2 clients, we used Google Chrome and cURL, and
for our H3 clients, we used Google Chrome, Facebook Proxygen,
and Ngtcp2. We chose Facebook Proxygen and Ngtcp2 as our H3
command-line clients since Proxygen client has been deployed
in Facebook mobile apps since at least 2017 [39] and Ngtcp2 is a
popular QUIC library used in various open-source projects [1, 48].

In terms flow control configuration, for TCP we used OSX’s de-
fault settings where TCP buffer size starts at 128KB and increases
up to 1MB due to TCP window-size scaling. As for QUIC, whose
flow control consists of per-connection and per-stream parameters,
we used 15MB at the connection-level and 6MB at the stream-level
for Chrome. These particular values represent Chrome’s default set-
tings and happen to be larger than any of our benchmark’s payloads.
For Proxygen and Ngtcp2, we used 1GB for both parameters to also
make QUIC flow control was a non-factor in our experiments.

Parameter Values Tested

Bandwidth 10mbps
Extra loss 0%, 0.1%, 1%

Extra delay (RTT) 50ms, 100ms

Single-object sizes 100KB, 1MB, 5MB

Web-page sizes
small (≤ 0.47MB)

medium (≤ 1.54MB)
large (≤ 2.83MB)

Content Providers Facebook, Google, Cloudflare
Table 2: Scenarios Tested.

In terms of TCP options, OSX, by default, enables TCP SACK but
does not enable ECN. Similarly, none of our QUIC clients enable
ECN. Lastly, to keep H2 and H3 comparisons consistent, we disabled
SSL verification in cURL since both Proxygen and Ngtcp2 do not
support SSL verification in their vanilla implementations. However,
Chrome does not provide the option to disable SSL verification,
which had an impact on our H3 client consistency results, which
we discuss in §7.2.

4.2 Network Environments
We used Network Link Conditioner [36] to simulate various net-
work conditions from the client side. Under the hood, Network Link
Conditioner uses dnctl and pfctl which are based on OpenBSD’s
network shaper and packet filter tools [28]. These tools work simi-
larly to Linux’s tc-netem [5] in that packets are first filtered based on
layer-3 or layer-4 protocol information, then buffered into a queue
where bandwidth, delay, and loss rates are applied [24]. Added
loss from Network Link Conditioner is distributed randomly while
added delay is distributed uniformly.

Table 2 shows the various network conditions and payloads that
we tested. All of our experiments were run at a fixed bandwidth
of 10 mbps on a home Wifi connection. Our reasoning behind
these specific network conditions is that they represent normal
and realistic edge case network conditions, e.g., high loss or high
latency, that can induce unique protocol behavior for root cause
analysis.

Lastly, considering the inherent network variability associated
with benchmarking over the Internet, we ran each experiment at
least 40 times to reduce the impact of this network variability on
our results.

5 EVALUATION FRAMEWORK
In this section, we describe our performancemetrics and ourmethod
for determining performance differences.

Metrics. For our single-object benchmarks, we measured net-
work performance using time-to-last-byte (TTLB), which we define
as the time difference between the first packet sent by the client
and the last packet received from the server.

As for our multi-object benchmarks, we measured Speed Index
(SI) [7], a metric that indicates how quickly a page is visibly pop-
ulated, and Page-Load Time (PLT), a commonly used metric for

https://github.com/triplewy/quic-benchmarks


Dissecting Performance of Production QUIC WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

(a) Single-object workflow.

(b) Multi-object workflow.

Figure 3: Measurement tool workflows.

web-page performance [12, 14, 25, 43, 50]. We used Google Light-
house [4], a tool to perform audits on web-pages, to capture SI
from our Chrome client and WProfX [38], a tool that identifies a
web-page’s critical loading path, to calculate PLT from exported
Chrome trace events.

Statistical Analysis. Due to the nature of benchmarking on the
Internet, we employed median instead of mean when comparing
performance. Median’s main advantage over mean is that it ignores
outlier data points, which are inevitable when performing Internet
benchmarks. Such outliers may be caused by various factors unre-
lated to QUIC or TCP, like resource caching on the server, transient
congestion in middleboxes, Wifi interference, etc.

6 MEASUREMENT TOOLS
The main goal for our measurement tools is to identify the root
causes behind performance discrepancies between productionQUIC
and TCP. Our emphasis on evaluating and analyzing production
performance requires a fundamental shift in approach compared to
prior QUIC studies, whose conclusions are mainly based off local
experiments [10, 12, 14, 16, 26, 40, 44, 45, 53].

Single-object workflow.We first use a broad set of H2 and H3
clients to identify interesting or unexpected performance discrep-
ancies that arise from benchmarking production H2 and H3 end-
points. Once we have a specific combination of object size, network
condition, client set, and production deployment that produces in-
teresting results, we use Python scripts to generate request-level
visualizations of bytes ACKed over time from client logs. These
visualizations help us identify the manner in which performance
deviations occur between H2 and H3 requests. If client analysis is
insufficient, we then attempt to reproduce the behavior locally in or-
der to analyze server logs which provides us complete information
of requests.

Figure 3a illustrates the generalized workflow for our single-
object benchmarks and shows that our H2 and H3 clients gen-
erate network logs in three formats: Qlog [33] (exported by our
command-line H3 clients, Proxygen and Ngtcp2), Netlog [18] (ex-
ported by Chrome), and Pcap (captured via tcpdump and used for
our H2 clients). All three log formats provide detailed information
on sent and received packets, which is sufficient for creating the
aforementioned visualizations. Overall, we find that this approach

(a) Extra Loss

(b) Extra Delay

Figure 4: H2 versus H3 performance for single-object end-
points during 10mbps bandwidth. Percentage differences
less than 5% are not labelled.

of connecting real-world findings with client analysis or local re-
production bypasses concerns of misconfiguration and provides
relevant insight into the aspects of QUIC that are lacking at the
production level.

Multi-object workflow. Analyzing multi-object web-page per-
formance requires a separate workflow from our single-object anal-
ysis since a page-load may consist of tens to hundreds of unique
network requests. To this end, the goal of our multi-object mea-
surement tool is to correlate high-level Quality of Experience (QoE)
metrics, such as Speed Index and Page Load Time, with low-level
network events. Figure 3b shows that we achieve this by using Pup-
peteer [6] to manipulate Chrome, Lighthouse [4] and WProfX [38]
to record QoE metrics, Chrome-HAR [2] to capture high-level net-
work request info, and Chrome Netlog [18] to record low-level
network details. We then perform ad-hoc root cause analysis in
order to explain the captured metrics with network details from
the relevant page loads.

7 SINGLE-OBJECT RESULTS
In this section, we present our benchmark results for single-object
endpoints and provide root cause analysis for various measured
performance differences between QUIC and TCP, and between
QUIC clients.

7.1 TCP (H2) vs QUIC (H3) Performance
For single-object web resources, we expected the difference between
our TCP and QUIC results to be minimal since QUIC only uses
one bidirectional stream to send and receive data for a single web
object, which is effectively the same as using a TCP connection.
However, our results show the contrary since there are major TTLB
differences between H2 and H3 for numerous network conditions
and object sizes.



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yu and Benson

(a) Google 1MB Endpoint (b) Cloudflare 1MB Endpoint

Figure 5: Bytes ACKed over time for 1MB payloads during
1% added loss. Each dot in the graph represents an ACK sent
from the client.

(a) TCP: BBR (b) QUIC: Cubic

Figure 6: First-retransmission-data-offset vs. TTLB for our
1MB Cloudflare endpoint during 1% loss.

7.1.1 No Extra Loss or Delay. The first row in Figure 4a shows
that without added loss or latency, H3 consistently performed better
than H2 for 100KB payloads. However, for larger payloads, H3’s
performance was essentially equivalent to H2’s. We ascribe this
behavior to QUIC’s 1 RTT handshake advantage over TCP for two
reasons: First, the behavior is consistent across content providers
which implies that protocol-design rather than implementation-
design is the root cause. Second, as a matter of logic, a 1 RTT
difference has a much larger impact on short-lived connections
compared to longer ones. Thus, our data demonstrates that with
a network bandwidth of 10mbps, QUIC’s 1 RTT advantage has a
significant impact on connections whose payload is less than 1MB,
but negligible impact otherwise.

7.1.2 Extra Loss. For our added loss benchmark results, we see
the same pattern of better H3 performance for 100KB payloads but
equivalent H3 performance for larger payloads. Cloudflare is the
only exception to this pattern, where H3 performed much worse
than H2 during 1% added loss. To identify the root cause behind
Cloudflare’s poor QUIC performance, we first plotted bytes ACKed
over time from our median requests to Cloudflare and Google 1MB
endpoints during 1% loss in order to visualize the differences in
packet behavior between these two QUIC deployments.

Figure 5 shows that for Cloudflare, H3 lagged behind H2 from the
onset of their requests and was never able to catch up. This greatly
contrasts with Google’s behavior where H2 and H3 were virtually
identical throughout their requests. Considering that Cloudflare

(a) Google 100KB Endpoint (b) Facebook 100KB Endpoint

Figure 7: Bytes ACKed over time for 100KB payloads during
100ms added delay.

uses Cubic for QUIC’s congestion control and BBR for TCP’s, we
suspected that Cubic’s handling of early loss was the root cause
behind H3’s immediate degraded ACK rate. To confirm this, we ran
40more iterations with our ProxygenH3 and cURLH2 client against
Cloudflare’s 1MB endpoint during 1% added loss and plotted the
relationship between TTLB and data offset of the first retransmitted
packet.

Figure 6 shows a much stronger correlation between TTLB and
first-retransmitted-offset for QUIC (Cubic) compared to TCP (BBR).
Interestingly, TCP’s far greater percentage of retransmissions had
little impact on its performance compared to QUIC. This unex-
pectedly large amount of retransmissions was caused by our TCP
buffer being filled before Cloudflare reacted to loss, leading to extra
dropped packets. Thus, despite experiencing an order of magnitude
more loss than QUIC, TCP was still able to achieve better TTLB,
demonstrating how the congestion control’s reaction to loss affects
TTLB far more than the total number of lost packets.

Cubic is prone to performance degradation during early packet
loss since the sender sets𝑊𝑚𝑎𝑥 (Window max) to the current 𝑐𝑤𝑛𝑑
whenever it detects a lost packet. When there is early loss, 𝑐𝑤𝑛𝑑
is bound to be small since it has only received a few ACKs to
increase its size exponentially during slow start. Unlike Cubic, BBR
is not as severely hindered by early loss since it uses the data
acknowledgement rate rather than loss as a signal for congestion.
As a result, Cloudflare’s poor H3 performance demonstrates Cubic’s
difficulty in utilizing a link’s full bandwidth during random loss.

While sustained, random loss at 10mbps bandwidth may not
reflect a common, real world network condition, our analysis still
shows that congestion control can significantly impact QUIC per-
formance. Therefore, it is important to differentiate between QUIC
and its congestion control as doing so incorrectly leads to false
pretenses about QUIC.

7.1.3 Extra Delay. For our added delay benchmark results, Fig-
ure 4b shows that H3 performed much better than H2 against
Google endpoints, but performed significantly worse against Face-
book’s 100KB endpoint. This was quite surprising given QUIC’s
aforementioned 1 RTT handshake advantage.

To identify the root cause behind Facebook’s poor QUIC perfor-
mance during added delay, we again underwent the same process
described in §7.1.2 where we first used client request logs to plot
bytes ACKed over time in order to compare the packet behavior



Dissecting Performance of Production QUIC WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

(a) 0% Loss (b) 1% Loss (c) 100ms Delay

Figure 8: Various heatmaps showcasing performance differences between H3 clients. Each cell’s value is calculated by taking
the percent difference between themedian TTLB for that client-endpoint tuple and the lowestmedian TTLB amongst all three
clients for that endpoint. Thus, a percent difference of 0% is the best value a client can achieve. Percentage differences less
than 5% are not labelled.

between different endpoints. Figure 7 demonstrates that for both
Google and Facebook, Chrome H3 began ACKing application data
earlier than Chrome H2, which was due to QUIC’s 1 RTT hand-
shake advantage. However, Chrome H3 was unable to maintain
this advantage when interacting with Facebook.

Our discussion with a Proxygen maintainer to demystify these
surprising results led to uncovering a bug in Proxygen’s QUIC BBR
congestion controller, which we explain in section §7.2.1. He also
mentioned that they use BBR for their TCP congestion control. So,
even though Google and Facebook both use BBR in their QUIC and
TCP stacks [13], we only measured a large difference in their QUIC
behavior.

Google and Facebook’s similarity in TCP behavior is most likely
due to their common use of Linux kernel’s BBR congestion con-
troller. Unlike QUIC, where deploying BBR requires writing it from
scratch or porting an open-source implementation, TCP offers the
benefits of a battle-tested BBR implementation with one config
change in the Linux kernel [51]. Thus, while QUIC’s user-space
nature offers greater flexibility in terms of congestion control ex-
perimentation, optimizing congestion control implementations to
perform well under normal and outlier network conditions is evi-
dently not a straightforward task, even for a large content provider
like Facebook.

7.2 Client Consistency
While previous studies often solely focus on the server’s impact
on QUIC performance, we also measure performance differences
between H3 clients to gauge the client’s impact on QUIC perfor-
mance.

From our results, we find that Chrome consistently performed
worse than its counterparts when downloading 100KB payloads,
as shown by Figures 8a and 8b. This slowdown was caused by
Chrome’s SSL verification, which consistently took around 20ms to
finish. As previously mentioned, our Proxygen and Ngtcp2 clients
do not perform SSL verification. In context, 20ms represents 13.9%,
14.7%, and 7.2% of the best median TTLB for Google, Facebook,
and Cloudflare 100KB endpoints during 0% loss respectively, which
generally match Chrome’s 100KB percentages shown in our results.
Therefore, we find that QUIC clients have equivalent performance

Figure 9: QUIC Packet Number Spaces: Each space (Initial,
Handshake, 1RTT) uses its own encryption keys and ACKs
can only be registered between packets in the same space.
For a new session, a QUIC client and server must progress
through these three spaces sequentially in order to ensure
secure transfer of data.

under a home network connection with virtually no loss, consistent
sub 20ms RTT, and 10mbps bandwidth.

Figure 8c shows more interesting behavior in that Ngtcp2 sub-
stantially outperformed its peers when interacting with Facebook
endpoints during 100ms added delay. This discrepancy was actually
caused by an incompatibility between Ngtcp2’s default TLS cipher
group and Facebook’s TLS setup, which we further discuss in the
following section.

7.2.1 Proxygen Implicit ACK Bug. Ngtcp2 differs from other
clients in that its default TLS cipher group, P256, is incompatible
with Facebook Proxygen’s default TLS cipher group, X25519. Nor-
mally, this results in a 1 RTT disadvantage for Ngtcp2 since it needs
to resend its Initial with the correct cipher group after getting Prox-
ygen server’s reply. Note that the Initial is the very first packet a
client sends to a server as a means to exchange initial encryption
keys as shown in Figure 9. However, through local reproduction,
we discovered that when adding 100ms delay to the network, this
incompatibility actually benefits Ngtpc2 due to a bug in Proxygen’s
BBR congestion control code.

When RTT is above 100ms, Proxygen server’s probe timeout
(PTO) will expire before it receives an ACK for its first packet (i.e
its Initial packet), causing it to send a probe packet3. For clarity, we
will subsequently refer to the server’s first packet and its probe as
𝐼𝑛𝑖𝑡0 and 𝐼𝑛𝑖𝑡1 since they both belong in the Initial packet number
space.

The purpose of a probe packet is to elicit a new ACK from the
receiver so that the sender can quickly learn whether the previous
3QUIC’s PTO is calculated as a function of the connection’s RTT, but is set to some
arbitrary value when there are no RTT measurements present. For Proxygen, PTO is
initially set to 100ms.



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yu and Benson

(a) Proxygen/Chrome Client (b) Ngctp2 Client

Figure 10: QUIC packet sequences with Proxygen server.
In both sequences, Proxygen server sends its first packet
at timestamp 55ms. At timestamp 155ms, its PTO timeout
expires since it has not received a response within 100ms,
which triggers a loss probe.

packet was actually lost based on the new ACK information. In ad-
dition, the QUIC specification states that a PTO probe must contain
new data if available, so in effect, it is treated as a regular packet by
the sender. In other words, the PTO will trigger again if the probe
itself is not ACKed in time [20].

Figures 10a and 10b illustrate how Proxygen server’s PTO expires
100ms after it sends 𝐼𝑛𝑖𝑡0, causing it to send an ACK-eliciting probe,
𝐼𝑛𝑖𝑡1. Then, due to simulated high latency, Proxygen server receives
the client’s ACK for 𝐼𝑛𝑖𝑡0 immediately after it has sent 𝐼𝑛𝑖𝑡1. The
difference between Ngtcp2 and the other H3 clients is that Ngtcp2
responds with a new Initial packet containing new keys rather than
Handshake packets.

Once a QUIC server receives a Handshake packet from the client,
it must stop processing Initial packets and discard any congestion
control state associated with those packets [22]. The purpose of this
rule is to allow the server to immediately make forward progress
even when there are prior Initial packets yet to be acknowledged.
From the server’s perspective, receiving a Handshake packet from
the client signifies that the Initial phase is completed, meaning that
any subsequent Initial packet is irrelevant.

When Proxygen server receives a Handshake packet while 𝐼𝑛𝑖𝑡1
is still in-flight, it ‘implicitly’ ACKs 𝐼𝑛𝑖𝑡1 so that it can immediately
move forward without waiting for its actual ACK. Essentially, an
‘implicit’ ACK is Proxygen’s method of immediately discarding an
in-flight, useless Initial packet, which in it of itself is not a problem.
The problem is that Proxygen feeds round trip times from ‘implicit’
ACKs into its congestion control model.

From Figure 10a, we can see that this particular ‘implicit’ ACK
registers an RTT measurement below 10ms when the actual RTT is
above 100ms. This has a significant impact on the BBR congestion
control model as perceived bandwidth is calculated based on RTT.
When BBR encounters such a substantial and sudden increase in
RTT, in this case from 10ms to 100ms, it will stop exponentially
increasing estimated bandwidth as it perceives that full bottleneck
bandwidth has been reached, which is demonstrated in Figure 11.

Ngtcp2, with its default TLS configuration, does not encounter
this problem because it does not ‘implicitly’ ACK the server’s PTO

Figure 11: Local Environment: Server estimated bandwidth
for various H3 clients when querying a 1MB payload during
100ms added delay. Each dot in the graph indicates a band-
width update event from our local Proxygen server.

(a) Before (b) After

Figure 12: Before and after implicit ACK patch: H2 versus
H3 performance for single-object Facebook endpoints dur-
ing added delay. Percent differences less than 5% are not la-
belled.

probe when it sends a new Initial in the correct format. Later on in
the connection, Ngtcp2 normally ACKs the probe packet and thus
Proxygen server never encounters any inaccurate RTT measure-
ments.

7.2.2 Aftermath. The Proxygen maintainers have since imple-
mented a fix that ignores RTT measurements from packets that
are ‘implicitly’ ACKed [8], which is now in line with the QUIC
draft specification. After this bug was patched, we reran our bench-
mark suite against Facebook endpoints during 100ms added delay.
Figure 12 shows H3’s significant improvement relative to H2 as a
result of the patch. Overall, this bug demonstrates how separate
packet number spaces, a feature unique to QUIC, creates novel edge
cases which can seriously degrade network performance if handled
improperly.

This bug also demonstrates that client configuration plays an
important role in optimizing QUIC performance. As a result of
our analysis, we realized that Ngtcp2 used 2 RTTs instead of 1
RTT to complete its handshakes with Facebook and Cloudflare
servers, leading to poor performance relative to other clients. After
configuring Ngtcp2 with a compatible TLS group, we found that it
performed similarly with other clients and these results are reflected



Dissecting Performance of Production QUIC WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

(a) H2 Page Load - SI: 1.78s

(b) H3 Page Load - SI: 1.70s

Figure 13: Page-load screenshot sequences of our large-sized Cloudflare web-page during no added loss or delay.

(a) Extra Loss

(b) Extra Delay

Figure 14: H2 versus H3 Speed-Index performance formulti-
object web-pages during 10mbps bandwidth4.

in our client consistency benchmarks in Figure 8 (besides Facebook
during 100ms added delay).

8 MULTI-OBJECT RESULTS
Barring a few exceptions, our single-object benchmark results have
shown that against Google, Facebook, and Cloudflare production
endpoints, QUIC performs just as well, if not better than TCP when
there is no multiplexing involved. Considering that QUIC is also
designed to further improve multiplexing performance with its
removal of HOL blocking and its tighter coupling with the ap-
plication layer, we expected our multi-object results to be even
more favorable towards H3 compared to our single-object results.
Specifically, we anticipated H3 to show additional performance
improvements during added loss where QUIC’s removal of HOL
blocking is pertinent. However, we expected H3 to perform worse
against Cloudflare during added loss due to their use of Cubic for
QUIC’s congestion control.

4Our results are based on using Puppeteer’s default browser view-port of 800x600
pixels. We also conducted our multi-object benchmarks following Facebook’s ‘implicit’
ACK patch.

8.1 Speed Index
Our Speed Index benchmark results in Figure 14 reject our hy-
pothesis that QUIC’s removal of HOL blocking improves web-page
performance since H3 did not outperform H2 during added loss for
Facebook or Google. While H3 performed well against Cloudflare
during added loss, it is evident that web-page layout design rather
than protocol design is the root cause since our results are inconsis-
tent across different sized Cloudflare web-pages. Lastly, our results
also show that H3 consistently achieved better SI for small-sized
web-pages, which again reiterates the positive impact of QUIC’s
1-RTT handshake advantage.

In order to fully understand our Speed Index benchmark results,
we first explain the calculations behind Speed Index (SI). At its core,
SI depicts the amount of change between visual browser frames
throughout a page load [7]. A low SI value, which is preferred,
indicates that the area visible to the user changes little over time.
In other words, immediate loading, as opposed to gradual loading,
of prominent visual content translates into a better SI. Note that
Lighthouse, the tool we use to capture SI, does not scroll during
the loading process, which means that any significant UI content
rendered off screen is not factored into SI.

As an example, Figure 13 shows Lighthouse-generated screen-
shot sequences of our median H2 and H3 page loads for our large-
sized Cloudflare web-page. The top sequence (H2) has a worse SI
compared to the bottom sequence (H3) since it takes a longer time
to load the main image, which is highlighted in red. Relating to
our benchmark results in Figure 14, we find that this occurred con-
sistently for our large-sized Cloudflare web-page regardless of the
network condition.

8.1.1 Cloudflare. In order to pinpoint why H3 consistently out-
performed H2 for our large-sized Cloudflare web-page, we first
examined the start and end times for the ‘main’ image resource
discussed in the previous section. We define start time and end time
as the beginning and end of the main image request and extract this
information from Chrome’s HAR logs. Figure 15 demonstrates that
for each network condition, H3 was able to consistently download
this image much faster than H2.

To identify the root cause of this behavior, we used the corre-
sponding netlogs from our median H2 and H3 page loads during
0% loss in order to examine the exact HTTP frames received by
the browser. From these HTTP frames, we show in Figure 16 that
H2 and H3 differed in their resource load order, where H3 received

https://blog.cloudflare.com/http-3-vs-http-2/
https://blog.cloudflare.com/http-3-vs-http-2/


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yu and Benson

Figure 15: H2 vs H3 performance for the start and end times
of the ‘main’ image resource of our large-sized Cloudflare
web-page.

the main image’s data much earlier despite sending its respective
request later, as evidenced by Figure 15’s ‘0% Loss’ column.

Since the browser can determine resource download order by
attaching prioritization ‘hints’ to individual resource requests [31],
we accordingly examined browser-assigned prioritization values for
each resource. We found that H2 and H3 had essentially the same
prioritization layout. While H2 and H3 use different prioritization
schemes [31], they both specified that the main image should be
loaded sequentially before other large image/gif content.

Thus, Cloudflare’s edge servers seemed to respect H3’s prioritiza-
tion hints but completely disregarded H2’s. We asked a Cloudflare
engineer about this behavior to which he responded that Cloud-
flare has implemented features in their H2 stack that ignores the
browser’s prioritization suggestions for image content [11, 37].
Cloudflare cites performance improvements as a result of these
changes, but our benchmark results show that browser prioritiza-
tion values are still crucial for visual QoE.

The Cloudflare engineer also stated that Cloudflare’s H3 stack
does not currently support prioritization. So Cloudflare’s apparent
adherence to Chrome’s H3 prioritization values was actually a result
of their default FIFO scheduler for multiplexed streams. Essentially,
the browser via H3 prioritization indicated that content should be
loaded sequentially, which happened to coincide with Cloudflare’s
default QUIC stream scheduler.

From our analysis, we conclude that H3’s performance improve-
ment over H2 for our large-sized Cloudflare web-page was not
caused by the QUIC protocol, but instead caused by differences in
application configuration. These differences were not mentioned
in Cloudflare’s discussion of their own H3 benchmarks [50], which
demonstrates how our holistic approach helps identify previously
omitted, non-protocol factors that skew comparisons between H2
and H3.

8.1.2 Stream Multiplexing. Stream multiplexing describes the
manner in which a sender transmits data from multiple streams at
once. There is a wide spectrum of multiplexing strategies, ranging
from sequential, where all bandwidth is allotted to one resource at
a time, to round-robin, where each resource gets a slice of band-
width [32]. Both H2 and H3 support all of these multiplexing strate-
gies. Their only difference is that H2 handles the multiplexing
whereas H3 hands that responsibility off to QUIC. Figure 17 shows

5‘Main image’ refers to the image highlighted in Figures 13a and 13b.

Figure 16: HTTP frames received by Chrome for 8
simultaneously-requested image/gif resources from our
large-sized Cloudflare web-page. Each color represents a
unique HTTP stream and each bar represents a chunk of
data read by the application layer. Notice that H3 not only
received the main image’s5frames earlier, but also received
them exclusively (H2 started receiving main image frames
around the 500KB mark).

(a) Cloudflare: Sequential

(b) Facebook: Round-Robin

(c) Google: Batched Round-Robin

Figure 17: QUIC stream multiplexing strategies. Each color
represents a unique HTTP stream and each segment repre-
sents consecutive frames from the same stream.

the various QUIC multiplexing strategies deployed in production
at Google, Facebook, and Cloudflare.

Cloudflare’s use of sequential ordering for QUIC means that
Cloudflare’s QUIC servers do not multiplex resources in parallel.
Consequently, QUIC’s removal of HOL blocking does not actually
play a role in Cloudflare’s multi-object benchmark results. While
one might think that switching to round-robin is an obvious up-
grade, in practice the advantages of using round-robin are much
more nuanced due to resource prioritization, as shown in the previ-
ous section, and potential packet loss patterns [30].

Facebook and Google on the other hand use round-robin schedul-
ing. While previous work has shown that round-robin multiplexing
in QUIC decreases the amount of data blocked in the transport
layer compared to TCP [30–32], our multi-object experiments with
added loss show that its effect on SI is negligible. However, we only
cover randomly distributed loss so other loss distributions, such as
burst loss, may lead to different outcomes.

8.2 Page Load Time
The ramifications of our PLT results differ from our SI results since
PLT measures a single point in time (when the browser triggers



Dissecting Performance of Production QUIC WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

(a) Extra Loss

(b) Extra Delay

Figure 18: H2 versus H3 PLT performance for multi-object
web-pages during 10mbps bandwidth.

the page load event) rather than a delta over time. Consequently,
resource load order does not impact PLT as much as SI. Still, our
PLT results generally align with our SI results as Figure 18 shows
that H3 has a slight advantage over H2 for small web-pages but
no clear advantage for larger web-pages. Our Cloudflare results
are more interesting in that they show H3 is again better than or
equivalent to H2 during added loss, which again contrasts with our
single-object benchmark results in §7.1.2.

One potential factor that likely contributed to the disconnect
between our single object and multi-object Cloudflare results is the
fact that our Cloudflare web-pages use many 3rd-party content that
can only be served over TCP (H2 or H1.1)6. In contrast, Facebook
and Google were able to fully serve H3 content from their web-
pages. Table 3 shows that JavaScript (JS) and CSS files were the most
common types of content to be served over TCP. Since JavaScript
execution and CSS rendering impacts the page load process [19],
this prevalence of 3rd party content served over TCP likely impacted
our PLT results.

Overall, besides Cloudflare, our PLT results are quite similar to
our single-object results, demonstrating that congestion control and
QUIC’s lower latency handshakes have far more impact on PLT than
QUIC’s removal of HOL blocking. Furthermore, when considering
the presence of 3rd-party TCP content in Cloudflare web-pages and
the aforementioned differences between Cloudflare’s H2 and H3
multiplexing strategies, it is difficult for us to accurately measure
the impact of protocol design on our Cloudflare PLT results.

9 CONCLUSION
In this paper, we present a novel approach for evaluating QUIC’s
performance that focuses on benchmarking and analyzing various
production deployments. Previous studies have mainly evaluated
QUIC in local environments, which has led to conflicting claims on
the protocol. By replacing local experimentation with production

6During our web-page selection process, we could not find any static Cloudflare
web-page that only requested H3 content.

Page size HTML CSS JS Image/GIF
Small 100% 100% 98% N/A

Medium 94% 97% 75% 99%
Large 44% 29% 45% 98%

Table 3: Cloudflare web-pages: Percentage of bytes trans-
ferred using H3 categorized by resource type.

experimentation, we bypass the concern of non-optimal environ-
ment or application configuration. As a result, we have identified
multiple protocol and implementation aspects that cause perfor-
mance discrepancies between QUIC and TCP and between QUIC
implementations.

Our findings demonstrate that most performance differences
can be attributed to developer design and operator configuration
choices, e.g., selection of congestion control algorithms or cipher
suites. In most cases, performance differences were due to imple-
mentation details and not due to specific inherent properties of the
QUIC protocol.

With this in mind, we conclude that optimizing QUIC in prac-
tice can be difficult and time-consuming considering the overhead
of dealing with QUIC edge cases and implementing congestion
control algorithms from scratch. We show that QUIC has inher-
ent advantages over TCP in terms of its latency, versatility, and
application-layer simplicity. However, these benefits come at the
cost of high implementation overhead, leading to inconsistencies
in performance across implementations. By demonstrating large
differences between Google, Facebook, and Cloudflare’s QUIC per-
formance profiles, we show that deploying QUIC does not automat-
ically lead to improvements in network or application performance
for many use cases.

ACKNOWLEDGMENTS
We’d like to thank the anonymous reviewers, Robin Marx, Matt
Joras, Lucas Pardue, Usama Naseer, Luca Niccolini, Tatsuhiro Tsu-
jikawa, and Ziyin Ma for their valuable feedback. This work is
supported by NSF grant CNS-1814285.

REFERENCES
[1] [n.d.]. . Retrieved September 19, 2020 from https://packages.gentoo.org/packages/

net-libs/ngtcp2
[2] [n.d.]. Chrome-har. Retrieved January 18, 2021 from https://www.npmjs.com/

package/chrome-har
[3] [n.d.]. Implementations. Retrieved September 18, 2020 from https://github.com/

quicwg/base-drafts/wiki/Implementations
[4] [n.d.]. Lighthouse. Retrieved November 26, 2020 from https://developers.google.

com/web/tools/lighthouse/
[5] [n.d.]. netem. Retrieved January 26, 2021 from https://wiki.linuxfoundation.org/

networking/netem
[6] [n.d.]. Puppeteer. Retrieved January 18, 2021 from https://pptr.dev/
[7] 2019. Speed Index. Retrieved November 26, 2020 from https://web.dev/speed-

index/
[8] 2020. . Retrieved October 18, 2020 from https://github.com/facebookincubator/

mvfst/commit/8a98805d
[9] M. Allman, V. Paxson, and E. Blanton. 2009. TCP Congestion Control. RFC

5681. RFC Editor. http://www.rfc-editor.org/rfc/rfc5681.txt http://www.rfc-
editor.org/rfc/rfc5681.txt.

[10] João Almeida. 2019. How fast is QUIC protocol and what makes Bolina faster
- PT. II. https://blog.codavel.com/how-fast-is-quic-and-what-makes-bolina-
faster-pt-ii

[11] Kornel Lesiński Andrew Galloni. 2019. Parallel streaming of progressive im-
ages. Retrieved November 29, 2020 from https://blog.cloudflare.com/parallel-
streaming-of-progressive-images/

[12] P. Biswal and O. Gnawali. 2016. Does QUIC Make the Web Faster?. In 2016 IEEE
Global Communications Conference (GLOBECOM). 1–6.

https://packages.gentoo.org/packages/net-libs/ngtcp2
https://packages.gentoo.org/packages/net-libs/ngtcp2
https://www.npmjs.com/package/chrome-har
https://www.npmjs.com/package/chrome-har
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/web/tools/lighthouse/
https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem
https://pptr.dev/
https://web.dev/speed-index/
https://web.dev/speed-index/
https://github.com/facebookincubator/mvfst/commit/8a98805d
https://github.com/facebookincubator/mvfst/commit/8a98805d
http://www.rfc-editor.org/rfc/rfc5681.txt
http://www.rfc-editor.org/rfc/rfc5681.txt
http://www.rfc-editor.org/rfc/rfc5681.txt
https://blog.codavel.com/how-fast-is-quic-and-what-makes-bolina-faster-pt-ii
https://blog.codavel.com/how-fast-is-quic-and-what-makes-bolina-faster-pt-ii
https://blog.cloudflare.com/parallel-streaming-of-progressive-images/
https://blog.cloudflare.com/parallel-streaming-of-progressive-images/


WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yu and Benson

[13] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2016. BBR: Congestion-Based Congestion Control. ACM Queue 14,
September-October (2016), 20 – 53. http://queue.acm.org/detail.cfm?id=3022184

[14] Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. 2015. HTTP over UDP:
An Experimental Investigation of QUIC. In Proceedings of the 30th Annual ACM
Symposium on Applied Computing (Salamanca, Spain) (SAC ’15). Association for
Computing Machinery, New York, NY, USA, 609–614. https://doi.org/10.1145/
2695664.2695706

[15] Yuchung Cheng, Neal Cardwell, and Nandita Dukkipati. 2017. RACK: a time-
based fast loss detection algorithm for TCP. Internet-Draft draft-ietf-tcpm-rack-02.
IETF Secretariat. http://www.ietf.org/internet-drafts/draft-ietf-tcpm-rack-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-rack-02.txt.

[16] S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui. 2017. QUIC: Better for what
and for whom?. In 2017 IEEE International Conference on Communications (ICC).
1–6.

[17] Ian Swett David Schinazi, Fan Yang. 2020. Chrome is deploying HTTP/3 and
IETF QUIC. Retrieved October 8, 2020 from https://blog.chromium.org/2020/10/
chrome-is-deploying-http3-and-ietf-quic.html

[18] Matt Menke Eric Roman. [n.d.]. NetLog: Chrome’s network logging system. Re-
trieved January 18, 2021 from https://www.chromium.org/developers/design-
documents/network-stack/netlog

[19] Uday Hiwarale. 2019. How the browser renders a web page? — DOM, CSSOM, and
Rendering. Retrieved February 1, 2021 from https://medium.com/jspoint/how-
the-browser-renders-a-web-page-dom-cssom-and-rendering-df10531c9969

[20] Jana Iyengar and Ian Swett. 2020. QUIC Loss Detection and Congestion Control.
Internet-Draft draft-ietf-quic-recovery-29. IETF Secretariat. http://www.ietf.
org/internet-drafts/draft-ietf-quic-recovery-29.txt http://www.ietf.org/internet-
drafts/draft-ietf-quic-recovery-29.txt.

[21] Jana Iyengar and Martin Thomson. 2020. QUIC: A UDP-Based Multiplexed and
Secure Transport. Internet-Draft draft-ietf-quic-transport-32. IETF Secretariat.
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-32.txt http://www.
ietf.org/internet-drafts/draft-ietf-quic-transport-32.txt.

[22] Jana Iyengar and Martin Thomson. 2020. QUIC: A UDP-Based Multiplexed and
Secure Transport. Internet-Draft draft-ietf-quic-transport-29. IETF Secretariat.
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-29.txt http://www.
ietf.org/internet-drafts/draft-ietf-quic-transport-29.txt.

[23] Subodh Iyengar. 2018. Moving Fast at Scale: Experience Deploying IETF QUIC at
Facebook. In Proceedings of the Workshop on the Evolution, Performance, and Inter-
operability of QUIC (Heraklion, Greece) (EPIQ’18). Association for Computing Ma-
chinery, New York, NY, USA, Keynote. https://doi.org/10.1145/3284850.3322434

[24] Lu Jun. 2020. Simulate weak network environment using command line under
Mac. Retrieved January 26, 2021 from https://programmer.group/simulate-weak-
network-environment-using-command-line-under-mac.html

[25] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and
Alan Mislove. 2017. Taking a Long Look at QUIC: An Approach for Rigor-
ous Evaluation of Rapidly Evolving Transport Protocols. In Proceedings of the
2017 Internet Measurement Conference (London, United Kingdom) (IMC ’17).
Association for Computing Machinery, New York, NY, USA, 290–303. https:
//doi.org/10.1145/3131365.3131368

[26] P. K. Kharat, A. Rege, A. Goel, and M. Kulkarni. 2018. QUIC Protocol Performance
in Wireless Networks. In 2018 International Conference on Communication and
Signal Processing (ICCSP). 0472–0476.

[27] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti, Rob-
bie Shade, RyanHamilton, Victor Vasiliev,Wan-Teh Chang, and Zhongyi Shi. 2017.
The QUIC Transport Protocol: Design and Internet-Scale Deployment. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data Communication
(Los Angeles, CA, USA) (SIGCOMM ’17). Association for Computing Machinery,
New York, NY, USA, 183–196. https://doi.org/10.1145/3098822.3098842

[28] Jonathan Lipps. [n.d.]. Simulating Different Network Conditions For Virtual De-
vices. Retrieved November 26, 2020 from https://appiumpro.com/editions/104-
simulating-different-network-conditions-for-virtual-devices

[29] Diego Madariaga, Lucas Torrealba, Javier Madariaga, Javiera Bermúdez, and
Javier Bustos-Jiménez. 2020. Analyzing the Adoption of QUIC From a Mo-
bile Development Perspective. In Proceedings of the Workshop on the Evolu-
tion, Performance, and Interoperability of QUIC (Virtual Event, USA) (EPIQ ’20).
Association for Computing Machinery, New York, NY, USA, 35–41. https:
//doi.org/10.1145/3405796.3405830

[30] Robin Marx. 2020. Will HTTP/3 really be faster than HTTP/2? Perhaps. Retrieved
October 10, 2020 from https://github.com/rmarx/holblocking-blogpost

[31] Robin Marx., Tom De Decker., Peter Quax., and Wim Lamotte. 2019. Of the
Utmost Importance: Resource Prioritization in HTTP/3 over QUIC. In Proceedings
of the 15th International Conference on Web Information Systems and Technologies
- Volume 1: WEBIST,. INSTICC, SciTePress, 130–143. https://doi.org/10.5220/
0008191701300143

[32] Robin Marx, Joris Herbots, Wim Lamotte, and Peter Quax. 2020. Same Standards,
Different Decisions: A Study of QUIC and HTTP/3 Implementation Diversity. In

Proceedings of the Workshop on the Evolution, Performance, and Interoperability
of QUIC (Virtual Event, USA) (EPIQ ’20). Association for Computing Machinery,
New York, NY, USA, 14–20. https://doi.org/10.1145/3405796.3405828

[33] Robin Marx, Maxime Piraux, Peter Quax, and Wim Lamotte. 2020. Debugging
QUIC and HTTP/3 with Qlog and Qvis. In Proceedings of the Applied Networking
ResearchWorkshop (Virtual Event, Spain) (ANRW ’20). Association for Computing
Machinery, New York, NY, USA, 58–66. https://doi.org/10.1145/3404868.3406663

[34] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. 1996. TCP Selective Acknowl-
edgment Options. RFC 2018. RFC Editor.

[35] Yang Chi Matt Joras. 2020. How Facebook is bringing QUIC to billions. Retrieved
November 12, 2020 from https://engineering.fb.com/2020/10/21/networking-
traffic/how-facebook-is-bringing-quic-to-billions/

[36] Mattt. 2019. Network Link Conditioner. Retrieved November 13, 2020 from
https://nshipster.com/network-link-conditioner/

[37] Patrick Meenan. 2019. Better HTTP/2 Prioritization for a Faster Web. Retrieved
November 29, 2020 from https://blog.cloudflare.com/better-http-2-prioritization-
for-a-faster-web/

[38] Javad Nejati and Aruna Balasubramanian. 2020. WProfX: A Fine-Grained Visu-
alization Tool for Web Page Loads. Proc. ACM Hum.-Comput. Interact. 4, EICS,
Article 73 (June 2020), 22 pages. https://doi.org/10.1145/3394975

[39] Kyle Nekritz and Subodh Iyengar. 2017. Building Zero protocol for fast, secure
mobile connections. Retrieved August 4, 2020 from https://engineering.fb.com/
android/building-zero-protocol-for-fast-secure-mobile-connections/

[40] K. Nepomuceno, I. N. d. Oliveira, R. R. Aschoff, D. Bezerra, M. S. Ito, W. Melo, D.
Sadok, and G. Szabó. 2018. QUIC and TCP: A Performance Evaluation. In 2018
IEEE Symposium on Computers and Communications (ISCC). 00045–00051.

[41] Minh Nguyen, Hadi Amirpour, Christian Timmerer, and Hermann Hellwagner.
2020. Scalable High Efficiency Video Coding Based HTTP Adaptive Streaming
over QUIC. In Proceedings of the Workshop on the Evolution, Performance, and In-
teroperability of QUIC (Virtual Event, USA) (EPIQ ’20). Association for Computing
Machinery, New York, NY, USA, 28–34. https://doi.org/10.1145/3405796.3405829

[42] Kazuho Oku and Jana Iyengar. 2020. Can QUIC match TCP’s computational effi-
ciency? Retrieved August 4, 2020 from https://www.fastly.com/blog/measuring-
quic-vs-tcp-computational-efficiency

[43] Mohammad Rajiullah, Andra Lutu, Ali Safari Khatouni, Mah-Rukh Fida, Marco
Mellia, Anna Brunstrom, Ozgu Alay, Stefan Alfredsson, and Vincenzo Mancuso.
2019. Web Experience in Mobile Networks: Lessons from Two Million Page
Visits. In The World Wide Web Conference (San Francisco, CA, USA) (WWW
’19). Association for Computing Machinery, New York, NY, USA, 1532–1543.
https://doi.org/10.1145/3308558.3313606

[44] Jan Rüth, Konrad Wolsing, Klaus Wehrle, and Oliver Hohlfeld. 2019. Perceiv-
ing QUIC: Do Users Notice or Even Care?. In Proceedings of the 15th Interna-
tional Conference on Emerging Networking Experiments And Technologies (Orlando,
Florida) (CoNEXT ’19). Association for Computing Machinery, New York, NY,
USA, 144–150. https://doi.org/10.1145/3359989.3365416

[45] Darius Saif, Chung-Horng Lung, and Ashraf Matrawy. 2020. An Early Bench-
mark of Quality of Experience Between HTTP/2 and HTTP/3 using Lighthouse.
arXiv:2004.01978 [cs.NI]

[46] Marten Seemann and Jana Iyengar. 2020. Automating QUIC Interoperability
Testing. In Proceedings of the Workshop on the Evolution, Performance, and Inter-
operability of QUIC (Virtual Event, USA) (EPIQ ’20). Association for Computing
Machinery, New York, NY, USA, 8–13. https://doi.org/10.1145/3405796.3405826

[47] Daniel Stenberg. 2019. Comparison with HTTP/2. Retrieved November 26, 2020
from https://http3-explained.haxx.se/en/h3/h3-h2

[48] Daniel Stenberg. 2020. QUIC WITH WOLFSSL. Retrieved September 19, 2020
from https://daniel.haxx.se/blog/2020/06/18/quic-with-wolfssl/

[49] Ian Swett. 2019. From gQUIC to IETF QUIC and Beyond. Retrieved February 4,
2021 from https://mile-high.video/files/mhv2019/pdf/day1/1_11_Swett.pdf

[50] Sreeni Tellakula. 2020. Comparing HTTP/3 vs. HTTP/2 Performance. Retrieved
August 5, 2020 from https://blog.cloudflare.com/http-3-vs-http-2/

[51] Jack Wallen. 2018. How to enable TCP BBR to improve network speed on Linux.
Retrieved October 11, 2020 from https://www.techrepublic.com/article/how-to-
enable-tcp-bbr-to-improve-network-speed-on-linux/

[52] Alex Yu. 2020. Benchmarking QUIC. Retrieved September 15, 2020 from https:
//medium.com/@the.real.yushuf/benchmarking-quic-1fd043e944c7

[53] Y. Yu, M. Xu, and Y. Yang. 2017. When QUIC meets TCP: An experimental study.
In 2017 IEEE 36th International Performance Computing and Communications
Conference (IPCCC). 1–8.

http://queue.acm.org/detail.cfm?id=3022184
https://doi.org/10.1145/2695664.2695706
https://doi.org/10.1145/2695664.2695706
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-rack-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-rack-02.txt
https://blog.chromium.org/2020/10/chrome-is-deploying-http3-and-ietf-quic.html
https://blog.chromium.org/2020/10/chrome-is-deploying-http3-and-ietf-quic.html
https://www.chromium.org/developers/design-documents/network-stack/netlog
https://www.chromium.org/developers/design-documents/network-stack/netlog
https://medium.com/jspoint/how-the-browser-renders-a-web-page-dom-cssom-and-rendering-df10531c9969
https://medium.com/jspoint/how-the-browser-renders-a-web-page-dom-cssom-and-rendering-df10531c9969
http://www.ietf.org/internet-drafts/draft-ietf-quic-recovery-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-recovery-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-recovery-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-recovery-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-32.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-32.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-32.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-29.txt
https://doi.org/10.1145/3284850.3322434
https://programmer.group/simulate-weak-network-environment-using-command-line-under-mac.html
https://programmer.group/simulate-weak-network-environment-using-command-line-under-mac.html
https://doi.org/10.1145/3131365.3131368
https://doi.org/10.1145/3131365.3131368
https://doi.org/10.1145/3098822.3098842
https://appiumpro.com/editions/104-simulating-different-network-conditions-for-virtual-devices
https://appiumpro.com/editions/104-simulating-different-network-conditions-for-virtual-devices
https://doi.org/10.1145/3405796.3405830
https://doi.org/10.1145/3405796.3405830
https://github.com/rmarx/holblocking-blogpost
https://doi.org/10.5220/0008191701300143
https://doi.org/10.5220/0008191701300143
https://doi.org/10.1145/3405796.3405828
https://doi.org/10.1145/3404868.3406663
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/
https://engineering.fb.com/2020/10/21/networking-traffic/how-facebook-is-bringing-quic-to-billions/
https://nshipster.com/network-link-conditioner/
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/
https://blog.cloudflare.com/better-http-2-prioritization-for-a-faster-web/
https://doi.org/10.1145/3394975
https://engineering.fb.com/android/building-zero-protocol-for-fast-secure-mobile-connections/
https://engineering.fb.com/android/building-zero-protocol-for-fast-secure-mobile-connections/
https://doi.org/10.1145/3405796.3405829
https://www.fastly.com/blog/measuring-quic-vs-tcp-computational-efficiency
https://www.fastly.com/blog/measuring-quic-vs-tcp-computational-efficiency
https://doi.org/10.1145/3308558.3313606
https://doi.org/10.1145/3359989.3365416
https://arxiv.org/abs/2004.01978
https://doi.org/10.1145/3405796.3405826
https://http3-explained.haxx.se/en/h3/h3-h2
https://daniel.haxx.se/blog/2020/06/18/quic-with-wolfssl/
https://mile-high.video/files/mhv2019/pdf/day1/1_11_Swett.pdf
https://blog.cloudflare.com/http-3-vs-http-2/
https://www.techrepublic.com/article/how-to-enable-tcp-bbr-to-improve-network-speed-on-linux/
https://www.techrepublic.com/article/how-to-enable-tcp-bbr-to-improve-network-speed-on-linux/
https://medium.com/@the.real.yushuf/benchmarking-quic-1fd043e944c7
https://medium.com/@the.real.yushuf/benchmarking-quic-1fd043e944c7

	Abstract
	1 Introduction
	2 QUIC Overview
	3 Related Works
	4 Methodology
	4.1 Testbed
	4.2 Network Environments

	5 Evaluation Framework
	6 Measurement Tools
	7 Single-Object Results
	7.1 TCP (H2) vs QUIC (H3) Performance
	7.2 Client Consistency

	8 Multi-Object Results
	8.1 Speed Index
	8.2 Page Load Time

	9 Conclusion
	Acknowledgments
	References

