
Characterization of Forward-edge Control-flow Integrity Targets in
LLVM-compiled Linux

Jonathan Vexler
Brown University

Abstract
In this paper, we analyze the Linux Kernel compiled with
LLVM and Control Flow Integrity (CFI) instrumentation en-
abled. Our analysis involves identifying functions called
through indirect calls and characterizing functions sharing
the same type signature. Insights into the composition of
function type groups are vital for understanding the CFI pro-
tections that LLVM can provide.

1 Introduction

Exploits involving stack corruption have been mitigated by
advancements in the field, and attackers have shifted their
focus to target exploits that corrupt the heap and overwrite
function pointers [1]. Many attempts have been made to
counteract these exploitations by constraining the allowable
values of function pointers.

One control flow integrity technique that constrains func-
tion pointers by type has been integrated into the LLVM
toolchain. This technique analyzes the types of all func-
tions during compilation, and puts all the functions of the
same type into their own groups. Then inline instructions are
added to constrain each indirect function call to one function
types. For function calls across DSO’s, a hash of the man-
gled function type is compared to the expected function type
pre-computed in the same manner.

While the described protections limit many of the poten-
tial targets for a corrupted function pointer, attacks can be
made against type-based CFI protection if the victim and
target function both have the same type signature. To un-
derstand the scope of this type of exploit, it is important to
understand the size and composition of these function type
groups.

In this paper, we characterize the target groups in the
Linux Kernel. We compile the Linux 5.4-rc8 kernel using
LLVM 10. To identify the target groups, we locate protected
indirect calls by matching instruction patterns. We then ex-
tract the expected function groups.

2 Background

2.1 Indirect Function Calls

While many modern programming languages have built-in
features for object oriented programming, C was not de-
signed to be object oriented. However, by using function
pointers, C programmers can implement object oriented de-
sign patterns and reduce code reuse. A function pointer in a
struct can be reassigned just like a child class can override a
method of a parent class.

Function pointers are a powerful tool, but are extremely
vulnerable to exploitation. When a function is called directly,
its address will be hard-coded into the instruction. The in-
structions are in read-only memory. When an indirect func-
tion (function pointer) is called, the address of the function
will be read from a register. If an attacker can manipulate
the address in the register, they will be able to manipulate
the flow of the program. The risk of these attacks are high in
programming languages such as C where there is no memory
safety.

2.2 Control Flow Integrity

Control Flow Integrity is the class of techniques that attempt
to ensure that indirect function calls go to their intended tar-
gets. Control Flow Integrity techniques involve generating
a control flow graph of the program either statically or dy-
namically or by analyzing function types [4]. Additional
techniques involve identifying suspicious behavior, such as
number of instructions between indirect calls or number of
consecutive indirect calls [3].

Techniques that consult the control flow graph often carry
a significant performance overhead [3]. The constant moni-
toring of the program needs to include checks whenever in-
struction flow is nonlinear. However, in a memory unsafe
language, Control Flow Integrity techniques must preform
checks during run-time. This must be the case given that
memory corruption will be caused due to user input. Be-

1

cause these checks must occur at run-time, it is imperative
that the protections have minimal overhead at run-time.

If sufficient setup occurs during compilation, Type-based
Control Flow Integrity has minimal overhead during execu-
tion. The compiler will identify functions with the same type
and create groups containing all the functions of each type.
Indirect calls are only allowed if they are calling a function
with the type definition that the compiler believes is intended
for that function. An attacker will have a very small number
of possible targets when corrupting a function pointer. The
challenges with this technique are identifying the indented
type for a function pointer and segregating all functions with
the same type. This type of Control Flow Integrity protec-
tion is called forward edge protection because it protects the
jumps or calls into functions (as opposed to backward edge,
which protects function returns).

2.3 CFI in LLVM

LLVM has built-in CFI protection for forward edges that
is implemented using type checking. During compilation,
functions are grouped with others sharing the same type def-
inition and a jump-table is created for each group. This table
contains jump instructions, with INT3 instructions used as
padding. Without CFI protection, when a function pointer
is assigned, the value would be the address of the function.
With the LLVM CFI protection enabled, the value assigned
to function pointers is now an address in a jump table. The
address in the jump table corresponds to an instruction that
jumps to the start of the function that the user intended to
create a pointer for. This only adds one additional instruc-
tion for each indirect call, but offers a significant advantage:
jump table pointers can be positioned independently from
function pointers.

LLVM organizes functions in jump tables so that few in-
structions will be necessary to compute a CFI type check. A
jump table is created for each function type. Now, to check if
an indirect call is to a function with a specific type, a simple
check can be computed to ensure that the indirect function
address is in the correct jump table and byte aligned. This
computation only requires the address of the jump table and
the size of the table. With a couple of instructions inserted
before each indirect function call, this technique will enforce
type based CFI with minimal overhead during execution [6].

Recent advancements in development have allowed for the
compilation of the Linux kernel with LLVM instead of GCC.
We are therefore able to compile Linux with LLVM and gain
the type-based CFI protection. However, due to the use of
DSO’s (dynamic shared objects) in the Linux Kernel, it is
necessary to discuss how LLVM handles indirect function
calls across DSO boundaries. The type-grouped jump-tables
will not contain functions from a DSO. Therefore, if the ad-
dress of an indirect call is not in the correct jump table, a
call to __cfi_slowpath() will be made [5]. The slowpath

function will use a specialized CFI check for the function. To
find this specialized function, a mapping of memory pages to
CFI check functions is created as indirect function pointers
are used for the first time. Our analysis only characterizes
functions in jump tables, and does not inspect the indirect
calls across DSO boundaries.

3 Implementation

To compile Linux 5.4-rc8 with LLVM and CFI instrumen-
tation enabled, we used a branch from kees [2]. Our goal
was to identify and categorize the subsets of allowable func-
tions from indirect calls. To do this, we needed to be able
to consistently identify protected calls. A code pattern was
found:

8104dc77: mov $0x81a106b0, %rcx
8104dc7e: sub %rcx, %rax
8104dc81: ror $0x3, %rax
8104dc85: cmp $0xe, %rax

In this pattern, a register was set as the base address of a
jump table. This address was subtracted from the indirect
call address. Then this difference was rotated 3 bits because
the entries in the jump table are byte aligned. A rotate was
used instead of a shift so that non-byte aligned addresses are
not allowed. Finally the rotated difference was compared
with an immediate value. This value is one less than the
number of entries in the jump table. After this code pattern
there will be a jump and then an indirect function call. If tar-
get register, in this case %rax, is a valid address in the target
jump-table, then the indirect function call will be executed.
Else, the address in %rax is not acceptable, and the jump will
lead to code that handles a corrupted jump.

The instruction ror is not widely used outside of cryptog-
raphy and networking, so this was the initial identifier of a
suspected protected call. We found 7072 instances of rotate
instructions. After identifying a rotate, we checked for pro-
ceeding subtraction instruction and a subsequent comparison
instruction. Of the 7072 instances of the rotate instruction
4660 of them matched the CFI protection pattern. Finally
we extracted the base address of the jump table. Unlike the
example pattern, the move instruction did not always pro-
ceed the subtraction, and the register of the base address was
not always %rcx. To identify the base address, we extracted
the register from the subtraction and searched the proceed-
ing instructions in the function for a move of an immedi-
ate into that register. These jump-tables can be called more
than once, and from these 4660 indirect calls, there were 772
unique function types. Using those jump tables, we identi-
fied functions and extracted their type definitions.

2

Figure 1: Top-20 CFI-protected function types in the Linux Kernel

4 Results

Function Type-ID Type Definition
754 (int)(int, int, size_t, unsigned int)
746 (int)(void)
768 (ssize_t)(struct device *, struct

device_attribute *, char *)
705 (void)(void)
723 (int)(char *)
728 (int)(struct inode *, struct file *)
606 (int)(struct seq_file *, void *)
736 (void)(struct work_struct *)
772 (ssize_t)(struct device *, struct

device_attribute *, char *, size_t)
759 (int)(struct device *)

754 corresponds to system calls, 746 corresponds to ini-
tialization functions, 768 corresponds uncore/system agent
functions, 705 corresponds to functions without inputs or
return that are primarily used to lock and unlock data, 723
corresponds to additional initialization functions, 728 corre-
sponds to functions in the file-system for opening and releas-
ing, 606 corresponds to file system information functions,
736 corresponds to deferrable functions, 772 and 759 corre-
spond to functions that manage connected devices

5 Conclusion

The characterization of Control Flow Integrity targets show
that there exist a group of function types that are most vul-
nerable after LLVM’s CFI protection has been enabled when
compiling the Linux kernel.

We at least 183 function types that have at least 10 con-
trol flow targets. Additionally there are 5 types that have
at least 230 targets. If there is a vulnerability that involves
one of these type groups, the CFI protection will not be very
effective because there is such a large possibility of target
functions.

6 Future Work

The next step in our work of the analysis of CFI tar-
gets in the Linux Kernel would be to expand this analy-
sis to the cross-DSO function calls that are handled with
__cfi_slowpath(). This will give a more accurate and
complete picture of the most vulnerable types.

This research can be additionally be used for development
of the Linux Kernel. Our data shows the most vulnerable
types if a function pointer of that type can be corrupted.
Therefore, it is more vital to identify targets for corruption
involving those types.

Finally, this research can be used for the development of
CFI protections, namely type-based implementations. The
Linux Kernel is one of the most used software, and thus one

3

of the most important to protect from control flow hijacking.
If some of the type-groups of functions are deemed to be
"too large" our research could show that a type-based CFI
protection scheme is not acceptable to provide protection.

Acknowledgments

I would like to thank my advisor, Professor Vasileios Ke-
merlis, for his guidance and support throughout the year.

References

[1] Peter Collingbourne Stephen Checkoway Úl-
far Erlingsson Luis Lozano Geoff Pike Caro-
line Tice, Tom Roeder. Enforcing forward-edge
control-flow integrity in gcc & llvm. In 23rd
USENIX Security Symposium, 2014. https:
//www.usenix.org/system/files/conference/
usenixsecurity14/sec14-paper-tice.pdf.

[2] Kees Cook. experimenting with clang
cfi on upstream linux, 2019. https:

//outflux.net/blog/archives/2019/11/20/
experimenting-with-clang-cfi-on-upstream-linux/.

[3] Daniel Lehmann Fabian Monrose Lucas Davi, Ahmad-
Reza Sadeghi. Stitching the gadgets: On the ineffective-
ness of coarse-grained control-flow integrity protection.
In 23rd USENIX Security Symposium, 2014. https:
//www.usenix.org/system/files/conference/
usenixsecurity14/sec14-paper-davi.pdf.

[4] Sajjad Arshad William Robertson Engin Kirda Reza
Mirzazade farkhani, Saman Jafari and Hamed Okhravi.
On the effectiveness of type-based control flow integrity.
In 2018 Annual Computer Security Applications Confer-
ence, 2018. https://sajjadium.github.io/files/
acsac2018typecfi_paper.pdf.

[5] Chris Rohlf. Cross dso cfi - llvm and android, 2019.
https://struct.github.io/cross_dso_cfi.html.

[6] The Clang Team. Control flow integrity design doc-
umentation, 2020. https://clang.llvm.org/docs/
ControlFlowIntegrityDesign.html.

4

https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-tice.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-tice.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-tice.pdf
https://outflux.net/blog/archives/2019/11/20/experimenting-with-clang-cfi-on-upstream-linux/
https://outflux.net/blog/archives/2019/11/20/experimenting-with-clang-cfi-on-upstream-linux/
https://outflux.net/blog/archives/2019/11/20/experimenting-with-clang-cfi-on-upstream-linux/
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-davi.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-davi.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-davi.pdf
https://sajjadium.github.io/files/acsac2018typecfi_paper.pdf
https://sajjadium.github.io/files/acsac2018typecfi_paper.pdf
 https://struct.github.io/cross_dso_cfi.html
 https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
 https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html

	Introduction
	Background
	Indirect Function Calls
	Control Flow Integrity
	CFI in LLVM

	Implementation
	Results
	Conclusion
	Future Work

