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Abstract
Instruction set randomization (ISR), originally designed to
prevent code-injection attacks, has been largely overlooked
as a defense against modern code hijacking attacks. The idea
behind ISR is simple: permute the instruction set a system
understands, in order to prevent attempts to inject or read
meaningful code. While ISR is effective, in practice it has
been passed over in favor of more efficient software- and
hardware-based defenses such as non-executable memory
and ASLR.

In this work we revisit ISR as a defense mechanism. We
design and implement an ISR tool based on dynamic binary
instrumentation which supports modern commodity systems,
and verify its security guarantees. We also thoroughly test and
benchmark our implementation using the GNU coreutils suite.
While the performance penalties associated with the use of a
dynamic binary instrumentation tool are not insubstantial, the
overhead of our defense mechanism on top of that imposed
by the instrumentation framework is a mere 3.42%.

1 Introduction

It has long been known that programs written in memory-
unsafe languages, such as C and C++, are susceptible to code
hijacking attacks. Originally, such attacks came in the form of
shellcode injection into the process address space, along with
return address overwriting to redirect execution to the injected
code. However, the introduction of non-executable memory
and subsequent enforcement of W ⊕X memory policies have
largely neutralized this attack vector on modern architectures.
Thus, code hijacking attacks have moved towards ret2libc
and return-oriented-programming (ROP) style atacks, where
existing code in the address space of the application is reused
for malicious purposes [18].

Address space layout randomization (ASLR) proposes a
defense against ROP attacks by shifting the starting addresses
of a process’s text and data segments each time it is run. The
additional entropy introduced by this randomization forces

attackers to either brute-force or guess code addresses, and
incorrect attempts will likely crash the program and trigger an
alarm mechanism [16]. Unfortunately, ASLR fails when a de-
randomization attack leaks even a single code address [19]. A
more robust, fine-grained variant of ASLR which randomizes
code layout in addition to its location, aims to further in-
crease the barrier to a successful attack; it, too, fails to defend
programs that contain a single memory disclosure vulnera-
bility [21]. "Just-in-time ROP" (JIT-ROP) attacks make use
of these vulnerabilities to construct exploits at runtime by
repeatedly reading code memory to discover “gadgets”: short
byte sequences that correspond to valid assembly instructions
and which can be chained together maliciously.

Instruction set randomization, despite its original appli-
cation towards preventing code injection, offers a promising
new vector against JIT-ROP [13]. ISR creates process-specific
randomized instruction sets and trusts the kernel or an instru-
mentation framework with the derandomization key; instruc-
tions are usually derandomized at runtime. In this paper, we
introduce a new implementation of ISR for 64-bit Linux using
dynamic binary instrumentation (DBI), based on the work of
Portokalidis et al. [17]. Our toolchain encrypts binaries ahead
of time with a 16-bit XOR key and decrypts instructions at
fetch time using Intel’s Pin framework. We also present a sig-
nificantly expanded test suite for performance and correctness,
to augment the evaluation presented in that paper.

The rest of this paper is organized as follows: we provide
background in § 2, describe our implementation in § 3, present
an evaluation of our solution in § 4, and conclude in § 6.

2 Background and Related Work

In this section we introduce ISR and XOR encryption
schemes, discuss ISR’s ability to prevent both code injec-
tion and JIT-ROP attacks, and introduce the threat model on
which we based our implementation.
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2.1 ISR and XOR Encryption
ISR hardens binaries by creating an “execution environment”
unique to the running process [8]. A reversible code transfor-
mation changes the “language” which the system understands,
and any subsequent attempts to inject shellcode or read mem-
ory will do so in an unsupported “language.” While primary
use cases for ISR focus on randomizing the x86 instruction
set, they are by no means limited to it; Boyd et al. [8] have
shown its effectiveness against Perl and SQL injection. No-
tably, neither Perl nor SQL injection require memory corrup-
tion vulnerabilities. They can be done on standard web pages
and even bypass a W ⊕X memory policy, meaning ISR may
offer better security guarantees than non-executable memory
alone.

ISR implementations are generally software based, either
using dynamic binary instrumentation or CPU emulation [13,
17]; we do not attempt to break that norm here. Hardware-
based ISR schemes have also been proposed [15,20], although
none have yet been applied to an x86 family of commodity
CPUs. The randomization itself comes from code encryption,
often with XOR schemes [7,8,13,17] or AES [12,15,20], and
is done either at compile time or by modifying a precompiled
binary. Because XOR encryption does not affect binary size,
ISR schemes using this mechanism can randomize in-place
at any time — even image load time, although this has not
been widely explored. The decryption key is stored either in
the binary itself [13] or in a database [17] and loaded into
the process’s address space along with the image. At process
run time, instrumentation intercepts instruction fetches and
decrypts them before sending them to the CPU’s execution
unit. Because unencrypted instructions should never exist in a
process’s address space, ISR can prevent both code injection
and JIT-ROP attacks.

2.2 Protection against Code Injection
ISR protects against code injection attacks by invalidating
shellcode during the derandomization process. In principle,
to mount a code injection attack, the attacker must construct
specific byte sequences corresponding to valid machine in-
structions and insert those bytes into the address space of the
vulnerable process. An instrumented system, however, has
changed the byte-to-instruction mapping, so what an attacker
believes to be a valid sequence will in actuality be “deran-
domized” at runtime, resulting in an invalid shellcode and a
likely segfault.

Consider the following byte sequence in vanilla x86-64,
injected by an attacker as part of a shellcode, and its corre-
sponding instructions:

55 48 89 e5 || push %rbp; mov %rsp,%rbp

Now, assume a binary instrumented with ISR, using an XOR
encryption scheme with key 0x1757. When the CPU fetches

instructions from this shellcode, it will first decrypt them, then
attempt to execute the following decrypted bytes:

42 1f 9e b2 || rex.X (bad); sahf; mov...

These garbage instructions will certainly not behave as the
attacker intended, and will indeed likely crash the program
when the first bad opcode is encountered.

2.3 Protection against ROP
ISR offers protection against ROP attacks by preventing at-
tempts to read code and parse out gadget sequences. The
first step of a ROP attack is always to identify what func-
tionality is available in the target binary, either by manual
pre-inspection or by disclosing code on-the-fly via a memory
disclosure vulnerability [18,21]. However, in a randomized
binary, attempts to read code from memory before it is de-
crypted will return garbled instruction sequences that cannot
be interpreted as useful gadgets.1 Therefore, memory disclo-
sures in instrumented binaries cannot be used to construct
a JIT-ROP exploit, since the contents of the leaked gadgets
cannot be known without the decryption key.

Sinha et al. [20] rightly point out that an attacker can use a
local copy of the targeted binary to identify gadgets ahead of
time, and then simply direct the targeted program to the pre-
computed (encrypted) addresses. Under this model, an attack
is possible; however, in keeping with ISR’s heritage [13], we
are primarily concerned with attacks against remote services
and thus do not consider this vector within our threat model.
Furthermore, variations in binary versions, compilation opti-
mizations, and target system environments will further per-
mute code locations on the target system and minimize the
ability of an attacker to know exactly which (encrypted) gad-
gets are at which locations.

2.4 Threat Model
We assume the following threat model:

• The target system is protected with commodity defenses;
namely, ASLR and a W ⊕X memory policy.

• The adversary does not have access to the exact copy of
any binary to be protected. This mitigates the attack vec-
tor described in § 2.3 where an attacker with no knowl-
edge of specific code nevertheless creates a ROP payload
from addresses alone.

• The target program may contain at least one memory
disclosure vulnerability, and the adversary may use this

1Of course, the randomized bytes themselves could certainly be inter-
preted as gadgets — bytes are bytes — and an attacker can trivially construct
a ROP sequence with them. Naturally, when executing this ROP sequence,
the CPU will then decrypt the instructions and completely change the func-
tionality of the exploit, if it functions at all.
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vulnerability to read arbitrary memory and write to arbi-
trary memory.

• The adversary is remote and does not have physical
access to the target system.

3 Implementation

In this section we describe our implementation of ISR using
image encryption and dynamic binary instrumentation. Our
toolchain is two steps: an encryption step using GNU binu-
tils’ objcopy, and a just-in-time decryption using Intel’s Pin
framework [14].

3.1 System Requirements
Our tool supports ELF binaries. We chose ELF because it is
the most common executable format for Unix-like systems,
it is targeted most by existing ISR implementations, and it
completely separates code and data. Code and data separa-
tion is vital to correct encryption and decryption: mistakenly-
encrypted data will never be decrypted (since it is not accessed
as part of a CPU instruction fetch) and thus will corrupt the
program. ISR implementations for Windows PE-format ex-
ecutables, which do not separate code and data, require an
additional disassembly step between encryption and runtime
to identify and extract data wrongly obfuscated as code [5].

Unlike Portokalidis et al.’s ISR implementation [17], we
support 64-bit binaries and binaries with unaligned ELF sec-
tions. However, we too use a 16-bit XOR encryption scheme.
Currently, our tool only supports statically linked binaries.
This limitation is not present in other implementations and
we aim to support shared libraries in the future. It is simply a
matter of engineering effort to do so.

3.2 Encryption with objcopy
To encrypt target binaries, we modified the objcopy utility,
v. 2.34. objcopy, part of the GNU binutils suite, transforms
and rewrites object files for purposes of adding or removing
headers or sections, augmenting precompiled code, or mere
duplication. objcopy can parse and transform individual ELF
sections, making it an ideal candidate for our purposes.

We modified the portion of objcopy responsible for dupli-
cating ELF sections between files. As each section is about to
be duplicated, we check if the section contains code and if it
is to be loaded; if both conditions are true, we consider it a
section for obfuscation. All sections to be obfuscated are then
XOR’d with a random key before being copied to the new
binary. Any section not to be obfuscated is copied verbatim,
and the key is placed in a separate text file. Previous work
has stored the key in an ELF header [13], but we break with
this approach in order to enforce a clearer separation between
obfuscated binary and decryption mechanism.

Although access to the exact (unencrypted) binary run
by the target system is precluded our threat model, a pre-
randomization step using objcopy provides an added benefit.
Even if an adversary did have physical access to the target
machine and could obtain the ELF file of the target binary, the
file would be obfuscated and unreadable as long as the key
was not known. Therefore, the attacker would still be unable
to string together a complete ROP chain.

3.3 Decryption with Pin
We make use of Intel’s Pin software [14] for our decryption
environment. Pin is a powerful dynamic binary instrumenta-
tion (DBI) framework supporting all common architectures
and operating systems. It provides numerous APIs for ex-
amining and instrumenting binaries at multiple granularities
(image, section, routine, trace, and instruction), and “dynamic
compilation” that combines instrumentation code and original
binary instructions in a code cache. Program execution is then
done from this cache.

Our so-called ISR decryption “pintool” begins by read-
ing the decryption key from a given file. We then register a
callback to occur on each instruction fetch. When the CPU
requests an instruction, we load it from our encrypted binary,
XOR it with the supplied key, and provide the result back to
the CPU.

Our tool must contend with Linux’s Virtual Dynamic
Shared Object (VDSO), a read-only library injected into every
process to efficiently handle certain low-impact syscalls. Al-
though our implementation currently only supports statically
linked binaries, this shared library is present in the address
space of, and used in, our instrumented programs. Because the
VDSO is unencrypted, however, attempts to fetch and decrypt
instructions from it inadvertently garble these instructions —
an example of ISR’s security guarantees working against it.
To avoid this, we instruct Pin to search /proc/self/maps for
the VDSO’s address range before running the instrumented
binary. Any instruction fetches falling within this range are
copied and returned without decryption, allowing the VDSO’s
code to be executed normally. Because the VDSO is read- and
execute-only, it is safe to execute uninstrumented code from
it since there is no way an adversary can modify it without
first mounting some other type of attack.2

4 Evaluation

In this section we evaluate our ISR implementation for three
metrics: correctness, performance, and security. We tested
our implementation against GNU coreutils v. 8.32, using a
heavily-modified version of coreutils’ built-in test suite. Core-
utils were statically compiled and linked using musl libc v.

2Granted, this unencrypted library could be used to create ROP chains. A
simple extension to our ISR implementation could encrypt the VDSO’s code
at load time before the target program begins.
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Binary Type Expire Pass Fail Skip Test Err

uninstrumented 0 383 22 109 5
blank pin 2 267 122 113 14
encryption 2 268 121 113 14

Table 1: Results of correctness tests. Tests were killed and
marked expired after 5 minutes. “Test Err” refers to a problem
with the test framework, not the test itself.

1.2.0 [3], an alternative libc implementation, because glibc
does not support static linkage. Binaries were encrypted using
our modified objcopy and wrapped with a shell script that
invoked our pintool. Our test machine was equipped with a
6th generation Intel Xeon E3-1240 CPU at 3.5 GHz and 16
GB of RAM, running Debian 10 based on Linux kernel 4.19.

4.1 Modification of coreutils’ test suite
The test suite provided with coreutils is designed to verify
compilation and installation [9], not to benchmark the system,
which resulted in many necessary modifications to work with
our ISR implementation. Specifically, we modified the suite
to remove a code generation step that took place before tests
were run and which overwrote our encrypted binaries. We
also modified the tests themselves to be run directly as shell
scripts, rather than as inputs to a test runner. Additionally,
coreutils tests modify the system’s PATH, rather than use ab-
solute program addresses. Therefore, any test that required
an additional coreutil program (for example, an ls test that
requires basename) invoked our instrumented version of the
other program. We modified these tests such that when exter-
nal programs were required, wherever possible, pre-installed
versions on the system were used. Finally, we wrote a custom
test harness in Python to more accurately test, benchmark,
and record the performance of the coreutils tests. The Python
harness supports both Perl and Bash scripts. However, Perl-
based tests were excluded from our analysis because they
were incompatible with our wrapper scripts and reported a
disproportionate number of false negatives.

4.2 Correctness Tests
To verify correctness, each coreutils test was run three times.
First, an uninstrumented version of the binary was tested to
establish a baseline for comparison. Then, we tested a ver-
sion which was unencrypted but instrumented with an empty
pintool. The tool, which just runs the underlying program,
was used to identify any failures caused by Pin itself and
distinguish those from any errors introduced by the ISR im-
plementation, which we tested third.

Table 1 gives results of the correctness tests, which demon-
strate that our ISR implementation is sound. In all categories,

Figure 1: Performance results. Figure reports average exe-
cution time of all tests within a family, each run 10 times.
Tests that did not pass under all conditions were excluded as
outliers.

our ISR implementation matches or improves upon the cor-
rectness of an empty pintool. These results clearly indicate
that, for a wide range of programs affecting different system
functionality, no errors are introduced by our ISR implemen-
tation.

Many of the tests that failed under both the blank pintool
and ISR did so because of our binary wrapper script. The
tests invoked our wrapper, which in turn started the Pin in-
strumentation in a new process with a different ID and name.
Therefore, tests which expected certain process information
were given data that appeared to be incorrect. Correcting these
errors is simply a matter of engineering effort to rewrite the
tests themselves, which we did not undertake because it did
not affect the correctness of our ISR implementation.

Tests were skipped for a number of reasons. Many were
incompatible with a network filesystem, with which our test
machine was equipped, or required root access, which we did
not have. Additionally, while we successfully removed the
coreutils’ tester’s code generation step, some tests themselves
generated code that expected a program loader and thus was
incompatible with statically linked binaries. These issues were
detected ahead of time, and the affected tests were not run.

4.3 Performance Tests
To benchmark performance, each test was run ten times, again
under three different conditions: uninstrumented, blank pin-
tool, and ISR pintool. Tests were bucketed into “families”
designated by the coreutils program they test, with one mis-
cellaneous bucket. Execution time was grouped by family and
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averaged. Importantly, we only considered performance of
tests which passed in all three conditions. We observed many
tests which passed when uninstrumented but failed under a
blank pintool, after taking significantly longer to complete.
To prevent these failures from increasing the mean test com-
pletion time, we removed them as outliers from our analysis.

Figure 1 reports benchmarking results and demonstrates
that while the use of a pintool incurs significant overhead,
our ISR implementation is highly efficient. Specifically, we
report performance overheads ranging between 48.73% and
790.65% when compared against an uninstrumented baseline,
with an average of 228.61%. However, when we compare our
ISR implementation against the empty pintool, we observe an
average overhead of just 3.42%.

The performance decrease associated with the use of a
pintool results from the startup time of the tool. Short-lived
utilities such as coreutils are disproportionately affected by
this startup cost, since it represents a much larger percentage
of their lifetime than it would for a long-lived web server. We
have explored additional optimizations to further improve the
performance of our pintool. Specifically, we look to the use
of compiler prefetching suggestions to aid the CPU’s branch
predictor. In later work, we hope to implement these and other
optimizations, as well as benchmark performance against a
longer-lived program.

4.4 Security Tests

To test the security guarantees of our ISR implementation,
we created a toy program to read arbitrary memory of an
arbitrary size from an arbitrary location — a hacker’s dream.
We also equipped the program with an algorithm to detect the
address of the mprotect system call in its address space. We
chose mprotect because it is a function commonly targeted
by adversaries seeking to loosen restrictions on blocks of the
address space in order to write or execute malicious code, but
our algorithm would have behaved similarly for any function.
In line with our adversary model, the program was compiled
position-independent to enable ASLR and obeyed a W ⊕X
policy. While we did perform our security analysis locally,
the program would have functioned identically on a remote
system. We did not need to examine the binary to perform our
analysis.

We ran our test program twice, once without instrumenta-
tion and once encrypted with ISR. When the uninstrumented
program was run, it immediately and accurately found the ad-
dress of mprotect. This was repeated several times, with
the image’s code location permuted each time. However,
when the encrypted binary was run under our pintool, the
program terminated correctly but without finding the address
of mprotect anywhere in the code section. This was expected,
since the function’s bytes were randomized and thus could
not be positively identified. The result of this test demon-
strates that our ISR implementation can successfully prevent

JIT-ROP style attacks where the adversary has no advance
knowledge of the binary itself, despite the presence of an
extremely liberal memory disclosure vulnerability.

5 Previous and Related Work

A large body of research is dedicated to ISR. As part of their
original proposal, Kc et al. [13] modify the bochs x86 emula-
tor to simulate ISR on a single-system image with just a few
instrumented programs. Boyd et al. [8] repeat this study, but
improve instrumentation performance with three heuristics:
probabilistic identification of functions susceptible to code-
injection attacks based on their call-graph distance to input
functions, identification of program vulnerabilities using a
separately-instrumented honeypot machine, and static anal-
ysis of program source code. Barrantes et al. [7] present the
only ISR implementation to scramble code at load time, using
the Valgrind emulator, and Hu et al. [12] use more secure
AES encryption with the Strata DBI framework. Portokalidis
et al. [17] offer an XOR-encrypted, Pin-based approach, the
first to support shared libraries. ASIST [15] is the first ISR
solution to run natively in hardware with negligible over-
head, using a SPARC processor on an FPGA board, and the
first to instrument the Linux kernel. Most recently, Sinha et
al. [20] have combined the ASIST approach with fine-grained
code randomization and an AES encryption key specifically
to thwart JIT-ROP attacks, and support encrypting an entire
system from bootloader to user applications.

Another program hijacking defense is control-flow integrity
(CFI) [4]. CFI inspects the target of any control-flow transfer
within a program to ensure that it occurs along the edge of a
predefined control-flow graph. If the transfer does not follow
such an edge, it is not part of normal program execution and
likely erroneous or malicious. However, CFI is difficult to im-
plement if source code is not available, and Carlini et al. [10]
have shown that even under the most restrictive CFI policy, hi-
jacking is still possible. Nevertheless, the Chromium browser
and parts of the Android OS have introduced forward-edge
CFI in production [1, 2].

A third area of research in preventing code reuse attacks
is execute-only memory. Under such a scheme, the system
forbids read accesses from any memory page containing code.
This can be done by marking code pages as not present un-
less accessed as part of an instruction fetch [6] or by using
a thin hypervisor and related hardware features to prevent
such reads [11]. Execute-only memory relies on fine-grained
ASLR to permute code layout and prevent precomputation of
ROP chains but aims to fix the vulerability described in § 1
by removing the impact of a memory disclosure bug. A re-
lated technique, destructive code reads [22], allows reading
executable memory, but immediately mangles the memory
after it is read and renders it subsequently useless as code.

These defenses, and many others, aim to solve the same
software security problems as ISR with different approaches.
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6 Conclusion

We present an updated implementation of ISR based on Intel’s
Pin DBI framework, which seeks to protect binaries against
JIT-ROP attacks by encrypting code with a 16-bit XOR key to
neutralize memory disclosure vulnerabilities that could other-
wise allow for arbitrary code reads. Our tool does not require
hardware or compiler modifications, and can be done in-place
with a precompiled binary using existing open-source tools.
We test and benchmark our tool against the GNU coreutils
suite of programs. While the total overhead of our tool is
significant, we report an average 3.42% penalty over the use
of a pintool alone.

Despite the performance penalties incurred by Pin instru-
mentation, we consider our tool a successful implementation.
In future work, we hope to support shared libraries, larger
keys, memory protection of the instrumentation itself, and
further performance optimizations.
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