
C H A P T E R

Circuit Complexity

The circuit complexity of a binary function is measured by the size or depth of the smallest
or shallowest circuit for it. Circuit complexity derives its importance from the corollary to
Theorem 3.9.2; namely, if a function has a large circuit size over a complete basis of fixed
fan-in, then the time on a Turing machine required to compute it is large. The importance of

this observation is illustrated by the following fact. For n ≥ 1, let f
(n)
L be the characteristic

function of an NP-complete language L, where f
(n)
L has value 1 on strings of length n in L

and value 0 otherwise. If f
(n)
L has super-polynomial circuit size for all sufficiently large n, then

P �= NP.
In this chapter we introduce methods for deriving lower bounds on circuit size and depth.

Unfortunately, it is generally much more difficult to derive good lower bounds on circuit
complexity than good upper bounds; an upper bound measures the size or depth of a particular
circuit whereas a lower bound must rule out a smaller size or depth for all circuits. As a
consequence, the lower bounds derived for functions realized by circuits over complete bases
of bounded fan-in are often weak.

In attempting to understand lower bounds for complete bases, researchers have studied
monotone circuits over the monotone basis and bounded-depth circuits over the basis {AND,
OR, NOT} in which the first two gates are allowed to have unbounded fan-in. Formula size,
which is approximately the size of the smallest circuit with fan-out 1, has also been studied.
Lower bounds to formula size also produce lower bounds to circuit depth, a measure of the
parallel time needed for a function.

Research on these restricted circuit models has led to some impressive results. Exponential
lower bounds on circuit size have been derived for monotone functions over the monotone
basis and functions such as parity when realized by bounded-depth circuits. Unfortunately,
the methods used to obtain these results may not apply to complete bases of bounded fan-in.
Fortunately, it has been shown that the slice functions have about the same circuit size over

both the monotone and standard (non-monotone) bases. This may help resolve the P
?= NP

question, since there are NP-complete slice problems.
Despite the difficulty of deriving lower bounds, circuit complexity continues to offer one

of the methods of highest potential for distinguishing between P and NP.
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392 Chapter 9 Circuit Complexity Models of Computation

9.1 Circuit Models and Measures
In this section we characterize types of logic circuits by their bases and the fan-in and fan-
out of basis elements. We consider bases that are complete and incomplete and that have
bounded and unbounded fan-in. We also consider circuits in which the fan-out is restricted
and unrestricted. Each of these factors can affect the size and depth of a circuit.

9.1.1 Circuit Models
The (general) logic circuit is the graph of a straight-line program in which the variables have
value 0 or 1 and the operations are Boolean functions g : Bp �→ B, p ≥ 1. (Boolean functions
have one binary value. Logic circuits are defined in Section 1.2 and discussed at length in
Chapter 2.) The vertices in a logic circuit are labeled with Boolean operations and are called
gates; the set of different gate types used in a circuit is called the basis (denoted Ω) for the
circuit. The fan-in of a basis is the maximal fan-in of any function in the basis. A circuit
computes the binary function f : Bn �→ Bm, which is the mapping from the n circuit inputs
to the m gate outputs designated as circuit outputs.

The standard basis, denoted Ω0, is the set {AND, OR, NOT} in which AND and OR have
fan-in 2. The full two-input basis, denoted B2, consists of all two-input Boolean functions.
The dyadic unate basis, denoted U2, consists of all Boolean functions of the form (xa ∧ yb)c

for constants a, b, c in B. Here x1 = x and x0 = x.
A basis Ω is complete if every binary function can be computed by a circuit over Ω. The

bases Ω0, B2, and U2 are complete, as is the basis consisting of the NAND gate computing the
function x NAND y = x ∧ y. (See Problem 2.5.)

The bounded fan-out circuit model specifies a bound on the fan-out of a circuit. As we
shall see, the fan-out-1 circuit plays a special role related to circuit depth. Each circuit of
fan-out 1 corresponds to a formula in which the operators are the functions associated with
vertices of the circuit. Figure 9.1 shows an example of a circuit of fan-out 1 over the standard
basis and its associated formula. (See also Problem 9.9.) Although each input variable appears
once in this example, Boolean functions generally require multiple instances of variables (have
fan-out greater than 1). Formula size is studied at length in Section 9.4.

To define the monotone circuits, we need an ordering of binary n-tuples. Two such tuples,
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), are in the relation x ≤ y if for all 1 ≤ i ≤ n,
xi ≤ yi, where 0 ≤ 0, 1 ≤ 1, and 0 ≤ 1, but 1 �≤ 0. (Thus, 001011 ≤ 101111, but
011011 �≤ 101111.)

A monotone circuit is a circuit over the monotone basis Ωmon = {AND, OR} in which
the fan-in is 2. There is a direct correspondence between monotone circuits and monotone
functions. A monotone function is a function f : Bn �→ Bm that is either monotone
increasing, that is, for all x, y ∈ Bn, if x ≤ y, then f(x) ≤ f(y), or is monotone
decreasing, that is, for all x, y ∈ Bn, if x ≤ y, then f(x) ≥ f(y). Unless stated explicitly, a
monotone function will be understood to be a monotone increasing function.

A monotone Boolean function has the following expansion on the first variable, as the
reader can show. (See Problem 9.10.) A similar expansion is possible on any variable.

f(x1, x2, . . . , xn) = f(0, x2, . . . , xn) ∨ (x1 ∧ f(1, x2, . . . , xn))

By applying this expansion to every variable in succession, we see that each monotone function
can be realized by a circuit over the monotone basis. Furthermore, the monotone basis Ωmon
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x1x2x3

x6 x4x5x7

y = ((((x7 ∨ x6) ∧ (x5 ∨ x4)) ∨ x3) ∧ (x2 ∧ x1))

Figure 9.1 A circuit of fan-out 1 over a basis with fan-in 2 and a corresponding formula. The
value y at the root is the AND of the value (((x7 ∨x6)∧ (x5 ∨x4))∨x3) of the left subtree with
the value (x2 ∧ x1) of the right subtree.

is complete for the monotone functions, that is, every monotone function can be computed
by a circuit over the basis Ωmon. (See Problem 2.)

In Section 9.6 we show that some monotone functions on n variables require monotone
circuits whose size is exponential in n. In particular, some monotone functions requiring
exponential-size monotone circuits can be realized by polynomial-size circuits over the standard
basis Ω0. Thus, the absence of negation can result in a large increase in circuit size.

The bounded-depth circuit is a circuit over the standard basis Ω0 where the fan-in of AND

and OR gates is allowed to be unbounded, but the circuit depth is bounded. The conjunctive
and disjunctive normal forms and the product-of-sums and sum-of-products normal forms
realize arbitrary Boolean functions by circuits of depth 2 over Ω0. (See Section 2.3.) In these
normal forms negations are used only on the input variables. Note that any circuit over the
standard basis can be converted to a circuit in which the NOT gates are applied only to the
input variables. (See Problem 9.11.)

9.1.2 Complexity Measures
We now define the measures of complexity studied in this chapter. The depth of a circuit is
the number of gates of fan-in 2 or more on the longest path in the circuit. (Note that NOT

gates do not affect the depth measure.)

DEFINITION 9.1.1 The circuit size of a binary function f : Bn �→ Bm with respect to the basis
Ω, denoted CΩ(f), is the smallest number of gates in any circuit for f over the basis Ω. The circuit
size with fan-out s, denoted Cs,Ω(f), is the circuit size of f when the circuit fan-out is limited
to at most s.
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The circuit depth of a binary function f : Bn �→ Bm with respect to the basis Ω, DΩ(f), is
the depth of the smallest depth circuit for f over the basis Ω. The circuit depth with fan-out s,
denoted Ds,Ω(f), is the circuit depth of f when the circuit fan-out is limited to at most s.

The formula size of a Boolean function f : Bn �→ B with respect to a basis Ω, LΩ(f), is the
minimal number of input vertices in any circuit of fan-out 1 for f over the basis Ω.

It is important to note the distinction between formula and circuit size: in the former
the number of input vertices is counted, whereas in the latter it is the number of gates. A
relationship between the two is shown in Lemma 9.2.2.

9.2 Relationships Among Complexity Measures
In this section we explore the effect on circuit complexity measures of a change in either the
basis or the fan-out of a circuit. We also establish relationships between circuit depth and
formula size.

9.2.1 Effect of Fan-Out on Circuit Size
It is interesting to ask how the circuit size and depth of a function change as the maximal fan-
out of a circuit is reduced. This issue is important in understanding these complexity measures
and in the use of technologies that limit the fan-out of gates. The following simple facts about
trees are useful in comparing complexity measures. (See Problem 9.2.)

LEMMA 9.2.1 A rooted tree of maximal fan-in r containing k vertices has at most k(r − 1) + 1
leaves and a rooted tree with l leaves and fan-in r has at most l − 1 vertices with fan-in 2 or more
and at most 2(l − 1) edges.

From the above result we establish the following connection between circuit size with fan-
out 1 and formula size.

LEMMA 9.2.2 Let Ω be a basis of fan-in r. For each f : Bn �→ B the following inequalities hold
between formula size, LΩ(f), and fan-out-1 circuit size, C1,Ω(f):

(LΩ(f) − 1)/(r − 1) ≤ C1,Ω(f) ≤ 3LΩ(f)− 2

Proof The first inequality follows from the definition of formula size and the first result
stated in Lemma 9.2.1 in which k = C1,Ω(f). The second inequality also follows from
Lemma 9.2.1. A tree with LΩ(f) leaves has at most LΩ(f)− 1 vertices with fan-in of 2 or
more and at most 2(LΩ(f)−1) edges between vertices (including the leaves). Each of these
edges can carry a NOT gate, as can the output gate, for a total of at most 2LΩ(f) − 1 NOT

gates. Thus, a circuit of fan-out 1 has at most 3LΩ(f)− 2 gates.

As we now show, circuit size increases by at most a constant factor when the fan-out of the
circuit is reduced to s for s ≥ 2. Before developing this result we need a simple fact about a
complete basis Ω, namely, that at most two gates are needed to compute the identity function
i(x) = x, as shown in the next paragraph. If a basis contains AND or OR gates, the identity
function can be obtained by attaching both of their inputs to the same source.

We are done if Ω contains a function such that by fixing all but one variable, i(x) is
computed. If not, then we look for a non-monotone function in Ω. Since some binary
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functions are non-monotone (x, for example), some function g in a complete basis Ω is non-
monotone. This means there exist tuples x and y for g, x ≤ y, such that g(x) = 1 > g(y) =
0. Let u and v be the largest and smallest tuples, respectively, satisfying x ≤ u ≤ v ≤ y
and g(u) = 1 and g(v) = 0. Then u and v differ in at most one position. Without loss
of generality, let that position be the first and let the values in the remaining positions in
both tuples be (c2, . . . , cn). It follows that g(1, c2, . . . , cn) = 0 and g(0, c2, . . . , cn) = 1 or
g(x, c2, . . . , cn) = x. If l(Ω) is the number of gates from Ω needed to realize the identity
function, then l(Ω) = 1 or 2.

THEOREM 9.2.1 Let Ω be a complete basis of fan-in r and let f : Bn �→ Bm. The following
inequalities hold on Cs,Ω(f):

CΩ(f) ≤ Cs+1,Ω(f) ≤ Cs,Ω(f) ≤ C1,Ω(f)

Furthermore, Cs,Ω(f) has the following relationship to CΩ(f) for s ≥ 2:

Cs,Ω(f) ≤ CΩ(f)
(

1 +
l(Ω)(r − 1)

s− 1

)
Proof The first set of inequalities holds because a smallest circuit with fan-out s is no smaller
than a smallest circuit with fan-out s + 1, a less restrictive type of circuit.

The last inequality follows by constructing a tree of identity functions at each gate whose
fan-out exceeds s. (See Fig. 9.2.) If a gate has fan-out φ > s, reduce the fan-out to s and
then attach an identity gate to one of these s outputs. This increases the fan-out from s to
s + s − 1. If φ is larger than this number, repeat the process of adding an identity gate k
times, where k is the smallest integer such that s + k(s − 1) ≥ φ or is the largest integer
such that s + (k − 1)(s− 1) < φ. Thus, k < (φ− 1)/(s− 1).

Let φi denote the fan-out of the ith gate in a circuit for f of potentially unbounded
fan-out and let ki be the largest integer satisfying the following bound:

ki <
φi − 1
s− 1

Then at most
∑

i(kil(Ω) + 1) gates are needed in the circuit of fan-out s to realize f ,
one for the ith gate in the original circuit and kil(Ω) gates for the ki copies of the identity

(b)(a)

Figure 9.2 Conversion of a vertex with fan-out more than s to a subtree with fan-out s,
illustrated for s = 2.
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function at the ith gate. Note that
∑

i φi is the number of edges directed away from gates
in the original circuit. But since each edge directed away from a gate is an edge directed into
a gate, this number is at most rCΩ(f) since each gate has fan-in at most r.

It follows that the smallest number of gates in a circuit with fan-out s for f satisfies the
following bound:

Cs,Ω(f) ≤ CΩ(f) + l(Ω)
CΩ(f)∑
i=1

(
φi − 1
s − 1

)
≤ CΩ(f)

(
1 +

l(Ω)(r − 1)
s − 1

)
which demonstrates that circuit size with a fan-out s ≥ 2 differs from the unbounded fan-
out circuit size by at most a constant factor.

With the construction employed in Theorem 9.2.1, an upper bound can be stated on
Ds,Ω(f) that is proportional to the product of DΩ(f) and log CΩ(f). (See Problem 9.12.)
The upper bound stated above on Cs,Ω(f) can be achieved by a circuit that also achieves an
upper bound on Ds,Ω(f) that is proportional to DΩ(f) and logrs [138].

9.2.2 Effect of Basis Change on Circuit Size and Depth
We now consider the effect of a change in basis on circuit size and depth. In the next section
we examine the relationship between formula size and depth, from which we deduce the effect
of a basis change on formula size.

LEMMA 9.2.3 Given two complete bases, Ωa and Ωb, and a function f : Bn �→ Bm, the circuit
size and depth of f in these two bases differ by at most constant multiplicative factors.

Proof Because each basis is complete, every function in Ωa can be computed by a fixed
number of gates in Ωb, and vice versa. Given a circuit with basis Ωa, a circuit with basis
Ωb can be constructed by replacing each gate from Ωa by a fixed number of gates from
Ωb. This has the effect of increasing the circuit size by at most a constant factor. It follows
that CΩa

(f) = Θ(CΩb
(f)). Since this construction also increases the depth by at most a

constant factor, it follows that DΩa
(f) = Θ(DΩb

(f)).

9.2.3 Formula Size Versus Circuit Depth
A logarithmic relationship exists between the formula size and circuit depth of a function, as
we now show. If a formula is represented by a balanced tree, this result follows from the fact
that the circuit fan-in is bounded. However, since we cannot guarantee that each formula
corresponds to a balanced tree, we must find a way to balance an unbalanced tree.

To balance a formula and provide a bound on the circuit depth of a function in terms of

formula size, we make use of the multiplexer function f
(n)
mux : B2n+n �→ B on three inputs

f
(1)
mux(a, y1, y0). Here the value of a determines which of the two other values is returned.

f (1)
mux(a, y1, y0) =

{
y0 a = 0

y1 a = 1

This function can be realized by

f (1)
mux(a, y1, y0) = (a ∧ y0) ∨ (a ∧ y1)
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The measure d(Ω) of a basis Ω defined below is used to obtain bounds on the circuit depth of
a function in terms of its formula size.

DEFINITION 9.2.1 Given a basis Ω of fan-in r, the constant d(Ω) is defined as follows:

d(Ω) =
(
DΩ

(
f (1)
mux

)
+ 1

)
/ logr

(
r + 1

r

)
Over the standard basis Ω0, d(Ω0) = 3.419.

We now derive a separator theorem for trees. This is a theorem stating that a tree can
be decomposed into two trees of about the same size by removing one edge. We begin by
establishing a property about trees that implies the separator theorem.

LEMMA 9.2.4 Let T be a tree with n internal (non-leaf ) vertices. If the fan-in of every vertex of
T is at most r, then for any k, 1 ≤ k ≤ n, T has a vertex v such that the subtree Tv rooted at v
has at least k leaves but each of its children Tv1 , Tv2 , . . . , Tvp

, p ≤ r, has fewer than k leaves.

Proof If the property holds at the root, the result follows. If not, move to some subtree of
T that has at least k leaves and apply the test recursively. Because a leaf vertex has one leaf
vertex in its subtree, this process terminates on some vertex v at which the property holds.
If it terminates on a leaf vertex, each of its children is an empty tree.

COROLLARY 9.2.1 Let T be a tree of fan-in r with n leaves. Then T has a subtree Tv rooted at
a vertex v such that Tv has at least �n/(r + 1)� leaves but at most �rn/(r + 1)�.

Proof Let v be the vertex of Lemma 9.2.4 and let k = �n/(r + 1)�. Since Tv has at most
r subtrees each containing no more than �n/(r + 1)� − 1 ≤ n/(r + 1) leaves, the result
follows.

We now apply this decomposition of trees to develop bounds on formula size.

THEOREM 9.2.2 Let Ω be a complete basis of fan-in r. Any function f : Bn �→ B with formula
size LΩ(f) ≥ 2 has circuit depth DΩ(f) satisfying the following bounds:

logr LΩ(f) ≤ DΩ(f) ≤ d(Ω) logr LΩ(f)

Proof The lower bound follows because a rooted tree of fan-in r with depth d has at most
rd leaves. Since LΩ(f) leaves are needed to compute f with a tree circuit over Ω, the result
follows directly.

The derivation of the upper bound is by induction on formula size. We first establish
the basis for induction: that DΩ(f) ≤ d(Ω) logr LΩ(f) for LΩ(f) = 2. To show this,
observe that any function f with LΩ(f) = 2 depends on at most two variables. There are 16
functions on two variables (which includes the functions on one variable), of which 10 have
the property that both variables affect the output. Each of these 10 functions can be realized

from a circuit for f
(1)
mux by adding at most one NOT gate on one input and one NOT on

the output. (See Problem 9.13.) But, as seen from the discussion preceding Theorem 9.2.1,
every complete basis contains a non-monotone function all but one of whose inputs can be
fixed so that the functions computes the NOT of its one remaining input. Thus, a circuit

with depth DΩ

(
f

(1)
mux

)
+ 2 suffices to realize a function with LΩ(f) = 2.
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The basis for induction is that DΩ

(
f

(1)
mux

)
+ 2 ≤ d(Ω) logr LΩ(f) for LΩ(f) = 2,

which we now show.

d(Ω) logr LΩ(f) =
(
DΩ

(
f (1)
mux

)
+ 1

)
(logr 2)/ logr

(
r + 1

r

)
=

(
DΩ

(
f (1)
mux

)
+ 1

)
/ log2

(
r + 1

r

)
≥ 1.7

(
DΩ

(
f (1)
mux

)
+ 1

)
≥ DΩ(f (1)

mux) + 2

since (r + 1)/r ≤ 1.5 and DΩ

(
f

(1)
mux

)
≥ 1.

The inductive hypothesis is that any function f with a formula size LΩ(f) ≤ L0 − 1
can be realized by a circuit with depth d(Ω) logr LΩ(f).

Let T be the tree associated with a formula for f of size L0. The value computed by

T can be computed from the function f
(1)
mux using the values produced by three trees, as

suggested in Fig. 9.3. The tree Tv of Corollary 9.2.1 and two copies of T from which Tv

has been removed and replaced by 0 in one case (the tree T0) and 1 in the other (the tree
T1) are formed and the value of Tv is used to determine which of T0 and T1 is the value T .
Since Tv has at least �L0/(r + 1)� and at most �rL0/(r + 1)� ≤ L0 − 1 leaves, each of T0

and T1 has at most L0 − �L0/(r + 1)� = �rL0/(r + 1)� leaves. (See Problem 9.1.) Thus,
all trees have at most �rL0/(r + 1)� ≤ L0 − 1 leaves and the inductive hypothesis applies.

Since the depth of the new circuit is the depth of f
(1)
mux plus the maximum of the depths of

the three trees, f has the following depth bound:

DΩ(f) ≤ DΩ

(
f (1)
mux

)
+ d(Ω) logr

rLΩ(f)
(r + 1)

The desired result follows from the definition of d(Ω).

10

(a)

T
Tv

T0

a

y0 y1

T1

(b)

Tv

f
(1)
mux

Figure 9.3 Decomposition of a tree circuit T for the purpose of reducing its depth. A large
subtree Tv is removed and its value used to select the value computed by two trees formed from
the original tree by replacing the value of Tv alternately by 0 and 1.
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Combining this result with Lemma 9.2.3, we obtain a relationship between the formula
sizes of a function over two different complete bases.

THEOREM 9.2.3 Let Ωa and Ωb be two complete bases with fan-in ra and rb, respectively. There
is a constant α such that the formula size of a function f : Bn �→ B with respect to these bases
satisfies the following relationship:

LΩa
(f) ≤ [LΩb

(f)]α

Proof Let DΩa
(f) and DΩb

(f) be the depth of f over the bases Ωa and Ωb, respectively.
From Theorem 9.2.2, logra

LΩa
(f) ≤ DΩa

(f) and DΩb
(f) ≤ d(Ωb) logrb

LΩb
(f).

From Lemma 9.2.3 we know there is a constant da,b such that if a function f : Bn �→ B
has depth DΩb

(f) over the basis Ωb, then it has depth DΩa
(f) over the basis Ωa, where

DΩa
(f) ≤ da,bDΩb

(f)

The constant da,b is the depth of the largest-depth basis element of Ωb when realized by a
circuit over Ωa.

Combining these facts, we have that

LΩa
(f) ≤ (ra)DΩa (f) ≤ (ra)da,bDΩb

(f)

≤ (ra)da,bd(Ωb) logrb
LΩb

(f)

≤ LΩb
(f)da,bd(Ωb)(logrb

ra)

Here we have used the identity xlogy z = zlogy x.

This result can be extended to the monotone basis. (See Problem 9.14.) We now derive a
relationship between circuit size and depth.

9.3 Lower-Bound Methods for General Circuits
In Chapter 2 upper bounds were derived for a variety of functions, including logical, arith-
metic, shifting, and symmetric functions as well as encoder, decoder, multiplexer, and demul-
tiplexer functions. We also established lower bounds on size and depth of the most complex
Boolean functions on n variables. In this section we present techniques for deriving lower
bounds on circuit size and depth for particular functions when realized by general logic circuits.

9.3.1 Simple Lower Bounds
A function f : Bn �→ B on n variables is dependent on its ith variable, xi, if there exist
values c1, c2, . . . , ci−1, ci+1, . . . , cn such that

f(c1, c2, . . . , ci−1, 0, ci+1, . . . , cn) �= f(c1, c2, . . . , ci−1, 1, ci+1, . . . , cn)

This simple property leads to lower bounds on circuit size and depth that result from the
connectivity that a circuit must have to compute a function depending on each of its variables.
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THEOREM 9.3.1 Let f : Bn �→ B be dependent on each of its n variables. Then over each basis
Ω of fan-in r, the size and depth of f satisfies the following lower bounds:

CΩ(f) ≥
⌈

n − 1
r − 1

⌉
DΩ(f) ≥ �logr n�

Proof Consider a circuit of size CΩ(f) for f . Since it has fan-in r, it has at most rCΩ(f)
edges between gates. After we show that this circuit also has at least CΩ(f) + n − 1 edges,
we observe that rCΩ(f) ≥ CΩ(f) + n − 1, from which the conclusion follows.

Since f depends on each of its n variables, there must be at least one edge attached to
each of them. Similarly, because the circuit has minimal size there must be at least one edge
attached to each of the CΩ(f) gates except possibly for the output gate. Thus, the circuit
has at least CΩ(f) + n − 1 edges and the conclusion follows.

The depth lower bound uses the fact that a circuit with depth d and fan-in r with the
largest number of inputs is a tree. Such trees have at most rd leaves (input vertices). Because
f depends on each of its variables, a circuit for f of depth d has at least n and at most rd

leaves, from which the depth lower bound follows.

This lower bound is the best possible given the information used to derive it. To see this,
observe that the function f(x1, x2, . . . , xn) = x1 ∧ x2 ∧ · · · ∧ xn, which depends on each of
its variables, has circuit size �(n − 1)/(r − 1)� and depth �logr n� over the basis containing
the r-input AND gate. (See Problem 9.15.)

9.3.2 The Gate-Elimination Method for Circuit Size
The search for methods to derive large lower bounds on circuit size for functions over complete
bases has to date been largely unsuccessful. The largest lower bounds on circuit size that have
been derived for explicitly defined functions are linear in n, the number of variables on which
the functions depend. Since most Boolean functions on n variables have exponential size (see
Theorem 2.12.1), functions do exist that have high complexity. Unfortunately, this fact doesn’t
help us to show that any particular problem has high circuit size. In particular, it does not help
us to show that P �= NP.

In this section we introduce the gate-elimination method for deriving linear lower bounds.
When applied with care, it provides the strongest known lower bounds for complete bases.
The gate-elimination method uses induction on the properties of a function f on n variables
to show two things: a) a few variables of f can be assigned values so that the resulting function
is of the same type as f , and b) a few gates in any circuit for f can be eliminated by this
assignment of values. After eliminating all variables by assigning values to them, the function
is constant. Since the number of gates in the original circuit cannot be smaller than the number
removed during this process, the original circuit has at least as many gates as were removed.

We now apply the gate-elimination method to functions in the class Q
(n)
2,3 defined below.

Functions in this class have at least three different subfunctions when any pair of variables
ranges through all four possible assignments.

DEFINITION 9.3.1 A Boolean function f : Bn �→ B belongs to the class Q
(n)
2,3 if for any two

variables xi and xj , f has at least three distinct subfunctions as xi and xj range over all possible



c©John E Savage 9.3 Lower-Bound Methods for General Circuits 401

values. Furthermore, for each variable xi there is a value ci such that the subfunction of f obtained
by assigning xi the value ci is in Q

(n−1)
2,3 .

The class Q
(n)
2,3 contains the function f

(n)
mod 3,c : Bn �→ B, as we show. Here z mod a is

the remainder of z after removing all multiples of a.

LEMMA 9.3.1 For n ≥ 3 and c ∈ {0, 1, 2}, the function f
(n)
mod 3,c : Bn �→ B defined below is

in Q
(n)
2,3 :

f
(n)
mod 3,c(x1, x2, . . . , xn) = ((y + c) mod 3) mod 2

where y =
∑n

i=1 xi and
∑

and + denote integer addition.

Proof We show that the functions f
(n)
mod 3,c, c ∈ {0, 1, 2}, are all distinct when n ≥ 1.

When n = 1, the functions are different because f
(1)
mod 3,0(x1) = x1, f

(1)
mod 3,1(x1) =

x1, and f
(1)
mod 3,2(x1) = 0. For n = 2, y can assume values in {0, 1, 2}. Because the

functions f
(2)
mod 3,0(x1, x2), f

(2)
mod 3,1(x1, x2), and f

(2)
mod 3,2(x1, x2) have value 1 only when

y = x1 + x2 = 1, 0, 2, respectively, the three functions are different.

The proof of membership of f
(n)
mod 3,c in Q

(n)
2,3 is by induction. The base case is n = 3,

which holds, as shown in the next paragraph. The inductive hypothesis is that for each

c ∈ {0, 1, 2}, f
(n−1)
mod 3,c ∈ Q

(n−1)
2,3 .

To show that for n ≥ 3, f (n)
mod 3,c has at least three distinct subfunctions as any two of its

variables range over all values, let y∗ be the sum of the n− 2 variables that are not fixed and
let c∗ be the sum of c and the values of the two variables that are fixed. Then the value of the
function is ((y∗ + c∗) mod 3) mod 2 = (((y∗ mod 3) + (c∗ mod 3)) mod 3) mod 2.
Since (y∗ mod 3) and (c∗ mod 3) range over the values 0, 1, and 2, the three functions are
different, as shown in the first paragraph of this proof.

To show that for any variable xi there is an assignment ci such that f
(n)
mod 3,c is in

Q
(n−1)
2,3 , let c = 0.

We now derive a lower bound on the circuit size of functions in the class Q
(n)
2,3 .

THEOREM 9.3.2 Over the basis of all Boolean functions on two inputs, Ω, if f ∈ Q
(n)
2,3 for

n ≥ 3, then
CΩ(f) ≥ 2n − 3

Proof We show that f depends on each of its variables. Suppose it does not depend on
xi. Then, pick xi and a second variable xj and let them range over all four possible values.
Since the value of xi has no effect on f , f has at most two subfunctions as xi and xj range
over all values, contradicting its definition.

We now show that some input vertex xi of a circuit for f has fan-out of 2 or more.
Consider a gate g in a circuit for f whose longest path to the output gate is longest. (See
Fig. 9.4.) Since the circuit does not have loops and no other vertex is farther away from the
output, both of g’s input edges must be attached to input vertices. Let xi and xj be the two
inputs to this gate. If the fan-out of both of these input vertices is 1, they influence the value
of f only through the one gate to which they are connected. Since this gate has at most two
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x4

g7

g8

x1 x3x2

g4

g5

g6

Figure 9.4 A circuit in which gates g4 has maximal distance from the output gate g8. The input
x2 has fan-out 2.

values for the four assignments to inputs, f has at most two subfunctions, contradicting the
definition of f .

If n = 3, this fact demonstrates that the fan-out from the three inputs has to be at
least 4, that is, the circuit has at least four inputs. From Theorem 9.3.1 it follows that
CΩ(f) ≥ 2n − 3 for n = 3. This is the base case for a proof by induction.

The inductive hypothesis is that for any f∗ ∈ Q
(n−1)
2,3 , CΩ(f∗) ≥ 2(n− 1)− 3. From

the earlier argument it follows that there is an input vertex xi in a circuit for f ∈ Q
(n)
2,3 that

has fan-out 2. Let xi have that value that causes the subfunction f∗ of f to be in Q
(n−1)
2,3 .

Fixing xi eliminates at least two gates in the circuit for f because each gate connected to xi

either has a constant output, computes the identity, or computes the NOT of its input. The
negation, if any, can be absorbed by the gate that precedes or follows it. Thus,

CΩ(f) ≥ CΩ(f∗) + 2 ≥ 2(n− 1)− 3 + 2 = 2n− 3

which establishes the result.

As a consequence of this theorem, the function f
(n)
mod 3,c requires at least 2n− 3 gates over

the basis B2. It can also be shown to require at most 3n + O(1) gates [86].
We now derive a second lower-bound result using the gate-elimination method. In this

case we demonstrate that the upper bound on the complexity of the multiplexer function

f
(n)
mux : B2n+n �→ B introduced in Section 2.5.5, which is 2n+1 + O(n

√
2n), is optimal to

within an additive term of size O(n
√

2n). (The multiplexer function is also called the storage
access function.) We generalize the storage access function f

(n,k)
SA : Bn+k �→ B slightly and

write it in terms of a k-bit address a and an n-tuple x, as shown below, where |a| denotes the
integer represented by the binary number a and 2k ≥ n.:

f
(n,k)
SA (ak−1, . . . , a1, a0, xn−1, . . . , x0) = x|a|

Thus, f
(m)
mux = f

(2m ,m)
SA .

To derive a lower bound on the circuit size of f
(n,k)
SA we introduce the class F

(n,k)
s of

Boolean functions on n + k variables defined below.



c©John E Savage 9.3 Lower-Bound Methods for General Circuits 403

DEFINITION 9.3.2 A Boolean function f : Bn+k �→ B belongs to the class F
(n,k)
s , 2k ≥ n, if

for some set S ⊆ {0, 1, . . . , n− 1}, |S| = s,

f(ak−1, . . . , a1, a0, xn−1, . . . , x0) = x|a|

for |a| ∈ S.

Clearly, f
(n,k)
SA is a member of F

(n,k)
n . We now show that every function in F

(n,k)
s has circuit

size that is at least 2s− 2.
In the proof of Theorem 9.3.2 the gate-elimination method replaced variables with con-

stants. In the following proof this idea is extended to replacing variables by functions. Applying

this result, we have that CΩ(f (n)
mux) ≥ 2n+1 − 1.

THEOREM 9.3.3 Let f : Bn+k �→ B belong to F
(n,k)
s , 2k ≥ n. Then over the basis B2 the

circuit size of f satisfies the following bound:

CΩ(f) ≥ 2s − 2

Proof In the proof of Theorem 9.3.2 we used the fact that some input variable has fan-out

2 or more, as deduced from a property of functions in Q
(n)
2,3 . This fact does not hold for the

storage access function (multiplexer), as can be seen from the construction in Section 2.5.5.
Thus, our lower-bound argument must explicitly take into account the fact that the fan-out
from some input can be 1.

The following proof uses the fact that the basis B2 contains functions of two kinds, AND-
type and parity-type functions. The former compute expressions of the form (xa ∧ yb)c for
Boolean constants a, b, c, where the notation xc denotes x when c = 1 and x when c = 0.
Parity-type functions compute expressions of the form x⊕ y⊕ c for some Boolean constant
c. (See Problem 9.19.)

The proof is by induction on the value of s. In the base case s = 1 and the lower bound
is trivially 0. The inductive hypothesis assumes that for s = s′−1, CΩ(f) ≥ 2(s′−1)−2.
We let s = s′ and consider the following mutually exclusive cases:

a) For some i ∈ S, xi has fan-out 2. Replacing xi by a constant allows elimination of
at least two gates, replaces S by S − {i}, which has size s′ − 1, and reduces f to

f∗ ∈ F
(n,k)
s′−1 , from which we conclude that

CΩ(f) ≥ 2 + CΩ(f∗) ≥ 2s′ + 2 = 2s − 2

b) For some i ∈ S, xi has fan-out 1, its unique successor is a gate G of AND-type, and G
computes the expression (xa

i ∧ gb)c for some function g of the inputs. Setting xi = a
sets xa

i = aa = 0, thereby causing the expression to have value 0c, which is a constant.
Since G cannot be the output gate, this substitution allows the elimination of G and at

least one successor gate, reduces f to f∗ ∈ F
(n,k)
s′−1 , and replaces S by S − {i}, from

which the lower bound follows.

c) For some i ∈ S, xi has fan-out 1, its unique successor is a gate G of parity-type, and
G computes the expression xi ⊕ g ⊕ c for some function g of the inputs. Replace S by
S−{i}. Since we ask that the output of the circuit be x|a| for a ∈ S−{i}, this output
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cannot depend on the value of G because a change in xi would cause the value of G to
change. Thus, G is not the output gate and when a ∈ S − {i} we can set its value to
any function without affecting the value computed by the circuit. In particular, setting
xi = g causes G to have value c, a constant. This substitution allows the elimination of
G and at least one successor gate, and reduces f to f∗ ∈ F

(n,k)
s′−1 , from which the lower

bound follows.

Thus, in all cases, CΩ(f) ≥ 2s′ − 2.

The lower bounds given above are derived for two functions over the basis B2. The best
circuit-size lower bound that has been derived for this basis is 3(n − 1). When the basis
is restricted, larger lower bounds may result, as mentioned in the notes and illustrated by
Problems 9.22 and 9.23.

9.4 Lower-Bound Methods for Formula Size
Since formulas correspond to circuits of fan-out 1, the formula size of a function may be much
larger than its circuit size. In this section we introduce two techniques for deriving lower
bounds on formula size that illustrate this point. Each leads to bounds that are quadratic or
nearly quadratic in the number of inputs. The first, due to Nečiporuk [230], applies to any
complete basis. The second, due to Krapchenko [174], applies to the standard basis Ω0.

To fix ideas about formula size, we construct a circuit of fan-out 1 for the indirect storage

access function f
(k,l)
ISA : Bk+lK+L �→ B, where K = 2k and L = 2l:

f
(k,l)
ISA (a, xK−1, . . . , x0, y) = y|x|a||

Here a is a k-tuple, xj = (xj,l−1, . . . , xj,0) is an l-tuple for 0 ≤ j ≤ K − 1, and

y = (yL−1, . . . , y0) is an L-tuple. The value of f
(k,l)
ISA is computed by indirection; that is,

the value of a is treated as a binary number with value |a| that is used to select the |a|th
l-tuple x|a|; this, in turn, is treated as a binary number and its value is used to select the
|x|a||th variable in y.

A circuit realizing f
(k,l)
ISA from multiple copies of the multiplexer (direct storage access

function) f
(n)
mux : B2n+n �→ B is shown schematically in Fig. 9.5. This circuit uses l copies

of f
(k)
mux : B2k+k �→ B and one copy of f

(l)
mux : B2l+l �→ B. The copies of f

(k)
mux produce

the |a|th l-tuple, which is supplied to the copy of f
(l)
mux to select a variable from y. Since, as

shown in Lemma 2.5.5, the function f
(k)
mux can be realized by a circuit of size linear in 2k, a

circuit for f
(k,l)
ISA can be constructed that is also linear in the size of its input.

A formula for f
(k,l)
ISA has fan-out of 1 from every gate. The circuit sketched in Fig. 9.5 has

fan-out 1 if and only if the fan-out within each multiplexer circuit is also 1. To construct a

formula from this circuit, we first construct one for f
(l)
mux. The total number of times that

address bits appear in a formula for f
(l)
mux determines the number of copies of the formula for

f
(k)
mux that are used in the formula for f

(k,l)
ISA . A proof by induction can be developed to show

that a formula for f
(p)
mux can be constructed of size 32p−2 in which address bits occur 2(2p−1)

times. (See Problem 9.24.) Since each occurrence of an address bit in f
(l)
mux corresponds to a

copy of the formula for f
(k)
mux, by choosing L = 2l = n and k the smallest integer such that
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x0,l−1

f
(k)
mux

y0

x|a|,l−1

...

a0

a1

ak−1

a0

a1

ak−1

a0

a1

ak−1

f
(k)
mux f

(k)
mux

...

xK−1,l−1

yL−1

...

x|a|,0

...

x|a|,l−2

xK−1,l−2 x0,l−1 xK−1,0 x0,0

... ...

...

f
(l)
mux

...

Figure 9.5 The schema used to construct a circuit of fan-out 1 for the indirect storage access
function f

(k,l)
ISA .

K = 2k ≥ n/l we see that f
(k,l)
ISA has 2l + l2k +k = O(n) variables and that its formula size is

2(2l−1)LΩ

(
f

(k)
mux

)
+LΩ

(
f

(l)
mux

)
, which is O(n2/ log2 n), as summarized in Lemma 9.4.1.

LEMMA 9.4.1 Let 2l = n and k = �log2 n/l�. Then the formula size of f
(k,l)
ISA : Bk+lK+L �→

B satisfies the following bound:

LΩ

(
f

(k,l)
ISA

)
= O(n2/ log2 n)

We now introduce Nečiporuk’s method, by which it can be shown that this bound for

f
(k,l)
ISA is optimal to within a constant multiplicative factor.

9.4.1 The Nečiporuk Lower Bound
The Nečiporuk lower-bound method uses a partition of the variables X = (x1, x2, . . . , xn) of
a Boolean function f (n) : Bn �→ B into disjoint sets X1, X2, . . . , Xp. That is, X =

⋃p
i=1 Xi

and Xi ∩ Xj = ∅ for i �= j. The lower bound on the formula size of f is stated in terms of
rXj

(f), 0 ≤ j ≤ p, the number of subfunctions of f when restricted to variables in Xj .
That is, rXj

(f) is the number of different subfunctions of f in the variables in Xj obtained
by ranging over all values for variables in X −Xj .

We now describe Nečiporuk’s lower bound on formula size. We emphasize that the strength
of the lower bound depends on which partition X1, X2, . . . , Xp of the variables X is chosen.
After the proof we apply it to the indirect storage access function. The method cannot provide a
lower bound that is larger than O(n2/ log n) for a function on n variables. (See Problem 9.25.)
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THEOREM 9.4.1 For every complete basis Ω there is a constant cΩ such that for every function
f (n) : Bn �→ B and every partition of its variables X into disjoint sets X1, X2, . . . , Xp, the
formula size of f with respect to Ω satisfies the following lower bound:

LΩ(f) ≥ cΩ

p∑
j=1

log2 rXj
(f)

Proof Consider T , a minimal circuit of fan-out 1 for f . Let nj be the number of instances
of variables in Xj that are labels for leaves in T . Then by definition LΩ(f) =

∑p
i=1 nj .

Let d be the fan-in of the basis Ω.
For each j, 1 ≤ j ≤ p, we define the subtree Tj of T consisting of paths from vertices

with labels in Xj to the output vertex, as suggested by the heavy lines in Fig. 9.6. We
observe that some vertices in such a subtree have one input from a vertex in the subtree Tj

(called controllers — shaded vertices in Fig. 9.6) whereas others have more than one input
from a vertex in Tj (combiners — black vertices in Fig. 9.6). Each type of vertex typically
has inputs from vertices other than those in Tj , that is, from vertices on paths from input
vertices in X −Xj .

When the variables X − Xj are assigned values, the output of a controller or com-
biner vertex depends only on the inputs it receives from other vertices in Tj . The function
computed by a controller is a function of its one input y in Tj and can be represented as
(a ∧ y) ⊕ b for some values of the constants a and b. These constants are determined by
the values of inputs in X − Xj . We assume without loss of generality that each chain of
controllers with no intervening combiners is compressed to one controller. The combiner is
also some function of its inputs from other vertices in Tj . Since the number of such inputs
is as least 2, a combiner (with fan-in at most d) has at most d − 2 inputs determined by
variables in X − Xj .

x5 x4 x3 x1 x2 x7 x1 x2 x7 x4 x3 x2 x5

Combiner

Controller

Figure 9.6 The subtree Tj of the tree T is identified by heavy edges on paths from input vertices
in the set Xj = {x1, x3}. Vertices in Tj that have one heavy input edge are controller vertices.
Other vertices in Tj are combiner vertices.
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By Lemma 9.2.1, since Tj has nj leaves, the number of vertices with fan-in of 2 or more
(combiners) is at most nj −1. Also, by Lemma 9.2.1, Tj has at most 2(nj −1) edges. Since
Tj may have one controller at the output and at most one per edge, Tj has at most 2nj − 1
controllers.

The number of functions computed by a combiner is at most one of 2d−2 since at most
d − 2 of its inputs are determined by variables in X − Xj . At most four functions are
computed by a controller since there are at most four functions on one variable. It follows
that the tree Tj associated with the input variables in Xj containing nj leaves computes
rXj

different functions where rXj
satisfies the following upper bound. This bound is the

product of the number of ways that each of the controllers and combiners can compute
functions.

rXj
(f) ≤ 2(d−2)(nj−1)

(
4(2nj−1)

)
≤ 2(d+2)nj

Thus, (d + 2)nj ≥ log2 rXj
(f). Since LΩ(f) =

∑p
i=1 nj , the theorem holds for cΩ =

1/(d + 2).

Applying Nečiporuk’s lower bound to the indirect storage access function yields the fol-
lowing result, which demonstrates that the upper bound given in Lemma 9.4.1 for the indirect
storage access function is tight.

LEMMA 9.4.2 Let 2l = n and k = �log2(n/l)�. The formula size of f
(k,l)
ISA : Bk+lK+L �→ B

satisfies the following bound:

LΩ

(
f

(k,l)
ISA

)
= Ω

(
n2

log2 n

)
Proof Let p = K = 2k and let Xj contain xj . If Xj contains other variables, these are
assigned fixed values, which cannot increase rXj

(f). For 0 ≤ j ≤ K − 1, set |a| = j.
f has at least 2L restrictions since for each of the 2L assignments to (yL−1, . . . , y0) the
restriction of f is distinct; that is, if two different such L-tuples are supplied as input, they
can be distinguished by some assignment to xj . Thus rXj

(f) ≥ 2L. Hence, the formula

size of f
(k,l)
ISA , LΩ

(
f

(k,l)
ISA

)
≥ cΩKL, which is proportional to n2/ log n.

9.4.2 The Krapchenko Lower Bound
Krapchenko’s lower bound applies to the standard basis Ω0 or any complete subset, namely
{∧,¬} and {∨,¬}. It provides a lower bound on formula size that can be slightly larger than
that given by Nečiporuk’s method.

We apply Krapchenko’s method to the parity function f
(n)
⊕ : Bn �→ B, where f

(n)
⊕ (x1, x2,

. . . , xn) = x1⊕x2⊕· · ·⊕xn, to show that its formula size is quadratic in n. Since the parity
function on two variables can be expressed by the formula

f
(2)
⊕ (x1, x2) = (x1 ∧ x2) ∨ (x1 ∧ x2)

it is straightforward to show that the formula size of f
(n)
⊕ is at most quadratic in n. (See

Problem 9.26.)
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DEFINITION 9.4.1 Given two disjoint subsets A, B ⊆ {0, 1}n of the set of the Boolean n-tuples,
the neighborhood of A and B, N (A, B), is the set of pairs of tuples (x, y), x ∈ A and
y ∈ B, such that x and y agree in all but one position.

The neighborhood of A = {0} and B = {1} is the pair N (A, B) = {(0, 1)}. Also,
the neighborhood of A = {000, 101} and B = {111, 010} is the set of pairs N (A, B) =
{(000, 010), (101, 111)}.

Given a function f : Bn �→ B, we use the notation f−1(0) and f−1(1) to denote the sets
of n-tuples that cause f to assume the values 0 and 1, respectively.

THEOREM 9.4.2 For any f : Bn �→ B and any A ⊆ f−1(0) and B ⊆ f−1(1), the following
inequality holds over the standard basis Ω0:

LΩ0(f) ≥ |N (A, B)|2
|A||B|

Proof Consider a circuit for f of fan-out 1 over the standard basis that has the mini-
mal number of leaves, namely LΩ0(f). Since the fan-in of each gate is either 1 or 2, by
Lemma 9.2.1 the number of leaves is one more than the number of gates of fan-in 2. Each
fan-in-2 gate is an AND or OR gate with suitable negation on its inputs and outputs.

Consider a minimal formula for f . Assume without loss of generality that the formula
is written over the basis {∧,¬}. We prove the lower bound by induction, the base case
being that of a function on one variable. If the function is constant, |N (A, B)| = 0 and
its formula size is also 0. If the function is non-constant, it is either x or x. (If f(x) = x,
f−1(1) = {1} and f−1(0) = {0}.) In both cases, |N (A, B)| = 1 since the neighborhood
has only one pair. (In the first case N (A, B) = {(0, 1)}.) Also, |A| = 1 and |B| = 1,
thereby establishing the base case.

The inductive hypothesis is that LΩ0(f
∗) ≥ |N (A, B)|/|A||B| for any function f∗

whose formula size LΩ0(f
∗) ≤ L0 − 1 for some L0 ≥ 2. Since the occurrences of NOT

do not affect the formula size of a function, apply DeMorgan’s theorem as necessary so that
the output gate of the optimal (minimal-depth) formula for f is an AND gate. Then we can
write f = g ∧ h, where g and h are defined on the variables appearing in their formulas.
Since the formula for f is optimal, so are the formulas for g and h.

Let A ⊆ f−1(0) and B ⊆ f−1(1). Thus, f(x) = 0 for x ∈ A and f(x) = 1 for
x ∈ B. Since f = g ∧ h, if f(x) = 1, then both g(x) = 1 and h(x) = 1. That is,
f−1(1) ⊆ g−1(1) and f−1(1) ⊆ h−1(1). (See Fig. 9.7.) It follows that B ⊆ g−1(1) and
B ⊆ h−1(1). Let B1 = B2 = B. Let A1 = A ∩ g−1(0) (which implies A1 ⊆ g−1(0))
and let A2 = A −A1. Since f(x) = 0 for x ∈ A, but g(x) = 1 for x ∈ A2, as suggested
in Fig. 9.7, it follows that A2 ⊆ h−1(0). (Since f = g ∧ h, f(x) = 0, and g(x) = 1, it
follows that h(x) = 0.) Finally, observe that N (A1, B1) and N (A2, B2) are disjoint (A1

and A2 have no tuples in common) and that |N (A, B)| = |N (A1, B1)|+ |N (A2, B2)|.
Given the inductive hypothesis, it follows from the above that

LΩ0(f) = LΩ0(g) + LΩ0(h) ≥ |N (A1, B1)|2
|A1||B1|

+
|N (A2, B2)|2
|A2||B2|

=
1
|B|

(
|N (A1, B1)|2

|A1|
+

|N (A2, B2)|2
|A2|

)
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g−1(1)h−1(1)

B
A

f−1(1)

A2

Figure 9.7 The relationships among the sets f−1(1), g−1(1), h−1(1), A2, and h−1(0).

By the identity n2
1/a1 + n2

2/a2 ≥ (n1 + n2)2/(a1 + a2), which holds for positive integers
(see Problem 9.3), the desired result follows because |A| = |A1| + |A2|.

Krapchenko’s method is easily applied to the parity function f
(n)
⊕ . We need only let A

(B) contain n-tuples having an even (odd) number of 1’s. (|A| = |B| = 2n−1.) Then
|N (A, B)| = n2n−1 because for any vector in A there are exactly n vectors in B that are

neighbors of it. It follows that LΩ0

(
f

(n)
⊕

)
≥ n2.

9.5 The Power of Negation
As a prelude to the discussion of monotone circuits for monotone functions in the next sec-
tion, we consider the minimum number of negations necessary to realize an arbitrary Boolean
function f : Bn �→ Bm. From Problem 2.12 on dual-rail logic we know that every such
function can be realized by a monotone circuit in which both the variables x1, x2, . . . , xn and
their negations x1, x2, . . . , xn are provided as inputs. Furthermore, every such circuit need
have only at most twice as many AND and OR gates as a minimal circuit over Ω0, the standard
basis. Also, the depth of the dual-rail logic circuit of a function is at most one more than the
depth of a minimal-depth circuit, the extra depth being that to form x1, x2, . . . , xn.

Let f
(n)
NEG : Bn �→ Bn be defined by f

(n)
NEG(x1, x2, . . . , xn) = (x1, x2, . . . , xn). As

shown in Lemma 9.5.1, this function can be realized by a circuit of size O(n2 log n) and
depth O(log2 n) over Ω0 using �log2(n + 1)� negations. This implies that most Boolean
functions on n variables can be realized by a circuit whose size and depth are within a factor of
about 2 of their minimal values when the number of negations is �log2(n + 1)�.

THEOREM 9.5.1 Every Boolean function on n variables, f : Bn �→ Bm, can be realized by a
circuit containing at most �log2(n + 1)� negations. Furthermore, the minimal size and depth of
such circuits is at most 2CΩ0(f) + O(n2 log n) and DΩ0(f) + O(log2 n), respectively, where
CΩ0(f) and DΩ0(f) are the circuit size and depth of f over the standard basis Ω0.
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Proof The proof follows directly from the dual-rail expansion of Problem 2.12 and the
following lemma.

We now show that the function f
(n)
NEG : Bn �→ Bn defined by f

(n)
NEG(x1, x2, . . . , xn) =

(x1, x2, . . . , xn) can be realized by circuit size of O(n2 log n) over Ω0 using �log2(n + 1)�
negations.

LEMMA 9.5.1 f
(n)
NEG : Bn �→ Bn can be realized with �log2(n+1)� negations by a circuit over

the standard basis that has size O(n2 log n) and depth O(log n).

Proof The punctured threshold function τ
(n)
t,¬i : Bn �→ B, 1 ≤ t, i ≤ n, is defined below.

τ
(n)
t,¬i(x) =

{
1

∑n
j=1,j �=i xj ≥ t

0 otherwise

This function has value 1 if t or more of the variables other than xi have value 1. The
standard threshold function τ

(n)
t : Bn �→ B has value 1 when t or more of the variables

have value 1. Since the function (τ (n)
0,¬i, τ

(n)
1,¬i, . . . , τ (n)

n−1,¬i) is the result of sorting all but
the ith input, we know from Theorem 6.8.3 that Batcher’s bitonic sorting algorithm will
produce this output with a circuit of size O(n log2 n) and depth O(log2 n) because max
and min of a comparator unit compute AND and OR on binary inputs. Ajtai, Komlós, and
Szemerédi [14] have improved this bound to O(n log n) but with a very large coefficient,

and simultaneously achieve depth O(log n). Thus, all the functions {τ (n)
t,¬i | 1 ≤ t, i ≤ n}

can be realized with O(n2 log n) gates and depth O(log n) over Ω0.

Observe that for input x there is some largest t, t = t0, such that τ
(n)
t0

(x) = 1. If

τ
(n)
t0,¬i(x) = 1, then xi = 0; otherwise, xi = 1. Let the implication function a ⇒ b

have value 1 when a = 0 or when a = 1 and b = 1 and value 0 otherwise. Then we
can express the implication function by the formula (a ⇒ b) = a ∨ b. It follows that

xi = (τ (n)
t0

(x) ⇒ τ
(n)
t0,¬i(x)) because the implication function has value 1 exactly when

xi = 0.
We use an indirect method to compute t0. Since τ

(n)
t (x) = 0 for t > t0, (τ (n)

t (x) ⇒
τ

(n)
t,¬i(x)) = 1 for t > t0. Also, both τ

(n)
t (x) and τ

(n)
t,¬i(x) have value 1 for t < t0. Using

(x ⇒ y) = x ∨ y, we can write xi as follows:

xi =
(

τ
(n)
0 (x) ∨ τ

(n)
0,¬i(x)

)
∧
(

τ
(n)
1 (x) ∨ τ

(n)
1,¬i(x)

)
∧ · · · ∧

(
τ

(n)
n−1(x) ∨ τ

(n)
n−1,¬i(x)

)
The circuit design is complete once a circuit for {τ (n)

t (x) | 1 ≤ t ≤ n} has been

designed. We begin by using a binary sorting circuit that computes {τ (n)
t (x) | 1 ≤ t ≤ n}

from x, which, as stated above, can be computed with O(n log2 n) gates over the standard

basis. Let st = τ
(n)
t (x) for 1 ≤ t ≤ n.

For n = K − 1, K = 2k and k an integer, we complete the design by constructing
a circuit for the function ν(k) : Bn �→ Bn, which, given as input the decreasing sequence
s1, s2, . . . , sn (si ≥ si+1), computes as its jth output zj = sj , 1 ≤ j ≤ n. ( The case

n �= 2k − 1 is considered below.) That is, ν(k)(s) = z, where zt = τ
(n)
t (x). We give

a recursive construction of a circuit for ν(k) whose correctness is established by induction.
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... ...

...

...

... ...
K = 2k

K∗ = 2k−1

z1 z(K/2)−1 z(K/2) z(K/2)+1 zK−1

z∗K∗−1z∗1

s∗1 s∗K∗−1

s1 s(K/2)−1 s(K/2) s(K/2)+1 sK−1

ν(k−1)

Figure 9.8 A circuit for ν(k) : Bn �→ Bn, n = K − 1, K = 2k. It is given the sorted n-tuple
s as input, where sj ≥ sj+1 for 1 ≤ j ≤ n, and produces as output z, where zj = sj .

The base case is a circuit for ν(1). This circuit has one input, s1, and one output, z1 = s1,
and can be realized by one negation and no other gates.

We construct a circuit for ν(k) from one for ν(k−1) using 2n additional gates and in-
creasing the depth by three, as shown in Fig. 9.8. Let the inputs and outputs to the circuit
for ν(k−1) be s∗i and z∗i , 1 ≤ i ≤ K∗ − 1, where K∗ = K/2. It follows that s∗i ≥ s∗i+1
for 1 ≤ i ≤ (K/2)− 1. By induction z∗i = s∗i for 1 ≤ i ≤ n.

To show that the jth output of the circuit for ν(k) is zj = sj , we consider cases. If
s2k−1 = 0, then sj = 0 for j > K/2. In this case the jth circuit output, (K/2) < j ≤
K − 1, satisfies zj = 1 (the corresponding output gate is OR), which is the correct value.
Also, for 1 ≤ j ≤ (K/2) − 1, zj = z∗j = sj since the inputs to the circuit for ν(k−1) are
s1, s2, . . . , s(K/2)−1 (sj = 0 for j > K/2) and its outputs are s1, s2, . . . , s(K/2)−1. On
the other hand, if sK/2 = 1, then sj = 1 and zj = 0 for j ≤ (K/2)−1 (the corresponding
output gate is AND). Also, for (K/2) + 1 ≤ j ≤ K − 1, zj = z∗j = sj since the inputs to
the circuit for ν(k−1) are s(K/2)+1, . . . , sK−1 and its outputs are s(K/2)+1, . . . , s(K/2)−1.

It follows that k = log2(n + 1) negations are used. The circuit for ν(k) uses a total of
C(k) = C(k − 1) + 2k+1 − 3 gates, where C(1) = 1. The solution to this recurrence
is C(k) = 4(2k) − 3k − 4 = 4n − 3 log2 n − 4. Also, the circuit for ν(k) has depth



412 Chapter 9 Circuit Complexity Models of Computation

D(k) = D(k−1)+4, where D(1) = 0. The solution to this recurrence is D(k) = 4(k−1).
If n is not of the form 2k − 1, we increase n to the next largest integer of this form, which
implies that k = �log2(n + 1)�. Using the upper bounds on the size of circuits to compute

τ
(n)
t,¬i(x) for 1 ≤ t, i ≤ n, we have the desired conclusion.

9.6 Lower-Bound Methods for Monotone Circuits
The best lower bounds that have been derived on the circuit size over complete bases of Boolean
functions on n variables are linear in n. Similarly, the best lower bounds on formula size that
have been derived over complete bases are at best quadratic in n. As a consequence, the search
for better lower bounds has led to the study of monotone circuits (their basis is Ωmon) for
monotone functions. In one sense, this effort has been surprisingly successful. Techniques
have been developed to show that some monotone functions have exponential circuit size.
Since most monotone Boolean functions on n variables have circuit size Θ(2n/n3/2), this is
a strong result. On the other hand, the hope that such techniques would lead to strong lower
bounds on circuit size for monotone functions over complete bases has not yet been realized.

Some monotone functions are very important. Among these are the clique function

f
(n)
clique,k : Bn(n−1)/2 �→ B. f

(n)
clique,k is associated with a family of undirected graphs

G = (V , E) on n = |V | vertices and |E| ≤ n(n− 1)/2 edges, where V = {1, 2, 3, . . . , n}.

The variables of f
(n)
clique,k are denoted {xi,j | 1 ≤ i < j ≤ n}, where xi,j = 1 if there is an

edge between vertices i and j and xi,j = 0 otherwise. The value of f
(n)
clique,k on these variables

is 1 if G contains a k-clique, a set of k vertices such that there is an edge between every pair of

vertices in the set. The value of f
(n)
clique,k is 0 otherwise. Clearly f

(n)
clique,k is monotone because

increasing the value of a variable from 0 to 1 cannot decrease the value of the function.
As stated in Problem 8.24, the CLIQUE problem is NP-complete. Since an instance of

CLIQUE on a graph with n vertices can be converted to the input format for f
(n)
clique,k in time

polynomial in n, if the circuit size for f
(n)
clique,k over a complete basis can be shown to be

superpolynomial, then from Corollary 3.9.1, P �= NP.
There are important similarities and differences between monotone and non-monotone

functions. Every non-monotone function can be realized by a circuit over the standard basis
Ω0 in which negations are used only on inputs. (See Problem 9.11.) On the other hand, since
circuits without negation compute only monotone functions (Problem 2), negations on inputs
are essential.

The first results showing the existence of monotone functions such that their monotone
and non-monotone circuit sizes are different were obtained for multiple-output functions. We

illustrate this approach below for the n-input binary sorting function, f
(n)
sort, whose monotone

circuit size is shown to be Θ(n log n). As stated in Problem 2.17, this function can be realized
by a circuit whose size over Ω0 is linear in n.

We introduce the path method to show that a gap exists between the monotone and non-
monotone circuit size of a family of functions. In Section 9.6.3 the approximation method

is introduced and used to show that the clique function f
(n)
clique,k has exponential monotone

circuit size.
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9.6.1 The Path-Elimination Method
In this section we illustrate the path-elimination method for deriving lower bounds on circuit
size for monotone functions. This method demonstrates that a path of gates in a monotone
circuit can be eliminated by fixing one input variable. Thus, it is the monotone equivalent
of the gate-elimination method for general circuits. We apply the method to two problems,
binary sorting and binary merging.

Consider computing the binary sorting function f
(n)
sort : Bn �→ Bn introduced in Sec-

tion 2.11. This function rearranges the bits in a binary n-input string into descending order.
Thus, the first sorted output is 1 if one or more of the inputs is 1, the second is 1 if two or more

of them are 1, etc. Consequently, we can write f
(n)
sort(x1, x2, . . . , xn) = (τ (n)

1 , τ (n)
2 , . . . , τ (n)

n ),
where τ

(n)
t is the threshold function on n inputs with threshold t whose value is 1 if t or more

of its inputs are 1 and 0 otherwise. Ajtai, Komlós, and Szemerédi [14] have shown the exis-
tence of a comparator-based sorting network on n inputs of size O(n log n). (The coefficient
on this bound is so large that the bound has only asymptotic value.) Such networks can be
converted to a monotone network by replacing the max and min operators in comparators
with OR and AND, respectively.

THEOREM 9.6.1 The monotone circuit size for f
(n)
sort satisfies the following bounds:

n�log2 n� − 2�log2 n� ≤ CΩmon

(
f

(n)
sort

)
= O(n log n)

Proof To derive the lower bound, we show that in any circuit for f
(n)
sort there is an input

variable that can be set to 1, thereby allowing at least �log2 n� gates along a path from it to

the output τ
(n)
1 to be removed from the circuit and converting the circuit to one for f

(n−1)
sort .

As a result, we show the following relationship:

CΩmon

(
f

(n)
sort

)
≥ CΩmon

(
f

(n−1)
sort

)
+ �log2 n�

A simple proof by induction and a little algebra show that the desired result follows from

this bound and the fact that CΩ(f (2)
sort) = 2, which is easy to establish.

Let xj = 0 for j �= i but let xi vary. The only functions computed at gates are 0, 1, or
xi. Also, the value of τ1(x) on such inputs is equal to xi. Consequently, there must be a
path P from the vertex labeled xi to τ1 such that at each gate on the path the function xi is
computed. (See Fig. 9.9.) Thus, if we set xi = 1 when xj = 0 for j �= i the output of each
of these gates is 1. Furthermore, since the circuit is monotone, each function computed at a
gate is monotone (see Problem 2). Thus, if any other input is subsequently increased from
0 to 1, the value of τ1 and of all the gates on the path P from xi remain at 1 and can be
removed. This setting of xi also has the effect of reducing the threshold of all other output
functions by 1 and implies that the circuit now computes the binary sorting function on one
fewer variable.

Consider a minimal monotone circuit for f
(n)
sort. The shortest paths from each input to

the output τ
(n)
1 form a tree of fan-in 2. From Theorem 9.3.1 there is a path in this tree from

some input, say xr, to τ
(n)
1 that has length at least �log2 n�. Consequently the shortest path

from xr to τ
(n)
1 has length at least �log2 n�, implying that at least �log2 n� gates can be

removed if xr is set to 1.
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τn

x2x1

τ3

xn

τ2

xi = 1

τ1 τj

1

1

1

1

Figure 9.9 When xi = 1 there is a path P to τ1 such that each gate on P has value 1.

We now derive a stronger result: we show that every monotone circuit for binary merging

has a size that is Ω(n log n). Binary merging is realized by a function f
(n)
merge : Bn �→ Bn, n =

2k, defined as follows: given two sorted binary k-tuples x and y, the value of f
(n)
merge(x, y)

is the n-tuple that results from sorting the n-tuple formed by concatenating x and y. Thus,
a binary merging circuit can be obtained from one for sorting simply by restricting the values
assumed by inputs to the sorting circuit. (Binary merging is a subfunction of binary sorting.)

It follows that a lower bound on CΩmon

(
f

(n)
merge

)
is a lower bound on CΩmon

(
f

(n)
sort

)
.

THEOREM 9.6.2 Let n be even. Then the monotone circuit size for f
(n)
merge : Bn �→ Bn satisfies

the following bounds:

(n/2) log2 n−O(n) ≤ CΩmon

(
f (n)
merge

)
= O(n log n)

Proof The upper bound on CΩmon

(
f

(n)
merge

)
follows from the construction given in The-

orem 6.8.2 after max and min comparison operators are replaced by ANDs and ORs, respec-
tively.

Let k = n/2. The function f
(n)
merge operates on two k-tuples x and y to produce the

merged result f
(n)
merge(x, y), where x and y are in descending order; that is, x1 ≥ x2 ≥

· · · ≥ xk and y1 ≥ y2 ≥ · · · ≥ yk. As stated above for binary sorting, the output functions
are τ1, τ2, . . . , τn.

Let x1 = x2 = · · · = xr−1 = 1, xr+1 = · · · = xk = 0, y1 = y2 = · · · = ys = 1,
and ys+1 = · · · = yk = 0. Let xr be unspecified. Since the circuit is monotone, the value
computed by each gate circuit is 0, 1, or xr. Also,

τt(x, y) =

⎧⎪⎨⎪⎩
1 t < r + s

xr t = r + s

0 t > r + s

It follows that there must be a path P
(r+s)
r of gates from the input labeled xr to the

output labeled τr+s such that each gate output is xr. If xr = 0, since the components of x
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1

e(j)
j =

Figure 9.10 Let f
(n)
merge(x, y) = (τ1, . . . , τn), where x and y are (n/2)-tuples. The dots in

the jth row show the inputs on which τj depends. e( j) is the number of dots in the jth row.

are sorted, xr+1 = · · · = xk = 0. On the other hand, if xr = 1, by monotonicity the value
of τr+s cannot change under variation of the values xr+1, . . . , xk. Thus, τj is essentially
dependent on xi for i and j satisfying 1 ≤ i ≤ k and i ≤ j ≤ i + k. (See Fig. 9.10.) Let
e( j) denote the number of variables in x on which τj depends; then e( j) = j for j ≤ k
and e( j) = 2k − j + 1 for j > k.

We show by induction that there exist vertex-disjoint paths between x1 and τs+1, x2

and τs+2, . . . , xk and τs+k for 0 ≤ s ≤ k. (See Fig. 9.11.) Thus, there are k + 1 sets of
vertex-disjoint paths connecting the k = n/2 inputs in x and k consecutive outputs.

τ2τ1 τ8τ7τ5τ3 τ6τ4

y4y3y2y1x4x3x2x1 x1 x2

τ2

x1 x2 x3 x4

τ5

(a) (b)

Figure 9.11 (a) In a monotone circuit for f
(n)
merge, n = 2k, k+1 sets of k disjoint paths exist be-

tween the k inputs x and k consecutive outputs. (b) The paths to an output τj form a binary tree.
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To show the existence of the vertex-disjoint paths, let y1 = y2 = · · · = ys = 1,
ys+1 = · · · = yk = 0 and x1 = x2 = · · · = xr−1 = 1, but let xr, xr+1, . . . , xk be
unspecified. Then τr+s = xr and, as stated above, there is a path P

(r+s)
r of gates from an

input labeled xr to the output labeled τr+s such that each gate has value xr. Set xr = 1.

Reasoning as before, there must be a path P
(r+1+s)
r+1 of gates from an input labeled xr+1 to

the output labeled τr+1+s such that each gate has value xr+1. Thus, P
(r+1+s)
r+1 and P

(r+s)
r

are vertex-disjoint. Extending this idea, we have the desired conclusion about disjoint paths.
We now develop a second fact about these paths that is needed in the lower bound. Let

P
(r+s)
r be a path from xr to τr+s, as suggested in Fig. 9.11(a). Those paths connecting

inputs to any one output form a binary tree, as suggested in Fig. 9.11(b). The number of
inputs from which there is a path to τj is e( j), the number of inputs on which τj depends.

To derive the lower bound on CΩmon(f
(n)
merge), let d(i, j) denote the length (number

of edges or non-input vertices (gates)) on the shortest path from an input labeled xi to the
output labeled τj . (Clearly, d(i, j) = 0 unless i ≤ j ≤ i + k.) Since the path from
input xi to output τj described above has a length at least as large as d(i, j), it follows that

CΩmon

(
f

(n)
merge

)
satisfies the following bound:

CΩmon

(
f (n)
merge

)
≥ max

{
k∑

r=1

d(r, r + s) | 0 ≤ s ≤ k

}
Since the maximum of a set of integers is at least equal to the average of these integers, we
have the following for k = n/2 ≥ 1:

CΩmon

(
f (n)
merge

)
≥ 1

k + 1

k∑
s=0

k∑
r=1

d(r, r + s) =
1

k + 1

2k∑
j=1

k∑
i=1

d(i, j)

The last identity follows by using the fact that d(i, j) = 0 unless i ≤ j ≤ i + k. But∑k
i=1 d(i, j) is the sum of the distances of the shortest paths from the relevant inputs of x to

output τj , 1 ≤ j ≤ 2k. Since these paths form a binary tree and τj depends on e( j) inputs,
this is the external path length of a tree with e( j) leaves. The external path length is at least
e( j)�log2 e( j)�−2�log2 e( j)�+e( j) (see Problem 9.4). In turn, x�log2 x�−2�log2 x�+x ≥
x log2 x, because �log2 x� = (log2 x) + δ for 0 ≤ δ < 1 and x�log2 x� − 2�log2 x� + x =
x log2 x + x(1− 2δ + δ), where 1− 2δ + δ is easily shown to be a concave function whose
minimum value occurs at either δ = 0 or δ = 1, both of which are 0. Thus, 1−2δ + δ ≥ 0
and the result follows. Thus, the size of smallest monotone circuit satisfies the following
lower bound when n = 2k:

CΩmon

(
f (n)
merge

)
≥ 1

k + 1

2k∑
j=1

[e( j) log2 e( j)]

=
2

k + 1

k∑
j=1

[j log2 j]

The last equality uses the definition of e( j) given above. By applying the reasoning in
Problem 2.1 and captured in Fig. 2.23, it is easy to show that the above sum is at least as
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large as (2/(k + 1))(log2 e)
∫ k

j=1 y loge y d y, whose value is (2/(k + 1))[(k2/2) log2 k −
(1/4)k2(log2 e) + 1/4]. From this the desired conclusion follows, since k = n/2.

We now present lower bounds on the monotone circuit size of Boolean convolution and
Boolean matrix multiplication, problems for which the gap between the monotone and non-
monotone circuit size is much larger than for sorting and merging.

9.6.2 The Function Replacement Method
The function replacement method simplifies monotone circuits by replacing a function com-
puted at an internal vertex by a new function without changing the function computed by the
overall circuit. Since a replacement step eliminates gates and reduces a problem to a subprob-
lem, the method provides a basis for establishing lower bounds on circuit complexity using
proof by induction.

We describe two replacement rules and then apply them to Boolean convolution and
Boolean matrix multiplication. These two problems are defined in the usual way except that
variables assume Boolean values in B and the multiplication and addition operators are inter-
preted as AND and OR, respectively.

REPLACEMENT RULES A replacement rule is a rule that allows a function computed at a vertex
of a circuit to be replaced by another without changing the function computed by the circuit.
Before stating such rules for monotone functions, we introduce some terminology.

DEFINITION 9.6.1 Let x denote the variables of a Boolean function f : Bn �→ B. An implicant
of f is a product (AND), π, of a subset of the literals of f (the variables and their complements)
such that if π(x) = 1 on input n-tuple x, then f(x) = 1. (This is denoted π ≤ f .) The set of
implicants of a function f is denoted I(f).

An implicant π of a Boolean function f is a prime implicant if there is no implicant π1

different from π such that π ≤ π1 ≤ f . The set of prime implicants of a function f is denoted
PI(f).

A monotone implicant (also called a monom) of a monotone Boolean function f : Bn �→ B
is the product (AND) π of uncomplemented variables of f such that if π(x) = 1 on input n-tuple
x, then f(x) = 1. The empty monom has value 1. The set of monotone implicants of a
function f is denoted Imon(f).

A monotone implicant π of a Boolean function f is a monotone prime implicant if there is
no monotone implicant π1 different from π such that π ≤ π1 ≤ f . The set of monotone prime
implicants of a function f is denoted PImon(f).

The products in the sum-of-products expansion (SOPE) are (non-monotone) implicants
of a Boolean function. If a function is monotone, it has monotone implicants (monoms). The
prime implicants of a Boolean function f define it completely; the OR of its prime implicants
is a formula representing it. In the case of a monotone Boolean function, the prime implicants
are monotone prime implicants. (See Problem 9.33.)

When it is understood from context that an implicant or prime implicant is monotone,
we may omit the word “monotone” and use the subscript “mon.” This will be the case in this
section.
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The function cj+1 = (pj ∧ cj) ∨ gj used in the design of a full adder (see Section 2.7)
is a monotone function of the variables pj , cj , and gj . Its set of implicants is I(cj+1) =
{pj ∧ cj , gj , pj ∧ gj , cj ∧ gj , pj ∧ cj ∧ gj}. If any one of these products has value 1 then so
does cj+1. Its set of prime implicants is PI(cj+1) = {pj ∧ cj , gj} ⊆ I(cj+1) because these
are the smallest products for which cj+1 has value 1. Thus, cj+1 is defined by PI(cj+1) and
represented as cj+1 = (pj ∧ cj) ∨ gj .

We now present a replacement rule for monotone functions that captures the following
idea: if a function g computed by a gate of a monotone circuit has a monom π that is not a
monom of the function f computed by the complete circuit, then π can be removed from g
without affecting the value of f . This idea is valid in monotone circuits because the absence
of negation provides only one way to eliminate extra monoms, namely, by ORing them with
products containing a subset of their variables. Taking the AND of a monom with another
term creates a longer monom. Thus, since monoms that are not monoms of the function f
computed by a circuit must be eliminated, there is no loss of generality in assuming that they
are not produced in the first place.

DEFINITION 9.6.2 Let f : Bn �→ B and g : Bn �→ B be two monotone functions. Let g be
computed within a monotone circuit for f . The following is a replacement rule for g:

a) Let π1 ∈ PI(g) and let h be defined by PI(h) = PI(g)−{π}. Replace the gate computing
g by one computing h if for all monoms π′ (including the empty monom), π ∧ π′ �∈ PI(f).

We now show that any monom π satisfying Rule (a) can be removed from PI(g) because
it contributes nothing to the computation of f .

LEMMA 9.6.1 Let f : Bn �→ B and g : Bn �→ B be two monotone functions and let π ∈ PI(g)
be such that for all monoms π′ (including the empty monom), π ∧ π′ �∈ PI(f). Let h be defined
by PI(h) = PI(g)−{π}. If g is computed in some monotone circuit for f , the circuit obtained
by replacing g by h also computes f .

Proof Let C denote a circuit for f within which the function g is computed. Let C∗ be
the circuit obtained by replacing g by h under Rule (a). Since h ≤ g and the circuit is
monotone, the function f∗ computed by C∗ satisfies f∗ ≤ f . We suppose that f∗ �= f and
show that a contradiction results.

If f∗ �= f , there is some input n-tuple a ∈ Bn such that f∗(a) = 0 but f(a) = 1.
Since the only change in the circuit occurred at the gate computing g, by monotonicity, on
this tuple g(a) = 1 but h(a) = 0. It follows that π(a) = 1. Let π′ be a prime implicant of
f for which π′(a) = 1. We show that π′ = π ∧ π1 for some monom π1, in contradiction
to the condition of the lemma.

Let xi be any variable of π. Then ai = 1 since π(a) = 1. Define the n-tuple b by
bi = 0 and bj = aj for j �= i. Since b ≤ a and π(b) = 0, h and g both have the same
value on b. Thus, both circuits compute the same value, which must be 0 by monotonicity
and the fact that f∗ = 0 on a. Since π′(a) = 1 and π′(b) = 0 but only one variable was
changed, namely xi, π′ must contain xi. Since xi is an arbitrary variable of π, it follows
that π′ contains π as a sub-monom.

This last result implies that if a function f has no prime implicants containing more than
l variables, then any monoms containing more than l variables can be removed where they
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are first created. This will be useful later when discussing Boolean convolution and Boolean
matrix multiplication, since each of their prime implicants depends on two variables.

BOOLEAN CONVOLUTION Convolution over commutative rings is defined in Section 6.7. In
this section we introduce the Boolean version, which is defined by a monotone multiple-output
function, and derive a lower bound of n3/2 on its monotone circuit size. We also show that
over a complete basis Boolean convolution can be realized by a circuit of nearly linear size.

DEFINITION 9.6.3 The Boolean convolution function f
(n)
conv : B2n �→ B2n−1 maps Boolean

n-tuples a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1) onto a (2n − 1)-tuple c, denoted
c = a ⊗ b, where cj , 0 ≤ j ≤ 2n − 2, is defined as

cj =
∑

r+s=j

ar ∧ bs

Boolean convolution can be realized by a circuit over the standard basis Ω0 for multiplying
binary numbers (see Section 2.9) as follows. Represent a and b by the following integers where
q = �log2 n�+ 1:

a =
n−1∑
i=0

ai2
qi, b =

n−1∑
j=0

bj2qj

That is, each bit in a and b is separated by �log2 n� zeros. The formal product of a and b is

ab =
2n−2∑
k=0

⎛⎝ ∑
i+j=k

aibj

⎞⎠ 2qk

Because no inner sum in the above expression is more than 2n − 1, at most q bits suffice to
represent it in binary notation. Consequently, there is no carry between any two inner sums.
It follows that an inner sum is non-zero if and only if ck = 1. Thus, the value of ck can be
obtained by forming the OR of the bits in positions kq, kq +1, . . . , kq + q−1 of the product.
Since two binary m tuples can be multiplied in the standard binary notation by a circuit of
size O (m(log m)(log log m)) (see Section 2.9.3), the function f

(n)
conv can be computed by a

circuit of size O
(
n(log2 n)(log log n)

)
since m = nq = O(n log n).

THEOREM 9.6.3 The circuit size of f
(n)
conv : B2n �→ B2n−1 over the standard basis satisfies

CΩ0

(
f (n)
conv

)
= O

(
n(log2 n)(log log n)

)
Our goal is to use the function replacement method to show that every monotone circuit

for Boolean convolution has size Ω(n3/2). As explained above, the method is designed to
use induction to prove lower bounds on monotone circuit size. Each replacement step removes
prime implicants from the function g computed at some gate and changes the function f com-
puted by the circuit. If the new function f∗ is in the same family as f , the gate-replacement
process can continue and induction can be applied. Since the convolution function does not
necessarily change to another instance of itself on fewer variables, we place this function in the
class of semi-disjoint bilinear forms.
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DEFINITION 9.6.4 Let f (n,m,p) = (f1, f2, . . . , fp), where each fr : Bn+m �→ B, 1 ≤ r ≤ p,
is a monotone function on n-tuple x and m-tuple y; that is, fr(x, y) ∈ B. f (n,m,p) is a bilinear
form if each prime implicant of each fr, 1 ≤ r ≤ p, contains one variable of x and one of y.
A function f (n,m,p) is a semi-disjoint bilinear form if in addition PI(fr) ∩ PI(fs) = ∅ for
r �= s and each variable is contained in at most one prime implicant of any one function.

Before deriving a lower bound on the number of gates needed for a semi-disjoint bilinear
form, we introduce a new replacement rule peculiar to these forms.

LEMMA 9.6.2 No gate of a monotone circuit of minimal size for a semi-disjoint bilinear form
f (n,m,p) computes a function g whose prime implicants include either two variables of x or of y.

Proof We suppose that a minimal monotone circuit does contain a gate g whose prime
implicants contain either two variables of x or two of y and show that a contradiction
results. Without loss of generality, assume that PI(g) contains xi and xj , i �= j. If there is
a gate g satisfying this hypothesis, there is one that is closest to an input variable. This must
be an OR gate because AND gates increase the length of prime implicants. Because the gate
in question is closest to inputs, at least one of xi and xj is either an input to this OR gate or
is the input to some OR gate that is on a path of OR gates to this gate. (See Fig. 9.12.)

A simple proof by induction on its circuit size demonstrates that if a circuit for f (n,m,p)

= (f1, . . . , fp) contains a gate computing g then fr, 1 ≤ r ≤ p, can be written as follows
(see Problem 9.36):

fr(x, y) = (pr(x, y) ∧ g(x, y)) ∨ qr(x, y) (9.1)

Here pr(x, y) and qr(x, y) are Boolean functions. Of course, if for no r is fr a function of
g, then we can set pr(x, y) = 0 and the circuit is not minimal.

If fr depends on g, pr(x, y) �= 0. However, pr(x, y) �= 1 because otherwise both
xi and xj are prime implicants of fr, contradicting its definition. Also, PI(pr(x, y))
cannot have any monoms containing one or more instances of a variable in x or two or
more instances of variables in y because when ANDed with g they produce monoms that
could be removed by Rule (a) of Definition 9.6.2 and the circuit would not be minimal. It
follows that PI(pr(x, y)) can contain only single variables of y. But this implies that for
some k, yk ∧ g ∈ I(fr), which together with the fact that xi, xj ∈ PI(g) implies that

x4x1 x3x2

g

Figure 9.12 If PI(g) for a gate g contains xi and xj , then either xi or xj is input to an OR

gate on a path of OR gates to g.
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yk ∧ xi, yk ∧ xj ∈ I(fr). But yk ∧ xi and yk ∧ xj cannot both be prime implicants of fr

because they violate the requirement that no two prime implicants of fr contain the same
variable. It follows that fr does not depend on g.

The Boolean convolution function is a semi-disjoint bilinear form. Each implicant of
each component of c = a ⊗ b contains one variable of a and one of b. In addition, the prime
implicants of ci and cj are disjoint if i �= j. Finally, each variable appears in only one implicant
of a component function, although it may appear in more than one such function.

THEOREM 9.6.4 Let f (n,m,p) : Bn+m �→ Bp, f (n,m,p) = (f1, f2, . . . , fp), be a semi-disjoint
bilinear form, where fr(x, y) ∈ B. Let di be the number of functions in {f1, f2, . . . , fp} that
are essentially dependent on the input variable xi, 1 ≤ i ≤ n. Then the monotone circuit size of
f (n,m,p) must satisfy the following lower bound:

CΩmon

(
f (n,m,p)

)
≥

n∑
i=1

√
di

Proof The proof is by induction. The basis for induction is the semi-disjoint bilinear form
on two variables f (1,1,1)(x, y) = x ∧ y. In this case d1 = 1 and CΩmon

(
f (1,1,1)

)
= 1.

We assume that any semi-disjoint bilinear form in n + m− 1 or fewer variables satisfies the
lower bound. We show that setting xi = 0 produces another function that is a semi-disjoint
bilinear form and allows the removal of at least

√
di gates. The lower bound follows by

induction. We consider only minimal circuits.
Let ui denote the number of functions in {f1, f2, . . . , fp} that are essentially dependent

on xi and have a single prime implicant (such as c0 = a0 ∧ b0 and c2n−2 = an−1 ∧ bn−1

for convolution). Setting xi = 0 eliminates the ui AND gates at which these outputs
are computed. We show that at least

√
di − ui OR gates can also be eliminated. Since

ui +
√

di − ui ≥
√

di (see Problem 9.8), we have the desired conclusion.
Let Vi denote those outputs that depend on xi whose associated function has at least

two prime implicants. Then |Vi| = di − ui. There must be at least one OR gate on each
path P from xi to fr ∈ Vi because, if not, each path contains only ANDs and fr has only
one prime implicant that contains xi, in contradiction to the definition of Vi.

We claim that on each path P from an input labeled xi to some fr ∈ Vi there is an
OR gate computing a function gt such that xit

∧ yjt
∈ PI(gt) for some xit

�= xi. Let
Ei = {gt} be those OR gates closest to an input vertex xi. Call Ei the bottleneck for
variable xi. We shall show that |Ei| ≥

√
di − ui and that each of the gates in Ei can be

eliminated by setting xi = 0.
If the claim is false, then there is a path P from input xi to output fr ∈ Vi such that

for each OR gate (let it compute gt) on P there is no xit
�= xi such that xit

∧ yjt
∈

PI(gt). Therefore, either all monoms of PI(gt) a) contain xi or b) are monoms that are
not implicants of an output (they are not of the form xit

∧ yjt
). In case a), setting xi = 0

causes the OR gates on P to have value 0, which forces the AND gates on P and fr to
have value 0, contradicting the definition of fr (it has at least two prime implicants). In the
second case under Rule (a) the monoms not containing xi can be removed without changing
the functions computed. Thus, when xi = 0, the output of each OR gate on P has value 0,
which contradicts the definition of fr since it contains at least two prime implicants.

We now show that |Ei| ≥
√

di − ui. Since each of the OR gates in Ei has a prime
implicant xit

∧yjt
not containing xi, their outputs can be set to 1 by setting xit

= yjt
= 1
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for 1 ≤ t ≤ |Ei|. This eliminates all dependence of fr ∈ Vi on xi. However, since inputs
have only been assigned value 1 (and not 0), this dependence on xi can be eliminated only
if all functions in Vi have value 1; that is, at least one prime implicant of each of them is
set to 1 by this assignment. Since each variable appears in at most one prime implicant of
a function, the number of different variables xit

(and yit
) that are set to 1 is at most |Ei|.

Thus, at most |Ei|2 prime implicants can be assigned value 1 by this assignment. Thus, if
|Ei|2 < (di − ui), we have a contradiction since |Vi| = (di − ui).

We now show that |Ei| OR gates can be eliminated by setting xi = 0. Since each gate is
a closest gate to an input labeled xi with the stated property, there is an OR gate on the path
to it with xi as an input. Thus, setting xi = 0 eliminates one of the two inputs to the OR

gate and the need for the gate itself.

Since for each of the n input variables in a there are n output functions in c = a ⊗ b that
depend on it (di = n for 1 ≤ i ≤ n), the following corollary is immediate.

COROLLARY 9.6.1 Let f
(n)
conv : B2n �→ B2n−1 be the Boolean convolution function. Then the

monotone circuit size of f
(n)
conv satisfies the following lower bound:

CΩmon

(
f (n)
conv

)
≥ n3/2

Unfortunately, no upper bound on the monotone circuit size of f
(n)
conv is known that

matches this lower bound. A stronger statement can be made for Boolean matrix multipli-
cation.

BOOLEAN MATRIX MULTIPLICATION Matrix multiplication over rings is discussed at length in
Section 6.3. In this section we introduce the Boolean version. An I × J matrix A = [ai,j ],
1 ≤ i ≤ I and 1 ≤ j ≤ J , is a two-dimensional array of elements in which ai,j is the element
in the ith row and jth column. We take the entries in a matrix to be Boolean variables.

DEFINITION 9.6.5 Let A = [ai,k], 1 ≤ i ≤ n and 1 ≤ k ≤ m, B = [bk,j ], 1 ≤ k ≤ m and
1 ≤ j ≤ p, and C = [ci,j ], 1 ≤ i ≤ n and 1 ≤ j ≤ p, be n×m, m× p, and n× p matrices,

respectively. The product C = A × B of A and B is the function f
(n,m,p)
MM : Bnm+mp �→ Bnp

whose value on the matrices A and B is the matrix C whose entry in row i and column j, ci,j , is
defined as

ci,j =
m∨

k=1

ai,k ∧ bk,j

In a more general context the AND operator ∧ and the OR operator ∨ are replaced by the
multiplication and addition operators over rings.

The above definition can be used as an algorithm to compute ci,j , 1 ≤ i ≤ n and 1 ≤
j ≤ p, from the entries in matrices A and B. We call this the standard matrix-multiplication
algorithm. It uses nmp ANDs and n(m−1)p ORs. We now show that every monotone circuit
for matrix multiplication requires at least this many ANDs and ORs.

Clearly the matrix multiplication function is a bilinear form. We associate the entries in
A with the tuple x and those in B with y. We strengthen Theorem 9.6.4 to obtain a lower
bound on the number of ORs needed to realize it in a monotone circuit.
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LEMMA 9.6.3 Every monotone circuit for Boolean matrix multiplication f
(n,m,p)
MM requires at least

n(m− 1)p OR gates.

Proof In the proof of Theorem 9.6.4 we identified a set Ei of gates called the bottleneck
associated with each input variable xi. We demonstrated that each of these gates can be
eliminated by setting xi = 0 and that Ei has at least

√
di − ui gates, where di − ui = |Vi|

is the number of circuit outputs that depend essentially on xi and have at least two prime
implicants. These results were shown by proving that all gates in Ei are OR gates and that
the tth of these gates’ associated function contains a prime implicant of the form xit

∧ yjt

for xit
�= xi. We then demonstrated that the dependence of the outputs in Vi on the input

xi can be eliminated by setting xit
= yjt

= 1 for 1 ≤ t ≤ Ei but that this contradicts
the definition of a semi-definite bilinear form if |Ei|2 < |Vi|. Finally, we proved that by
setting xi = 0 each of the gates in Ei could be eliminated. For this lemma, we need only
strengthen the lower bound on Ei for matrix multiplication.

Consider a minimal circuit. The proof is by induction on m, with the base case being
m = 1. In the base case ci,j = ai,1 ∧ b1,j for 1 ≤ i ≤ n and 1 ≤ j ≤ p and no ORs

are needed. As inductive hypothesis we assume that f
(n,m−1,p)
MM requires at least n(m− 2)p

OR gates. We show that setting any column of A in f
(n,m,p)
MM to 0 eliminates np OR gates

and reduces the problem to an instance of f
(n,m−1,p)
MM . It follows that f

(n,m,p)
MM requires

n(m− 1)p OR gates.
When m ≥ 2, each output function ci,j has at least two prime implicants. We apply

the bottleneck argument to this case. Consider the bottleneck Ei,k associated with input
variable ai,k. We show that |Ei,k| ≥ p, from which it follows that at least p OR gates can be
eliminated by setting xi,k = 0. This reduces the problem to another set of bilinear forms.
Repeating this for 1 ≤ i ≤ n, we eliminate np OR gates, one column of A, and one row of
B. Let Vi,j = {ci,j | 1 ≤ j ≤ p} be the outputs that depend on ai,k.

To show that |Ei,k| ≥ p, let the th gate of Ei,k compute xit
∧ yjt

for xit
�= ai,k.

Here xit
= ait,kt

and yjt
= blt ,jt

for some it, kt, lt, and jt. If we set all entries in
{ait,kt

| 1 ≤ t ≤ |Ei,k|} ∪ {blt,jt
| 1 ≤ t ≤ |Ei,k|} to 1, we eliminate all dependence of

outputs in Vi,k on ai,k. However, since |Vi,j | = p, the set {blt ,jt
} must contain at least one

variable used in ci,j for each 1 ≤ j ≤ p. Thus, |Ei,k| ≥ p.

We now derive a lower bound on the number of AND gates needed for Boolean matrix
multiplication.

LEMMA 9.6.4 Every monotone circuit for Boolean matrix multiplication f
(n,m,p)
MM requires at least

nmp AND gates.

Proof Consider a minimal circuit. The proof is by induction on m, the base case being
m = 1. In the base case ci,j = ai,1 ∧ b1,j for 1 ≤ i ≤ n and 1 ≤ j ≤ p and np ANDs are
needed, since np results must be computed, each requiring one AND, and all functions are

different. As inductive hypothesis we assume that f
(n,m−1,p)
MM requires at least n(m − 1)p

AND gates. We show that setting any column of A in f
(n,m,p)
MM to 1 and the corresponding

row of B to 0 eliminates np AND gates and reduces the problem to an instance of f
(n,m−1,p)
MM .

It follows that f
(n,m,p)
MM requires nmp AND gates.

For arbitrary 1 ≤ k ≤ m let Gi,j be a gate closest to inputs computing a function g
such that PI(g) contains ai,k ∧ bk,j . Since the gate associated with ci,j has ai,k ∧ bk,j as a
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prime implicant, there is such a gate Gi,j . Furthermore, Gi,j must be an AND gate because
OR gates cannot generate new prime implicants. Let G1 and G2 be gates generating inputs
for Gi,j . Let them compute functions g1 and g2. It follows from the definition of Gi,j that
ai,k ∈ PI(g1) and bk,j ∈ PI(g2) or vice versa. Let the former hold. If ai,k = 1, g1 = 1
and Gi,j can be eliminated. We now show that Gi,j �= Gi′,j′ for (i, j) �= (i′, j′). Suppose
not. Since i �= i′ or j �= j′, there are at least three distinct variables among ai,k, ai′,k, bk,j ,
and bk,j′ . Therefore either g1 or g2 has at least two of these variables as prime implicants.
By Lemma 9.6.2 this circuit is not minimal, a contradiction.

We summarize the results of this section below.

THEOREM 9.6.5 The standard algorithm for f
(n,m,p)
MM : Bnm+mp �→ Bnp, the Boolean matrix

multiplication function, is optimal. It uses nmp ANDs and n(m− 1)p ORs.

We now show that the monotone circuit size of the clique function is exponential.

9.6.3 The Approximation Method
The approximation method is used to derive large lower bounds on the monotone circuit size
for certain monotone Boolean functions. In this section we use it to derive an exponential

lower bound on the size of the smallest monotone circuit for the clique function f
(n)
clique,k :

Bn(n−1)/2 �→ B. This method provides an interesting approach to deriving large lower bounds
on circuit size. However, as mentioned in the Chapter Notes, it is doubtful that it can be used
to obtain large lower bounds on circuit size over complete bases.

The approximation method converts a monotone circuit C computing a function f into
an approximation circuit Ĉ computing a function f̂ . This is done by repeatedly replacing a
previously unvisited gate farthest away from the output gate by an approximation gate that
computes an approximation to the AND or OR gate it replaces. Each replacement operation
changes the circuit and increases by a small amount the number of input tuples on which f
and the function computed by the new circuit differ. When the entire replacement process is
complete, the resulting circuit approximates f poorly; that is, f̂ and f differ on a large number
of inputs. For this to happen, the original monotone circuit must have had many gates, each
of which contributes a relatively small number of errors to the complete replacement process.
This is the essence of the approximation method.

There are a number of ways to approximate AND and OR gates in a monotone circuit.
Razborov [270], who introduced the approximation method, used an approximation for gates
based on clique indicators, monotone functions associated with a subset of a set of vertices
that has value 1 exactly when there is an edge between every pair of vertices in the subset. In
this section gates are approximated in terms of the SOPE and POSE forms, a method used by
Amano and Maruoka [20] to approximate the clique function.

It is not hard to show that the monotone circuit size of f
(n)
clique,k is O(nn). (See Prob-

lem 9.37.) We now show that all monotone circuits for f
(n)
clique,k have size CΩmon

(
f

(n)
clique,k

)
≥

1
2 (1.8)min(

√
k−1/2,n/(2k)), which is 2Ω(n1/3) for k proportional to n2/3.
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TEST CASES The quality of an approximation to the clique function f
(n)
clique,k is determined

by providing positive and negative test inputs. A k-positive test input is a binary n(n−1)/2-
tuple that describes a graph containing a single k-clique.

The negative test inputs, defined below, describe graphs that have many edges but not
quite enough to contain a k-clique. A special set of negative test inputs is associated with
balanced partitions of the vertices of an n-vertex graph G = (V , E). A (k − 1)-balanced
partition of V = {v1, . . . , vn} is a collection of k − 1 disjoint sets, V1, V2, . . . , Vk−1, such
that each set contains either �n/(k− 10� or �n/(k− 1)� elements. (By Problem 9.5 there are
w = n mod (k − 1) sets of the first kind and k − 1 − w sets of the second kind.) The graph
associated with a particular (k−1)-balanced partition has an edge between each pair of vertices
in different sets and no other edges. For each (k − 1)-balanced partition, a k-negative test
input is a binary n(n− 1)/2-tuple x describing the graph G associated with that partition.

LEMMA 9.6.5 There are τ+ k-positive test inputs, where

τ+ =
(

n

k

)
=

n!
k!(n − k)!

and τ− k-negative test inputs, where for w = n mod (k − 1)

τ− =
n!

(� n
k−1�!)w(� n

k−1�!)k−1−ww!(k − 1 − w)!

Proof It is well known that τ+ =
(
n
k

)
. To derive the expression for τ− we index each

element of each set in a (k−1)-balanced partition. Such a partition has w = n mod (k−1)
sets containing �n/(k−1)� elements and k−1−w sets containing �n/(k−1)� elements.
The elements in the first w sets are indexed by the pairs {(i, 1), (i, 2), . . . , (i, �n/(k −
1)�)} for 1 ≤ i ≤ w. Those in the remaining k − 1 − w sets are indexed by the pairs
{(i, 1), (i, 2), . . . , (i, �n/(k − 1)�)} for w + 1 ≤ i ≤ k − 1. (See Fig. 9.13.) Let P
be the set of all such pairs. To define a k-negative graph, we assign each vertex in the set
V = {1, 2, . . . , n} to a unique pair. This partitions the vertices into k − 1 sets. If vertices
va and vb are in the same set, the edge variable xa,b = 0; otherwise xa,b = 1. These
assignments define the edges in a graph G = (V , E). There are n! assignments of vertices
to pairs. Of these, there are (�n/(k − 1)�!)w(�n/(k − 1)�!)k−1−ww!(k − 1 − w)! that

(3, 1)

v3 v7 v1 v2 v9 v5 v6 v4 v8

(3, 3)

v2 v1 v3 v7 v5 v10 v9 v4 v8 v6

(3, 2)(2, 3)(2, 1) (2, 2)(1, 1) (1, 4)(1, 3)

v10

(1, 2)

Figure 9.13 A set of pairs P indexing the elements of sets in a (k − 1)-balanced partition of
a set V of n vertices. In this example n = 10 and k = 4 and the partition has three sets, V1,
V2, and V3 containing four, three, and three elements, respectively. Shown are two assignments of
variables to pairs in P that correspond to the same partition of V .
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correspond to each graph. To see this, observe that there are �n/(k − 1)�! ways to permute
the elements in each of the first w sets and �n/(k − 1)�! ways to permute the elements in
each of the remaining k− 1−w sets. Also, each of the first w (the last k− 1−w) sets have
the same size and can be ordered in any of w! ((k − 1 − w)!) ways without changing the
graph.

APPROXIMATOR CIRCUITS It simplifies the development of lower bounds to assume that each
AND gate in a circuit is followed by an OR gate and vice versa and that the output gate is an
AND gate. This requirement can be met by interposing between successive AND (OR) gates
an OR (AND) gate both of whose inputs are connected together. Since this transformation at
most triples the number of gates, an exponential lower bound on the size of the transformed
circuit yields an exponential lower bound on the size of the original circuit.

A monotone circuit for f
(n)
clique,k has (edge) variables drawn from the set {xi,j | 1 ≤ i <

j ≤ n}. The approximation to an input variable xi,j is xi,j itself. Gates in a circuit are succes-
sively replaced by approximator circuits starting with a gate that is at greatest distance from the
root (output vertex) and continuing with previously unvisited gates at greatest distance from
the root. Thus, when an AND or OR gate is replaced, its inputs have previously been replaced
by functions fl and fr that approximate the functions gl and gr computed in the original
circuit.

Approximations to AND (∧) and OR (∨) gates are denoted ∧̂ and ∨̂, respectively. As seen
below, the approximation given to a gate is context dependent. Approximations are defined
in terms of endpoint sets. Given a set of edge variables, for example {x1,2, x1,3, x2,3, x1,4}, its
associated endpoint set is the set of vertex indices used to define the edge variables, which is
{1, 2, 3, 4} in this example. Given a term t (a product (AND) or sum (OR) of edge variables),
the endpoint set associated with it, E(t), is the endpoint set of the edge variables appearing in
the term. For example, if t = x1,2 ∧ x1,3 ∧ x2,3 ∧ x1,4 or t = x1,2 ∨ x1,3 ∨ x2,3 ∨ x1,4, then
E(t) = {1, 2, 3, 4}. The endpoint size of a term t, denoted |E(t)|, is the number of indices
in E(t).

Consider a gate to be approximated. Let its two inputs be from gates that compute func-
tions fl and fr. Like any function, fr and fl can be represented in either the monotone SOPE
or POSE form. (All SOPEs and POSEs in this section are monotone.) The approximation
rules for AND and OR gates are described below and denoted ∧̂ and ∨̂, respectively. Here we
let p = �

√
(k − 1)/2� and q = �n/(4k)�.

∧̂: The approximation fl∧̂fr to fl ∧ fr is obtained by representing fl ∧ fr in the sum-of-
products expansion (SOPE) and eliminating all product terms whose endpoint set contains
more than p vertices. It follows that fl ∧ fr ≥ fl∧̂fr.

∨̂: The approximation fl∨̂fr to fl ∨fr is obtained by representing fl ∨fr in the product-of-
sums expansion (POSE) and eliminating all sum terms whose endpoint set contains more
than q vertices. It follows that fl ∨ fr ≤ fl∨̂fr.

Since fl ∧ fr ≥ fl∧̂fr and fl ∨ fr ≤ fl∨̂fr, if a positive test input x causes the output
of the approximated circuit to have value 0 when it should have value 1, then there is an
approximated AND gate (including the output gate) that has value 0 on x when it should have
value 1. Similarly, if there is a negative test input x that causes the approximated output to be
1 when it should be 0, there is an approximated OR gate that has value 1 on x when it should
have value 0. We now examine the performance of approximator circuits.
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PERFORMANCE OF APPROXIMATOR CIRCUITS We now show that when the approximation pro-

cess is complete, the approximation circuit for f
(n)
clique,k makes a very large number of errors

but that each gate approximation introduces a small number of errors. Thus, many gates must
have been approximated to produce the large number of errors made by the fully approximated

circuit. In fact, we show that the approximating circuit for f
(n)
clique,k either has output identi-

cally 0, thereby making one error on each of the τ+ =
(
n
k

)
positive test inputs (it produces 0

when it should produce 1), or makes τ−/2 errors on the τ− negative test inputs (it produces
1 when it should produce 0). On the other hand, we also show that approximating one AND

or OR gate causes a small number of errors, at most eAND errors per AND gate on positive
test inputs and at most eOR errors per OR gate on negative test inputs, quantities for which

upper bounds are derived below. It follows that the original circuit for f
(n)
clique,k either has at

least τ+/eAND AND gates or at least τ−/(2eOR) OR gates. The lower bound on the monotone

circuit size of f
(n)
clique,k is the larger of these two lower bounds.

LEMMA 9.6.6 Let k ≤ n + 1. Then any approximation circuit for f
(n)
clique,k either computes a

function that is identically zero or makes errors on half of the k-negative test inputs.

Proof Let the approximation circuit for f
(n)
clique,k compute the function

̂
f

(n)
clique,k. If this

function is identically zero, we are done. Suppose not. Since the output gate in the original

circuit is an AND gate, the function
̂

f
(n)
clique,k is represented by a SOPE in which each term

is the product of variables whose endpoint set (the vertices involved) has size at most p.

Because f
(n)
clique,k is not identically zero, there is a non-zero term t such that

̂
f

(n)
clique,k ≥ t.

An error is made on a negative test input if t = 1. But this happens only if each of the
endpoints in E(t) is in a different set of the (k−1)-balanced partition defining the negative
test input.

Let φ be the fraction of the negative test inputs on which t = 1. We derive a lower
bound to φ by deriving an upper bound on the fraction χ of the (k−1)-balanced partitions
with the property that two or more vertices in E(t) fall into the same set. It follows that
φ ≥ 1 − χ.

To simplify bounding χ, we use the one-to-one correspondence developed in the proof
of Lemma 9.6.5 between the n vertices in V = {1, 2, 3, . . . , n} and the pairs P associated
with a (k− 1)-balanced partition. Since E(t) has at most p vertices, the number of ways to
assign two vertices from E(t) to pairs in P so that two of them fall into the same set, N2,
is at most the number of ways to choose two vertices from a set of p vertices, p(p − 1)/2,
times the number of ways of assigning these two vertices to pairs in P , m2, and the number
of ways of assigning the remaining n− 2 vertices, (n− 2)!. Here m2 is at most the product
of the number of ways of choosing a pair for the first vertex, (k − 1)�n/(k − 1)�, and the
number of ways of choosing a pair for the second from the same set, �n/(k−1)�−1. Thus,
N2 is at most (p(p−1)/2)(k−1)�n/(k−1)�(�n/(k−1)�−1)(n−2)!, which is at most
p2�n/(k − 1)�(n − 1)!/2. Since there are n! assignments of vertices in V to pairs in P ,
χ ≤ p2�n/(k−1)�/(2n). Because p = �

√
(k − 1)/2�, χ is at most 1/4 since k−1 ≤ n.

We now derive upper bounds on the number of errors introduced through the approxima-
tion of individual AND and OR gates. Since we have assumed that AND and OR gates alternate
on any path between inputs and outputs, it follows that the inputs fl and fr to an AND gate
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are outputs of OR gates (and vice versa). Furthermore, by the approximation rules, if fl and fr

are inputs to an AND (OR) gate, every sum (product) in their POSE (SOPE) has an endpoint
set size of at most q (p). We now show that each replacement of a gate by its approximator
introduces a relatively small number of errors. We begin by establishing this fact for OR gates.

LEMMA 9.6.7 Let an OR gate ∨ and its approximation ∨̂ each be given as inputs the functions
fl and fr whose SOPE contains product terms of endpoint size p or less. Then the number of
k-negative test inputs for which ∨ and ∨̂ produce different outputs (∨ has value 0 but ∨̂ has value
1) is at most eOR where w = n mod (k − 1):

eOR =
(n/2)q+1(n− q − 1)!

(�n/(k − 1)�!)w(�n/(k − 1)�!)k−1−ww!(k − 1 − w)!
Proof Let fcorrect = fl ∨ fr and fapprox = fl∨̂fr. Let t1, . . . , tl be the product terms
in the SOPE for fcorrect. Since the endpoint size of all terms in the SOPE of fcorrect is at
most p, each term is the product of at most p(p− 1)/2 variables.

Using the association between (k − 1)-balanced partitions and pairs of indices given
in the proof of Lemma 9.6.5, we count N , the number of one-to-one mappings from V
to P for which fcorrect(x) = 0 but fapprox(x) = 1, after which we divide by D, the
number of mappings corresponding to a single partition of the variables, to compute eOR =
N/D. From the proof of Lemma 9.6.5 we have that D = (�n/(k − 1)�!)w(�n/(k −
1)�!)k−1−ww!(k − 1 − w)!.

To derive an upper bound to N , observe that fapprox(x) is obtained by converting the
SOPE of fcorrect to a POSE and deleting all sums in this POSE whose endpoint set size
exceeds q. Thus, N is at most the number of ways to assign vertices to pairs in P that
causes a deleted sum to be 0 because the new POSE may now become 1. But this can
happen only if the endpoint set size of the deleted product is at least q + 1. Thus, only if at
least q + 1 vertices in a sum are assigned values is it possible to have fcorrect(x) = 0 and
fapprox(x) = 1.

Below we show that each vertex can be assigned at most n/2 different pairs in P . It
follows there are at most (n/2)q+1(n − q − 1)! ways to assign pairs to q + 1 or more
vertices because the first q + 1 can be assigned in at most (n/2)q+1 ways and the remaining
(n− q− 1) vertices can be assigned in at most (n− q− 1)! ways. This is the desired upper
bound on N .

We now show that every mapping from V to P that corresponds to a negative test input
x assigns each vertex to at most n/2 pairs in P .

Let t1, . . . , tl be product terms in the SOPE of fcorrect. We examine these terms in
sequence. Consider a partial mapping from V to P that assigns values to variables so that
at least one variable in each of the products t1, . . . , ti−1 is 0, thereby insuring that each
product is 0. Consider now the ith product, ti. If the partial mapping assigns value 0 to at
least one of its variables, we move on to consider ti+1. (It cannot set all variables in ti to 1
because we are considering mappings causing all terms to be 0.)

Suppose that the partial mapping has not assigned value 0 to any of the variables of ti.
There are two cases to consider. For some variable xa,b of ti either a) one or b) both of the
vertices va, vb ∈ V has not been assigned a pair in P . In the first case, assign the second
vertex to the set containing the first, thereby setting xa,b = 0. This can be done in at most
�n/(k−1)�−1 ≤ n/(k−1) ways since the set contains at most �n/(k−1)� elements and at
least one of them has been chosen previously, namely the first vertex. In the second case the
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two vertices can be assigned to at most (k−1)(�n/(k−1)�)(�n/(k−1)�−1) ≤ 2n2/(k−1)
pairs because the first can be assigned to (k − 1) sets each containing at most �n/(k − 1)�
elements and the second must be assigned to one of the remaining elements in that set.

The number of ways to choose variables in ti so that it has value 0 is the number of
ways to choose a variable of each kind multiplied by the number of ways to assign values to
it. Let α be the number of variables of ti for which one vertex has previously been assigned
a pair and let β be the number of variables for which neither vertex has been assigned a
pair. (β ≤ p(p − 1)/2 − α since ti has at most p(p − 1)/2 variables.) Thus, a variable
of the first kind can be assigned in at most αn/(k − 1) ways and the number of ways of
assigning the two vertices in variables of the second kind is at most β2n2/(k − 1). Since
each vertex associated in such pairs can be assigned in the same number of ways, γ, it follows
that γ2 ≤ β2n2/(k − 1). Thus, γ ≤

√
β2n2/(k − 1).

Summarizing, the variables in ti can be assigned in at most the following number of
ways so that ti has value 0:

αn/(k − 1) +
√

(p(p− 1)/2 − α)2n2/(k − 1)

This quantity is largest when α = 0 and is at most n/2 since p = �
√

(k − 1)/2�, which is
the desired conclusion.

We now derive an upper bound on the number of errors that can be made by AND gates
on k-positive inputs.

LEMMA 9.6.8 Let an AND gate ∧ and its approximation ∧̂ each be given as inputs the functions
fl and fr whose POSE contains sum terms of endpoint size q or less. Then the number of k-positive
test inputs for which ∧ and ∧̂ produce different outputs (∧ has value 1 but ∧̂ has value 0) is at
most eAND :

eAND =
(n/2)p+1(n− p− 1)!

k!(n − k)!

Proof The proof is similar to that of Lemma 9.6.7. Let fcorrect = fl ∧ fr and fapprox =
fl ∧̂ fr. Let c1, . . . , cl be the sum terms in the POSE for fcorrect. Since by induction the
endpoint size of all terms in the POSE of fl and fr is at most q, each term in fcorrect is the
sum of at most q(q − 1)/2 variables.

In this case we count the number of k-positive test graphs (they contain one k-clique)
that cause fcorrect(x) = 1 but fapprox(x) = 0. Since a k-positive test graph contains just
those edges between a specified set of k vertices, we define each such graph by a one-to-one
mapping from the vertices (endpoints) in V to the integers�(n) = {1, 2, . . . , n}, where
we adopt the rule that vertices mapped to the first k integers are those in the clique associated
with a particular test graph. It follows that each k-positive test graph corresponds to exactly
k!(n − k)! of these 1-1 mappings. Then, eAND is the number of such 1-1 mappings for
which fcorrect(x) = 1 but fapprox(x) = 0 divided by k!(n − k)!.

We show that any mapping that results in fcorrect(x) = 1 assigns each endpoint to at
most n/2 values from�(n). But fapprox(x) = 0 for positive test inputs only if more than
p endpoints are assigned values, because fapprox is obtained from fcorrect by discarding
product terms in its SOPE that contain more than p endpoints. It follows that at most
(n/2)p+1(n− p− 1)! of the positive test inputs result in an error by the approximate AND

gate. Dividing by k!(n − k)!, we have the desired upper bound on eAND.
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To complete the proof we must show that each endpoint is assigned at most n/2 values
from �(n). Consider the sum terms c1, . . . , cl in the POSE of fcorrect in sequence and
consider a partial mapping from V to�(n) that causes at least one variable in each of the
sums c1, . . . , ci−1 to be 1, thereby insuring that the value of each sum is 1. Now consider
the ith sum, ci. If the partial mapping assigns value 1 to at least one variable, we move on
to ci+1. (It cannot set all variables in ci to 0 because we are considering mappings causing
all terms to be 1.)

We now extend the mapping by considering the set Ci of variables of ci that have not
been assigned a value. A given variable xa,b in Ci has either one or no endpoints (vertices)
previously mapped to an integer in �(n). If one endpoint, say a, has been assigned an
integer, the other endpoint, b, can be assigned to at most one of k − 2 integers that cause
xa,b = 1 because endpoint a was previously assigned a value in the range {1, 2, . . . , k}
together with at least one other vertex and b must be different from them. Because there are
most q = �n/(4k)� variables of the first type, there are at most q(k − 2) ways to assign the
one endpoint of a variable xa,b of the first type so that xa,b = 1.

Consider now variables of the second type. There are at most q(q − 1)/2 such variables
and at most (q(q − 1)/2)k(k − 1) ways to make assignments to both endpoints so that
a variable has value 1. This follows because each endpoint is assigned to a distinct integer
among the first k integers in�(n). Since each endpoint can be assigned in the same number
of ways, this number is at most

√
(q(q − 1)/2)k(k − 1).

It follows that the number of ways to assign an endpoint so that the correct and approx-
imate functions differ is at most q(k − 2) +

√
(q(q − 1)/2)k(k − 1) ≤ 2qk, which is no

more than n/2 since q = �n/(4k)�. This is the desired conclusion.

The desired result follows from the above lemmas.

THEOREM 9.6.6 For n ≥ 13 and 8 ≤ k ≤ n/2, every monotone circuit for the clique function

f
(n)
clique,k : Bn(n−1)/2 �→ B has a circuit size satisfying the following lower bound:

CΩmon

(
f

(n)
clique,k

)
≥ 1

2
(1.8)min(

√
k−1/2,n/(2k))

The largest value for this lower bound is CΩmon(f
(n)
clique,k) = 2Ω(n1/3).

Proof From the discussion at the beginning of this section, we see that the monotone circuit

size of f
(n)
clique,k is at least min (τ+/eAND, τ−/(2eOR)). Thus,

CΩmon(f
(n)
clique,k) ≥ min

(
n!

2(n/2)p+1(n− p− 1)!
,

n!
(n/2)q+1(n− q − 1)!

)
≥ min

(
(n− p)p+1

2(n/2)p+1
,
(n− q)q+1

(n/2)q+1

)
Let 8 ≤ k ≤ n/2. It follows that p = �

√
(k − 1)/2� ≤

√
n/(2

√
2) and q = �n/(2k)� ≤

n/16. Thus, p, q ≤ n/10 if n ≥ 13. Hence both (n−p) and (n−q) are at least 9n/10, and

CΩmon

(
f

(n)
clique,k

)
≥ min

(
1
2
(1.8)p+1, (1.8)q+1

)
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The desired conclusion follows from this and the observation that p + 1 ≥
√

k − 1/2 and
q + 1 ≥ n/(2k). That the maximum value of min(

√
k − 1/2, n/(2k)) is Ω(n1/3) under

variation of k is left as a problem. (See Problem 9.38.)

9.6.4 Slice Functions
Although, as shown above, some monotone functions have exponential circuit size over the
monotone basis, it is doubtful that the methods of analysis used to obtain this result can be
extended to derive such bounds over the standard basis. (See the Chapter Notes.)

This section introduces a note of optimism by showing that the monotone circuit size of
monotone slice functions can provide a strong lower bound on the circuit size of such functions
over the standard basis. In addition, there are NP-complete languages whose characteristic
functions are slice functions. Thus, if such functions can be shown to have super-polynomial
monotone circuit size, P �= NP.

Let |x| denote the number of 1’s in x. We now define the slice functions.

DEFINITION 9.6.6 A function s : Bn �→ B is a slice function if there is an integer 0 ≤ k ≤ n
such that s(x) = 0 if |x| < k and s(x) = 1 if |x| > k. The kth slice of a function
f : Bn �→ B, 0 ≤ k ≤ n, is the function f [k] : Bn �→ B defined below.

f [k](x) =

⎧⎪⎨⎪⎩
0 |x| < k

f(x) |x| = k

1 |x| > k

It should be clear from this definition that slice functions are monotone. Below we show
that if a Boolean function f on n variables has a large circuit size, then one of its slices has a
circuit size that differs from the size of f by at most a multiplicative factor that is linear in n.
Thus, a function f has a large circuit size if and only if one of its slice functions has a large
circuit size.

We set the stage with a lemma that shows that the circuit size of a Boolean function is
bounded above by the circuit size of its slices plus an additive term linear in its number of
variables.

LEMMA 9.6.9 Let Ω0 be the standard basis and f : Bn �→ B. Then the following holds, where
CΩ0(f

[0], f [1], . . . , f [n]) is the circuit size of all the slices simultaneously:

CΩ0(f) = CΩ0(f
[0], f [1], . . . , f [n]) + O(n)

Proof The goal is to construct a circuit for f given the input tuple x and a circuit for
all the functions f [0], f [1], . . . , f [n]. This is easily done. We construct a circuit to count
the number of 1’s among the n inputs and represent the result in binary. We then supply
this number as an address to a direct storage address function (multiplexer) where the other
inputs are the values of the slice functions. If the address is |a|, the output of the multiplexer
is f [|a|]. Since, as shown in Lemma 2.11.1, the counting circuit can be realized with a circuit
of size linear in n, and, as shown in Lemma 2.5.5, the multiplexer in question can be realized
with a linear-size circuit, the result follows.

We now establish the connection between the circuit size of a function and that of one of
its slices.



432 Chapter 9 Circuit Complexity Models of Computation

THEOREM 9.6.7 Let Ω0 be the standard basis and f : Bn �→ B. Then there exists 0 ≤ k ≤ n
such that

CΩ0(f)
n

−O(1) ≤ CΩ0

(
f [k]

)
≤ CΩ0(f) + O(n)

Proof The first inequality follows from Lemma 9.6.9, the following inequality and the
observation that at least one term in an average is greater than or equal to the average.

CΩ0

(
f [0], f [1], . . . , f [n]

)
≤
∑

i

CΩ0(f
[i])

The second inequality uses the fact that the kth slice of a function can be expressed as

f [k](x) = τ
(n)
k (x)f(x) + τ

(n)
k+1(x)

Since τ
(n)
j (x) can be realized by a circuit of size linear in n (see Theorem 2.11.1), the second

inequality follows.

In Theorem 9.6.9 we show that the monotone circuit size of slice functions provides a
lower bound on their non-monotone circuit size up to a polynomial additive term. Before
establishing this result we introduce the concept of pseudo-negation. A pseudo-negation for
variable xi in a monotone Boolean function f : Bn �→ B is a function hi such that replacing
each instance of xi in a circuit for f by hi does not change the value computed by the circuit.
Thus, the pseudo-negation hi acts like the real negation xi.

In Theorem 9.6.9 we also show that for 1 ≤ i ≤ n the punctured threshold function
τ

(n)
k,¬i : Bn �→ B, which depends on all the variables except xi, is a pseudo-negation for a kth

slice of every monotone function. Since for a given k each of these threshold functions can be
realized by a monotone circuit of size O(n log n) (see Theorem 6.8.2), they can all be realized
by a monotone circuit of size O(n2 log n). Although this result can be used in Theorem 9.6.9,
the following stronger result is used instead.

We now describe a circuit that computes all of the above pseudo-negations efficiently. This
circuit uses the complementary number system, a system that associates with each integer i
in the set�(n) = {0, 1, 2, . . . , n − 1} the complementary set�(n) − {i}. It makes use of
results on sorting networks found in Chapter 6.

THEOREM 9.6.8 The set {τ (n)
k,¬i | 1 ≤ i ≤ n} of pseudo-negations can be realized by a monotone

circuit of size O(n log2 n).

Proof We assume that n = 2s. If not, add variables with value 0 to increase the number to
the next power of 2. This does not change the value of the function on the first n variables.

For this proof let the pseudo-negations τ
(n)
k,¬i be defined for 0 ≤ i ≤ n − 1 and on the

variables whose indices are in�(n). (We subtract 1 from each index.) Let Di = �(n) −
{i} denote the indices of the variables on which τ

(n)
k,¬i depends. An efficient monotone

circuit to compute all the pseudo-negations {τ (n)
k,¬i | i ∈ �(n)} is based on an efficient

decomposition of the sets {Di | i ∈�(n)}.
For a, b ≥ 0, let Ua,b be defined by

Ua,b = {a2b + c | 0 ≤ c ≤ 2b − 1}
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For example, U3,3 = {24, 25, 26, 27, 29, 30, 31}, U1,2 = {4, 5, 6, 7}, and U2,1 = {4, 5}.
The set Ua,b has size 2b.

For n = 2s, every set Di =�(n)−{i} can be represented as the disjoint union of the
sets Ua,b below, where 0 ≤ ai,j ≤ 2s−j − 1. (This is the complementary number system;
see Fig. 9.14.)

Di = Uai,s−1,s−1 ∪ Uai,s−2,s−2 ∪ · · · ∪ Uai,0,0

To see this, note that if i is in the first (second) half of�(n), Uai,s−1,s−1 denotes the second
(first) half; that is, ai,s−1 = 1 (ai,s−1 = 0). The next set, Uai,s−2,s−2, is the half of the
remaining set Di − Uai,s−1,s−1 that does not contain i, etc. Thus, Di is decomposed as
the disjoint union of sets of size 2s−1, 2s−2, . . . , 20 For example, when n = 16, D3 =
U1,3 ∪ U1,2 ∪ U0,1 ∪ U2,0. Figure 9.14 shows the values of ai,s−1, ai,s−2, . . . , ai,0 for each
i ∈�(n) for n = 8.

As suggested in Fig. 9.14, the sets {Di | i ∈ �(n)} have either U0,s−1 or U1,s−1 in
common. Similarly, they also have either U1,s−1∪U1,s−2, U0,s−1∪U1,s−2, U3,s−1∪U0,s−2,
or U2,s−1 ∪U0,s−2 in common. Continuing in this fashion, we construct the sets {Di | i ∈
�(n)} by successively forming the disjoint union of 2j sets, 1 ≤ j ≤ s. Assembling the
sets in this fashion is much more economical than assembling them individually.

The value of τ
(n)
k,¬i, i ∈�(n), is the kth largest variable whose index is in Di. From now

on we equate the variables with their indices. Sorting the sets into which Di is decomposed
simplifies the computation. But these sets are exactly the sets that are sorted by Batcher’s
sorting network based on Batcher’s merging algorithm. (See Theorem 6.8.3.) Since on
Boolean data a comparator consists of one AND for the max operation and one OR for the
min operation, a monotone circuit of size O(n log2 n) exists to sort the sets {Ui,j | 0 ≤ i ≤
2s−j − 1, 0 ≤ j ≤ s − 1}.

The functions τ
(n)
k,¬i, 0 ≤ i ≤ n−1, can be obtained by sorting the sets {Ui,j | 0 ≤ i ≤

2s−j − 1, 0 ≤ j ≤ s− 1}, merging them in groups to form Di for i ∈�(n), as suggested
above, and then taking the kth largest element. A faster way merges the sorted versions of
the sets Uai,s−1,s−1, Uai,s−2,s−2, . . . , Uai,0,0 in the order in which Di is assembled above.
For each of these sets the sorting network presents its elements in sorted order.

i ai,0 ai,1 ai,2

0 1 1 1
1 0 1 1
2 3 0 1
3 2 0 1
4 5 3 0
5 4 3 0
6 7 2 0
7 6 2 0

Figure 9.14 The coefficients ai,j of Di = �(n) − {i} in the expansion Uai,s−1,s−1 ∪
Uai,s−2,s−2 ∪ · · · ∪ Uai,0 ,0 for n = 2s = 8 and s = 3.
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Since only the kth element of Di is needed, it is not necessary to merge all the elements
in each set when two sets are merged. To see which elements need to be merged, let Δi(j) =
Uai,s−1,s−1 ∪ Uai,s−2,s−2 ∪ · · · ∪ Uai,j ,j . Then Di −Δi(j) is a set of size 2j − 1. Observe
that the kth element of Di can be obtained by merging elements of rank k and k − 1 of
Δi(1) with the element of Ua(i,0),0. (They all have value 0 or 1.) The middle element is the
kth element in Di. To obtain elements of rank k and k − 1 of Δi(1), the elements of rank
k, k − 1, k − 2 and k − 3 of Δi(2) are merged with the two elements of Uai,1,1 and the
middle two taken. In general, to obtain the elements of rank k, . . . , k − 2j + 1 of Δi(j),
the elements of rank k, . . . , k − 2j+1 + 1 of Δi(j + 1) are merged with the 2j elements of
Uai,j ,j and the middle 2j taken.

We now count the number of extra AND and OR gates needed to perform the merges.
There are 2s−j sets Δi(j). The 2j elements needed from these sets are obtained by merging
2j+1 elements of Δi(j + 1) with the 2j elements of Uai,j ,j . Since these sets can be merged
in a comparator network with O(j2j) comparators (see Theorem 6.8.2), it follows that all
the sets Δi(j), 0 ≤ i ≤ n − 1, can be formed with O(jn) gates for 0 ≤ j ≤ s − 1.
Summing over j, 0 ≤ j ≤ (log2 n)−1 shows that a total of O(n log2 n) extra gates suffice.
Since O(n log2 n) gates are used to sort the sets {Ui,j | 0 ≤ i ≤ 2s−j −1, 0 ≤ j ≤ s−1},
the desired conclusion follows.

We can now show that a large lower bound on the monotone circuit size of a slice function
implies a large lower bound on its non-monotone circuit size. The importance of this statement
is emphasized by the existence of NP-complete slice functions. If such a problem can be shown
to have a super-polynomial slice function, then P �= NP.

THEOREM 9.6.9 Let f : Bn �→ B be a slice function. Then

CΩ0(f) ≤ CΩmon(f) ≤ 2 · CΩ0(f) + O(n log2 n)
Proof The first inequality holds because the standard basis Ω0 contains the monotone basis.
To establish the second inequality, we convert a circuit over Ω0 by moving all negations to
the input variables. This can be done by at most doubling the number of gates. (See
Problems 9.11 and 2.12.)

We now show that for slice functions the negation of an input variable xi can be replaced

by the pseudo-negation function τ
(n)
k,¬i. To see this, observe that when |x| > k, at least

|x| − 1 = k of the variables of τ
(n)
k,¬i are 1 and τ

(n)
k,¬i has value 1. On the other hand,

when |x| < k, then not enough variables can be 1 for τ
(n)
k,¬i to have value 1. Finally, when

|x| = k, τ
(n)
k,¬i = 0 if xi = 1 because not enough of the remaining variables are 1, and

τ
(n)
k,¬i = 1 when xi = 0 by a similar reasoning. Now replace xi with τ

(n)
k,¬i. Since f is a

k-slice, f = 0 when |x| < k, as is τ
(n)
k,¬i. If xi = 1 when |x| < k, replacing xi by its

pseudo-negation means replacing xi by 0, which can only decrease the circuit output since
it is monotone. Thus, f is computed correctly in this case. The same is true if |x| > k,
again by monotonicity. Since τ

(n)
k,¬i = xi when |x| = k, the circuit correctly computes f

for all inputs when xi is replaced by the ith pseudo-negation.

AN NP-COMPLETE SLICE FUNCTION We now exhibit the language HALF-CLIQUE CENTRAL

SLICE and show it is NP-complete. The characteristic functions of this language are slice func-
tions. It follows from Theorem 9.6.9 that if these slice functions have exponential circuit size,
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then P �= NP. We show that HALF-CLIQUE CENTRAL SLICE is NP-complete by reducing
HALF-CLIQUE (see Problem 8.25) to it.

DEFINITION 9.6.7 A central slice of a function f : Bn �→ B on n variables, f [�n/2�], is the
�n/2�th slice.

A central slice of a function f on n variables is the function that has value 0 if the weight
of the input tuple is less than �n/2�, value 1 if the weight exceeds this value, and is equal to
the value of f otherwise.

Given the function f : B∗ �→ B, f (n) denotes the function restricted to strings of length
n. The family of central slice functions {(f (n))[�n/2�] | n ≥ 2} identifies the language
Lcentral(f) = {x ∈ Bn | (f (n))[�n/2�](x) = 1, n ≥ 2}.

The central clique function f
(n)
clique,�n/2� has value 1 if the input graph contains a clique

on �n/2� vertices. The central slice of the central clique function f
(n)
clique,�n/2� is called the

half-clique central slice function and denoted f
(n)
clique slice. It has value 1 if the input graph

either contains a clique on �n/2� vertices or contains more edges than are in a clique of this
size.

The language HALF-CLIQUE is defined in Problem 8.25 as strings describing a graph and
an integer k such that a graph on n vertices contains an n/2-clique or has more than k edges.
The language HALF-CLIQUE CENTRAL SLICE associated with the central slice of a central
clique function is defined below. It simplifies the following discussion to define e(k) as the
number of edges between a set of k vertices. Clearly, e(k) =

(
k
2

)
.

HALF-CLIQUE CENTRAL SLICE

Instance: The description of an undirected graph G = (V , E) in which |V | is even.
Answer: “Yes” if G contains a clique on |V |/2 vertices or at least e(|V |/2)/2 edges.

THEOREM 9.6.10 The language HALF-CLIQUE CENTRAL SLICE is NP-complete. Further-
more, for all 2 ≤ k ≤ n

CΩmon

((
f

(n)
clique,�n/2�

)[k]
)
≤ CΩmon

(
f

(n)
clique slice

)
For k < e(n/2),

(
f

(n)
clique,�n/2�

)[k]

= τ
e(n)
k+1 .

Proof We show that HALF-CLIQUE CENTRAL SLICE is NP-complete by reducing HALF-
CLIQUE to it. Given a graph G = (V , E) in HALF-CLIQUE that has n vertices, n even, we
construct a graph G′ = (V ′, E′) on 5n vertices such that G either contains an n/2-clique
or has more than k edges if and only if G′ contains a (central) clique on 5n/2 vertices or
has at least �e(5n/2)/2� edges. The construction, which can be done in polynomial time,
transforms a graph on n vertices to one on 5n vertices such that the former is an instance of
HALF-CLIQUE if and only if the latter is an instance of HALF-CLIQUE CENTRAL SLICE.

Let V = {v1, v2, . . . , vn}. Construct G′ from G by adding the 4n vertices R =
{r1, r2, . . . , r2n} and S = {s1, s2, . . . , s2n}. Represent edges in E′ of G′ with the edge
variables {yi,j | 1 ≤ i < j ≤ 5n}. Each edge between vertices of G is an edge between
vertices V of G′. Let every edge between vertices in R be in G′ as well as all edges between
vertices in V and R. Set the edge variables so that the edges between ri and si, 1 ≤ i ≤ 2n,



436 Chapter 9 Circuit Complexity Models of Computation

are absent. The unassigned variables are between vertices in S, between vertices in R and S,
and between vertices in V and S, of which there are 8n2 − 3n. Fix these unassigned edges
so that the number of edges between vertices in V ∪R∪S is �e(5n/2)/2�−k, 1 ≤ k ≤ n.
There are sufficiently many unassigned edges to do this.

We now show that G contains an n/2-clique or has more than k edges if and only if
G′ contains an 5n/2-clique or has more than �e(5n/2)/2� edges. If G has a n/2-clique,
the edges between V and R combined with the edges between vertices in R and those in
G constitute a 5n/2 clique since 5n/2 vertices in V ∪ R are completely connected. If V
has more than k edges, since there are exactly �e(5n/2)/2� − k edges between vertices in
V ∪R∪S, G′ has at least �e(5n/2)/2� edges. On the other hand, if G′ has a (5n/2)-clique,
because there is at least one absent edge between each pair of vertices (ri, si), 1 ≤ i ≤ 2n,
the largest clique on vertices in R ∪ S has size 2n. Thus, there must be a (n/2)-clique
on vertices in V ; that is, G contains a (n/2)-clique. Similarly, since the number of edges
between vertices in V and those in R∪S is exactly �e(5n/2)/2�−k, if G′ contains at least
�e(5n/2)/2� edges, G must contain at least k edges.

The membership of graph G in HALF-CLIQUE is determined by specializing the graph
G′ by mapping its edge variables to the constants 0 and 1 or to variables of G. Thus,
the function testing G’s membership is obtained through a subfunction reduction of the
function testing G′’s membership. (See Definition 2.4.2.) Thus, at no increase in circuit

size, for any k a circuit for
(
f

(n)
clique,�n/2�

)[k]

can be obtained from a circuit for f
(n)
clique slice.

Thus, the circuit size for the latter is at least as large for the former, which gives the second
result of the theorem.

The statement that for k < e(n/2),
(
f

(n)
clique,�n/2�

)[k]

= τ
e(n)
k+1 follows from the ob-

servation that for these values of k the value of the clique function on inputs of weight
e(n/2)− 1 or less is 0.

As this theorem indicates, the search for a proof that P �= NP can be limited to the study
of the monotone circuit size of the central slice of certain monotone functions. Other central
slices of NP-complete problems have been shown to be NP-complete also. (See the Chapter
Notes.)

9.7 Circuit Depth
Circuit depth and formula size are exponentially related, as shown in Section 9.2.3. In this
section we examine the depth of circuits whose operations have either bounded or unbounded
fan-in. As seen in Chapter 3, circuits of bounded fan-in are useful in classifying problems by
their complexity and in developing relationships between time and space and circuit size and
depth.

Circuits of unbounded fan-in are constructed of AND and OR gates with potentially un-
bounded fan-in whose inputs are the outputs of other such gates or literals, namely, variables
and their negations. Every Boolean function can be realized by a circuit of unbounded fan-in
and bounded depth, as is seen by considering the DNF of a Boolean function: it corresponds to
a depth-2, unbounded fan-in circuit. Knowledge of the complexity of bounded-depth circuits
may shed light on the complexity of bounded-fan-in circuits.
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In this section we first show that the depth of a function f is equal to the communication
complexity of a related problem in a two-player game. Communication complexity is a measure
of the amount of information that must be exchanged between two players to perform a com-
putation. We establish such a connection for all Boolean functions over the standard basis Ω0

and monotone functions over the monotone basis Ωmon. These connections are used to derive
lower bounds on circuit depth for monotone and non-monotone functions. After establishing
these results we examine bounded-depth circuits and demonstrate that some problems require
exponential size when realized by such circuits.

9.7.1 Communication Complexity
We define a communication game between two players who have unlimited computing power
and communicate via an error-free channel. This game has sufficient generality to derive
interesting lower bounds on circuit depth.

DEFINITION 9.7.1 A communication game (U , V ) is defined by sets U , V ⊆ Bn, where U ∩
V = ∅. An instance of the game is defined by u ∈ U and v ∈ V. u is assigned to Player I and
v is assigned to Player II. Players alternate sending binary messages to each other. We assume that
the binary messages form a prefix code (no message is a prefix for another) so that one player can
determine when the other has finished transmitting a message.

Although each player has unlimited computing power, each message it sends is a function of just
its own n-tuple and the messages it has received previously from the other player. The two functions
used by the players to determine the contents of their messages constitute the protocol Π under
which the communication game is played. The protocol also determines the first player to send a
message and termination of the game. The goal of the game is to find an index i, 1 ≤ i ≤ n, such
that ui �= vi.

Let Π(u, v) denote the number of bits exchanged under Π on the instance (u, v) of the game
(U , V ). The communication complexity C(U , V ) of the communication game (U , V ) is the
minimum over all protocols Π of the maximum number of bits exchanged under Π on any instance
of (U , V ); that is,

C(U , V ) = min
Π

max
u∈U ,v∈V

Π(u, v)

Note that there is always a position i, 1 ≤ i ≤ n, such that ui �= vi since U ∩ V = ∅.
The communication game models a search problem; given disjoint sets of n-tuples, U and

V , the two players search for an input variable on which the two n-tuples differ. A related
communication game measures the exchange of information to obtain the value of a function
f : X × Y �→ Z on two variables in which one player has a value in X and the other has
a value in Y . The players must acquire enough information about each other’s variable to
compute the function.

Every communication problem (U , V ), where U , V ⊆ Bn, can be solved with communi-
cation complexity C(U , V ) ≤ n + �log2 n� by the following protocol:

• Player I sends u to Player II.

• Player II determines a position in which u �= v and sends it to Player I using �log2 n�
bits.
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This bound can be improved to C(U , V ) ≤ n + log∗2 n, where log∗2 n is the number of
times that �log2� must be taken to reduce n to zero. (See Problem 9.39.) The log-star

function log∗2 n grows very slowly. For example, log∗2 101010
is 8; by contrast,

⌈
log2 101010

⌉
=

33,219,280,949.
These concepts are illustrated by the parity communication problem (U , V ), defined

below, where n = 2k:

U = {u |u has an even number of 1s}
V = {v |v has an odd number of 1s}

The following protocol achieves a communication complexity bound of C(U , V ) ≤ 2 log2 n
for this problem. Later we show it is best possible.

1. If n = 1, the players know where their tuples differ and no communication is necessary.

2. If n > 1, go to the next step.

3. Player I sends the parity of the first n/2 bits of u to Player II.

4. Since u �= v, with one bit Player II tells Player I of half of the variables on which u and v
are known to differ. Play is resumed at the first step with the half of the variables on which
they are known to differ.

Let κ(n) denote the number of bits exchanged with this protocol. Then κ(1) = 0 and
κ(n) ≤ κ(n/2)+ 2, whose solution is κ(n) = 2 log2 n. Thus, C(U , V ) = κ(n) ≤ 2 log2 n.

9.7.2 General Depth and Communication Complexity
We now establish a relationship between the depth DΩ0(f) of a Boolean function f : Bn �→ B
over the standard basis Ω0 and the communication complexity of a communication game in
which U = f−1(0) and V = f−1(1), where f−1(a) is the set of n-tuples for which f has
value a. Theorem 9.7.1 asserts that DΩ0(f) and C(f−1(0), f−1(1)) have exactly the same
value. Later we establish a similar result for monotone functions realized over the monotone
basis. We divide this result into two lemmas that are proved separately.

THEOREM 9.7.1 For every Boolean function f : Bn �→ B,

DΩ0(f) = C(f−1(0), f−1(1))

The communication game allows the two players to have unlimited computing power at
their disposal. Thus, the protocol they employ can be an arbitrarily complex function. This
power reflects the non-uniformity in the circuit model.

LEMMA 9.7.1 For all Boolean functions f : Bn �→ B and all U , V ⊆ Bn such that U ⊆
f−1(0) and V ⊆ f−1(1), the following bound holds:

C(U , V ) ≤ DΩ0(f)

Proof In this lemma we demonstrate that a protocol for the communication game (f−1(0),
f−1(1)) can be constructed from a circuit of minimal depth for the Boolean function f . We
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assume that such a circuit has negations only on input variables. By Problem 9.11 there is
such a circuit.

Given an instance defined by u ∈ f−1(0) and v ∈ f−1(1), the players follow a path
from the circuit output to an input at which u and v differ. The invariant that applies at
each step is that Player I (which holds u) simulates an AND gate whose value on u is 0
whereas Player II (which holds v) simulates an OR gate whose value on v is 1. The bits
transmitted by one player to the other specify which input to the current gate to follow on
the way from the output vertex to an input vertex of the circuit for f .

The proof is by induction. The base case applies to those Boolean functions f for which
DΩ0(f) = 0. In this case f is either xi or xi for some i where xi is an input variable of
f . Thus, for each instance of the problem, both players know in advance a variable (namely,
xi) on which u and v differ. Hence, C(U , V ) = 0 and the base case is established.

For the induction step, either f = f1 ∧ f2 or f = f1 ∨ f2. Consider the first case; the
second is treated in a similar fashion. Obviously DΩ0(f) = max(DΩ0(f1), DΩ0(f2)) + 1.
(We are considering circuits of minimal depth.) Let Uj = U ∩ f−1

j (0) for j = 1, 2. Since
(Uj , V ) is a communication game associated with fj (fj must have value 1 on V ) and
DΩ0(fj) < DΩ0(f), by induction C(Uj , V ) ≤ DΩ0(fj).

Since the output gate is AND (the other case is treated similarly), both f1 and f2 have
value 1 on V , but at least one of them has value 0 on U . We use the following protocol for
(U , V ): Player I sends 0 if u ∈ U1 (associated with the input f1 to this AND gate) and 1
if u ∈ U2 (associated with the input f2). (If the output gate is OR, we observe that at least
one of f1 and f2 has value 1 on V and define V1 = V ∩ f−1

1 (1) and V2 = V ∩ f−1
2 (1).

Player II sends a bit to specify the set containing v.) After the first move the players follow
the protocol for the fj defined by the bit sent by Player I. Thus, when the output gate is
AND the following bound holds:

C(U , V ) ≤ 1 + max
j=1,2

(C(Uj , B)) ≤ 1 + max(DΩ0(f1), DΩ0(f2)) = DΩ0(f)

The same bound holds when the output gate is OR.

We now prove the second half of Theorem 9.7.1.

LEMMA 9.7.2 Let U , V ⊆ Bn be such that U ∩ V = ∅. Then there exists a Boolean function
f : Bn �→ B with U ⊆ f−1(0) and V ⊆ f−1(1) such that the following bound holds:

DΩ0(f) ≤ C(U , V )

Proof In this proof we show how to define a Boolean function and a circuit for it from a
protocol for (U , V ). From the protocol a tree is constructed. The root is associated with the
player who sends the first bit. As in the proof of Lemma 9.7.1, Player I is associated with
AND gates and Player II with OR gates. Thus, if the protocol specifies that Player I makes
the first move, the root is labeled AND. The two possible descendants are labeled with the
player who makes the next transmission or by a variable or its negation (the answer) if this
is the last transmission under the protocol. The function associated with the protocol is the
function computed by the circuit so constructed.

We establish the result by induction. The base case applies to sets U and V for which
C(U , V ) = 0. In this case, there is an index i known in advance to both players on which
u ∈ U and v ∈ V differ. Since either ui = 1 or ui = 0 for all u ∈ U (vi has the
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complementary value for all v ∈ V ), let f = xi in the first case and f = xi in the second.
Thus, in the first case (the second case is treated similarly) U ⊆ f−1(0), V ⊆ f−1(1) and
DΩ0(f) = 0. This establishes the base case.

For the induction step, without loss of generality, let Player I send the first bit. (The
other case is treated similarly.) For some partition of U = U0 ∪ U1, U0 ∩ U1 = ∅, Player I
sends a 0 if u ∈ U0 and a 1 if u ∈ U1, after which the players play with the best protocol
for each subcase. It follows that

C(U , V ) = 1 + max
j=1,2

(C(Uj , V ))

Since C(Uj , V ) < C(U , V ) for j = 1, 2, by induction there exist Boolean functions f1

and f2 such that Uj ⊆ f−1
j (0) and V ⊆ f−1

j (1) and DΩ0(fj) ≤ C(Uj , V ) for j = 1, 2.
Since the output vertex is assumed to be AND, f = f1 ∧ f2, f has value 1 only when both
f1 and f2 have value 1 and has value 0 when either f1 or f2 have value 0. Thus, we have

V ⊆ f−1
1 (1) ∩ f−1

2 (1) = f−1(1)
U = U1 ∪ U2 ⊆ f−1

1 (0) ∪ f−1
2 (0) = f−1(0)

from which we conclude that

DΩ0(f) ≤ 1 + max(DΩ0(f1), DΩ0(f2)) ≤ 1 + max
j=1,2

(C(Uj , V )) = C(U , V )

which is the desired result.

This establishes the connection between the depth of a Boolean function f over the stan-
dard basis Ω0 and the communication complexity associated with the sets f−1(0) and f−1(1).

We now draw some conclusions from Theorem 9.7.1. From the observation made above
that C(U , V ) ≤ n + log∗2 n for an arbitrary communication problem (U , V ) when U , V ∈
Bn, we have that DΩ0(f) ≤ n + log∗2 n for all f : Bn �→ B. A better upper bound of
DΩ0(f) ≤ n+1 is given in Theorem 2.13.1. The best upper bound of n−log2 log2 n+O(1)
has been derived by Gaskov [110], matching the lower bound of n − Θ(log log n) derived in
Theorem 2.12.2.

The parity communication problem described above is defined in terms of the two sets

that are the inverse images of the parity function f
(n)
⊕ : Bn �→ B. As stated in Problem 9.28,

this function has a formula size of at least n2. Since DΩ(f) ≥ log2 LΩ0(f) (Theorem 9.2.2),
it follows that DΩ(f (n)

⊕ ) ≥ 2 log2 n, which matches the upper bound on the communication
complexity of the parity communication problem. Thus the protocol given earlier for this
problem is optimal.

We now introduce the monotone communication game and develop a relationship be-
tween its complexity and the depth of monotone functions over a monotone basis.

9.7.3 Monotone Depth and Communication Complexity
We specialize Theorem 9.7.1 to monotone functions by using the fact that if f : Bn �→ B is
monotone and there are two n-tuples u and v such that f(u) = 0 and f(v) = 1, then there
exists an index i, 1 ≤ i ≤ n, such that ui < vi, that is, ui = 0 and vi = 1.

The binary n-tuple x can be defined by the set {i |xi = 1} of indices on which variables
have value 1. This is a subset of [n] = {1, 2, . . . , n}. Let 2[n] be the power set of [n], that
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is, the set of all subsets of [n]. A monotone minterm (monotone maxterm) is a minimal
set of indices of variables that if set to 1 (0) cause f to assume value 1 (0). (The variables
of a monotone minterm are variables in a monotone prime implicant of f .) Let min(f)
and max (f) be the set of monotone minterms and monotone maxterms of f , respectively.
Observe that min(f) ∩ max (f) �= ∅ because if they have no elements in common, f can
be made to assume values 0 and 1 simultaneously for some assignment to the variables of f , a
contradiction.

DEFINITION 9.7.2 A monotone communication game (A, B) is defined by sets A, B ⊆ 2[n].
An instance of the game is a pair (a, b) where a ∈ A and b ∈ B. a is assigned to Player I
and b is assigned to Player II. Players alternate sending messages as in the communication game,
using a predetermined protocol. The goal of the problem is to find an integer i ∈ a ∩ b. The
communication complexity, Cmon(A, B), is defined as the minimum over all protocols Π of
the maximum number of bits exchanged under Π on any instance of (A, B):

Cmon(A, B) = min
Π

max
a∈A,b∈B

Π(a, b)

We now establish a relationship between this complexity measure and the circuit depth of
a Boolean function.

THEOREM 9.7.2 For every monotone Boolean function f : Bn �→ B,

DΩmon(f) = C(f−1(0), f−1(1)) = Cmon(min(f), max(f))

Proof We show that DΩmon(f) = C(f−1(0), f−1(1)) by specializing Lemmas 9.7.1 and
9.7.2 to monotone functions. In the base case of Lemma 9.7.1 since the circuit is monotone
we always discover a coordinate such that ui = 0 and vi = 1 and negations are not needed.
Thus, C(f−1(0), f−1(1)) ≤ DΩmon(f). In Lemma 9.7.2, since the protocol provides
a coordinate i such that ui = 0 and vi = 1, the circuit defined by it is monotone and
DΩmon(f) ≤ C(f−1(0), f−1(1)).

We show that C(f−1(0), f−1(1)) = Cmon(min(f), max(f)) in two stages. First we
show that Cmon(min(f), max(f)) ≤ C(f−1(0), f−1(1)). This follows because, given
any a ∈ min(f) and b ∈ max (f), we extend a and b to binary n-tuples u and v for
which ur = 0 for r ∈ a and vs = 1 for s ∈ b and use the protocol for the monotone
communication game to find an index i such that ui = 0 and vi = 1, that is, for which
i ∈ a ∩ b. Thus, the monotone communication game exchanges no more bits than the
standard game.

To show that C(f−1(0), f−1(1)) ≤ Cmon(min(f), max(f)), consider an instance
(u, v) of (U , V ) where U = f−1(0) and V = f−1(1). To solve the communication
problem (U , V ), let a(u) ∈ [n] be defined by r ∈ a(u) if and only if ar = 0 and let
b(v) ∈ [n] be defined by s ∈ b(v) if and only if vs = 1. The goal of the standard
communication game is to find an index i such that ui �= vi. It follows from the definition
of minterms and maxterms that there exist p ∈ min(f) and q ∈ max (f) such that p ⊆ a
and q ⊆ b. Since each player has unlimited computing resources available, computation of
p and q can be done with no communication cost. Now invoke the protocol on the instance
(p, q) of the monotone communication game (min(f), max(f)). This protocol returns an
index i ∈ p ∩ q that is also an index on which u and v differ. But this is a solution to
the instance of (u, v) of (f−1(0), f−1(1)). Thus, no more bits are communicated to solve
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the standard communication game than are exchanged with the monotone communication
game when the sets U and V are the inverse images of a monotone Boolean function.

In the next section we use the above result to derive a large lower bound on the monotone
depth of the clique function.

9.7.4 The Monotone Depth of the Clique Function
In this section we illustrate the use of the monotone communication game by showing that
in this game at least Ω(

√
k) bits must be exchanged between two players to compute the

clique function f
(n)
clique,k : Bn(n−1)/2 �→ B defined in Section 9.6 when k ≤ (n/2)2/3. The

inputs to f
(n)
clique,k are variables associated with the edges of a graph on n vertices. If an edge

variable ei,j = 1, the edge between vertices i and j is present. Otherwise, it is absent. By
Theorem 9.7.2, a lower bound of Ω(

√
k) on the number of bits that must be exchanged

between the two players to compute f
(n)
clique,k implies that f

(n)
clique,k has depth Ω(

√
k).

THE RULES OF THE GAME Fix n and k. The players in this communication game are each
given sets of edges of graphs on n vertices. Player I is given a set of edges that contains a k-

clique (an input on which f
(n)
clique,k has value 1, a positive instance) whereas Player II is given

a set of edges that does not contain a k-clique (an input on which it has value 0, a negative
instance). The goal of the game is to exchange the minimum number of bits for the worst-case
instances to permit the players to identify an edge variable that is 1 on a positive instance and
0 on a negative one. This number of bits is the communication complexity of the game.

To derive the lower bound on communication complexity, we restrict the graphs under
consideration by choosing them so that every protocol must exchange a lot of data (this cannot
make the worst cases any worse). In particular, we give Player I only k-cliques, the set of
graphs, CLQ, whose only edges are those between an arbitrary set of k vertices. We call Player
I the clique player. Also, we give Player II a (k − 1)-coloring drawn from the set COL of all
possible assignments of k − 1 colors to the n vertices of a graph G. The interpretation of a
(k − 1)-coloring is that two vertices can have the same color only if there is no edge between
them. Thus, any graph that has a (k − 1)-coloring cannot contain a k-clique because the k
vertices in such a subgraph must have different colors. We call Player II the color player. The
goal now becomes for the two players to find a monochromatic edge (both endpoints have the
same color) owned by the clique player.

In the standard communication game players alternate exchanging binary messages. We
simplify our discussion by assuming that each player transmits one bit simultaneously on each
round. We then find a lower bound on the number of rounds and use this as a lower bound
on the number of bits exchanged between the two players.

AN ADVERSARIAL STRATEGY We describe an adversarial strategy for the selection of cliques and
colorings that insures that many rounds are needed for the two players to arrive at a decision.
To present the strategy, we need some notation.

Let CLQ0 denote the set of graphs G = (V , E) on n vertices that contain only those edges
in a k-clique. It follows that CLQ0 contains

(
n
k

)
graphs. Let COL0 denote the set of (k − 1)-

colorings of graphs on n vertices, that is, COL0 = {c | c : V �→ [k − 1]}, where [k − 1]
denotes the set {1, 2, . . . , k − 1}. It follows that COL0 contains (k − 1)n (k − 1)-colorings.
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We execute a series of rounds. During each round each player provides one bit of infor-
mation to the other. This information has the effect of reducing the uncertainty of the color
player about the possible k-cliques held by the clique player and of reducing the uncertainty of
the clique player about the possible (k − 1)-colorings held by the color player. The adversary
makes the uncertainty large after each round so that the number of rounds needed will be large
and a structure of the sets of cliques and colorings that can be analyzed will be maintained.
The game ends when both players have found a monochromatic edge that is in a clique.

Let Pt ⊆ V and Mt ⊆ V denote the vertices that after the tth round are present in every
k-clique and missing from every k-clique, respectively. (Let pt = |Pt| and mt = |Mt|.) Since
vertices in Mt are not in any cliques after the tth round, as we shall see, each such vertex can
be assigned the same color as a “friend” after all vertices not in Mt have been colored. Also,
after the tth round the vertices in a k-clique consist of vertices in V − Mt of which those in
Pt are the same for all such cliques.

Let CLQ(V , Pt, Mt) denote the set of k-cliques containing Pt but no vertex in Mt. Let
COL(V , Mt) denote the (k − 1)-colorings of vertices not in Mt after the tth round. Then
|CLQ(V , Pt, Mt)| =

(
n−pt−mt

k−pt−mt

)
and |COL(V , Mt)| = (n − mt)k−1 are the maximum

numbers of k-cliques and (k − 1)-colorings that are possible after the tth round. Let CLQt

and COLt denote the actual number of cliques and colorings that are consistent with the
information exchanged between players after the tth round.

Given two sets A and B, A ⊆ B, we introduce a measure μB(A) = |A|/|B| used in
deriving our lower bound. For an element x ∈ A, μB(A) is a rough measure of the amount
of information that can be deduced about x. The smaller the value of μB(A), the more
information we have about x. This measure is specialized to cliques and colorings after the tth
round:

μCLQ(V ,Pt,Mt)(CLQt) = |CLQt|/|CLQ(V , Pt, Mt)|
μCOL(V ,Mt)(COLt) = |COLt|/|COL(V , Mt)|

Since the color player does not know the identity of vertices in Pt until after the tth
round, its information about the clique held by the other player is measured by pt and
μCLQ(V ,Pt,Mt)(CLQt). Since the clique player only knows the color of vertices Mt that
are missing in all cliques after the tth round, its information about a (k − 1)-coloring by the
color player is measured by mt and μCOL(V ,Mt)(COLt).

The number of rounds, T , is large if for t = T no edge present in all remaining cliques
CLQt that is monochromatic in all remaining colorings COLt. We show that an adversary
can choose the sets CLQt and COLt at each round so that many rounds are needed.

SELECTION OF THE SETS CLQT AND COLT BY THE ADVERSARY: Let the value of the bits sent by
the clique and color players be bCLQ and bCOL, respectively. At the tth round the following
algorithm is used to choose CLQt and COLt:

1) Let P = Pt−1, p = pt, M = Mt−1 and m = mt−1. Let CLQ1 be the larger of the
two subsets of CLQt−1 consistent with the values bCLQ = 0 and bCLQ = 1. Thus,
μCLQ(V ,P ,M)(CLQ1) ≥ μCLQ(V ,P ,M)(CLQt−1)/2.

2) Let CLQ be a collection of k-cliques. Then the set of cliques q in CLQ containing the
vertex v is denoted CLQ(v) = {q ∈ CLQ | v ∈ q}.
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Let CLQ = CLQ1. As long as there exists v ∈ V − P − M such that the following is
true:

μCLQ(V ,P ,M)(CLQ(v)) ≥ 2(k − p−m)
(n− p −m)

μCLQ(V ,P ,M)(CLQ) (9.2)

replace P by P ∗ = P ∪ {v}, p by p∗ = p + 1, and CLQ by CLQ∗ = CLQ(v). Here
(k−p−m)μCLQ(V ,P ,M)(CLQ)/(n−p−m) is the average of μCLQ(V ,P ,M)(CLQ(v))
over all v ∈ V − P − M . Thus, CLQ(v) has measure at least twice the average.

Since |CLQ(V , P ∗, M)| = (k−p−m)|CLQ(V , P , M)|/(n−p−m) after each iteration
of this loop, the following bound holds:

μCLQ(V ,P ∗,M)(CLQ∗) ≥ 2μCLQ(V ,P ,M)(CLQ)

That is, the renormalized measure of the set of cliques after one iteration of the loop is at
least double that of the measure before the iteration.

After exiting from this loop let CLQ∗
t = CLQ∗ and let Pt = P . Since Pt contains

pt − pt−1 more items than Pt−1, the following inequality holds:

μCLQ(V ,Pt,Mt)(CLQ∗
t ) ≥ 2pt−pt−1μCLQ(V ,Pt−1,Mt−1)(CLQ1)

≥ 2pt−pt−1μCLQ(V ,Pt−1,Mt−1)(CLQt−1)/2 (9.3)

Furthermore, for any vertex v remaining in V − P the condition expressed in (9.2) is
violated, so that the following holds for v ∈ V − P , where α = 2(k − pt −mt−1)/(n−
pt −mt−1):

μCLQ(V ,Pt,Mt−1)({q ∈ CLQ∗
t | v ∈ q}) < α

(
μCLQ(V ,Pt,Mt−1)(CLQ∗

t )
)

(9.4)

3) Let COL∗
t = {c ∈ COLt−1 | c is 1-1 on Pt}. That is, COL∗

t is the set of (k − 1)-
colorings in COLt that assigns unique colors to vertices in Pt. By restricting the (k − 1)-
colorings we do not increase the number of rounds. In Lemma 9.7.3 we develop a lower
bound on μCOL(V ,Mt−1)(COL∗

t ) in terms of μCOL(V ,Mt−1)(COLt−1).

4) Let M = Mt−1 and m = mt−1. Let COL0 and COL1 denote the subsets of COL∗
t

consistent with the values bCOL = 0 and bCOL = 1, respectively. Let COL be the larger
of these two sets. Then μCOL(V ,M)(COL) ≥ μCOL(V ,M)(COL∗

t )/2.

5) The set COLt(u, v) = {c ∈ COL | c(u) = c(v)} contains those (k − 1)-colorings in
COL for which vertices u and v have the same color.

As long as there exist u, v ∈ V −M such that the following is true:

μCOL(V ,M)(COLt(u, v)) ≥ 2μCOL(V ,M)(COL)/(k − 1)

let w be one of u and v that is not in P (they cannot both be in P and have the same color
because each coloring is 1-1 on P ); replace M by M∗ = M ∪ {w}, m by m∗ = m + 1,
and COL by COL∗ = COLt(u, v).

The term μCOL(V ,M)(COL)/(k− 1) is the average of μCOL(V ,M)(COLt(u, v)) over all
u and v in V − M . Thus, COL∗ contains (k − 1)-colorings whose measure is at least
twice the average.
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Since |COL(V , M∗)| = |COL(V , M)|/(k − 1) after each iteration of this loop, the
following holds:

μCOL(V ,M∗)(COL∗) ≥ 2μCOL(V ,M)(COL)

That is, the renormalized measure of the set of (k − 1)-colorings after each loop iteration
is at least double that of the measure before the iteration.

After exiting from this loop, let Mt = M . Since Mt contains mt−mt−1 more items than
Mt−1, the following inequality holds:

μCOL(V ,Mt−1)(COL∗) ≥ 2mt−mt−1μCOL(V ,Mt−1)(COL)

≥ 2mt−mt−1μCOL(V ,Mt−1)(COL∗
t )/2 (9.5)

6) Let COLt = COL∗, Mt = M , and CLQt = {q ∈ CLQ∗
t | Mt ∩ q = ∅}. Thus, CLQt

does not contain any cliques with vertices in Mt. In Lemma 9.7.4 we develop a lower
bound on μCLQ(V ,Pt,Mt−1)(CLQt) in terms of μCLQ(V ,Pt,Mt−1)(CLQ∗

t ).

PERFORMANCE OF THE ADVERSARIAL STRATEGY We establish three lemmas and then derive
the lower bound on the number of rounds of the communication game.

LEMMA 9.7.3 After step 3 of the adversarial selection the following inequality holds:

μCOL(V ,Mt−1)(COL∗
t ) ≥

(
1 − (pt + 1)2

k − 1

)
μCOL(V ,Mt−1)(COLt−1)

Proof Recall the definition of COLt(u, v) = {c ∈ COL | c(u) = c(v)}. Consider the
results of step 3 of the tth round in the adversary selection process. Because of the choices
made in step 5 in the (t − 1)st round and the choice of COL0, the following inequality
holds for all t > 0 and u, v ∈ V −Mt−1 when u �= v:

μCOL(V ,Mt−1)(COLt(u, v)) < 2μCOL(V ,Mt−1)(COLt−1)/(k − 1)

Because Mt = Mt−1 at step 3 of the tth round and Pt ⊆ V −Mt, the same bound applies
for u and v in Pt.

The set COLt−1 is reduced to COL∗
t = {c ∈ COLt−1 | c is 1 to 1 on Pt} by discard-

ing (k − 1)-colorings for which u and v are in Pt and have the same color. From the above
facts the following inequalities hold (here instances of the measure μ carry the subscript
COL(V , Mt−1)):

μ(COL∗
t ) = μ({c ∈ COLt−1 | c is 1 to 1 on Pt})

= μ(COLt−1) − μ

⎛⎝ ⋃
u,v∈Pt, u �=v

COLt(u, v)

⎞⎠
≥ μ(COLt−1) −

∑
u,v∈Pt, u �=v

COLt(u, v)

>

(
1 −

(
pt

2

)
2

k − 1

)
μ(COLt−1)

>

(
1 − (pt + 1)2

k − 1

)
μ(COLt−1)
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From this the conclusion follows.

LEMMA 9.7.4 After step 6 of the adversarial selection the following inequality holds:

μCLQ(V ,Pt,Mt−1)(CLQt) ≥
(

1 − 2kmt

n

)
μCLQ(V ,Pt,Mt−1)(CLQ∗

t )

Proof As stated in (9.4), after step 2 of the tth round of the adversary selection process we
have for all v ∈ V − Pt −Mt−1 the following inequality:

μCLQ(V ,Pt,Mt−1)({q ∈ CLQ∗
t | v ∈ q}) <

2(k − pt −mt−1)
(n− pt −mt−1)

μCLQ(V ,Pt,Mt−1)(CLQ∗
t )

Since Mt ⊆ V − Pt, this bound applies to v ∈ Mt. In the rest of this proof all instances of
μ carry the subscript CLQ(V , Pt, Mt−1).

Since CLQt = {q ∈ CLQ∗
t | Mt ∩ q = ∅}, after step 6 the following inequalities hold:

μ(CLQt) = μ({c ∈ CLQt | Mt ∩ q = ∅})

= μ(CLQ∗
t )− μ

( ⋃
v∈Mt

{c ∈ CLQ∗
t | v ∈ q}

)

≥
(

1 − 2(k − pt −mt−1)mt

(n− pt −mt−1)

)
μ(CLQ∗

t )

≥
(

1 − 2kmt

n

)
μ(CLQ∗

t )

From this the conclusion follows.

The third lemma sets the stage for the principal result of this section.

LEMMA 9.7.5 Let k ≥ 2 and t ≤
√

k/4 and t ≤ n/(8k). Then the following inequalities hold:

μCLQ(V ,Pt,Mt−1)(CLQt) ≥ 2pt−2t

μCOL(V ,Mt)(COLt) ≥ 2mt−2t

Proof The inequalities hold for t = 0 because μCLQ(V ,P0)(CLQ0) = μCOL(V ,M0)(COL0) =
1. We assume as inductive hypothesis that the inequalities hold for the first t − 1 rounds
and show they hold for the tth round as well.

Using the inductive hypothesis and (9.3), we have

μCLQ(V ,Pt,Mt−1)(CLQ∗
t ) ≥ 2pt−pt−1μCLQ(V ,Pt−1,Mt−1)(CLQt−1)/2 ≥ 2pt−2t+1(9.6)

Since μCLQ(V ,Pt)(CLQ∗
t ) ≤ 1, we conclude that pt ≤ 2t − 1. Using this result, the

assumption that t ≤
√

k/4, Lemma 9.7.3, and the inductive hypothesis, we have

μCOL(V ,Mt−1)(COL∗
t ) ≥

(
1 − 4t2

k − 1

)
μCOL(V ,Mt−1)(COLt−1)

≥
(

1 − k

4(k − 1)

)
μCOL(V ,Mt−1)(COLt−1)

≥ 1
2
μCOL(V ,Mt−1)(COLt−1)

≥ 2mt−1−2t+1
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Combining this and (9.5) (note that in step 6 we let COLt = COL∗), we have the first
of the two desired conclusions, namely μCOL(V ,Mt)(COLt) ≥ 2mt−2t. This implies that
mt ≤ 2t. Applying this to the inequality in Lemma 9.7.4 and using the condition t ≤
n/(8k), we get the following inequality:

μCLQ(V ,Pt,Mt−1)(CLQt) ≥ μCLQ(V ,Pt,Mt−1)(CLQ∗
t )/2

Combining this with the lower bound given in (9.6), we have the second of the two desired
conclusions, namely, μCLQ(V ,Pt,Mt−1)(CLQt) ≥ 2p2−2t.

We now state the principal conclusion of this section.

THEOREM 9.7.3 Let 2 ≤ k ≤ (n/2)2/3. Then the monotone communication complexity of the
k-clique function f

(n)
clique,k is Ω(

√
k).

Proof Run the adversarial selection process for T =
√

k/4 steps to produce sets CLQT ,
COLT , PT , and MT . Below we show that CLQT and COLT are not empty. Give the
clique player a k-clique q ∈ CLQT and the color player a (k − 1)-coloring c ∈ COLT . To
show that the two players cannot agree in T or fewer rounds on an edge in a clique in CLQT

that is monochromatic in all c ∈ COLT , assume they can, and let (u, v) ∈ q be that edge.
If follows that both u and v are in MT . But this cannot happen because, by construction,
q ∩ MT = ∅.

To show that CLQT and COLT are not empty, observe that k ≤ (n/2)2/3 and t ≤√
k/4 imply that t ≤ n/(8k). Thus, Lemma 9.7.5 can be invoked, which implies that

pt, mt ≤ 2t ≤
√

k/2 ≤ k/2 < n. Invoking the definitions, the following inequalities also
hold.

CLQt ≥ 2pt−2tCLQ(V , Pt, Mt−1) > 0

COLt ≥ 2mt−2tCOL(V , Mt) > 0

Since the right-hand sides are non-zero, we have the desired conclusion.

9.7.5 Bounded-Depth Circuits
As explained earlier, bounded-depth circuits are studied to help us understand the depth of
bounded fan-in circuits. Bounded-depth circuits for arbitrary Boolean functions require that
the fan-in of some gates be unbounded because otherwise only a bounded number of inputs
can influence the output(s).

In Section 2.3 we encountered the DNF, CNF, SOPE, POSE, and RSE normal forms.
Each of these corresponds to a circuit of bounded depth. The DNF and SOPE normal forms
represent Boolean functions as the OR of the AND of literals. The OR and each of the ANDs
is a function of a potentially unbounded number of literals. The same statement applies to
the CNF and POSE normal forms when AND and OR are exchanged. The RSE normal form
represents Boolean functions as the EXCLUSIVE OR of the AND of variables, that is, without
the use of negation. Again, the fan-in of the two types of operation is potentially unbounded.

As stated in Problems 2.8 and 2.9, the SOPE and POSE of the parity function f
(n)
⊕ have

exponential size, as does the RSE of the OR function f
(n)
∨ . In Problem 2.10 it is stated that

the function f
(n)
mod 3 has exponential size in the DNF, CNF, and RSE normal forms.
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In this section we show that every bounded-depth circuit for the parity function f
(n)
⊕ over

the basis containing the NOT gate on one input and the AND and OR gates on an arbitrary
number of inputs has exponential size. Thus, the depth-2 result extends to arbitrary depth.

BOUNDED-DEPTH PARITY CIRCUITS HAVE EXPONENTIAL SIZE We use an approximation method

to derive a lower bound on the size of a bounded-depth circuit for f
(n)
⊕ . This method parallels

almost exactly the method of Section 9.6.3. Starting with gates most distant from the output
and progressing toward it, replace each gate of a given circuit by an approximating circuit.
We show that as each replacement is made, the number of new errors it introduces is small.
However, we also show that after all gates are approximated, the number of errors between the

approximating circuit and f
(n)
⊕ is large. This implies that the number of gates replaced is large.

The approximation method used here replaces each gate in a circuit by a polynomial over
GF (3), the three-element field containing {−1, 0, 1}, with the property that if the variables
of such a polynomial assume values in B = {0, 1}, the value of the polynomial is in B. For
example, the polynomial x1(1 − x2)x3 has value 1 over B only when x1 = x3 = 1 and
x2 = 0 and has value 0 otherwise. Thus, it corresponds exactly to the minterm x1x2x3. Since
every minterm can be represented as a polynomial of this kind, every Boolean function f can
realized by a polynomial over GF (3) by forming the sum of one such polynomial for each
of its minterms. A b-approximator is polynomial of degree b that approximates a Boolean
function.

Although we establish the lower bound for the basis containing NOT and the unbounded
fan-in AND and OR gates, the result continues to hold if the unbounded fan-in MOD3 function
is added to the basis. (See Problem 9.41.) We begin by showing that the function computed
by a circuit C containing size(C) gates cannot differ from its b-approximator on too many
input tuples.

LEMMA 9.7.6 Let f : Bn �→ B be computed by a circuit C of depth d. There is a (2k)d-
approximator circuit Ĉ computing f̂ : Bn �→ B such that f and f̂ differ on at most size(C)2n−k

input n-tuples, where n is the number of inputs on which C depends and size(C) is the number
of gates that it contains.

Proof We construct a b-approximator for C, b = (2k)d, by approximating inputs (xi and
xi are approximated exactly on B by xi and (1− xi)), after which we approximate gates all
of whose inputs have been approximated until the output gate has been approximated. We
establish the result of the lemma by induction.

We treat the statement of the lemma as our inductive hypothesis and show that if it holds
for d = D − 1, it holds for d = D. The hypothesis holds on inputs, namely, when d = 0.
Suppose the hypothesis holds for d = D− 1. Since C has depth d, each of the inputs to the
output gate has depth at most D − 1 and satisfies the hypothesis. The output gate is AND,
OR, or NOT. Suppose it is NOT. Let g be the function associated with its input. We replace
the NOT gate with the function (1− g), which introduces no new errors. Since g and 1− g
have the same degree, the inductive hypothesis holds in this case.

If the output gate is the AND of g1, g2, . . . , gm, it can be represented exactly by the
function g1g2 · · · gm. However, this polynomial has degree m(2k)d−1 if each of its inputs
has degree at most (2k)d−1; this violates the inductive hypothesis if m > 2k, which may
happen because the fan-in of the gate is potentially unbounded. Thus we must introduce
some error in order to reduce the degree of the approximating polynomial. Since the OR of
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g1, g2, . . . , gm can be represented by 1 − (1 − g1)(1 − g2) · · · (1 − gm) using DeMorgan’s
Rules, both AND and OR of g1, g2, . . . , gm have the same degree. We find an approximating
polynomial for both AND and OR by approximating the OR gate.

We approximate the OR of g1, g2, . . . , gm by creating subsets S1, S2, . . . , Sk of {g1, g2,
. . . , gm}, computing fi = (

∑
j∈Si

gj)2, and combining these results in

OR(f1, f2, . . . , fk) = 1 − (1 − f1)(1 − f2) · · · (1 − fk)

The degree of this approximation is 2k times the maximal degree of any polynomial in the
set {g1, g2, . . . , gm} or at most (2k)d, the desired result.

There is no error in this approximation if the original OR has value 0. We now show
that there exist subsets S1, S2, . . . , Sk such that the error is at most 2n−k when the original
OR has value 1. Let’s fix on a particular input n-tuple x to the circuit. Suppose each subset
is formed by deciding for each function in {g1, g2, . . . , gm} with probability 1/2 whether
or not to include it in the set. If one or more of {g1, g2, . . . , gm} is 1 on x, the probability
of choosing a function for set whose value is 1 is at least 1/2. Thus, the probability that
OR(f1, f2, . . . , fk) has value 0 when the original OR has value 1 is the probability that each
of f1, f2, . . . , fk has value 0, which is at most 2−k. Since the sets {S1, S2, . . . , Sk} result
in an error on input x with probability at most 2−k, the average number of errors on input
x, averaged over all choices for the k sets, is at most 2−k and the average number of errors
on the set of 2n inputs is at most 2n−k. It follows that some set {S1, S2, . . . , Sk} (and
a corresponding approximating function) has an incorrect value on at most 2n−k inputs.
Since by the inductive hypothesis at most (size(C) − 1)2n−k errors occur on all but the
output gate, at most size(C)2n−k errors occur on the entire circuit.

The next result demonstrates that a
√

n-approximator (obtained by letting k = n1/2d/2)
and the parity function must differ on many inputs. This is used to show that the circuit being
approximated must have many gates.

LEMMA 9.7.7 Let f̂ : Bn �→ B be a
√

n-approximator for f
(n)
⊕ . Then, f̂ and f

(n)
⊕ differ on at

least 2n/50 input n-tuples.

Proof Let U ⊆ Bn be the n-tuples on which the functions agree. We derive an upper
bound on |U | of β = (49)2n/50 that implies the lower bound of the lemma. We derive
this bound indirectly. Since there are 3|U| functions g : U �→ {−1, 0, 1}, assign each one
a different polynomial and show that the number of such polynomials is at most 3β , which
implies that |U | ≤ β.

Transform the polynomial in the variables x1, x2, . . . , xn representing f
(n)
⊕ by mapping

xi to yi = 2xi − 1. This mapping sends 1 to 1 and 0 to −1. (Observe that y2
i = 1.) It

does not change the degree of a polynomial. In these new variables f
(n)
⊕ can be represented

exactly by the polynomial y1y2 · · · yn.
Given a function g : U �→ {−1, 0, 1}, extend it arbitrarily to a function g̃ : Bn �→

{−1, 0, 1}. Let p be a polynomial in Y = {y1, y2, . . . , yn} that represents g̃ on U exactly.
Let cyi1yi2 · · · yit

be a term in p for some constant c ∈ {−1, 1}. We show that if t is larger
than n/2 we can replace this term with a smaller-degree term.

Let T = {yi1 , yi2 , . . . , yit
} and T = Y − T . The term cyi1yi2 · · · yit

can be written
as cΠ T , where by Π T we mean the product of all terms in T . With y2

i = 1, this may

be rewritten as cΠ Y Π T . Since f
(n)
⊕ = Π Y , on the set U this is equivalent to cf̂Π T ,



450 Chapter 9 Circuit Complexity Models of Computation

which has degree
√

n + n − |T |. Thus, a term cyi1yi2 · · · yit
of degree t ≥ n/2 can

be replaced by a term of degree
√

n + n − t. It follows that the number of polynomials

(and functions) representing functions whose values coincide with f
(n)
⊕ on U is the number

of polynomials of degree at most
√

n + n/2. Since there are
(
n
j

)
ways to choose a term

containing j variables of Y , there are at most N ways to choose polynomials representing
functions g : U �→ {−1, 0, 1}, where N satisfies the following bound:

N ≤

√
n+(n/2)∑

j=0

(
n

j

)

For sufficiently large n, the bound to N is approximately 0.9772 · 2n < (49/50)2n. (See
Problem 9.7.) Since each of the N terms can be included in a polynomial with coefficient
−1, 0, or 1, there are at most 3N distinct polynomials and corresponding functions g :
U �→ {−1, 0, 1}, which is the desired conclusion.

We summarize these two results in Theorem 9.7.4.

THEOREM 9.7.4 Every circuit of depth d for the parity function f
(n)
⊕ has a size exceeding 2n1/2d/2/50

for sufficiently large n.

Proof Let U be the set of n-tuples on which f
(n)
⊕ and its approximation f̂ differ. From

Lemma 9.7.6, |U | is at most size(C)2n−k. Now let k = n1/2d/2. From Lemma 9.7.7 these
two functions must differ on at least 1

50 2n input n-tuples. Thus, size(C)2n−k ≥ 1
50 2n from

which the conclusion follows.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Problems
MATHEMATICAL PRELIMINARIES

9.1 Show that the following identity holds for integers r and L:⌈
L

r + 1

⌉
+
⌊

rL

r + 1

⌋
= L

9.2 Show that a rooted tree of maximal fan-in r containing k internal vertices has at most
k(r − 1) + 1 leaves and that a rooted tree with l leaves and fan-in r has at most l − 1
vertices with fan-in 2 or more and at most 2(l − 1) edges.

9.3 For positive integers n1, n2, a1, and a2, show that the following identity holds:

n2
1

a1
+

n2
2

a2
≥ (n1 + n2)2

(a1 + a2)

9.4 The external path length e(T , L) of a binary tree T with L leaves is the sum of the
lengths of the paths from the root to the leaves. Show that e(T , L) ≥ L�log2 L� −
2�log2 L� + L.
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Hint: Argue that the external path length is minimal for a nearly balanced binary tree.
Use this fact and a proof by induction to obtain the external path length of a binary
tree with L = 2k for some integer k. Use this result to establish the above statement.

9.5 For positive integers r and s, show that �s/r�(s mod r) + �s/r�(r − s mod r) = s.

Hint: Use the fact that for any real number a, �a�− �a� = 1 if a is not an integer and
0 otherwise. Also use the fact that s mod r = s− �s/r� · r.

9.6 (Binomial Theorem) Show that the coefficient of the term xiyn−i in the expansion of
the polynomial (x + y)n is the binomial coefficient

(
n
i

)
. That is,

(x + y)n =
n∑

i=0

(
n

i

)
xiyn−i

9.7 Show that the following sum is closely approximated by 0.4772 · 2n for large n:

(n/2)+
√

n∑
i=(n/2)

(
n

i

)

Hint: Use the fact that n! can be very closely approximated by
√

2πnnne−n to ap-
proximate

(
n
i

)
. Then approximate a sum by an integral (see Problem 2.23) and consult

tables of values for the error function erf(x) =
∫ x

0 e−t2
d t.

9.8 Let 0 ≤ x ≤ y. Show that x +
√

y − x ≥ √
y.

CIRCUIT MODELS AND MEASURES

9.9 Provide an algorithm that produces a formula for each circuit of fan-out 1 over a basis
that has fan-in of at most 2.

9.10 Show that any monotone Boolean function f (n) : Bn �→ B can be expanded on its
first variable as

f(x1, x2, . . . , xn) = f(0, x2, . . . , xn) ∨ (x1 ∧ f(1, x2, . . . , xn))

9.11 Show that a circuit for a Boolean function (one output vertex) over the standard basis
can be transformed into one that uses negation only on inputs by at most doubling the
number of AND, OR, and NOT gates and without changing its depth by more than a
constant factor.
Hint: Find the two-input gate closest to the output gate that is connected to a NOT

gate. Change the circuit to move the NOT gate closer to the inputs.

RELATIONSHIPS AMONG COMPLEXITY MEASURES

9.12 Using the construction employed in Theorem 9.2.1, show that the depth of a function
f : Bn �→ Bm in a circuit of fan-out s over a complete basis Ω of fan-in r satisfies the
inequality

Ds,Ω(f) ≤ DΩ(f) (1 + l(Ω) + l(Ω) logs (rCs,Ω(f)/D))
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9.13 Show that there are ten functions f with LΩ(f) = 2 that are dependent on two

variables and that each can be realized from a circuit for f
(1)
mux plus at most one instance

of NOT on an input to f
(1)
mux and on its output.

9.14 Extend the upper bound on depth versus formula size of Theorem 9.2.2 to monotone
functions.

LOWER-BOUND METHODS FOR GENERAL CIRCUITS

9.15 Show that the function f(x1, x2, . . . , xn) = x1 ∧ x2 ∧ · · · ∧ xn has circuit size �(n−
1)/(r − 1)� and depth �logr n� over the basis containing the r-input AND gate.

9.16 The parity function f
(n)
⊕ : Bn �→ B has value 1 when an odd number of its variables

have value 1 and 0 otherwise. Derive matching upper and lower bounds on the size

and depth of the smallest and shallowest circuit(s) for f
(n)
⊕ over the basis B2.

9.17 Show that the function f
(n)
mod 4 defined to have value 1 if the sum of the n inputs

modulo 4 is 1 can be realized by a circuit over the basis B2 whose size is 2.5n + O(1).
Hint: Show that the function is symmetric and devise a circuit to compute the sum of
three bits as the sum of two bits.

9.18 Over the basis B2 derive good upper and lower bounds on the circuit size of the func-

tions f
(n)
4 : Bn �→ B and f

(n)
5 : Bn �→ B defined as

f
(n)
4 = ((y + 2) mod 4) mod 2

f
(n)
5 = ((y + 2) mod 5) mod 2

Here y =
∑n

i=1 xi and
∑

and + denote integer addition.

9.19 Show that the set of Boolean functions on two variables that depend on both variables
contains only AND-type and parity-type functions. Here an AND-type function com-
putes (xa∧yb)c for Boolean constants a, b, c whereas a parity-type function computes
x ⊕ y ⊕ c for some Boolean constant c.

9.20 The threshold function τ
(n)
t : Bn �→ B on n inputs has value is 1 if t or more inputs

are 1 and 0 otherwise. Show that over the basis B2 that CB2(τ
(n)
2 ) ≥ 2n− 4.

9.21 A formula for the parity function f
(n)
⊕,c : Bn �→ B on n inputs is given below. Show

that it has circuit size exactly 3(n− 1) over the standard basis when NOT gates are not
counted:

f
(n)
⊕,c = x1 ⊕ x2 ⊕ · · · ⊕ xn ⊕ c

9.22 Show that f
(n)
⊕,c has circuit size exactly 4(n−1) over the standard basis when NOT gates

are counted.

9.23 Show that f
(n)
⊕,c has circuit size exactly 7(n− 1) over the basis {∧,¬}.



c©John E Savage Problems 453

LOWER BOUNDS TO FORMULA SIZE

9.24 Show that the multiplexer function f
(p)
mux can be realized by a formula of size 32p − 2

in which the total number of address variables is 2(2p − 1).

Hint: Expand the function f
(p)
mux as suggested below, where a(k) denotes the k com-

ponents of a with smallest index and P = 2p:

f (p)
mux(a

(p), yP−1, . . . , y0) = f (1)
mux(ap−1, f (p−1)

mux (a(p−1), yP−1, . . . , yP/2),

f (p−1)
mux (a(p−1), yP/2−1, . . . , y0))

Also, represent f
(1)
mux as shown below.

f (1)
mux(a, y1, y0) = (a ∧ y0) ∨ (a ∧ y1)

9.25 Show that Nečiporuk’s method cannot provide a lower bound larger than O(n2/ log n)
for a function on n variables.

9.26 Derive a quadratic upper bound on the formula size of the parity function f
(n)
⊕ over

the standard basis.

9.27 Nečiporuk’s function is defined in terms of an �n/m�×m matrix of Boolean variables,
X = {xi,j}, m = �log2 n� + 2, and a matrix Σ = {σi,j} of the same dimen-
sions in which each entry σi,j is a distinct m-tuple over B containing at least two 1s.
Nečiporuk’s function, N(X), is defined as

N(X) =
⊕
i,j

xi,j

∧ ⊕
k=1

(k �=i)

∏
l such that
σi,j(l)=1

xk,l

Here
⊕

denotes the exclusive or operation. Show that this function has formula size
Ω(n2/ log n) over the basis B2.

9.28 Use Krapchenko’s method to derive a lower bound of n2 on the formula size of the

parity function f
(n)
⊕ : Bn �→ B.

9.29 Use Krapchenko’s method to derive a lower bound of Ω(t(n− t + 1)) on the formula
size over the standard basis of the threshold function τ

(n)
t , 1 ≤ t ≤ n− 1.

9.30 Generalize Krapchenko’s lower-bound method as follows. Let f : Bn �→ B and let
A ⊆ f−1(0) and B ⊆ f−1(1). Let Q = [qi,j ] be defined by qi,j = 1 if xi ∈ A and
xj ∈ B are neighbors and qi,j = 0 otherwise. Let P = QQT and P = QT Q. Then
pr,s is the number of common neighbors to xr and xs in B. The matrices P and
P are symmetric and their largest eigenvalues, λ(P ) and λ(P ), are both non-negative
and λ(P ) = λ(P ). Show that

LΩ(f) ≥ λ(P )

9.31 Under the conditions of Problem 9.30, let

D(f) =
1
|B|

∑
r,s

pr,s, D(f) =
1
|B|

∑
r,s

pr,s, K(f) =
|N (A, B)|2
|A||B|
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where K(f) is the lower bound given in Theorem 9.4.2. Show that

K(f) ≤ D(f) ≤ λ(P )
K(f) ≤ D(f) ≤ λ(P )

Hint: Use the fact that the largest eigenvalue of a matrix P satisfies

λ(P ) = max
x�=0

xT Px

xT x

Also, let si be the sum of the elements in the ith column of the matrix Q. Show that∑
i s2

i =
∑

r,s pr,s.

LOWER-BOUND METHODS FOR MONOTONE CIRCUITS

9.32 Consider a monotone circuit on n inputs that computes a monotone Boolean function
f : Bn �→ B. Let the circuit have k two-input AND gates, one of them the output gate,
and let these gates compute the Boolean functions g1, g2, . . . , gk = f , where the AND

gates are inverse-ordered by their distance from the output gate computing f . Since the
function gj is computed using the values of x1, x2, . . . , xn, g1, . . . , gj−1, show that gj

can be computed using at most n+ j−2 two-input OR gates and one AND gate. Show
that this implies the following upper bound on the monotone circuit size of f :

CΩmon(f) ≤ kn +
(

k − 1
2

)
− 1

Let C∧(f) denote the minimum number of AND gates used to realize f over the mono-
tone basis. This result implies the following relationship:

CΩmon(f) = O
(
(C∧(f))2

)
How does this result change if the gate associated with f is an OR gate?

9.33 Show that the prime implicants of a monotone function are monotone prime impli-
cants.

9.34 Find the monotone implicants of the Boolean threshold function τ
(n)
t : Bn �→ B,

1 ≤ t ≤ n.

9.35 Using the gate-elimination method, show that CΩmon(τ
(n)
2 ) ≥ 2n− 3.

9.36 Show that an expansion of the form of equation (9.1) on page 420 holds for every
monotone function.

9.37 Show that the f
(n)
clique,k : Bn(n−1)/2 �→ B can be realized by a monotone circuit of size

O(nn).

9.38 Show that the largest value assumed by min(
√

k − 1/2, n/(2k)) under variation of k
is Ω(n1/3).
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CIRCUIT DEPTH

9.39 Show that the communication complexity of a problem (U , V ), U , V ⊆ Bn, satisfies
C(U , V ) ≤ n+log∗2 n, where log∗2 n is the number of times that �log2� must be taken
to reduce n to zero.

Hint: Complete the definition of a protocol in which Player I sends Player II n −
�log2 n� bits on the first round and Player II responds with a message specifying
whether or not its n-tuple agrees with that of Player I and if not, where they differ.

9.40 Consider the communication problem defined by the following sets:

U = {u | 3 divides the number of 1s in u}
V = {v | 3 does not divide the number of 1s in u}

Show that a protocol exists that solves this problem with communication complexity
3�log2 n�.

9.41 Show that Theorem 9.7.4 continues to hold when the MOD3 function is added to the
basis where MOD3 is the Boolean function that has value 1 when the number of 1s
among its inputs is not divisible by 3.

Chapter Notes
The dependence of circuit size on fan-out stated in Theorem 9.2.1 is due to Johnson et al.
[150]. The depth bound implied by this result is proportional to the product of the depth and
the logarithm of the size of the original circuit. Hoover et al. [138] have improved the depth
bound so that it is proportional to (logr s)DΩ(f) without sacrificing the size bound of [150].

The relationship between formula size and depth in Theorem 9.2.2 is due to Spira [314],
whose depth bound has a coefficient of proportionality of 2.465 over the basis of all Boolean
functions on two variables. Over the basis of all Boolean functions except for parity and its
complement, Preparata and Muller [259] obtain a coefficient of 1.81. Brent, in a paper on the
parallelization of arithmetic formulas [58], has effectively extended the relationship between
depth and formula size to monotone functions. (See also [359].)

An interesting relationship between complexity measures that is omitted from Section 9.2,
due to Paterson and Valiant [240], shows that circuit size and depth satisfy the inequality

DΩ(f) ≥ 1
4
CΩ(f) log CΩ(f)−O(CΩ(f))

The lower bounds of Theorem 9.3.2 on functions in Q
(n)
2,3 are due to Schnorr [300],

whereas that of Theorem 9.3.3 on the multiplexer function is due to Paul [244]. Blum [48],
building on the work of Schnorr [302], has obtained a lower bound of 3(n−1) for a particular
function of n variables over the basis B2. This is the best circuit-size lower bound for this
basis. Zwick [374] has obtained a lower bound of 4n for certain symmetric functions over the
basis U2. Red’kin [274] has obtained lower bounds with coefficients as high as 7 for certain
functions over the bases {∧,¬} and {∨,¬}. (See Problem 9.23.) Red’kin [276] has used the
gate-elimination method to show that the size of the ripple-adder circuit of Section 2.7 cannot
be improved.
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The coefficient of Nečiporuk’s lower-bound method [230] in Theorem 9.4.1 has been im-
proved upon by Paterson (unpublished) and Zwick [373]. Paul [244] has applied Nečiporuk’s
method to show that the indirect storage access function has formula size Ω(n2/ log n) over
the basis B2. Nečiporuk’s method has also been applied to many other problems, including the
determinant [169], the marriage problem [126], recognition of context-free languages [241],
and the clique function [304].

The proof of Krapchenko’s lower bound [174] given in Theorem 9.4.2 is due to Pater-
son, as described by Bopanna and Sipser [50]. Koutsoupias [172] has obtained the results of
Problems 9.30 and 9.31, improving upon the Krapchenko lower bounds for the kth thresh-
old function by a factor of at least 2. Andreev [24], building on the work of Subbotovskaya
[320], has improved upon Krapchenko’s method and exhibits a lower bound of Ω(n2.5−ε) on
a function of n variables for every fixed ε > 0 when n is sufficiently large. Krichevskii [176]

has shown that over the standard basis, τ
(n)
t requires formula size Ω(n log n), which beats

Krapchenko’s lower bound for small and large values of t.
Symmetric functions are examined in Section 2.11 and upper bounds are given on the

circuit size of such functions over the basis {∧,∨,⊕}. Polynomial-size formulas for symmet-
ric functions are implicit in the work of Ofman [234] and Wallace [356], who also indepen-
dently demonstrated how to add two binary numbers in logarithmic depth. Krapchenko [175]
demonstrated that all symmetric Boolean functions have formula size O(n4.93) over the stan-
dard basis. Peterson [247], improving upon the results of Pippenger [248] and Paterson [241],
showed that all symmetric functions have formula size O(n3.27) over the basis B2. Paterson,
Pippenger, and Zwick [242,243] have recently improved these results, showing that over B2

and U2 formulas exist of size O(n3.13) and O(n4.57), respectively, for many symmetric Boolean
functions including the majority function, and of size O(n3.30) and O(n4.85), respectively, for
all symmetric Boolean functions.

Markov demonstrated that the minimal number of negations needed to realize an arbitrary
binary function on n variables with an arbitrary number of output variables, maximized over
all such functions, is at most �log2(n + 1)�. For Boolean functions (they have one output
variable) it is at most �log2(n+ 1)�. Fischer [100] has described a circuit whose size is at most
twice that of an optimal circuit plus the size of a circuit that computes fNEG(x1, . . . , xn) =
(x1, . . . , xn) and whose depth is at most that of the optimal circuit plus the depth of a circuit
for fNEG. He exhibits a circuit for fNEG of size O(n2 log n) and depth O(log n). This is
the result given in Theorem 9.5.1. Tanaka and Nishino [323] have improved the size bound
on fNEG to O(n log2 n) at the expense of increasing the depth bound to O(log2 n). Beals,
Nishino, and Tanaka [32] have further improved these results, deriving simultaneous size and
depth bounds of O(n log n) and O(log n), respectively.

Using non-constructive methods, a series of upper bounds have been developed on the

monotone formula size of the threshold functions τ
(n)
t by Valiant [346] and Bopanna [49],

culminating in bounds by Khasin [166] and Friedman [106] of O(t4.3n log n) over the mono-
tone basis. With constructive methods, Ajtai, Komlós, and Szemerédi [14] obtained polyno-

mial bounds on the formula size τ
(n)
t over the monotone basis. Using their construction, Fried-

man [106] has obtained a bound on formula size over the monotone basis of O(tcn log n) for
c a large constant.

Over the basis B2, Fischer, Meyer, and Paterson [101] have shown that the majority func-

tion τ
(n)
t , t = �n/2�, and other symmetric functions require formula size Ω(n log n). Pudlák

[264], building on the work of Hodes and Specker [136], has shown that all but 16 symmetric
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Boolean functions on n variables require formula size Ω(n log log n) over the same basis. The
16 exceptional functions have linear formula size.

Using counting arguments such as those given in Section 2.12, Gilbert [114] has shown
that most monotone Boolean functions on n variables have a circuit size that is Ω(2n/n3/2).
Red’kin [275] has shown that the lower bound can be achieved to within a constant multi-
plicative factor by every monotone Boolean function.

Tiekenherinrich [330] gave a 4n lower bound to the monotone circuit size of a simple
function. Dunne [87] derived a 3.5n lower bound on the monotone circuit size for the major-
ity function.

The lower bound on the monotone circuit size of binary sorting (Theorem 9.6.1) is due
to Lamagna and Savage [188] using an argument patterned after that of Van Voorhis [351] for
comparator-based sorting networks. Muller and Preparata [225,226] demonstrate that binary
sorting over the standard basis has circuit size O(n). (See Theorem 2.11.1.) Pippenger and
Valiant [253] and Lamagna [187] demonstrate an Ω(n log n) lower bound on the monotone
circuit size of merging. These results are established in Section 9.6.1. The sorting network
designed by Ajtai, Komlós, and Szemerédi [14] when specialized to Boolean data yields a
monotone circuit of size O(n log n) for binary sorting.

The first proof that the monotone circuit size of n × n Boolean matrix multiplication
(see Section 9.6.2) is Ω(n3) was obtained by Pratt [256]. Later Paterson [238] and Mehlhorn
and Galil [218] demonstrated that it is exactly n2(2n − 1). Weiss [361] discovered a simple
application of the function-replacement method to both Boolean convolution and Boolean
matrix multiplication, as summarized in Corollary 9.6.1 and Theorem 9.6.5. (Wegener [360,
p. 170] extended Weiss’s result to include the number of ORs.) Wegener [357] has exhibited an
n-input, n-output Boolean function (Boolean direct product) whose monotone circuit size is
Ω(n2). Earlier several authors examined the class of multi-output functions known as Boolean
sums in which each output is the OR of a subset of inputs. Nečiporuk [231] gave an explicit
set of Boolean sums and demonstrated that its monotone circuit size is Ω(n3/2). This lower
bound for such functions was independently improved to Ω(n5/3) by Mehlhorn [216] and
Pippenger [250]. More recently, Andreev [23] has constructed a family of Boolean sums with
monotone circuit size that is Ω(n2−ε) for every fixed ε > 0.

The first super-polynomial lower bound on the monotone circuit size of the clique function
was established by Razborov [270]. Shortly afterward, Andreev [22], using similar methods,
gave an exponential lower bound on the monotone circuit size of a problem in NP. Because the
clique function is complete with respect to monotone projections [310,344], this established
an exponential lower bound for the clique function. Alon and Bopanna [17], by strengthen-
ing Razborov’s method, gave a direct proof of this fact, giving a lower bound exponential in
Ω
(
(n/ log n)1/3

)
. The stronger lower bound given in Theorem 9.6.6, which is exponential

in Ω(n1/3), is due to Amano and Maruoka [20]. They apply bottleneck counting, an idea of
Haken [125], to establish this result. Amano and Maruoka [20] have also extended the approx-
imation method to circuits that have negations only on their inputs and for which the number
of inputs carrying negations is small. They show that, even with a small number of negations,
an exponential lower bound on the circuit size of the clique function can be obtained.

Having shown that monotone circuit complexity can lead to exponential lower bounds,
Razborov [271] then cast doubt on the likelihood that this approach would lead to exponential
non-monotone circuit size bounds by proving that the matching problem on bipartite graphs,
a problem in P, has a super-polynomial monotone circuit size. Tardos [324] strengthened
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Razborov’s lower bound, deriving an exponential one. Later Razborov [273] demonstrated
that the obvious generalization of the approximation method cannot yield better lower bounds
than Ω(n2) for Boolean functions on n inputs realized by circuits over complete bases.

Berkowitz [37] introduced the concept of pseudo-inverse and established Theorem 9.6.9.
Valiant [347], Wegener [358], and Paterson (unpublished — see [92,360]) independently im-
proved upon the size of the monotone circuit realizing all pseudo-negations from O(n2 log n)
to O(n log2 n) to produce Theorem 9.6.8. Lemma 9.6.9 is due to Dunne [90].

In his Ph.D. thesis Dunne [88] has given the most general definition of pseudo-negation.
He shows that a Boolean function h is a pseudo-negation on variable xi of a Boolean function
f on the n variables x1, . . . , xn if and only if h satisfies

f(x)|xi=0 ≤ h(x1, . . . , xi−1, xi+1, . . . , xn) ≤ f(x)|xi=1

Here f(x)|xi=a denotes the function obtained from f by fixing xi at a.
Dunne [89] demonstrated that HALF-CLIQUE CENTRAL SLICE is NP-complete (The-

orem 9.6.10) and showed that the central slices of the HAMILTONIAN CIRCUIT (there is a
closed path containing each vertex once) and SATISFIABILITY are NP-complete. As men-
tioned by Dunne [91], not all NP-complete problems have NP-complete central slices.

The concept of communication complexity arose in the context of the VLSI model of
computation discussed in Chapter 12. In this case it measures the amount of information that
must be transmitted from the inputs to the outputs of a function. The communication game
described in Section 9.7.1 is different: it characterizes a search problem because its goal is to
find an input variable on which two n-tuples in disjoint sets disagree.

Yao [366] developed a method to derive lower bounds on the communication complexity
of functions f : X × Y �→ Z. He considered the matrix of values of f where the rows
and columns are indexed by the values of X and Y . He defined monochromatic rectangles
as submatrices in which all entries are the same. He then established that the logarithm of
the minimal number of disjoint rectangles in this matrix is a lower bound on the number of
bits that must be exchanged to compute f . (This result shows, for example, that the identity
function f : B2n �→ B defined for f(x, y) = 1 if and only if xi = yi for all 1 ≤ i ≤ n
requires the exchange of at least n + 1 bits.) Savage [288] adapted the crossing sequence
argument from one-tape Turing machines (an application of the pigeonhole principle) to derive
lower bounds on predicates. Mehlhorn and Schmidt [220] show that functions f : X ×Y �→
Z for which Z is a subset of a field have a communication complexity that is at most the rank
of the two-dimensional matrix of values of f .

The development of the relationship between the circuit depth of a function and its com-
munication complexity follows that given by Karchmer and Wigderson [157]. Karchmer [156]
cites Yannakakis for independently discovering the connection DΩ0(f) = C(f−1(0), f−1(1))
of Theorem 9.7.1 for non-monotone functions. Karchmer and Wigderson [157] have exam-
ined st-connectivity in this framework. This is the problem of determining from the adja-
cency matrix of an undirected graph G with n vertices and two distinguished vertices, s and
t, whether there is a path from s to t. When characterized as a Boolean function on the edge
variables, this is a monotone function. Karchmer and Wigderson [157] have shown that the
circuit depth of this function is Ω((log n)2/ log log n), a result later improved to Ω((log n)2)
independently by Håstad and Boppana in unpublished work. Raz and Wigderson [269] have
shown via a complex proof that the clique problem on n-vertex graphs studied in Section 9.7.4
has monotone communication complexity and depth Ω(n). The simpler but weaker lower
bound for this problem developed in Section 9.7.4 is due to Goldmann and Håstad [116].
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Furst, Saxe, and Sipser [107] and, independently, Ajtai [13] obtained the first strong lower
bounds on the size of bounded-depth circuits. They demonstrated that every bounded-depth

circuit for the parity function f
(n)
⊕ has superpolynomial size. Using a deeper analysis, Yao

[368] demonstrated that bounded-depth circuits for f
(n)
⊕ have exponential size. Håstad [124]

strengthened the results and simplified the argument, giving a lower bound on circuit size of

2Ω(n1/d/10) for circuits of depth d.
Razborov [272] examined a more powerful class of bounded-depth circuits, namely, cir-

cuits that use unbounded fan-in AND, OR, and parity functions. He demonstrated that the

majority function τ
(n)
n/2 has exponential size over this larger basis. Smolensky [313] simplified

and strengthened Razborov’s result, obtaining an exponential lower bound on the size of a
bounded-depth circuit for the MODp function over the basis AND, OR, and MODq when p
and q are distinct powers of primes. We use a simplified version of his result in Section 9.7.5.
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