
C H A P T E R

The Role of Theory in
Computer Science

Computer science is the study of computers and programs, the collections of instructions that
direct the activity of computers. Although computers are made of simple elements, the tasks
they perform are often very complex. The great disparity between the simplicity of computers
and the complexity of computational tasks offers intellectual challenges of the highest order. It
is the models and methods of analysis developed by computer science to meet these challenges
that are the subject of theoretical computer science.

Computer scientists have developed models for machines, such as the random-access and
Turing machines; for languages, such as regular and context-free languages; for programs, such
as straight-line and branching programs; and for systems of programs, such as compilers and
operating systems. Models have also been developed for data structures, such as heaps, and for
databases, such as the relational and object-oriented databases.

Methods of analysis have been developed to study the efficiency of algorithms and their
data structures, the expressibility of languages and the capacity of computer architectures to
recognize them, the classification of problems by the time and space required to solve them,
their inherent complexity, and limits that hold simultaneously on computational resources for
particular problems. This book examines each of these topics in detail except for the first,
analysis of algorithms and data structures, which it covers only briefly.

This chapter provides an overview of the book. Except for the mathematical preliminaries,
the topics introduced here are revisited later.

3

4 Chapter 1 The Role of Theory in Computer Science Models of Computation

1.1 A Brief History of Theoretical Computer Science
Theoretical computer science uses models and analysis to study computers and computation.
It thus encompasses the many areas of computer science sufficiently well developed to have
models and methods of analysis. This includes most areas of the field.

1.1.1 Early Years
TURING AND CHURCH: Theoretical computer science emerged primarily from the work of
Alan Turing and Alonzo Church in 1936, although many others, such as Russell, Hilbert, and
Boole, were important precursors. Turing and Church introduced formal computational mod-
els (the Turing machine and lambda calculus), showed that some well-stated computational
problems have no solution, and demonstrated the existence of universal computing machines,
machines capable of simulating every other machine of their type.

Turing and Church were logicians; their work reflected the concerns of mathematical logic.
The origins of computers predate them by centuries, going back at least as far as the abacus, if
we call any mechanical aid to computation a computer. A very important contribution to the
study of computers was made by Charles Babbage, who in 1836 completed the design of his
first programmable Analytical Engine, a mechanical computer capable of arithmetic operations
under the control of a sequence of punched cards (an idea borrowed from the Jacquard loom).
A notable development in the history of computers, but one of less significance, was the 1938
demonstration by Claude Shannon that Boolean algebra could be used to explain the operation
of relay circuits, a form of electromechanical computer. He was later to develop his profound
“mathematical theory of communication” in 1948 as well as to lay the foundations for the
study of circuit complexity in 1949.

FIRST COMPUTERS: In 1941 Konrad Zuse built the Z3, the first general-purpose program-
controlled computer, a machine constructed from electromagnetic relays. The Z3 read pro-
grams from a punched paper tape. In the mid-1940s the first programmable electronic com-
puter (using vacuum tubes), the ENIAC, was developed by Eckert and Mauchly. Von Neu-
mann, in a very influential paper, codified the model that now carries his name. With the
invention of the transistor in 1947, electronic computers were to become much smaller and
more powerful than the 30-ton ENIAC. The microminiaturization of transistors continues
today to produce computers of ever-increasing computing power in ever-shrinking packages.

EARLY LANGUAGE DEVELOPMENT: The first computers were very difficult to program (cables
were plugged and unplugged on the ENIAC). Later, programmers supplied commands by
typing in sequences of 0’s and 1’s, the machine language of computers. A major contribution
of the 1950s was the development of programming languages, such as FORTRAN, COBOL,
and LISP. These languages allowed programmers to specify commands in mnemonic code and
with high level constructs such as loops, arrays, and procedures.

As languages were developed, it became important to understand their expressiveness as
well as the characteristics of the simplest computers that could translate them into machine
language. As a consequence, formal languages and the automata that recognize them became
an important topic of study in the 1950s. Nondeterministic models – models that may have
more than one possible next state for the current state and input – were introduced during this
time as a way to classify languages.

c©John E Savage 1.1 A Brief History of Theoretical Computer Science 5

1.1.2 1950s
FINITE-STATE MACHINES: Occurring in parallel with the development of languages was the
development of models for computers. The 1950s also saw the formalization of the finite-state
machine (also called the sequential machine), the sequential circuit (the concrete realization of
a sequential machine), and the pushdown automaton. Rabin and Scott pioneered the use of
analytical tools to study the capabilities and limitations of these models.

FORMAL LANGUAGES: The late 1950s and 1960s saw an explosion of research on formal lan-
guages. By 1964 the Chomsky language hierarchy, consisting of the regular, context-free,
context-sensitive, and recursively enumerable languages, was established, as was the correspon-
dence between these languages and the memory organizations of machine types recognizing
them, namely the finite-state machine, the pushdown automaton, the linear-bounded au-
tomaton, and the Turing machine. Many variants of these standard grammars, languages,
and machines were also examined.

1.1.3 1960s
COMPUTATIONAL COMPLEXITY: The 1960s also saw the laying of the foundation for compu-
tational complexity with the classification of languages and functions by Hartmanis, Lewis,
and Stearns and others of the time and space needed to compute them. Hierarchies of prob-
lems were identified and speed-up and gap theorems established. This area was to flower and
lead to many important discoveries, including that by Cook (and independently Levin) of
NP-complete languages, languages associated with many hard combinatorial and optimiza-
tion problems, including the Traveling Salesperson problem, the problem of determining the
shortest tour of cities for which all intercity distances are given. Karp was instrumental in
demonstrating the importance of NP-complete languages. Because problems whose running
time is exponential are considered intractable, it is very important to know whether a string in
NP-complete languages can be recognized in a time polynomial in their length. This is called

the P
?
= NP problem, where P is the class of deterministic polynomial-time languages. The

P-complete languages were also identified in the 1970s; these are the hardest languages in P to
recognize on parallel machines.

1.1.4 1970s
COMPUTATION TIME AND CIRCUIT COMPLEXITY: In the early 1970s the connection between
computation time on Turing machines and circuit complexity was established, thereby giving

the study of circuits renewed importance and offering the hope that the P
?
= NP problem

could be resolved via circuit complexity.

PROGRAMMING LANGUAGE SEMANTICS: The 1970s were a very productive period for formal
methods in the study of programs and languages. The area of programming language seman-
tics was very active; models and denotations were developed to give meaning to the phrase
“programming language,” thereby putting language development on a solid footing. Formal
methods for ensuring the correctness of programs were also developed and applied to program
development. The 1970s also saw the emergence of the relational database model and the

6 Chapter 1 The Role of Theory in Computer Science Models of Computation

development of the relational calculus as a means for the efficient reformulation of database
queries.

SPACE-TIME TRADEOFFS: An important byproduct of the work on formal languages and se-
mantics in the 1970s is the pebble game. In this game, played on a directed acyclic graph,
pebbles are placed on vertices to indicate that the value associated with a vertex is located in
the register of a central processing unit. The game allows the study of tradeoffs between the
number of pebbles (or registers) and time (the number of pebble placements) and leads to
space-time product inequalities for individual problems. These ideas were generalized in the
1980s to branching programs.

VLSI MODEL: When the very large-scale integration (VLSI) of electronic components onto
semiconductor chips emerged in the 1970s, VLSI models for them were introduced and an-
alyzed. Ideas from the study of pebble games were applied and led to tradeoff inequalities
relating the complexity of a problem to products such as AT 2, where A is the area of a chip
and T is the number of steps it takes to solve a problem. In the late 1970s and 1980s the
layout of computers on VLSI chips also became an important research topic.

ALGORITHMS AND DATA STRUCTURES: While algorithms (models for programs) and data struc-
tures were introduced from the beginning of the field, they experienced a flowering in the
1970s and 1980s. Knuth was most influential in this development, as later were Aho, Hopcroft,
and Ullman. New algorithms were invented for sorting, data storage and retrieval, problems on
graphs, polynomial evaluation, solving linear systems of equations, computational geometry,
and many other topics on both serial and parallel machines.

1.1.5 1980s and 1990s
PARALLEL COMPUTING AND I/O COMPLEXITY: The 1980s also saw the emergence of many
other theoretical computer science research topics, including parallel and distributed comput-
ing, cryptography, and I/O complexity. A variety of concrete and abstract models of parallel
computers were developed, ranging from VLSI-based models to the parallel random-access
machine (PRAM), a collection of synchronous processors alternately reading from and writ-
ing to a common array of memory cells and computing locally. Parallel algorithms and data
structures were developed, as were classifications of problems according to the extent to which
they are parallelizable. I/O complexity, the study of data movement among memory units
in a memory hierarchy, emerged around 1980. Memory hierarchies take advantage of the
temporal and spatial locality of problems to simulate fast, expensive memories with slow and
inexpensive ones.

DISTRIBUTED COMPUTING: The emergence of networks of computers brought to light some
hard logical problems that led to a theory of distributed computing, that is, computing with
multiple and potentially asynchronous processors that may be widely dispersed. The prob-
lems addressed in this area include reaching consensus in the presence of malicious adversaries,
handling processor failures, and efficiently coordinating the activities of agents when interpro-
cessor latencies are large. Although some of the problems addressed in distributed computing
were first introduced in the 1950s, this topic is associated with the 1980s and 1990s.

c©John E Savage 1.2 Mathematical Preliminaries 7

CRYPTOGRAPHY: While cryptography has been important for ages, it became a serious con-
cern of complexity theorists in the late 1970s and an active research area in the 1980s and
1990s. Some of the important cryptographic issues are a) how to exchange information se-
cretly without having to exchange a private key with each communicating agent, b) how to
identify with high assurance the sender of a message, and c) how to convince another agent
that you have the solution to a problem without transferring the solution to him or her.

As this brief history illustrates, theoretical computer science speaks to many different com-
putational issues. As the range of issues addressed by computer science grows in sophistication,
we can expect a commensurate growth in the richness of theoretical computer science.

1.2 Mathematical Preliminaries
In this section we introduce basic concepts used throughout the book. Since it is presumed
that the reader has already met most of this material, this presentation is abbreviated.

1.2.1 Sets
A set A is a non-repeating and unordered collection of elements. For example, A50s =
{Cobol, Fortran, Lisp} is a set of elements that could be interpreted as the names of languages
designed in the 1950s. Because the elements in a set are unordered, {Cobol, Fortran, Lisp}
and {Lisp, Cobol, Fortran} denote the same set. It is very convenient to recognize the empty
set ∅, a set that does not have any elements. The set B = {0, 1} containing 0 and 1 is used
throughout this book.

The notation a ∈ A means that element a is contained in set A. For example, Cobol ∈
A50s means that Cobol is a language invented in the 1950s. A set can be finite or infinite. The
cardinality of a finite set A, denoted |A|, is the number of elements in A. We say that a set A
is a subset of a set B, denoted A ⊆ B, if every element of A is an element of B. If A ⊆ B
but B contains elements not in A, we say that A is a proper subset and write A ⊂ B.

The union of two sets A and B, denoted A ∪ B, is the set containing elements that
are in A, B or both. For example, if A0 = {1, 2, 3} and B0 = {4, 3, 5}, then A0 ∪ B0 =
{5, 4, 3, 1, 2}. The intersection of sets A and B, denoted A∩B, is the set containing elements
that are in both A and B. Hence, A0 ∩B0 = {3}. If A and B have no elements in common,
denoted A ∩ B = ∅, they are said to be disjoint sets. The difference between sets A and
B, denoted A − B, is the set containing the elements that are in A but not in B. Thus,
A0 − B0 = {1, 2}. (See Fig. 1.1.)

BA
A ∩ B

A − B

Figure 1.1 A Venn diagram showing the intersection and difference of sets A and B. Their
union is the set of elements in both A and B.

8 Chapter 1 The Role of Theory in Computer Science Models of Computation

The following simple properties hold for arbitrary sets A and B and the operations of set
union, intersection, and difference:

A ∪ B = B ∪ A

A ∩ B = B ∩ A

A ∪ ∅ = A

A ∩ ∅ = ∅
A − ∅ = A

The power set of a set A, denoted 2A, is the set of all subsets of A including the empty
set. For example, 2{2,5,9} = {∅, {2}, {5}, {9}, {2, 5}, {2, 9}, {5, 9}, {2, 5, 9}}. We use 2A

to denote the power set A as a reminder that it has 2|A| elements. To see this, observe that
for each subset B of the set A there is a binary n-tuple (e1, e2, . . . , e|A|) where ei is 1 if the

ith element of A is in B and 0 otherwise. Since there are 2|A| ways to assign 0’s and 1’s to
(e1, e2, . . . , e|A|), 2A has 2|A| elements.

The Cartesian product of two sets A and B, denoted A×B, is another set, the set of pairs
{(a, b) | a ∈ A, b ∈ B}. For example, when A0 = {1, 2, 3} and B0 = {4, 3, 5}, A0 × B0 =
{(1, 4), (1, 3), (1, 5), (2, 4), (2, 3), (2, 5), (3, 4), (3, 3), (3, 5)}. The Cartesian product of k
sets A1, A2, . . . , Ak, denoted A1×A2×· · ·×Ak, is the set of k-tuples {(a1, a2, . . . , ak) | a1 ∈
A1, a2 ∈ A2, . . . , ak ∈ Ak} whose components are drawn from the respective sets. If for
each 1 ≤ i ≤ k, Ai = A, the k-fold Cartesian product A1 × A2 × · · · × Ak is denoted
Ak. An element of Ak is a k-tuple (a1, a2, . . . , ak) where ai ∈ A. Thus, the binary n-tuple
(e1, e2, . . . , e|A|) of the preceding paragraph is an element of {0, 1}n.

1.2.2 Number Systems
Integers are widely used to describe problems. The infinite set consisting of 0 and the
positive integers {1, 2, 3, . . .} is called the set of natural numbers. The set of positive and
negative integers and zero, , consists of the integers {0, 1,−1, 2,−2, . . .}.

In the standard decimal representation of the natural numbers, each integer n is repre-
sented as a sum of powers of 10. For example, 867 = 8 × 102 + 6 × 101 + 7 × 100. Since
computers today are binary machines, it is convenient to represent integers over base 2 instead
of 10. The standard binary representation for the natural numbers represents each integer as
a sum of powers of 2. That is, for some k ≥ 0 each integer n can be represented as a k-tuple
x = (xk−1, xk−2, . . . , x1, x0), where each of xk−1, xk−2, . . . , x1, x0 has value 0 or 1 and n
satisfies the following identity:

n = xk−12k−1 + xk−22k−2 + · · · + x121 + x020

The largest integer that can be represented with k bits is 2k−1 + 2k−2 + · · · + 21 + 20 =
2k − 1. (See Problem 1.1.) Also, the k-tuple representation for n is unique; that is, two
different integers cannot have the same representation. When leading 0’s are suppressed, the
standard binary representation for 1, 15, 32, and 97 are (1), (1, 1, 1, 1), (1, 0, 0, 0, 0, 0), and
(1, 1, 0, 0, 0, 0, 1), respectively.

We denote with x + y, x − y, x ∗ y, and x/y the results of addition, subtraction, multi-
plication, and division of integers.

c©John E Savage 1.2 Mathematical Preliminaries 9

1.2.3 Languages and Strings
An alphabet A is a finite set with at least two elements. A string x is an element (a1, a2, . . . , ak)
of the Cartesian product Ak in which we drop the commas and parentheses. Thus, we write
x = a1a2 · · · ak, and say that x is a string over the alphabet A. A string x in Ak is said to
have length k, denoted |x| = k. Thus, 011 is a string of length three over A = {0, 1}.

Consider now the Cartesian product Ak ×Al = Ak+l, which is the (k+ l)-fold Cartesian
product of A with itself. Let x = a1a2 · · · ak ∈ Ak and y = b1b2 · · · bl ∈ Al. Then a string
z = c1c2 · · · ck+l ∈ Ak+l can be written as the concatenation of strings x and y of length k
and l, denoted, z = x · y, where

x · y = a1a2 · · · akb1b2 · · · bl

That is, ci = ai for 1 ≤ i ≤ k and ci = bi−k for k + 1 ≤ i ≤ k + l.
The empty string, denoted ε, is a special string with the property that when concatenated

with any other string x it returns x; that is, x · ε = ε ·x = x. The empty string is said to have
zero length. As a special case of Ak, we let A0 denote the set containing the empty string;
that is, A0 = {ε}.

The concatenation of sets of strings A and B, denoted A ·B, is the set of strings formed
by concatenating each string in A with each string in B. For example, {00, 1} · {a, bb} =
{00a, 00bb, 1a, 1bb}. The concatenation of a set A with the empty set ∅, denoted A · ∅, is the
empty set because it contains no elements; that is,

A · ∅ = ∅ · A = ∅

When no confusion arises, we write AB instead of A · B.
A language L over an alphabet A is a collection of strings of potentially different lengths

over A. For example, {00, 010, 1110, 1001} is a finite language over the alphabet {0, 1}. (It
is finite because it contains a bounded number of strings.) The set of all strings of all lengths
over the alphabet A, including the empty string, is denoted A∗ and called the Kleene closure
of A. For example, {0}∗ contains ε, the empty string, as well as 0, 00, 000, 0000, Also,
{00 ∪ 1}∗ = {ε, 1, 00, 001, 100, 0000, . . .}. It follows that a language L over the alphabet A
is a subset of A∗, denoted L ⊆ A∗.

The positive closure of a set A, denoted A+, is the set of all strings over A except for
the empty string. For example, 0(0∗10∗)+ is the set of binary strings beginning with 0 and
containing at least one 1.

1.2.4 Relations
A subset R of the Cartesian product of sets is called a relation. A binary relation R is a
subset of the Cartesian product of two sets. Three examples of binary relations are R0 =
{(0, 0), (1, 1), (2, 4), (3, 9), (4, 16)}, R1 = {(red, 0), (green, 1), (blue, 2)}, and R2 =
{(small, short), (medium, middle), (medium, average), (large, tall)}. The relation R0 is a
function because for each first component of a pair there is a unique second component. R1

is also a function, but R2 is not a function.
A binary relation R over a set A is a subset of A × A; that is, both components of each

pair are drawn from the same set. We use two notations to denote membership of a pair (a, b)
in a binary relation R over A, namely (a, b) ∈ R and the new notation aRb. Often it is more
convenient to say aRb than to say (a, b) ∈ R.

10 Chapter 1 The Role of Theory in Computer Science Models of Computation

A binary relation R is reflexive if for all a ∈ A, aRa. It is symmetric if for all a, b ∈ A,
aRb if and only if bRa. It is transitive if for all a, b, c ∈ A, if aRb and bRc, then aRc.

A binary relation R is an equivalence relation if it is reflexive, symmetric, and transitive.
For example, the pairs (a, b), a, b ∈ , for which both a and b have the same remainder on
division by 3, is an equivalence relation. (See Problem 1.3.)

If R is an equivalence relation and aRb, then a and b are said to be equivalent elements.
We let E[a] be the set of elements in A that are equivalent to a under the relation R and
call it the equivalence class of elements equivalent to a. It is not difficult to show that for all
a, b ∈ A, E[a] and E[b] are either equal or disjoint. (See Problem 1.4.) Thus, the equivalence
classes of an equivalence relation over a set A partition the elements of A into disjoint sets.
For example, the partition {0∗, 0(0∗10∗)+, 1(0 + 1)∗} of the set (0 + 1)∗ of binary strings
defines an equivalence relation R. The equivalence classes consist of strings containing zero or
more 0’s, strings starting with 0 and containing at least one 1, and strings beginning with 1. It
follows that 00R000 and 1001R11 hold but not 10R01.

1.2.5 Graphs
A directed graph G = (V , E) consists of a finite set V of distinct vertices and a finite set
of pairs of distinct vertices E ⊆ V × V called edges. Edge e is incident on vertex v if e
contains v. A directed graph is undirected if for each edge (v1, v2) in E the edge (v2, v1)
is also in E. Figure 1.2 shows two examples of directed graphs, some of whose vertices are
labeled with symbols denoting gates, a topic discussed in Section 1.2.7. In a directed graph
the edge (v1, v2) is directed from the vertex v1 to the vertex v2, shown with an arrow from v1

to v2. The in-degree of a vertex in a directed graph is the number of edges directed into it; its
out-degree is the number of edges directed away from it; its degree is the sum of its in- and
out-degree. In a directed graph an input vertex has in-degree zero, whereas an output vertex
either has out-degree zero or is simply any vertex specially designated as an output vertex. A
walk in a graph (directed or undirected) is a tuple of vertices (v1, v2, . . . , vp) with the property
that (vi, vi+1) is in E for 1 ≤ i ≤ p− 1. A walk (v1, v2, . . . , vp) is closed if v1 = vp. A path
is a walk with distinct vertices. A cycle is a closed walk with p − 1 distinct vertices, p ≥ 3.
The length of a path is the number of edges on the path. Thus, the path (v1, v2, . . . , vp) has
length p − 1. A directed acyclic graph (DAG) is a directed graph that has no cycles.

+

+

(a)

v8

v6

v1 v2

v7

(b)

v4 v5

v3v1 v2

v3 v4

v5

Figure 1.2 Two directed acyclic graphs representing logic circuits.

c©John E Savage 1.2 Mathematical Preliminaries 11

Logic circuits are DAGs in which all vertices except input vertices carry the labels of gates.
Input vertices carry the labels of Boolean variables, variables assuming values over the set
B = {0, 1}. The graph of Fig. 1.2(a) is the logic circuit of Fig. 1.3(c), whereas the graph
of Fig. 1.2(b) is the logic circuit of Fig. 1.4. (The figures are shown in Section 1.4.1, Logic
Circuits.) The set of labels of logic gates used in a DAG is called the basis Ω for the DAG. The
size of a circuit is the number of non-input vertices that it contains. Its depth is the length of
the longest directed path from an input vertex to an output vertex.

1.2.6 Matrices
An m× n matrix is an array of elements containing m rows and n columns. (See Chapter 6.)
The adjacency matrix of a graph G with n vertices is an n × n matrix whose entries are 0 or
1. The entry in the ith row and jth column is 1 if there is an edge from vertex i to vertex j
and 0 otherwise. The adjacency matrix A for the graph in Fig. 1.2(a) is

A =





0 0 1 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0





1.2.7 Functions
The engineering component of computer science is concerned with the design, development,
and testing of hardware and software. The theoretical component is concerned with questions
of feasibility and optimality. For example, one might ask if there exists a program H that can
determine whether an arbitrary program P on an arbitrary input I will halt or not. This is
an example of an unsolvable computational problem. While it is a fascinating topic, practice
often demands answers to less ethereal questions, such as “Can a particular problem be solved
on a general-purpose computer with storage space S in T steps?”

To address feasibility and optimality it is important to have a precise definition of the tasks
under examination. Functions serve this purpose. A function (or mapping) f : D -→ R is
a relation f on the Cartesian product D ×R subject to the requirement that for each d ∈ D
there is at most one pair (d, r) in f . If (d, r) ∈ f , we say that the value of f on d is r, denoted
f(d) = r. The domain and codomain of f are D and R, respectively. The sets D and R can
be finite or infinite. For example, let fmult : 2 -→ of domain D = 2 and codomain
R = map a pair of natural numbers x and y (= {0, 1, 2, 3, . . .}) into their product z;
that is, f(x, y) = z = x ∗ y. A function f : D -→ R is partial if for some d ∈ D no value
in R is assigned to f(d). Otherwise, a function is complete.

If the domain of a function is the Cartesian product of n sets, the function is said to have
n input variables. If the codomain of a function is the Cartesian product of m sets, the
function is said to have m output variables. If the input variables of such a function are all
drawn from the set A and the output variables are all drawn from the set B, this information
is often captured by the notation f (n,m) : An -→ Bm. However, we frequently do not use
exponents or we use only one exponent to parametrize a class of problems.

12 Chapter 1 The Role of Theory in Computer Science Models of Computation

A finite function is one whose domain and codomain are both finite sets. Finite functions
can be completely defined by tables of pairs {(d, r)}, where d is an element of its domain and
r is the corresponding element of its codomain.

Binary functions are complete finite functions whose domains and codomains are Carte-
sian products over the binary set B = {0, 1}. Boolean functions are binary functions whose
codomain is B. The tables below define three Boolean functions on two input variables and
one Boolean function on one input variable. They are called truth tables because the values 1
and 0 are often associated with the values True and False, respectively.

x y x ∧ y

0 0 0

0 1 0

1 0 0

1 1 1

x y x ∨ y

0 0 0

0 1 1

1 0 1

1 1 1

x y x ⊕ y

0 0 0

0 1 1

1 0 1

1 1 0

x x

0 1

1 0

The above tables define the AND function x∧ y (its value is True when x and y are True),
the OR function x∨ y (its value is True when either x or y or both are True), the EXCLUSIVE

OR function x ⊕ y (its value is True only when either x or y is True, that is, when x is
True and y is False and vice versa), and the NOT function x (its value is True when x is

False and vice versa). The notation f (2,1)
∧ : B2 -→ B, f (2,1)

∨ : B2 -→ B, f (2,1)
⊕ : B2 -→ B,

f (1,1)
¬ : B -→ B for these functions makes explicit their number of input and output variables.

We generally suppress the second superscript when functions are Boolean. The physical devices
that compute the AND, OR, NOT, and EXCLUSIVE OR functions are called gates.

Many computational problems are described by functions f : A∗ -→ C∗ from the (un-
bounded) set of strings over an alphabet A to the set of strings over a potentially different
alphabet C. Since the letters in every finite alphabet A can be encoded as fixed-length strings
over the binary alphabet B = {0, 1}, there is no loss of generality in assuming that functions
are mappings f : B∗ -→ B∗, that is, from strings over B to strings over B.

Functions with unbounded domains can be used to identify languages. A language L over
the alphabet A is uniquely determined by a characteristic function f : A∗ -→ B with the
property that L = {x |x ∈ A∗ such that f(x) = 1}. This statement means that L is the set
of strings x in A∗ for which f on them, namely f(x), has value 1.

We often restrict a function f : B∗ -→ B∗ to input strings of length n, n arbitrary. The
domain of such a function is Bn. Its codomain consists of those strings into which strings of
length n map. This set may contain strings of many lengths. It is often convenient to map
strings of length n to strings of a fixed length containing the same information. This can be
done as follows. Let h(n) be the length of a longest string that is the value of an input string
of length n. Encode letters in B by repeating them (replace 0 by 00 and 1 by 11) and then add
as a prefix as many instances of 01 as necessary to insure that each string in the codomain of
fn has 2h(n) characters. For example, if h(4) = 3 and f(0110) = 10, encode the value 10 as
011100. This encoding provides a function fn : Bn -→ B2h(n) containing all the information
that is in the original version of fn.

It is often useful to work with functions f : -→ whose domains and codomains are
real numbers . Functions of this type include linear functions, polynomials, exponentials,
and logarithms. A polynomial p(x) : -→ of degree k − 1 in the variable x is specified
by a set of k real coefficients, ck−1, . . . , c1, c0, where p(x) = ck−1xk−1 + · · · + c1x1 + c0.

c©John E Savage 1.2 Mathematical Preliminaries 13

A linear function is a polynomial of degree 1. An exponential function is a function of the
form E(x) = ax for some real a – for example, 21.5 = 2.8284271 The logarithm to the
base a of b, denoted loga b, is the value of x such that ax = b. For example, the logarithm to
base 2 of 2.8284271 . . . is 1.5 and the logarithm to base 10 of 100 is 2. A function f(x) is
polylogarithmic if for some polynomial p(x) we can write f(x) as p(log2 x); that is, it is a
polynomial in the logarithm of x.

Two other functions used often in this book are the floor and ceiling functions. Their
domains are the reals, but their codomains are the integers. The ceiling function, denoted
2x3 : -→ , maps the real x to the smallest integer greater or equal to it. The floor
function, denoted 4x5 : -→ , maps the real x to the largest integer less than or equal to
it. Thus, 23.53 = 4 and 215.00013 = 16. Similarly, 43.55 = 3 and 415.00015 = 15. The
following bounds apply to the floor and ceiling functions.

f(x) − 1 ≤ 4f(x)5 ≤ f(x)

f(x) ≤ 2f(x)3 ≤ f(x) + 1

As an example of the application of the ceiling function we note that 2log2 n3 is the number
of bits necessary to represent the integer n.

1.2.8 Rate of Growth of Functions
Throughout this book we derive mathematical expressions for quantities such as space, time,
and circuit size. Generally these expressions describe functions f : -→ from the non-
negative integers to the reals, such as the functions f1(n) and f2(n) defined as

f1(n) = 4.5n2 + 3n

f2(n) = 3n + 4.5n2

When n is large we often wish to simplify expressions such as these to make explicit their
dominant or most rapidly growing term. For example, for large values of n the dominant terms
in f1(n) and f2(n) are 4.5n2 and 3n respectively, as we show. A term dominates when n is
large if the value of the function is approximately the value of this term, that is, if the function
is within some multiplicative factor of the term.

To highlight dominant terms we introduce the big Oh, big Omega and big Theta no-
tation. They are defined for functions whose domains and codomains are the integers or the
reals.

DEFINITION 1.2.1 Let f : -→ and g : -→ be two functions whose domains and
codomains are either the integers or the reals. If there are positive constants x0 and K > 0 such
that for all |x| ≥ x0,

|f(x)| ≤ K |g(x)|

we write

f(x) = O(g(x))

and say that “f(x) is big Oh of g(x)” or it grows no more rapidly in x than g(x). Under the
same conditions we also write

g(x) = Ω(f(x))

14 Chapter 1 The Role of Theory in Computer Science Models of Computation

and say that “g(x) is big Omega of f(x)” or that it grows at least as rapidly in x as f(x).
If f(x) = O(g(x)) and g(x) = O(f(x)), we write

f(x) = Θ(g(x)) or g(x) = Θ(f(x))

and say that “f(x) is big Theta of g(x)” and “g(x) is big Theta of f(x)” or that the two
functions have the same rate of growth in x.

The big Oh notation is illustrated by the expressions for f1(n) and f2(n) above.

EXAMPLE 1.2.1 We show that f1(n) = 4.5n2 + 3n is O(nk) for any k ≥ 2; that is, f1(n)
grows no more rapidly than nk for k ≥ 2. We also show that nk = O(f1(n)) for k ≤ 2; that
is, that nk grows no more rapidly than f1(n) for k ≤ 2. From the above definitions it follows
that f1(n) = Θ(n2); that is, f1(n) and n2 have the same rate of growth. We say that f1(n) is a
quadratic function in n.

To prove the first statement, we need to exhibit a natural number n0 and a constant K0 > 0
such that for all n ≥ n0, f1(n) ≤ K0nk. If we can show that f1(n) ≤ K0n2, then we have
shown f1(n) ≤ K0nk for all k ≥ 2. To show the former, we must show the following for some
K0 > 0 and for all n ≥ n0:

4.5n2 + 3n ≤ K0n
2

We try K0 = 5.5 and find that the above inequality is equivalent to 3n ≤ n2 or 3 ≤ n. Thus, we
can choose n0 = 3 and we are done.

To prove the second statement, namely, that nk = O(f1(n)) for k ≤ 2, we must exhibit a
natural number n1 and some K1 > 0 such that for all n ≥ n1, nk ≤ K2f1(n). If we can show
that n2 ≤ K1f1(n), then we have shown nk ≤ K2f1(n). To show the former, we must show the
following for some K1 > 0 and for all n ≥ n1:

n2 ≤ K1(4.5n2 + 3n)

Clearly, if K1 = 1/4.5 the inequality holds for n ≥ 0, since 3K1n is positive. Thus, we choose
n1 = 0 and we are done.

EXAMPLE 1.2.2 We now show that the slightly more complex function f2(n) = 3n + 4.5n2

grows as 3n; that is, f2(n) = Θ(3n), an exponential function in n. Because 3n ≤ f2(n) for
all n ≥ 0, it follows that 3n = O(f2(n)). To show that f2(n) = O(3n), we demonstrate that
f2(n) ≤ 2(3n) holds for n ≥ 4. This is equivalent to the following inequality:

4.5n2 ≤ 3n

To prove this holds, we show that h(n) = 3n/n2 is an increasing function of n for n ≥ 2
and that h(4) ≥ 4.5. To show that h(n) is an increasing function of n, we compute the ratio
r(n) = h(n + 1)/h(n) and show that r(n) ≥ 1 for n ≥ 2. But r(n) = 3n2/(n + 1)2 and
r(n) ≥ 1 when 3n2 ≥ (n + 1)2 or when n(n − 1) ≥ 1/2, which holds for n ≥ 2. Since
h(3) = 3 and h(4) = 81/16 > 5, the desired conclusion follows.

1.3 Methods of Proof
In this section we briefly introduce several methods of proof that are used in this book, namely,
proof by induction, proof by contradiction, and the pigeonhole principle. In the previous

c©John E Savage 1.3 Methods of Proof 15

section we saw proof by reduction: in each step the condition to be established was translated
into another condition until a condition was found that was shown to be true.

Proofs by induction use predicates, that is, functions of the kind P : -→ B. The
truth value of the predicate P : -→ B on the natural number n, denoted P (n), is 1 or 0
depending on whether or not the predicate is True or False.

Proofs by induction are used to prove statements of the kind, “For all natural numbers
n, predicate (or property) P is true.” Consider the function S1 : -→ defined by the
following sum:

S1(n) =
n∑

j=1

j (1.1)

We use induction to prove that S1(n) = n(n + 1)/2 is true for each n ∈ .

DEFINITION 1.3.1 A proof by induction has a predicate P , a basis step, an induction hy-
pothesis, and an inductive step. The basis establishes that P (k) is true for integer k. The
induction hypothesis assumes that for some fixed but arbitrary natural number n ≥ k, the state-
ments P (k), P (k + 1), . . . , P (n) are true. The inductive step is a proof that P (n + 1) is true
given the induction hypothesis.

It follows from this definition that a proof by induction with the predicate P establishes
that P is true for all natural numbers larger than or equal to k because the inductive step
establishes the truth of P (n + 1) for arbitrary integer n greater than or equal to k. Also,
induction may be used to show that a predicate holds for a subset of the natural numbers. For
example, the hypothesis that every even natural number is divisible by 2 is one that would be
defined only on the even numbers.

The following proof by induction shows that S1(n) = n(n + 1)/2 for n ≥ 0.

LEMMA 1.3.1 For all n ≥ 0, S1(n) = n(n + 1)/2.

Proof PREDICATE: The value of the predicate P on n, P (n), is True if S1(n) = n(n +
1)/2 and False otherwise.

BASIS STEP: Clearly, S1(0) = 0 from both the sum and the closed form given above.

INDUCTION HYPOTHESIS: S1(k) = k(k + 1)/2 for k = 0, 1, 2, . . . , n.

INDUCTIVE STEP: By the definition of the sum for S1 given in (1.1), S1(n+1) = S1(n)+
n + 1. Thus, it follows that S1(n + 1) = n(n + 1)/2 + n + 1. Factoring out n + 1 and
rewriting the expression, we have that S1(n + 1) = (n + 1)((n + 1) + 1)/2, exactly the
desired form. Thus, the statement of the theorem follows for all values of n.

We now define proof by contradiction.

DEFINITION 1.3.2 A proof by contradiction has a predicate P . The complement ¬P of P is
shown to be False, which implies that P is True.

The examples shown earlier of strings in the language L = {00 ∪ 1}∗ suggest that L
contains only strings other than ε with an odd number of 1’s. Let P be the predicate “L
contains strings other than ε with an even number of 1’s.” We show that it is true by assuming

16 Chapter 1 The Role of Theory in Computer Science Models of Computation

it is false, namely, by assuming “L contains only strings with an odd number of 1’s” and
showing that this statement is false. In particular, we show that L contains the string 11. From
the definition of the Kleene closure, L contains strings of all lengths in the “letters” 00 and 1.
Thus, it contains a string containing two instances of 1 and the predicate P is true.

Induction and proof by contradiction can also be used to establish the pigeonhole principle.
The pigeonhole principle states that if there are n pigeonholes, n + 1 or more pigeons, and
every pigeon occupies a hole, then some hole must have at least two pigeons. We reformulate
the principle as follows:

LEMMA 1.3.2 Given two finite sets A and B with |A| > |B|, there does not exist a naming
function ν : A -→ B that gives to each element a in A a name ν(a) in B such that every element
in A has a unique name.

Proof BASIS: |B| = 1. To show that the statement is True, assume it is False and show
that a contradiction occurs. If it is False, every element in A can be given a unique name.
However, since there is one name (the one element of B) and more than one element in A,
we have a contradiction.

INDUCTION HYPOTHESIS: There is no naming function ν : A -→ B when |B| ≤ n and
|A| > |B|.

INDUCTIVE STEP: When |B| = n+1 and |A| > |B| we show there is no naming function
ν : A -→ B. Consider an element b ∈ B. If two elements of A have the name b, the desired
conclusion holds. If not, remove b from B, giving the set B′, and remove from A the
element, if any, whose name is b, giving the set A′. Since |A′| > |B′| and |B′| ≤ n, by the
induction hypothesis, there is no naming function obtained by restricting ν to A′. Thus,
the desired conclusion holds.

1.4 Computational Models
A variety of computer models are examined in this book. In this section we give the reader
a taste of five models, the logic circuit, the finite-state machine, the random-access machine,
the pushdown automaton, and the Turing machine. We also briefly survey the problem of
language recognition.

1.4.1 Logic Circuits
A logic gate is a physical device that realizes a Boolean function. A logic circuit, as defined
in Section 1.2, is a directed acyclic graph in which all vertices except input vertices carry the
labels of gates.

Logic gates can be constructed in many different technologies. To make ideas concrete,
Fig. 1.3(a) and (b) show electrical circuits for the AND and OR gates constructed with batteries,
bulbs, and switches. Shown with each of these circuits is a logic symbol for the gate. These
symbols are used to draw circuits, such as the circuit of Fig. 1.3(c) for the function (x∨y)∧z.
When electrical current flows out of the batteries through a switch or switches in these circuits,
the bulbs are lit. In this case we say the value of the circuit is True; otherwise it is False. Shown
below is the truth table for the function mapping the values of the three input variables of the
circuit in Fig. 1.3(c) to the value of the one output variable. Here x, y, and z have value 1

c©John E Savage 1.4 Computational Models 17

−
+

−
+

−
+

(a) (b)

x y x

y

x

y

x yx y

z

(c)

x y

z

Figure 1.3 Three electrical circuits simulating logic circuits.

when the switch that carries its name is closed; otherwise they have value 0.

x y z (x ∨ y) ∧ z

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Today’s computers use transistor circuits instead of the electrical circuits of Fig. 1.3.
Logic circuits execute straight-line programs, programs containing only assignment state-

ments. Thus, they have no loops or branches. (They may have loops if the number of times
a loop is executed is fixed.) This point is illustrated by the “full-adder” circuit of Fig. 1.4,
a circuit discussed at length in Section 2.7. Each external input and each gate is assigned a
unique integer. Each is also assigned a variable whose value is the value of the external input
or gate. The ith vertex is assigned the variable xi. If xi is associated with a gate that combines
the results produced at the jth and kth gates with the operator 6, we write an assignment
operation of the form xi := xj 6 xk. The sequence of assignment operations for a circuit is
a straight-line program. Below is a straight-line program for the circuit of Fig. 1.4:

x4 := x1 ⊕ x2

x5 := x4 ∧ x3

x6 := x1 ∧ x2

x7 := x4 ⊕ x3

x8 := x5 ∨ x6

The values computed for (x8, x7) are the standard binary representation for the number of 1’s
among x1, x2, and x3. This can be seen by constructing a table of values for x1, x2, x3, x7,

18 Chapter 1 The Role of Theory in Computer Science Models of Computation

x4 x6

x3x2x1

x8

x7x5

Figure 1.4 A full-adder circuit. Its output pair (x8, x7) is the standard binary representation
for the number of 1’s among its three inputs x1, x2, and x3.

and x8. Full-adder circuits can be combined to construct an adder for binary numbers. (In
Section 2.2 we give another notation for straight-line programs.)

As shown in the truth table for Fig. 1.3(c), each logic circuit has associated with it a binary
function that maps the values of its input variables to the values of its output variables. In the
case of the full-adder, since x8 and x7 are its output variables, we associate with it the function

f (3,2)
FA : B3 -→ B2, whose value is f (3,2)

FA (x1, x2, x3) = (x8, x7).
Algebraic circuits are similar to logic circuits except they may use operations over non-

binary sets, such as addition and multiplication over a ring, a concept explained in Sec-
tion 6.2.1. Algebraic circuits are the subject of Chapter 6. They are also described by DAGs
and they execute straight-line programs where the operators are non-binary functions. Alge-
braic circuits also have associated with them functions that map the values of inputs to the
values of outputs.

Logic circuits are the basic building blocks of all digital computers today. When such
circuits are combined with binary memory cells, machines with memory can be constructed.
The models for these machines are called finite-state machines.

1.4.2 Finite-State Machines
The finite-state machine (FSM) is a machine with memory. It executes a series of steps during
each of which it takes its current state from the set Q of states and current external input from
the set Σ of input letters and combines them in a logic circuit L to produce a successor state
in Q and an output letter in Ψ, as suggested in Fig. 1.5. The logic circuit L can be viewed as
having two parts, one that computes the next-state function δ : Q × Σ -→ Q, whose value
is the next state of the FSM, and the other that computes the output function λ : Q -→ Ψ,
whose value is the output of the FSM in the current state. A generic finite-state machine is
shown in Fig. 1.5(a) along with a concrete FSM in Fig. 1.5(b) that provides as successor state
and output the EXCLUSIVE OR of the current state and the external input. The state diagram
of the FSM in Fig. 1.5(b) is shown in Fig. 1.8. Two (or more) finite-state machines that operate

c©John E Savage 1.4 Computational Models 19

+

Input

Output

Input

Output

(a) (b)

L
Memory Memory

Figure 1.5 (a) The finite-state machine (FSM) model; at each unit of time its logic unit, L,
operates on its current state (taken from its memory) and its current external input to compute an
external output and a new state that it stores in its memory. (b) An FSM that holds in its memory
a bit that is the EXCLUSIVE OR of the initial value stored in its memory and the external inputs
received to the present time.

in lockstep can be interconnected to form a single FSM. In this case, some outputs of one FSM
serve as inputs to the other.

Finite-state machines are ubiquitous today. They are found in microwave ovens, VCRs and
automobiles. They can be simple or complex. One of the most useful FSMs is the general-
purpose computer modeled by the random-access machine.

1.4.3 Random-Access Machine
The (bounded-memory) random-access machine (RAM) is modeled as a pair of intercon-
nected finite-state machines, one a central processing unit (CPU) and the other a random-
access memory, as suggested in Fig. 1.6. The random-access memory holds m b-bit words,
each identified by an address. It also holds an output word (out wrd) and a triple of inputs

addr

in wrd

out wrd

b

ALU

rega

regb

CPU

cmd

Random-Access Memory

m − 1
m − 2

1

0

Decode

prog ctr

Figure 1.6 The bounded-memory random-access machine.

20 Chapter 1 The Role of Theory in Computer Science Models of Computation

consisting of a command (cmd), an address (addr), and an input data word (in wrd). cmd
is either READ, WRITE, or NO-OP. A NO-OP command does nothing whereas a READ com-
mand changes the value of out wrd to the value of the data word at address addr. A WRITE

command replaces the data word at address addr with the value of in wrd.
The random-access memory holds data as well as programs, collections of instructions

for the CPU. The CPU executes the fetch-and-execute cycle in which it repeatedly reads an
instruction from the random-access memory and executes it. Its instructions typically include
arithmetic, logic, comparison, and jump instructions. Comparisons are used to decide whether
the CPU reads the next program instruction in sequence or jumps to an instruction out of
sequence.

The general-purpose computer is much more complex than suggested by the above brief
sketch of the RAM. It uses a rich variety of methods to achieve high speed at low cost with the
available technology. For example, as the number of components that can fit on a semiconduc-
tor chip increases, designers have begun to use “super-scalar” CPUs, CPUs that issue multiple
instructions in each time step. Also, memory hierarchies are becoming more prevalent as de-
signers assemble collections of slower but larger memories with lower costs per bit to simulate
expensive fast memories.

1.4.4 Other Models
There are many other models of computers with memory, some of which have an infinite
supply of data words, such as the Turing machine, a machine consisting of a control unit (an
FSM) and a tape unit that has a potentially infinite linear array of cells each containing letters
from an alphabet that can be read and written by a tape head directed by the control unit. It
is assumed that in each time step the head may move only from one cell to an adjacent one on
the linear array. (See Fig. 1.7.) The Turing machine is a standard model of computation since
no other machine model has been discovered that performs tasks it cannot perform.

The pushdown automaton is a restricted form of Turing machine in which the tape is
used as a pushdown stack. Data is entered, deleted, and accessed only at the top of a stack. A

Unit

m − 1210

Control

Tape Unit

b

Figure 1.7 The Turing machine has a control unit that is a finite-state machine and a tape unit
that controls reading and writing by a tape head and the movement of the tape head one cell at a
time to the left or right of the current position.

c©John E Savage 1.4 Computational Models 21

pushdown stack can be simulated by a tape in which the cell to the right of the tape head is
always blank. If the tape moves right from a cell, it writes a non-blank symbol in the cell. If it
moves left, it writes a blank in that cell before leaving it.

Some computers are serial: they execute one operation on a fixed amount of data per time
step. Others are parallel; that is, they have multiple (usually communicating) subcomputers
that operate simultaneously. They may operate synchronously or asynchronously and they may
be connected via a simple or a complex network. An example of a simple network is a wire
between two computers. An example of a complex network is a crossbar switch consisting of
25 switches at the intersection of five columns and five rows of wires; closing the switch at the
intersection of a row and a column connects the two wires and the two computers to which
they are attached.

We close this section by emphasizing the importance of models of computers. Good mod-
els provide a level of abstraction at which important facts and insights can be developed without
losing so much detail that the results are irrelevant to practice.

1.4.5 Formal Languages
In Chapters 4 and 5 the finite-state machine, pushdown automaton, and Turing machine are
characterized by their language recognition capability. Formal methods for specifying lan-
guages have led to efficient ways to parse and recognize programming languages. This is il-
lustrated by the finite-state machine of Fig. 1.8. Its initial state is q0, its final state is q1 and
its inputs can assume values 0 or 1. An output of 0 is produced when the machine is in state
q0 and an output of 1 is produced when it is in state q1. The output before the first input is
received is 0.

After the first input the output of the FSM of Fig. 1.8 is equal to the input. After multiple
inputs the output is the EXCLUSIVE OR of the 1’s and 0’s among the inputs, as we show by
induction. The inductive hypothesis is clearly true after one input. Suppose it is true after k
inputs; we show that it remains true after k+1 inputs, and therefore for all inputs. The output
uniquely determines the state. There are two cases to consider: after k inputs either the FSM is
in state q0 or it is in state q1. For each state, there are two cases to consider based on the value
of the k + 1st input. In all four cases it is easy to see that after the k + 1st input the output is
the EXCLUSIVE OR of the first k + 1 inputs.

0

1

0

1

q0/0 q1/1

Initial

Figure 1.8 A state diagram for a finite-state machine whose circuit model is given in Fig. 1.5(b).
q0 is the initial state of the machine and q1 is its final state. If the machine is in q0, it has received
an even number of 1 inputs, whereas if it is in q1, it has received an odd number of 1’s.

22 Chapter 1 The Role of Theory in Computer Science Models of Computation

The language recognized by an FSM is defined in two ways. It is the set of input strings
that cause the FSM to produce a particular letter as its last output or to enter one of the set
of final states on its last input. Thus, the FSM of Fig. 1.8 recognizes the set of binary strings
containing an odd number of 1’s. It also recognizes the set of binary strings containing an even
number of 1’s because they result in a last output of 0.

An FSM can also compute a function. The most general function that it computes in

T steps is the function f (T)
M : Q × ΣT -→ Q × ΨT that maps the initial state s and the

T inputs w1, w2, . . . , wT to the T outputs y1, y2, . . . , yT . It can also compute any other
function obtained by ignoring some outputs or fixing either the initial state or some inputs
or both.

The class of languages recognized by finite-state machines (the regular languages) is not
rich enough to describe easily the important programming languages that are in use today. As
a consequence, other languages, such as the context-free languages, are employed. Context-
free languages (which include the regular languages) require computers with potentially un-
bounded storage for their recognition. The class of computers that recognizes exactly the
context-free languages are the nondeterministic pushdown automata, pushdown automata in
which the control unit is nondeterministic; that is, some of its states can have multiple poten-
tial successor states.

The strings in regular and context-free languages (and other languages as well) can be
generated by grammars. A context-free grammar G = (N , T ,R, S) consists of sets of terminal
and non-terminal symbols, T and N respectively, and rules R by which each non-terminal
is replaced with one or more strings of terminals and non-terminals. All string generations
start with the special start non-terminal S. The language generated by G, L(G), contains the
strings of terminal characters produced by rewriting strings in this fashion. This is illustrated
by the context-free grammar G with two rules shown below.

EXAMPLE 1.4.1 G = (N , T ,R, S), where N = {S}, T = {a, b}, and R consists of the two
rules

(a) S → aSb (b) S → ab

Each application of a rule derives another string, as shown below. This grammar has only
two derivations, namely S → aSb and S → ab. The second derivation is always the last to be
used. (Recall that the language L(G) contains only terminal strings.)

S → aSb

→ aaSbb

→ aaaSbbb

→ aaaabbbb

As can be seen by inspection, the only strings in L(G) are of the form akbk, where ak denotes
the letter a repeated k times. Thus, L(G) = {akbk | k ≥ 1}.

Once a grammar for a regular or context-free language is known, it is possible to parse a
string in the language. In the above example this amounts to determining the number of times
that the first rule is applied.

To develop some intuition for the use of the pushdown automaton as a recognizer for
context-free languages, observe that we can determine the number of applications of the first
rule in this language by pushing each instance of a onto a stack and then popping a’s as b’s are

c©John E Savage 1.5 Computational Complexity 23

encountered. The number of a’s can then be matched with the number of b’s and if they are
not equal, the string is declared not in the language. If equal, the number of instances of the
first rule is determined.

Programming languages contain strings of characters and digits representing names and
the values of variables. Such strings can typically be scanned with finite-state machines. Once
scanned, these strings can be assigned tokens that are then used in a later parsing phase, which
today is typically based on a generalization of parsing for context-free languages.

1.5 Computational Complexity
Computational complexity is examined in concrete and abstract terms. The concrete analysis
of computational limits is done using models that capture the exchange of space for time. It also
is done via the study of circuit complexity, the minimal size and depth of circuits for functions.
Computational complexity is studied abstractly via complexity classes, the classification of
languages by the time and/or space they need.

1.5.1 A Computational Inequality
Computational inequalities play an important role in this book. We now sketch the derivation
of a computational inequality for the finite-state machine and specialize it to the RAM. The
idea is very simple: we simulate with a circuit the computation of a function f by an FSM
and then compare the size of the circuit produced with the size of the smallest circuit for f .
Simulation, which we use to derive this result, is a central idea in theoretical computer science.
For example, it is used to show that a problem is NP-complete. We use it here to relate the
resources available to compute a function f with an FSM to the inherent complexity of f .

Shown in Fig. 1.5(a) is the standard model for an FSM. As suggested, a circuit L combines
the current state held in the memory M together with an external input to form an external
output and a successor state which is held in M . If the input, output, and state are represented
as binary tuples, the circuit L can be realized by a logic circuit with Boolean gates. Let the
FSM compute the function f : Bn -→ Bm in T steps; that is, its state and/or T external
inputs contain the n Boolean inputs to f and its T outputs contain the m Boolean outputs of
f . (The inputs and outputs must appear in the same positions on each computation to prevent
the application of hidden computational resources.)

The function f can also be computed by the circuit shown in Fig. 1.9, which is obtained
by unwinding the loop of Fig. 1.5(a) using T copies of the logic circuit L for the FSM. This

x1

y1

x2

q1

y2

q2

xT

yT

qT
s

L LL

Figure 1.9 A circuit that computes the same function as an FSM (see Fig. 1.5(a)) in T steps. It
has the same initial state s, receives the same inputs and produces the same outputs.

24 Chapter 1 The Role of Theory in Computer Science Models of Computation

follows because the inputs x1, x2, . . . , xT that would be given to the FSM over time can be
given simultaneously to this circuit and it will produce the T outputs that would be produced
by the FSM. This circuit has T ·C(L) gates, where C(L) is the actual or equivalent number of
gates used to realize L. (The circuit L may be realized with a technology that does not formally
use gates.) Since this circuit is not necessarily the smallest circuit for the function f , we have
the following inequality, where C(f) is the size of the smallest circuit for f :

C(f) ≤ T · C(L)

This result is important because it imposes a constraint on every computation done by a
sequential machine. This inequality has two interpretations. First, if the product T · C(L)
(the equivalent number of logic operations employed) of the number of time steps T and
the equivalent number of logic operations C(L) per step is too small, namely, less than C(f),
the FSM cannot compute function f because the above inequality would be violated. This is
a form of impossibility theorem for bounded computations. Second, a complex function,
one for which C(f) is large, requires a large value for the product T ·C(L). In light of the first
interpretation of T · C(L) as the equivalent number of logic operations employed, it makes
sense to call W = T · C(L) the computational work done by the FSM to compute f .

The above computational inequality can be specialized to the bounded-memory RAM with
S bits of memory. When S is large, as it usually is, C(L) for the RAM is proportional to S. As
a consequence, for the RAM we have the following computational inequality for some positive
constant κ:

C(f) ≤ κST

This inequality shows the central role of circuit complexity in theoretical computer science. It
also demonstrates that the space-time product, ST , is an important measure of the complexity
of a problem. Functions with large circuit size can be computed by a RAM only if it either has
a large storage capacity or executes many time steps or both. Similar results exist for the Turing
machine.

1.5.2 Tradeoffs in Space, Time, and I/O Operations
Computational inequalities of the kind sketched above are important but often difficult to
apply because it is hard to show that functions have a large circuit size. For this reason space-
time tradeoffs have been studied under the assumption that the type of algorithm or program
allowed is restricted. For example, if only straight-line programs are considered, then the pebble
game sketched below and discussed in detail in Chapter 10 can be used to derive tradeoff
inequalities.

The standard pebble game is played on a directed acyclic graph (DAG), the graph of a
straight-line program. The input vertices of a DAG have no edges directed into them. Output
vertices have no edges directed away from them. Internal vertices are non-input vertices. A
predecessor of a vertex v is a vertex u that has an edge directed to v. The pebble game is played
with pebbles that are placed on vertices according to the following rules:

• Initially no vertices carry pebbles.

• A pebble can be placed on an input vertex at any time.

c©John E Savage 1.5 Computational Complexity 25

• A pebble can be placed on an internal vertex only if all of its predecessor vertices carry
pebbles.

• The pebble moved to a vertex can be a pebble residing on one of its immediate predecessors.

• A pebble can be removed from a vertex at any time.

• Every output vertex must carry a pebble at some time.

Space S in this game is the maximum number of pebbles used to play the game on a
DAG. Time T is the number of times that pebbles are placed on vertices. If enough pebbles
are available to play the game, each vertex is pebbled once and T is the number of vertices in
the graph. If, however, there are not enough pebbles, some vertices will have to be pebbled
more than once. In this case a tradeoff between space and time will be exhibited.

For a particular DAG G we may seek to determine the minimum number of pebbles, Smin,
needed to place pebbles on all output vertices at some time and for a given number of pebbles S
to determine the minimum time T needed when S pebbles are used. Methods for computing
Smin and bounding S and T simultaneously have been developed. For example, the four-
point (four-input) fast Fourier transform (FFT) graph shown in Fig. 1.10 has Smin = 3 and
can be pebbled in the minimum number of steps with five pebbles.

Let the FFT graph of Fig. 1.10 be pebbled with the minimum number S of pebbles.
Initially no pebbles reside on the graph. Thus, there is a first point in time at which S pebbles
reside on the graph. The dark gray vertices identify one possible placement of pebbles at such
a point in time. The light gray vertices will have had pebbles placed on them prior to this time
and will have to be repebbled again later to pebble output vertices that cannot be reached from
the placement of the dark gray vertices. This demonstrates that for this graph if the minimum
number of pebbles is used, some vertices will have to be repebbled. Although the n-point
FFT graph, n a power of two, has only n log n+n vertices, we show in Section 10.5.5 that its
vertices must be repebbled enough times that S and T satisfy (S+1)T ≥ n2/16. Thus, either
S is much larger than the minimum space or T is much larger than the number of vertices
or both.

146113

8 16157

1, 9 2, 10 4, 12 5, 13

Figure 1.10 A pebbling of a four-input FFT graph at the point at which the maximum num-
ber of pebbles (three) is used. Numbers specify the order in which vertices can be pebbled. A
maximum of three pebbles is used. Some vertices are pebbled twice.

26 Chapter 1 The Role of Theory in Computer Science Models of Computation

Space-time tradeoffs can also be studied with the branching program, a type of program
that permits data-dependent computations. (See Section 10.9.) While branching programs
provide more flexibility than does the pebble game, they are worth considering only for prob-
lems in which the algorithms used involve branching and have access to an external random-
access memory to permit data-dependent reading of inputs, a strong assumption. For many
problems only straight-line programs are used, in which case the pebble game is the model of
choice.

A serious problem arises when the storage capacity of a primary memory is too small for
a problem, so that a slow secondary memory, such as a disk, must be used for intermediate
storage. This results in time-consuming input/output operations (I/O) between primary and
secondary memory. If too many I/O operations are done, the overall performance of the system
can deteriorate markedly. This problem has been exacerbated by the growing disparity between
the speed of CPUs and that of memories; the speed of CPUs is increasing over time at a greater
rate than that of memories. In fact, the latency of a disk, the time between the issuance of a
request for data and the time it is answered, can be 100,000 to 1,000,000 times the length of a
CPU cycle. As a consequence, the amount of time spent swapping data between primary and
secondary memory may dominate the time to perform computations. A second pebble game,
the red-blue pebble game, has been introduced to study this problem. (See Chapter 11.)

The red-blue pebble game is played with both red and blue pebbles. The (hot) red pebbles
correspond to primary memory locations and the (cool) blue pebbles correspond to secondary
memory locations. Red pebbles are played according to the rules of the above pebble game.
The additional rules that apply to the red and blue pebbles allow a red pebble to be swapped
for a blue one and vice versa. In addition, blue pebbles reside only on inputs initially and
must reside on outputs finally. The number of red pebbles is limited, but the number of blue
pebbles is not.

The goal of the red-blue pebble game is to minimize the number of times that red and
blue pebbles are swapped, since each swap corresponds to an expensive input/output (I/O)
operation. Let T be the number of I/O operations and S be the number of red pebbles.
Upper and lower bounds on the exchange of S for T have been derived for a large number of
problems. For example, for the problem of multiplying two n×n matrices in about 2n3 steps
with the classical algorithm, it has been shown that a red-blue pebble-game strategy leads to a
product ST 2 proportional to n6 and that this cannot be beaten except by a small multiplicative
factor.

1.5.3 Complexity Classes
Complexity classes provide a way to group languages of similar computational complexity. For
example, the nondeterministic polynomial-time languages (NP) are languages that can be
solved in time that is polynomial in the size of their input when the machine in question is
a nondeterministic Turing machine (TM). Nondeterministic Turing machines can have more
than one state that is a successor to the current state for the current input. Thus, they can
make choices between successor states. A language L is in NP if there is a nondeterministic
TM such that, given an arbitrary string in L, there is some choice of successor states for the
TM control unit that causes the TM to enter an accepting state in a number of steps that is
polynomial in the length of the input.

An NP-complete language L0 must satisfy two conditions. First, L0 must be in NP and
second, it must be true that for each language L in NP a string x in L can be translated

c©John E Savage 1.6 Parallel Computation 27

into a string y of L0 using an algorithm whose running time is a polynomial in the length
of x such that y is in L0 if and only if x is in L. As a consequence of this definition, if any
NP-complete language can be solved in deterministic polynomial time, then every language in
NP can, including all the other NP-complete languages. However, the best algorithms known
today for NP-complete languages all have exponential running time. Thus, for long strings
these algorithms are impractical. If solutions to large NP-complete languages are needed, we
are limited to approximate solutions.

1.5.4 Circuit Complexity
Circuit complexity is a notoriously difficult subject. Despite decades of research, we have
failed to find methods to show that individual functions have super-polynomial circuit size
or more than poly-logarithmic depth. Nonetheless, the circuit is such a simple and appealing
model that it continues to attract a considerable amount of attention. Some very interesting
exponential lower bounds on circuit size have been derived when the circuits are monotone,
that is, realized by AND and OR gates but no NOTs.

1.6 Parallel Computation
The VLSI machine and the PRAM are examples of parallel machines. The VLSI machine
reflects constraints that exist when finite-state machines are realized through the very large-
scale integration of components on semiconductor chips. In the VLSI model the area of a chip
is important because large chips have a much higher probability of containing a disabling defect
than smaller ones. Consequently, the absolute size of chips is limited. However, the width of
lines that can be drawn on chips has been shrinking over time, thereby increasing the number
of wires, gates, and binary memory cells that can be placed on them. This has the effect of
increasing the effective chip area, the real chip area normalized by the cross section of wires.

Figure 1.11(a) is a VLSI diagram representing the types of material that can be deposited on
the surface of a pure crystalline semiconductor substrate to form different types of conducting
regions. Some of the rectangular regions serve as wires whereas overlaps of other regions create
transistors. In turn, collections of transistors form gates. This VLSI diagram describes a NAND

gate, a gate whose Boolean function is the NOT of the AND of its two inputs. Shown in
Fig. 1.11(b) is the logic symbol for the NAND gate. The small circle at the output of the AND

gate denotes the NOT of the gate value.
Given the premium attached to chip real estate, a large number of economical and very

regular finite-state machine designs have been made for VLSI chips. One of the most im-
portant of these is the systolic array, a one- or two-dimensional array of processors (FSMs)
that are identical, except possibly for those along the periphery of the array. These processors
operate in synchrony; that is, they perform the same operation at the same time. They also
communicate only with their nearest neighbors. (The word “systolic” is derived from “systole,”
a “rhythmically recurrent contraction” such as that of the heart.)

Systolic arrays are typically used to compute specific functions such as the convolution
c = a ⊗ b of the n-tuple a = (a0, a1, . . . , an−1) with the m-tuple b = (b0, b1, . . . , bm−1).
The jth component, cj , of the convolution c = a ⊗ b, 0 ≤ j ≤ (n + m − 2), is defined as

cj =
∑

r+s=j

ar ∗ bs

28 Chapter 1 The Role of Theory in Computer Science Models of Computation

c

Vss

p-plus

p-well

Vdd

ba

c

a b

(a) (b)

Figure 1.11 (a) A layout diagram for a VLSI chip and (b) its logic symbol.

0 a2 0 a1

0 0 a2

0 0

0 0

Step 2

0 0 b0

Step 4

0 b0

Step 5

b0 0

Step 6

0 0

a1

0

c4

0

0

c3

a0

b2

c2

0

0

c1

0

b1

c0

0

0

c4

a1

b2

c3

0

0

c2

a0

b1

c1

0

0

c0

a2

b2

c4

0

0

c3

a1

b1

c2

0

0

c1

a0

b0

c0

a0

0

c4

0

0

c3

0

0

c2

0

0

c1

0

b2

c0

0

0

0

0

a2

0

0

0

b1

0

Figure 1.12 A systolic array for the convolution of two binary sequences.

c©John E Savage Problems 29

It is assumed that the components of a and b are drawn from a set over which the operations
of ∗ (multiplication) and

∑
(addition) are defined, such as the integers.

Shown schematically in Fig. 1.12 on page 28 is the one-dimensional systolic array for the
convolution c = a ⊗ b at the second, fourth, fifth, and sixth steps of execution on input
vectors a = (a0, a1, a2) and b = (b0, b1, b2). The components of these vectors are fed from
the left and right, respectively, spaced by zero elements. The first component of a enters the
array one step ahead of the first component of b. The result of the convolution is the vector
c = (c0, c1, c2, c3, c4). There is one more cell in the array than there are components in the
result. At each step the components of a and b in each cell are multiplied and added to the
previous value of the component of c in that cell. After all components of the two input vectors
pass through the cell, the convolution is computed.

The processors of a parallel computer generally do not communicate only with nearest
neighbors, as in the systolic array. Instead, processors often can communicate with remote
neighbors via a network. The type of networks chosen for a parallel computer can have a large
impact on their effectiveness.

The processors of the PRAM mentioned in Section 1.1 operate synchronously, alternating
between accessing a global memory and computing locally. Since the processors communicate
by writing and reading values to and from the global memory, all processors are at the same
distance from one another. Although the PRAM model makes two unrealistic assumptions,
namely that processors a) can act in synchrony and b) they can communicate directly via global
memory, it remains a good model in which to explore problems that are hard to parallelize,
even with the flexibility offered by this model.

. .
Problems
MATHEMATICAL PRELIMINARIES

1.1 Show that the sum S(k) below has value S(k) = 2k − 1:

S(k) = 2k−1 + 2k−2 + · · · + 21 + 20

SETS, LANGUAGES, INTEGERS, AND GRAPHS

1.2 Let A = {red, green, blue}, B = {green, violet}, and C = {red, yellow, blue, green}.
Determine the elements in (A ∩ C) × (B − C).

1.3 Let the relation R ⊆ × be defined by pairs (a, b) such that a and b have the same
remainder on division by 3. Show that R is an equivalence relation.

1.4 Let R ⊂ A × A be an equivalence relation. Let the set E[a] be the elements in A
equivalent under the relation R to the element a. Show that for all a, b ∈ A the
equivalence classes E[a] and E[b] are either equal or disjoint. Also show that A is the
union of all equivalence classes.

1.5 In terms of the Kleene closure and the concatenation of sets, describe the languages
containing the following:

a) Strings over {0, 1} beginning with 01.

b) Strings beginning with 0 that alternate between 0 and 1.

30 Chapter 1 The Role of Theory in Computer Science Models of Computation

1.6 Describe an algorithm to convert numbers from decimal to binary notation.

1.7 A graph G = (V , E) can be described by adjacency lists, one list for each vertex in the
graph. The adjacency list for vertex v ∈ V is a list of vertices to which there is an edge
from v. Generate adjacency lists for the two graphs of Fig. 1.2.

TASKS AS FUNCTIONS

1.8 Let 5 be the set {0, 1, 2, 3, 4}. Let the addition operator ⊕ over this set be modulo 5;
that is, if x and y are two such integers, x⊕y is obtained by adding x and y as integers
and taking the remainder after division by 5. For example, 2 ⊕ 2 = 4 mod 5 whereas
3 ⊕ 4 = 7 = 2 mod 5. Provide a table describing the function f⊕ : 5 × 5 -→ 5.

1.9 Give a truth table for the Boolean function whose value is True exactly when either x
or y or both is True and z is False.

RATE OF GROWTH OF FUNCTIONS

1.10 For each of the fifteen unordered pairs of functions f and g below, determine whether
f(n) = O(g(n)), f(n) = Ω(g(n)), or f(n) = Θ(g(n)).

a) n3; c) n6; e) n3 log2 n;

b) 2n log2 n; d) n2n; f) 22n
.

1.11 Show that 2.7n2 + 6
√

n2log2 n3 ≤ 8.7n2 for n ≥ 3.

METHODS OF PROOF

1.12 Let Sr(n) =
∑n

j=1 jr denote a sum of powers of integers. Use proof by induction to
show that the following identities on arithmetic series hold:

a) S2(n) = n3

3 + n2

2 + n
6

b) S3(n) = n4

4 + n3

2 + n2

4

COMPUTATIONAL MODELS

1.13 Produce a circuit and straight-line program for the Boolean function described in Prob-
lem 1.9.

1.14 A state diagram for a finite-state machine is a graph containing one vertex (or state)
for each pattern of data that can be held in its memory and an edge from state p to
state q if there is a value for the input data that causes the memory to change from p
to q. Such an edge is labeled with the value of the input data that causes the transition.
Outputs are generated by a finite-state machine when it is in a state. The vertices of its
state diagram are labeled by these outputs.

Provide a state diagram for the finite-state machine described in Fig. 1.5(b).

1.15 Using the straight-line program given for the full-adder circuit in Section 1.4.1, describe
how such a program would be placed in the random-access memory of the RAM and
how the RAM would run the fetch-and-execute cycle to compute the values produced
by the full-adder circuit. This is an example of circuit simulation by a program.

c©John E Savage Problems 31

1.16 Describe the actions that could be taken by a Turing machine to simulate a circuit from
a straight-line program for it. Illustrate your approach by applying it to the simulation
of the full-adder circuit described in Section 1.4.1.

1.17 Suppose you are told that a function is computed in four time steps by a very simple
finite-state machine, one whose logic circuit (but not its memory) can be realized with
four logic gates. Suppose you are also told that the same function cannot be computed
by a logic circuit with fewer than 20 logic gates. What can be said about these two
statements? Explain your answer.

1.18 Describe a finite-state machine that recognizes the language consisting of those strings
over {0, 1} that end in 1.

1.19 Determine the language generated by the context-free grammar G = (N , T ,R, S)
where N = {S, M, N}, T = {a, b, c, d} and R consists of the rules given below.

a) S → MN

b) M → aMb

c) M → ab

d) N → cNd

e) N → cd

COMPUTATIONAL COMPLEXITY

1.20 Using the rules for the red pebble game, show how to pebble the FFT graph of Fig. 1.10
with five red pebbles by labeling the vertices with the time step on which it is pebbled.
If a vertex has to be repebbled, it will be pebbled on two time steps.

1.21 Suppose that you are told that the n-point FFT graph can be pebbled with
√

n pebbles
in n/4 time steps for n ≥ 37. What can you say about this statement?

1.22 You have been told that the FFT graph of Fig. 1.10 cannot be pebbled with fewer than
three red pebbles. Show that it can be pebbled with two red pebbles in the red-blue
pebble game by sketching how you would use blue pebbles to achieve this objective.

PARALLEL COMPUTATION

1.23 Using Fig. 1.12 as a guide, design a systolic array to convolve two sequences of length
two. Sketch out each step of the convolution process.

1.24 Consider a version of the PRAM consisting of a collection of RAMs (see Fig. 1.13) with
small local random-access memories that repeat the following three-step cycle until they
halt: a) they simultaneously read one word from a common global memory, b) they
execute one local instruction using local memory, and c) they write one word to the
common memory. When reading and writing, the individual processors are allowed
to read and write from the same location. If two RAMs write to the same location,
they must be programmed so that they write a common value. (This is known as the
concurrent-read, concurrent-write (CRCW) PRAM.) Each RAM has a unique integer
associated with it and can use this number to decide where to read or write in the
common memory.

Show that the CRCW PRAM can compute the AND of n Boolean variables in two
cycles.

Hint: Reserve one word in common memory and initialize it with 0 and assign RAMs
to the appropriate memory cells.

32 Chapter 1 The Role of Theory in Computer Science Models of Computation

RAMRAM

Common Memory

p1 p2 pn

RAM

Figure 1.13 The PRAM model is a collection of synchronous RAMs accessing a common
memory.

Chapter Notes
Since this chapter introduces concepts used elsewhere in the book, we postpone the biblio-
graphic citations to later chapters. We remark here, however, that the notation for the rate of
growth of functions in Section 1.2.8 is due to Knuth [170]. The reader interested in more in-
formation on the development of the digital computer, ranging from Babbage’s seminal work
in the 1830s to the pioneering work of the 1940s, should consult the collection of papers
selected and edited by Brian Randell [267].

