Perceptual Coloring and 2D Sketching for Segmentation of Neural Pathways Wenjin Zhou, Peter G. Sibley, Song Zhang, David F. Tate, David H. Laidlaw

Motivations

This project is motivated by the desire to help doctors in understanding white matter structure within human brain for studying diseases such as HIV.

- Visualize the geometric disparity between white matter tracts obtained from DT-MRI (Diffusion Tensor Magnetic Resonance Images)
- Allow expert users to select regions interactively with a 2D based sketching mechanism
- Better Reflects the uncertainty in forming scientific model from geometric information
- Avoid rigid, possibly inaccurate, segmentation from automatic clustering of tracts
- 2D sketching interface exploits neuroscientists' expertise with sectional anatomy

Color Embedding Flow Chart

[1] AKERS, D. 2006. Wizard of oz for participatory design: Inventing an interface for 3d selection of neural pathway estimates. In CHI. Work In Progress. [2] BRUN, A., PARK, H.-J., KNUTSSON, H., AND WESTIN, C.-F. 2003. Coloring of dt-mri fiber traces using laplcian eigenmaps. In EUROCAST'03, 564–572 [3] LEE, S., CORREIA, S., TATE, D., PAUL, R., ZHANG, S., SALLOWAY, S., MALLOY, P., AND LAIDLAW, D. H. 2006. Quantitative tract-of-interest metrics for white matter integrity based on diffusion tensor mri data. In ISMRM [4] ZHANG, S., DEMIRALP, C., AND LAIDLAW, D. H. 2003. Visualizing diffusion tensor MR images using streamtubes and streamsurfaces. IEEE TVCG 9, 4 (October), 454–462.

Distance Matrix

.0	2.5	0.5	\
.5	0.0	3.0	
.5	3.0	0.0	•••
	٠		
8.8		253	· /
•	٠	٠	• /

Spectral Color Embedding

(d) All tracts passing through the region are displayed

Color Embedding

- Compute streamtubes that represent white matter paths from DT-MRI data
- Compute adjacency matrix of distances between every pair of streamtubes in the brain
- Using spectral embedding method, assign colors to every streamtube such that differences in colors correspond to the distances in the matrix
- Convert these colors from perceptually uniform color space to RGB for display

(c) Selected plane shown in 2D, user selects a free-form region

Methods

Expert User Interactions

- View the generated streamtubes in BrainApp, an interactive tool for visualizing DT-MRI data
- Select axis-aligned planes in 3D, then view as a 2D view, the colors of streamtubes intersecting that slice
- Makes a free-form closed curve, the streamtubes that pass through this region are selected
- Selected streamtubes will be displayed and allows interactions

Expert Feedback

We performed two informal evaluations with an expert visualizing a normal and an HIV-possitive brain dataset. Our expert reported:

- High anatomic specificity
- Hemispheric color differences easily gave context when navigating in 3D views
- Smooth coloring was more compatible with uncertainty of tractography

Conclusions

- Our evaluation suggests that visualizing the geometric disparity between white matter tracts using perceptual color embedding is a promising approach
- Our visualization methods shows relavant anatomic structure without imposing a rigid segmentation
- The axis-aligned view and selection method exploits the training neuroscientists have received viewing aligned 2D images of the brain

