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Introduction 
We present an analytical model of diffusion and water exchange in white matter to estimate axon radii. Direct measurement of important biomarkers such as the axon 

radii, density, and permeability are important for early detection of diseases. We use a model for white matter with two compartments between which there is exchange 
of water molecules. Our analytical formulas examine the derivation of axonal parameters that affect the signal attenuation of diffusion-weighted MR experiments in 
white matter. The model is fitted to Monte Carlo simulation data. The parameters obtained are compared with known ground truth from simulation data and prove the 
feasibility of recovering underlying axonal radii using the model.  
Method 

The model is composed of two compartments: one cylindrical restricted and one hindered. The cylindrical restricted compartments are surrounded by partially 
permeable membranes. The free diffusion coefficients 1D and 2D are assumed to be the same. We use indices 1 and 2 to denote intra-axonal and extra-axonal 

compartments. MR signal attenuation reflects the water diffusion in white matter in two processes: restricted water diffusion in the intra-axonal space and hindered 
water diffusion in extra-axonal space.  The combined normalized MRI signal is then: ),()1(),(),( 21 Δ−+Δ=Δ qEfqfEqE , 

where f is the volume fraction of the intra-axonal compartment, Δ is the time between pulses, and q is the wavenumber.  

Water Diffusion in Intra-axonal Space:  
The motion of molecules undergoing diffusion can be described with the conditional propagator, ),|( 0 trrPs
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• Define: Transport rate through interface
1D

Ma
h = , M is the permeability coefficient 

The solution to the diffusion problem posed above, given rotational symmetry about the direction of the field gradient, is 
written in terms of the corresponding eignfunctions [1]. In a typical experiment, only the eigenvalue 01αα = is important 

[3]. Our solution to the normalized MRI signal in the intra-axonal compartment is:  
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Where a is the axon radius, nJ is the Bessel functions, and nmα are the positive roots of the 

equation hJJ nmnnmnnm −=)(/)(' ααα  

Water Diffusion in Extra-axonal Space:  
 We model the hindered diffusion surrounding the axons with Gaussian distribution. By assuming a sufficiently long 

diffusion time 1
2

≥
⋅Δ
a

Din , the apparent diffusion coefficient of the extra-axonal compartment can be approximated 

as
τ222
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DD app += , where τ is the exchange time between the two compartments [2].  

Thus, the normalized MRI signal in the extra-axonal compartment is then:  
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Experiments 
Our Model is fitted to 6 constant-gradient experiments using Monte Carlo simulation in CAMINO [7] with the 

following axonal parameters: various cylindrical radii: R = [1.9, 3, 5, 7] )( mμ ; transport rate 4788.5 −= eh ; diffusivity 

value )/(2 29 smeD −= ; and intra-axonal volume fraction 708.0=f . We set our experimental parameters to be: δ = 2ms; diffusion time is chosen from 20 to 500 ms 
with 13 linear increments; diffusion gradients were applied only perpendicular to the axon axis and each simulation was repeated for 6 linear gradient amplitudes of 
200-700 (mT/m) with SNR = 16.  
Results 

We use a Markov Chain Monte Carlo (MCMC) procedure to get samples of the posterior distribution of the model parameters given the data.  Figure 1 is our main 
result. Figure 1(a) shows the histograms of the marginal posterior distribution on axon radius a . Figure 1(b, c) shows the histogram of the marginal posterior 
distribution of the other model parameters: f  (volume fraction) and D  (diffusivity). Each histogram combines a total number of 500 samples. Overall, the estimate of 
the axonal parameters is accurate and demonstrated the feasibility of recovering underlying axonal radii.  
Discussion 

Previous work on axon radii estimation [4, 5] has assumed no exchange between intra- and extra-axonal compartments. Recent work [6] has demonstrated that if 
diffusion is modeled as two compartments, of which one is restricted, exchange must be included in the model. Our estimation results of axon radii based on simulation 
data is a first towards recovering axonal features incorporating water exchange. In the near future, we plan to apply our model for axon radii measurement in vivo with 
macaque data. Our method will be validated with radii distribution measured from photomicrographs on the corpus callosum and the cingulum bundle.  
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Figure 1: (a) Axon radius estimation result. (b, c) Volume 
fraction and diffusivity estimation results at radius = 
5 )( mμ . Histogram of 500 samples from posterior 

distribution on a, f and D using MCMC.   
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(c) Diffusivity )/( 2 smD  

(b) Volume fracton f  
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