
xMP: Selective Memory Protection
for Kernel and User Space

Sergej Proskurin,∗ Marius Momeu,∗ Seyedhamed Ghavamnia,† Vasileios P. Kemerlis,‡ and Michalis Polychronakis†
∗Technical University of Munich, †Stony Brook University, ‡Brown University

∗{proskurin, momeu}@sec.in.tum.de, †{mikepo, sghavamnia}@cs.stonybrook.edu, ‡vpk@cs.brown.edu

Abstract—Attackers leverage memory corruption vulnerabil-
ities to establish primitives for reading from or writing to the
address space of a vulnerable process. These primitives form
the foundation for code-reuse and data-oriented attacks. While
various defenses against the former class of attacks have proven
effective, mitigation of the latter remains an open problem.
In this paper, we identify various shortcomings of the x86
architecture regarding memory isolation, and leverage virtual-
ization to build an effective defense against data-oriented attacks.
Our approach, called xMP, provides (in-guest) selective memory
protection primitives that allow VMs to isolate sensitive data in
user or kernel space in disjoint xMP domains. We interface the
Xen altp2m subsystem with the Linux memory management
system, lending VMs the flexibility to define custom policies.
Contrary to conventional approaches, xMP takes advantage of
virtualization extensions, but after initialization, it does not
require any hypervisor intervention. To ensure the integrity of
in-kernel management information and pointers to sensitive data
within isolated domains, xMP protects pointers with HMACs
bound to an immutable context, so that integrity validation
succeeds only in the right context. We have applied xMP to
protect the page tables and process credentials of the Linux
kernel, as well as sensitive data in various user-space applications.
Overall, our evaluation shows that xMP introduces minimal
overhead for real-world workloads and applications, and offers
effective protection against data-oriented attacks.

I. INTRODUCTION

During the past three decades, data-oriented attacks have
evolved from a theoretical exercise [1] to a serious threat [2]–
[7]. During the same time, we have witnessed a plethora
of effective security mechanisms that prompted attackers to
investigate new directions and exploit less explored corners of
victim systems. Specifically, recent advances in Control Flow
Integrity (CFI) [8]–[12], Code Pointer Integrity (CPI) [13],
[14], and code diversification [15]–[17] have significantly
raised the bar for code-reuse attacks. In fact, CFI schemes have
been adopted by Microsoft [18], Google [19], and LLVM [20].

Code-reuse attacks chain short code sequences, dubbed
gadgets, to hijack an application’s control-flow. It suffices to
modify one control-flow structure, such as a function pointer
or a return address, with the start of a crafted gadget chain,
to cause an application to perform arbitrary computation. In
contrast, data-oriented attacks completely avoid changes to
the control flow. Instead, these attacks aim to modify non-
control data to cause the application to obey the attacker’s
intentions [5]–[7]. Typically, an attacker leverages memory
corruption vulnerabilities that enable arbitrary read or write

primitives to take control over the application’s data. Stitching
together a chain of data-oriented gadgets, which operate
only on data, allows an attacker to either disclose sensitive
information or escalate privileges, without violating an appli-
cation’s control flow. In this way, data-oriented attacks remain
under the radar, despite code-reuse mitigations, and can have
disastrous consequences [3]. We anticipate further growth in
this direction in the near future, and emphasize the need for
practical primitives that eliminate such threats.

Researchers have suggested different strategies to counter
data-oriented attacks. Data Flow Integrity (DFI) [21] schemes
dynamically track a program’s data flow. Similarly, by in-
troducing memory safety to the C and C++ programming
languages, it becomes possible to completely eliminate mem-
ory corruption vulnerabilities [22]–[25]. While both directions
have the potential to thwart data-oriented attacks, they lack
practicality due to high performance overhead, or suffer from
compatibility issues with legacy code. Instead of enforcing
data flow integrity, researchers have started exploring isolation
techniques that govern access to sensitive code and data
regions [26]–[28]. Still, most approaches are limited to user
space, focus on merely protecting a single data structure, or
rely on policies enforced by a hypervisor.

In this paper, we leverage virtualization extensions of Intel
CPUs to establish selective memory protection (xMP) primi-
tives that have the capability of thwarting data-oriented attacks.
Instead of enhancing a hypervisor with the knowledge required
to enforce memory isolation, we take advantage of Intel’s
Extended Page Table pointer (EPTP) switching capability
to manage different views on guest-physical memory, from
inside a VM, without any interaction with the hypervisor.
For this, we extended Xen altp2m [29], [30] and the Linux
memory management system to enable the selective protection
of sensitive data in user or kernel space by isolating sensitive
data in disjoint xMP domains that overcome the limited access
permissions of the Memory Management Unit (MMU). A
strong attacker with arbitrary read and write primitives cannot
access the xMP-protected data without first having to enter
the corresponding xMP domain. Furthermore, we equip in-
kernel management information and pointers to sensitive data
in xMP domains with authentication codes, whose integrity
is bound to a specific context. This allows xMP to protect
pointers and hence obstruct data-oriented attacks that target
the xMP-protected data.



We use xMP to protect two sensitive kernel data structures
that are vital for the system’s security, yet are often disregarded
by defense mechanisms: page tables and process credentials.
In addition, we demonstrate the generality of xMP by guard-
ing sensitive data in common, security-critical (user-space)
libraries and applications. Lastly, in all cases, we evaluate the
performance and effectiveness of our xMP primitives.

In summary, we make the following main contributions:
• We extend the Linux kernel to realize xMP, an in-guest

memory isolation primitive for protecting sensitive data
against data-oriented attacks in user and kernel space.

• We present methods for combining Intel’s EPTP switch-
ing and Xen altp2m to control different guest-physical
memory views, and isolate data in disjoint xMP domains.

• We apply xMP to guard the kernel’s page tables and
process credentials, as well as sensitive data in user-space
applications, with minimal performance overhead.

• We integrate xMP into the Linux namespaces framework,
forming the basis for hypervisor-assisted OS-level virtu-
alization protection against data-oriented attacks.

II. BACKGROUND

A. Memory Protection Keys

Intel’s Memory Protection Keys (MPK) technology supple-
ments the general paging mechanism by further restricting
memory permissions. In particular, each paging structure entry
dedicates four bits that associate virtual memory pages with
one of 16 protection domains, which correspond to sets of
pages whose access permissions are controlled by the same
protection key (PKEY). User-space processes control the per-
missions of each PKEY through the 32-bit PKRU register.
Specifically, MPK allows different PKEYs to be simultane-
ously active, and page table entries to be paired with different
keys to further restrict access to the associated page.

A benefit of MPK is that it allows user threads to indepen-
dently and efficiently harden the permissions of large memory
regions. For instance, threads can revoke write access from
entire domains without entering kernel space, walking and
adjusting page tables, and invalidating TLBs; instead, threads
can just set the write disable bit of the corresponding PKEY in
the PKRU register. Another benefit of MPK is that it extends
the access control capabilities of page tables, enabling threads
to enforce (i) execute-only code pages [16], [31], and (ii) non-
readable, yet present data pages [28]. These capabilities pro-
vide new primitives for thwarting data-oriented attacks, with-
out sacrificing performance and practicality [9], or resorting
to architectural quirks [32] and virtualization [12], [16], [33].

Although Intel announced MPK in 2015 [34], it was inte-
grated only recently, and so far only to the Skylake-SP Xeon
family, which is dedicated to high-end servers. Hence, a need
for similar isolation features remains on desktop, mobile, and
legacy server CPUs. Another issue is that attackers with the
ability to arbitrarily corrupt kernel memory can (i) modify
the per-thread state (in kernel space) holding the access per-
missions of protection domains, or (ii) alter protection domain

bits in page table entries. This allows adversaries to deactivate
restrictions that otherwise are enforced by the MMU. Lastly,
the isolation capabilities of MPK are geared towards user-
space pages. Sensitive data in kernel space thus remains
prone to unauthorized access. In fact, there is no equivalent
mechanism for protecting kernel memory from adversaries
armed with arbitrary read and write primitives. Consequently,
there is a need for alternative memory protection primitives,
the creation of which is the main focus of this work.

B. The Xen altp2m Subsystem

Virtual Machine Monitors (VMMs) leverage Second Level
Address Translation (SLAT) to isolate physical memory that is
reserved for VMs [35]. In addition to in-guest page tables that
translate guest-virtual to guest-physical addresses, the supple-
mentary SLAT tables translate guest-physical to host-physical
memory. Unauthorized accesses to guest-physical memory,
which is either not mapped or lacks privileges in the SLAT
table, trap into the VMM [36], [37]. As the VMM exclusively
maintains the SLAT tables, it can fully control a VM’s view on
its physical memory [29], [30], [38], [39]. Xen’s physical-to-
machine subsystem (p2m) [37], [40] employs SLAT to define
the guest’s view of the physical memory that is perceived by
all virtual CPUs (vCPUs). By restricting access to individual
page frames, security mechanisms can use p2m to enforce
memory access policies on the guest’s physical memory.

Unfortunately, protecting data through a single global view
(i) incurs a significant overhead and (ii) is prone to race
conditions in multi-vCPU environments. Consider a scenario
in which a guest advises the VMM to read-protect sensitive
data on a specific page. By revoking read permissions in the
SLAT tables, illegal read accesses to the protected page, e.g.,
due to malicious memory disclosure attempts, would violate
the permissions and trap into the VMM. At the same time, for
legal guest accesses to the protected page frame, the VMM
has to temporarily relax its permissions. Whenever the guest
needs to access the sensitive information, it has to instruct the
VMM to walk the SLAT tables—an expensive operation. More
importantly, temporarily relaxing permissions in the global
view creates a window of opportunity for other vCPUs to freely
access the sensitive data without notifying the VMM.

The Xen alternate p2m subsystem (altp2m) [29], [30]
addresses the above issues by maintaining and switching
between different views, instead of using a single, global view.
As the views can be assigned to each vCPU individually, per-
missions in one view can be safely relaxed without affecting
the active views of other vCPUs. In fact, instead of relaxing
permissions by walking the SLAT tables, altp2m allows
switching to another, less restrictive view. Both external [29],
[30] and internal monitors [26], [41] use altp2m to allocate
and switch between views. Although altp2m introduces a
powerful means to rapidly change the guest’s memory view, it
requires hardware support to establish primitives that can be
used by guests for isolating selected memory regions.



C. In-Guest EPT Management

Xen altp2m was introduced to add support for the Intel
virtualization extension that allows VMs to switch among
Extended Page Tables (EPTs), Intel’s implementation of SLAT
tables [35]. Specifically, Intel introduced the unprivileged
VMFUNC instruction to enable VMs to switch among EPTs
without involving the VMM—although altp2m has been
implemented for Intel [42] and ARM [30], in-guest switching
of altp2m views is available to Intel only. Intel uses the
Virtual Machine Control Structure (VMCS) to maintain the
host’s and the VM’s state per vCPU. The VMCS holds an
Extended Page Table pointer (EPTP) to locate the root of the
EPT. In fact, the VMCS has capacity for up to 512 EPTPs,
each representing a different view of the guest’s physical
memory; using VMFUNC, a guest can choose among 512 EPTs.

To pick up the above scenario, the guest can instruct the
system to isolate and relax permissions to selected memory
regions, on-demand, using Xen’s altp2m EPTP switching.
Furthermore, combined with another feature, i.e., the Virtual-
ization Exceptions (#VE), the Xen altp2m allows in-guest
agents to take over EPT management tasks. More precisely,
the guest can register a dedicated exception handler that is
responsible for handling EPT access violations; instead of
trapping into the VMM, the guest can intercept EPT violations
and try to handle them inside a (guest-resident) #VE handler.

III. THREAT MODEL

We expect the system to be protected from code injec-
tion [43] through Data Execution Prevention (DEP) or other
proper W^X policy enforcement, and to employ Address Space
Layout Randomization (ASLR) both in kernel [44], [45] and
user space [15], [46]. Also, we assume that the kernel is
protected against return-to-user (ret2usr) [47] attacks through
SMEP/SMAP [35], [48], [49]. Other hardening features, such
as Kernel Page Table Isolation (KPTI) [50], [51], stack smash-
ing protection [52], and toolchain-based hardening [53], are
orthogonal to xMP—we neither require nor preclude the use of
such features. Moreover, we anticipate protection against state-
of-the-art code-reuse attacks [4], [54]–[56] via either (i) fine-
grained CFI [57] (in kernel [58] and user space [59]) coupled
with a shadow stack [60], or (ii) fine-grained code diversifi-
cation [61], [62], and with execute-only memory (available to
both kernel [31] and user space [16]).

Assuming the above state-of-the-art protections prevent an
attacker from gaining arbitrary code execution, we focus on
defending against attacks that leak or modify sensitive data
in user or kernel memory [16], [31], by transforming mem-
ory corruption vulnerabilities into arbitrary read and write
primitives. Attackers can leverage such primitives to mount
data-oriented attacks [7], [63] that (i) disclose sensitive data,
such as cryptographic material, or (ii) modify sensitive data
structures, such as page tables or process credentials.

IV. DESIGN

To fulfil the need for a practical mechanism for the protec-
tion of sensitive data, we identify the following requirements:

(–x)
(–x)
(rw-)
(—)
(—)

domain[3]

(–x)
(–x)
(rw-)
(—)
(—)

domain[2]

(--x)
(--x)
(rw-)
(---)
(---)

domain[1]

MFN
MFN
MFN
MFN
MFN

Host
Memory

GFN
GFN
GFN
GFN
GFN

Guest
Memory

Key

PagePagePage

domain[1]

ptr ⊕

context

Guest Domain Xen

Figure 1. xMP uses different Xen altp2m views, each mapping guest frames
to machine frames with different access permissions, to partition memory
into isolated xMP domains. In addition, equipping data pointers to protected
memory with HMACs establishes context-bound pointer integrity.

¶ Partitioning of sensitive kernel and user-space memory
regions into individual domains.

· Isolation of memory domains through fine-grained access
control capabilities.

¸ Context-bound integrity of pointers to memory domains.

Although the x86 architecture allows for memory partition-
ing through segmentation or paging ¶, it lacks fine-grained
access control capabilities for effective memory isolation ·
(e.g., there is no notion of non-readable pages; only non-
present pages cannot be read). While previous work isolates
user-space memory by leveraging unused, higher-privileged
x86 protection rings [64], isolation of kernel memory is
primarily achieved by Software-Fault Isolation (SFI) solu-
tions [31]. Even though the page fault handler could be
extended to interpret selected non-present pages as non-
readable, switching permissions of memory regions that are
shared among threads or processes on different CPUs can
introduce race conditions: granting access to isolated domains
by relaxing permissions inside the global page tables may
reveal sensitive memory contents to the remaining CPUs. Be-
sides, each permission switch would require walking the page
tables, and thus frequent switching between a large number of
protected pages would incur a high run-time overhead. Lastly,
the modern x86 architecture lacks any support for immutable
pointers. Although ARMv8.3 introduced the Pointer Authen-
tication Code (PAC) [65] extension, there is no similar feature
on x86. As such, x86 does not meet requirements · and ¸.

In this work, we fill this gap by introducing selective mem-
ory protection (xMP) primitives that leverage virtualization
to define efficient memory isolation domains—called xMP
domains—in both kernel and user space, enforce fine-grained
memory permissions on selected xMP domains, and protect
the integrity of pointers to those domains (Figure 1). In the
following, we introduce our xMP primitives and show how
they can be used to build practical and effective defenses
against data-oriented attacks in both user and kernel space.
We base xMP on top of x86 and Xen [40], as it relies
on virtualization extensions that are exclusive to the Intel
architecture and are already used by Xen. Still, xMP is by
no means limited to Xen, as we further discuss in § VIII-D.
Furthermore, xMP is both backwards compatible with, and
transparent to, non-protected and legacy applications.



A. Memory Partitioning through xMP Domains

To achieve meaningful protection, applications may require
multiple disjoint memory domains that cannot be accessible
at the same time. For instance, an xMP domain that holds
the kernel’s hardware encryption key must not be accessible
upon entering an xMP domain containing the private key of
a user-space application. The same applies to multi-threaded
applications in which each thread maintains its own session
key that must not be accessible by other threads. We employ
Xen altp2m as a building block for providing disjoint xMP
domains (§ II-B). An xMP domain may exist in one of two
states, the permissions of which are configured as desired.
In the protected state, the most restrictive permissions are
enforced to prevent data leakage or modification. In the relaxed
state, the permissions are temporarily loosened to enable
legitimate access to the protected data as needed.

The straightforward way of associating an altp2m view
with each xMP domain is not feasible because only a single
altp2m view can be active at a given time. Instead, to enforce
the access restrictions of all xMP domains in each altp2m
view, we propagate the permissions of each domain across all
available altp2m views. Setting up an xMP domain requires
at least two altp2m views. Regardless of the number of
xMP domains, we dedicate one view, the restricted view, to
unify the memory access restrictions of all xMP domains.
We configure this view as the default on every vCPU, as it
collectively enforces the restrictions of all xMP domains. We
use the second view to relax the restrictions of (i.e., unprotect)
a given xMP domain and to allow legitimate access to its data.
We refer to this view as domain[id], with id referring to the
xMP domain of this view. By entering domain[id], the system
switches to the altp2m view id to bring the xMP domain into
its relaxed state—crucially, all other xMP domains remain in
their protected state. By switching to the restricted view, the
system switches all domains to their protected state.

To accommodate n xMP domains, we define n+1 altp2m
views. Figure 2 illustrates a multi-domain environment with
domain[n] as the currently active domain (the page frames of
each domain are denoted by the darkest shade). The permis-
sions of domain[n] in its relaxed and protected states are r-x
and --x, respectively. The --x permissions of domain[n]’s
protected state are enforced not only by the restricted view,
but also by all other xMP domains ({domain[j] | ∀j ∈
{1, ..., n} ∧ j 6= n}). This allows us to partition the guest’s
physical memory into multiple domains and to impose fine-
grained memory restrictions on each of them, satisfying ¶.

An alternative approach to using altp2m would be to
rely on Intel MPK (§ II-A). Although MPK meets require-
ments ¶ and ·, unfortunately it is applicable only to user-
space applications and cannot withstand abuse by memory
corruption vulnerabilities targeting the kernel. Due to the
limited capabilities of MPK, and since Intel has only recently
started shipping server CPUs with MPK, we opted for a
solution that works on both recent and legacy systems, and
can protect both user-space and kernel-space memory.

(--x)
(--x)
(rwx)
(---)
(---)

restricted

VPID

(--x)
(--x)
(rwx)
(rw-)
(rw-)

domain[1]

VPID’

(r-x)
(r-x)
(rwx)
(---)
(---)

domain[n]

VPIDn

MFN
MFN
MFN
MFN
MFN

Host
Memory

GFN
GFN
GFN
GFN
GFN

Guest
Memory

Figure 2. The system configures n + 1 altp2m views to create n disjoint
xMP domains. Each {domain[i] | i ∈ {1, ..., n}} relaxes the permissions of
a given memory region (dark shade) and restricts access to memory regions
belonging to other xMP domains (light shade).

B. Isolation of xMP Domains

We establish a memory isolation primitive that empowers
guests to enforce fine-grained permissions on the guest’s page
frames. To achieve this, we extended the Xen interface to allow
utilizing altp2m from inside guest VMs. Specifically, we
implemented an API for the Linux kernel that allows the use
of existing hypercalls (HVMOPs) [42] that interact with the Xen
altp2m subsystem for triggering the VMM to configure page
frames with requested access permissions on behalf of the VM.
Also, for performance reasons, we extended Xen with a new
hypercall: HVMOP_altp2m_isolate_xmp. This hypercall
places the guest’s page frames into xMP domains according
to § IV-A. Although this hypercall is not vital for xMP (its
functionality can be substituted by a set of existing hypercalls
to Xen altp2m), it reduces the number of interactions with
the hypervisor. Finally, we use altp2m in combination with
Intel’s in-guest EPTP switching and the #VE feature to allow
in-guest agents to take over several EPT management tasks
(§ II-C). This setup minimizes VMM interventions and thus
improves performance. Consequently, we do not have to
outsource logic to the VMM or to an external monitor, as the
scheme provides flexibility for defining new memory access
policies from inside the guest.

Consider an in-guest application that handles sensitive data,
such as passwords, cookies, or cryptographic keys. To protect
this data, the application can use the memory partitioning
primitives that leverage altp2m to allocate an xMP do-
main, e.g, domain[1] in Figure 2: in addition to domain[1]
holding original access permissions to the guest’s physical
memory, our memory isolation primitive removes read and
write permissions from the page frame in the restricted view
(and remaining domains). This way, unauthorized read and
write attempts outside domain[1] will violate the restricted
access permissions. Instead of trapping into the VMM, any
illegal access traps into the in-guest #VE-handler, which
generates a segmentation fault. Upon legal accesses, instead of
instructing the VMM to walk the EPTs to relax permissions,
the guest executes the VMFUNC instruction to switch to the
less-restrictive domain[1] and serve the request. As soon as
the application completes its request, it will use VMFUNC to
switch back to the restricted view and continue execution.

This scheme combines the best of both worlds: flexibility
in defining policies, and fine-grained permissions that are not
available to the traditional x86 MMU. Our primitives allow



in-guest applications to revoke read and write permissions on
data pages, without making them non-present, and to configure
code pages as execute-only, hence satisfying requirement ·.

C. Context-bound Pointer Integrity

For complete protection, we have to ensure the integrity
of pointers to sensitive data within xMP domains. Otherwise,
by exploiting a memory corruption vulnerability, adversaries
could redirect pointers to (i) injected, attacker-controlled
objects outside the protected domain, or (ii) existing, high-
privileged objects inside the xMP domain.

As x86 lacks support for pointer integrity (in contrast
to ARM, in which PAC [65], [66] was recently intro-
duced), we protect pointers to objects in xMP domains in
software. We leverage the Linux kernel implementation of
SipHash [67] to compute Keyed-Hash Message Authentica-
tion Codes (HMACs), which we use to authenticate selected
pointers. SipHash is a cryptographically strong family of pseu-
dorandom functions. Contrary to other secure hash functions
(including the SHA family), SipHash is optimized for short
inputs, such as pointers, and thus achieves higher performance.
To reduce the probability of collisions, SipHash uses a 128-
bit secret key. The security of SipHash is limited by its key
and output size. Yet, with pointer integrity, the attacker has
only one chance to guess the correct value; otherwise, the
application will crash and the key will be re-generated.

To ensure that pointers cannot be illegally redirected to
existing objects, we bind pointers to a specific context that
is unique and immutable. The task_struct data structure
holds thread context information and is unique to each thread
on the system. As such, we can bind pointers to sensitive,
task-specific data located in an xMP domain to the address of
the given thread’s task_struct instance.

Modern x86 processors use a configurable number of page
table levels that define the size of virtual addresses. On a
system with four levels of page tables, addresses occupy the
first 48 least-significant bits. The remaining 16 bits are sign-
extended with a value dependent on the privilege level: they
are filled with ones in kernel space and with zeros in user
space [68]. This allows us to reuse the unused, sign-extended
part of virtual addresses and to truncate the resulting HMAC
to 15 bits. At the same time, we can use the most-significant
bit 63 of a canonical address to determine its affiliation—if bit
63 is set, the pointer references kernel memory. This allows
us to establish pointer integrity and ensure that pointers can
be used only in the right context ¸.

Contrary to ARM PAC, instead of storing keys in registers,
we maintain one SipHash key per xMP domain in memory.
After generating a key for a given xMP domain, we grant the
page holding the key read-only access permissions inside the
particular domain (all other domains cannot access this page).
In addition, we configure Xen altp2m so that every xMP
domain maps the same guest-physical address to a different
machine-physical address. Every time the guest kernel enters
an xMP domain, it will use the key that is dedicated to this
domain (Figure 1). In fact, by reserving one specific memory

page for keys, via the kernel’s linker script, we allow the kernel
to embed key addresses as immediate instruction operands
that cannot be controlled by adversaries (i.e., code regions
are immutable). Alternatively, to exclude the compiler from
managing key material, we can leverage the VMM to establish
a trusted path for generating the secret key and provisioning its
location to the VM, e.g., through relocation information [62].
In particular, by leveraging the relocation entries related to
the kernel image, the VMM can replace placeholders at given
kernel instructions with the virtual addresses of (secret) key
locations, upon the first access to the respective key. Alter-
natively, we can provide the hypervisor with all placeholder
locations through an offline channel [26].

V. IMPLEMENTATION

We extended the Linux memory management system to
establish memory isolation capabilities that allow us to parti-
tion ¶ selected memory regions into isolated · xMP domains.
During the system boot process, once the kernel has parsed
the e820 memory map provided by BIOS/UEFI to lay down
a representation of the entire physical memory, it abandons
its early memory allocators and hands over control to its
core components. These consist of: (i) the (zoned) buddy
allocator, which manages physical memory; (ii) the slab
allocator, which allocates physically-contiguous memory in the
physmap region of the kernel space [68], and is typically ac-
cessed via kmalloc; and (iii) the vmalloc allocator, which
returns memory in a separate region of kernel space, i.e., the
vmalloc arena [31], which can be virtually-contiguous but
physically-scattered. Both kmalloc and vmalloc use the
buddy allocator to acquire physical memory.

Note that (i) is responsible for managing (contiguous)
pages frames, (ii) manages memory in sub-page granularity,
and (iii) supports only page-multiple allocations. To pro-
vide maximum flexibility, we extend both (i) and (ii) to
selectively shift allocated pages into dedicated xMP domains
(Figure 3); (iii) is transparently supported by handling (i).
This essentially allows us to isolate either arbitrary pages or
entire slab caches. By additionally generating context-bound
authentication codes for pointers referencing objects residing
in the isolated memory, we meet all requirements ¶-¸.

A. Buddy Allocator

The Linux memory allocators use get-free-page (GFP_*)
flags to indicate the conditions, the location in memory (zone),
and the way the allocation will be handled [69]. For instance,
GFP_KERNEL, which is used for most in-kernel allocations,
is a collection of fine-granularity flags that indicate the default
settings for kernel allocations. To instruct the buddy allocator
to allocate a number of pages and to place the allocation into
a specific xMP domain, we extend the allocation flags. That
is, we can inform the allocator by adding the __GFP_XMP
flag to any of the system’s GFP allocation flags. This allows
us to assign an arbitrary number of pages in different memory
zones with fine-granularity memory access permissions. By
additionally encoding an xMP domain index into the allocation



SlabSlabSlab

domain[1]

PagePagePage

domain[2]

PagePagePage

domain[3]

Slab allocator#VE

Buddy allocator

Guest physical memory

Xen altp2m

Host physical memory
CPU

vCPU

V
M

M
K

er
ne

l
sp

ac
e

Figure 3. Extensions to the slab and buddy allocator facilitate shifting
allocated pages and slabs into xMP domains enforced by Xen altp2m.

flags, the allocator receives sufficient information to inform
the Xen altp2m subsystem to place the allocation into a
particular xMP domain (Figure 3). Currently, we use 8 free bits
in the allocation flags to encode the domain index, effectively
supporting up to 256 distinct domains—more domains can
be supported by redefining gfp_t accordingly. This way, we
can grant exclusive access permissions to all pages assigned
to the target xMP domain, while, at the same time, we can
selectively withdraw access permissions to the allocated page
from all other domains (§ IV-A). As such, accesses to pages
inside the target domain become valid only after switching to
the associated guest memory view managed by Xen altp2m.

During the assignment of allocated pages to xMP domains,
we record the PG_xmp flag into the flags field of struct
page, thereby enabling the buddy allocator to reclaim previ-
ously xMP-protected pages at a later point in time.

B. Slab Allocator

The slab allocator builds on top of the buddy allocator to
subdivide allocated pages into small, sub-page sized objects
(Figure 3), to reduce internal fragmentation that would other-
wise be introduced by the buddy allocator. More precisely, the
slab allocator maintains slab caches that are dedicated to fre-
quently used kernel objects of the same size [70]. For instance,
the kernel uses a cache for all struct task_struct
instances. Such caches allow the kernel to allocate and free
objects in a very efficient way, without the need for explic-
itly retrieving and releasing memory for every kernel object
allocation. Historically, the Linux kernel has used three slab
allocator implementations: SLOB, SLAB, and SLUB, with the
latter being the default slab allocator in modern Linux kernels.

Every slab cache groups collections of continuous pages
into so-called slabs, which are sliced into small-sized objects.
Disregarding further slab architecture details, as the allocator
manages slabs in dedicated pages, this design allows us to
place selected slabs into isolated xMP domains using the
underlying buddy allocator. To achieve this, we extend the
slab implementation so that we can provide the __GFP_XMP
flag and xMP domain index on creation of the slab cache.
Consequently, every time the slab cache requests further pages

for its slabs, it causes the buddy allocator to shift the allocated
memory into the specified xMP domain (§ V-A).

C. Switches across Execution Contexts

The Linux kernel is a preemptive, highly-parallel system
that must preserve the process-specific or thread-specific state
on (i) context switches and (ii) interrupts. To endure context
switches, and also prevent other threads from accessing iso-
lated memory, it is essential to include the index of the thread’s
(open) xMP domain into its persistent state.1

1) Context Switches: In general, operating systems as-
sociate processes or threads with a dedicated data struc-
ture, the Process Control Block (PCB): a container for the
thread’s state that is saved and restored upon every context
switch. On Linux, the PCB is represented by the struct
task_struct. We extended task_struct with an addi-
tional field, namely xmp_index_kernel, representing the
xMP domain the thread resides in at any point in time. We
dedicate this field to store the state of the xMP domain used
in kernel space. By default, this field is initialized with the
index of the restricted view that accumulates the restrictions
enforced by every defined xMP domain (§ IV-A). The thread
updates its xmp_index_kernel only when it enters or exits
an xMP domain. This way, the kernel can safely interrupt the
thread, preserve its open xMP domain, and schedule a different
thread. In fact, we extended the scheduler so that on every
context switch it switches to the saved xMP domain of the
thread that is to be scheduled next. To counter switching to
a potentially corrupted xmp_index_kernel, we bind this
index to the address of the task_struct instance in which
it resides. This allows us to verify the integrity and context of
the index before entering the xMP domain ¸ (§ IV-C). Since
adversaries cannot create valid authentication codes without
knowing the respective secret key, they will neither be able
to forge the authentication code of the index, nor reuse an
existing code that is bound to a different task_struct.

2) Hardware Interrupts: Interrupts can pause a thread’s
execution at arbitrary points. In our current prototype, accesses
to memory belonging to any of the xMP domains are restricted
in interrupt (IRQ) context. (We plan on investigating primitives
for selective memory protection in IRQ contexts in the future.)
To achieve this, we extend the prologue of every interrupt
handler and cause it to switch to the restricted view. This
way, we prevent potentially vulnerable interrupt handlers from
illegally accessing protected memory. Once the kernel returns
control to the interrupted thread, it will cause a memory
access violation when accessing the isolated memory. Yet,
instead of trapping into the VMM, the thread will trap into
the in-guest #VE handler (§ II-C). The #VE handler, much
like a page fault handler, verifies the thread’s eligibility and
context-bound integrity by authenticating the HMAC of its
xmp_index_kernel. If the thread’s eligibility and the
index’s integrity is given, the handler enters the corresponding

1Threads in user space enter the kernel to handle system calls and
(a)synchronous interrupts. Specifically, upon interrupts, the kernel reuses the
task_struct of the interrupted thread, which must be handled with care.



xMP domain and continues the thread’s execution. Otherwise,
it causes a segmentation fault and terminates the thread.

3) Software Interrupts: The above extensions introduce
a restriction with regard to nested xMP domains. Without
maintaining the state of nested domains, we require every
thread to close its active domain before opening another one;
by nesting xMP domains, the state of the active domain will be
overwritten and lost. Although we can address this requirement
for threads in process context, it becomes an issue in interrupt
context: the former executes (kernel and user space) threads
that are tied to different task_struct structures, while the
latter reuses the task_struct of interrupted threads.

In contrast to hardware interrupts that disrupt the system’s
execution at arbitrary locations, the kernel explicitly schedules
software interrupts (softirq) [71], e.g., after handling a
hardware interrupt or at the end of a system call. As soon as the
kernel selects a convenient time slot to schedule a softirq,
it will temporarily delay the execution of the active process
and reuse its context for handling the pending softirq.

The Linux kernel configures 10 softirq vectors, with one
dedicated for the Read-Copy-Update (RCU) mechanism [72].
A key feature of RCU is that every update is split into (i) a
removal and (ii) a reclamation phase. While (i) removes
references to data structures in parallel to readers, (ii) re-
leases the memory of removed objects. To free the object’s
memory, a caller registers a callback that is executed by the
dedicated softirq at a later point it time. If the callback
accesses and frees memory inside an xMP domain, it must
first enter the associated domain. Yet, as the callback reuses
the task_struct instance of an arbitrary thread, it must
not update the thread’s index to its open xMP domain.

To approach this issue, we leverage the callback-free RCU
feature of Linux (CONFIG_RCU_NOCB_CPU). Instead of
handling RCU callbacks in a softirq, the kernel dedicates
a thread to handle the work. This simplifies the management
of the thread-specific state of open xMP domains, as we can
bind it to each task individually: if the thread responsible
for executing RCU callbacks needs to enter a specific xMP
domain, it can do so without affecting other tasks. As is the
case with hardware IRQs, xMP does not allow deferring work
that accesses protected memory in softirq context.

D. User Space API

We grant user processes the ability to protect selected
memory regions by extending the Linux kernel with four new
system calls that allow processes to use xMP in user space
(Figure 4). Specifically, applications can dynamically allocate
and maintain disjoint xMP domains in which sensitive data
can remain safe (¶-·). Furthermore, we ensure that attackers
cannot illegally influence a process’ active xMP domain state
by binding its integrity to the thread’s context (¸).

Linux has provided an interface for Intel MPK since
kernel v4.9. This interface comprises three system calls,
sys_pkey_{alloc,free,mprotect}, backed by libc
wrapper functions for the allocation, freeing, and assignment
of user space memory pages to protection keys. Applications

PagePagePage

domain[1]

PagePagePage

domain[2]

PagePagePage

domain[3]

Application A Application B

libc

U
se

r
sp

ac
e

mprotect#VE

Buddy allocator

Guest physical memory

Xen altp2m

Host physical memory
CPU

vCPU

V
M

M
K

er
ne

l
sp

ac
e

Figure 4. User-space applications interact with the Linux kernel through
mprotect to configure independent xMP domains.

use the unprivileged WRPKU instruction to further manage
memory access permissions of the corresponding protec-
tion keys (§ II-A). Likewise, we implemented the system
calls sys_xmp_{alloc,free,mprotect}, which utilize
altp2m HVMOPs (§ IV-B) for allowing programmers to allo-
cate and maintain different xMP domains in user space. In fact,
these system calls implement functionality equivalent to Intel
MPK on Linux; they can be used as a transparent alternative
on legacy systems without sufficient hardware support (¶-·).
On sys_xmp_mprotect invocation, we isolate the target
virtual memory area (§ IV-B) and tag it so that we can identify
protected memory and release it upon memory reclamation.

Contrary to the MPK implementation of Linux, we do
not use the unprivileged VMFUNC instruction in user space.
Instead, we provide an additional system call, namely
sys_xmp_enter, which enters a requested, previously al-
located xMP domain (either more or less restricted) and
updates the state of the currently active xMP domain. We
save the respective state inside the xmp_index_user field
of mm_struct that is unique to every thread in user space.
Also, we bind this index to the address of mm_struct (¸).
This enables the kernel to verify the integrity and context of
the xMP domain index on context switches—in other words,
the kernel has the means to detect unauthorized modifications
of this field and immediately terminate the application. Note
that, with regard to our threat model, we anticipate orthogonal
defenses in user space that severely restrain attackers to
data-oriented attacks (§ III). By further removing VMFUNC
instructions from user space, and mediating their execution via
sys_xmp_enter, we avoid unnecessary Return-Oriented
Programming (ROP) (or similar code-reuse) gadgets, which
could be (ab)used to illegally switch to arbitrary xMP domains.

VI. USE CASES

We demonstrate the effectiveness and usefulness of xMP
by applying it on: (a) page tables and process credentials,
in the Linux kernel; and (b) sensitive in-process data in four
security-critical applications and libraries.



A. Protecting Page Tables

With Supervisor Mode Execution Protection (SMEP) [48],
the kernel cannot execute code in user space; adversaries
have to first inject code into kernel memory to accomplish
their goal. Multiple vectors exist that allow attackers to
(legitimately) inject code into the kernel. In fact, system
calls use the routine copy_from_user to copy a user-
controlled (and potentially malicious) buffer into kernel mem-
ory. While getting code into the kernel is easy, its execution
is obstructed by different security mechanisms. For instance,
W⊕X withdraws execute permissions from the memory that
contains data copied from user space. In addition, defenses
based on information hiding, such as Kernel Space Address
Layout Randomization (KASLR) [45], further obstruct kernel
attacks but are known to be imperfect [51], [73]–[75]. Once
adversaries locate the injected code, they can abuse memory
corruption vulnerabilities, e.g., in device drivers or the kernel
itself, to compromise the system’s page tables [76]. This, in
turn, opens up the gate for code injection or kernel code
manipulation. Consequently, ensuring the integrity of page
tables is an essential requirement, which remains unfulfilled
by existing kernel hardening techniques [76]–[78].

Our goal is to leverage xMP to prevent adversaries from
illegally modifying (i) page table contents and (ii) pointers
to page tables. At the same time, xMP has to allow the kernel
to update page table structures from authorized locations. With
the exception of the initial page tables that are generated
during the early kernel boot stage, the kernel uses the buddy
allocator to allocate memory for new sets of page tables. Using
the buddy allocator, we move every memory page holding a
page table structure into a dedicated xMP domain, to which
we grant read-write access permissions (§ V-A), and limit the
access of remaining domains to read-only. As the kernel allo-
cates the initial page tables statically, we manually inform Xen
altp2m to place affected guest-physical page frames into the
same domain. Every write access from outside the dedicated
xMP domain results in an access violation that terminates the
process. Thus, we must grant access to the protected paging
structures to the kernel components responsible for page fault
handling and process creation and termination, by enabling
them to temporarily enter the xMP domain. This scheme
does not disrupt the kernel’s functionality and complies with
requirements ¶ and ·.

In addition, we extend the kernel’s process and thread cre-
ation functionality to protect the integrity of every pgd pointer
referencing the root of a page table hierarchy. We equip every
pgd pointer with an HMAC (§ IV-C), and verify its integrity
every time the pointer gets written to CR3 (the control register
holding the address of the page table root). This protects the
pointer from corruption: as long as adversaries do not know the
secret key, they cannot create a valid HMAC. Attackers cannot
read the secret key as it remains inaccessible from outside the
target domain. Attackers also cannot adjust the pointer to the
key, as its address is compiled as an immediate operand into
kernel instructions, and is thus immutable.

Still, we cannot bind the pgd to a specific thread context,
as kernel threads inherit the mm_struct of interrupted user
threads. This, however, does not weaken our protection. From
the attackers’ perspective, it is impossible to redirect the pgd
to a different location, as they do not know the key. One
attack scenario is to exchange the pgd pointer with a different
pgd that holds a valid authentication code for another existing
thread. Yet, this would not allow the attacker to inject a new
address space, but just crash the application. Note that while
we can choose to bind the pgd to the address of the associated
mm_struct, this would not increase its security. As such, we
achieve immutability of the page table pointer (¸).

We highlight that even with KPTI [51], [74] (the Melt-
down mitigation feature of Linux that avoids simultaneously
mapping user and kernel space), it is possible to authenticate
pgd pointers. As KPTI employs two consecutive pages, with
each mapping the root of page tables to user or kernel space,
we always validate both pages by first normalizing the pgd
to reference the first of the two pages. Lastly, a (Linux)
kernel that leverages xMP to protect page tables does so in
a transparent manner to user (and legacy) applications.

B. Protecting Process Credentials

Linux kernel credentials describe the properties of various
objects that allow the kernel to enforce access control and
capability management. This makes them an attractive target
of data-oriented privilege escalation attacks.

Similarly to protecting paging structures, our goal is to
prevent adversaries from (i) illegally overwriting process
credentials in struct cred or (ii) redirecting the cred
pointer in task_struct to an injected or existing struct
cred instance with higher privileges. With the exception of
reference counts and keyrings, once initialized and committed,
process credentials do not change. Besides, a thread may only
modify its own credentials and cannot alter the credentials of
other threads. These properties establish inherent character-
istics for security policies. In fact, Linux Security Modules
(LSM) [79] introduce hooks at security-relevant locations
that rely upon the aforementioned invariants. For instance,
SELinux [80] and AppArmor [81] use these hooks to enforce
Mandatory Access Control (MAC). Similarly, we combine
our kernel memory protection primitives with LSM hooks to
prevent adversaries from corrupting process credentials.

Linux prepares the slab cache cred_jar to maintain
cred instances. By applying xMP to cred_jar, we ensure
that adversaries cannot directly overwrite the contents of cred
instances without first entering its xMP domain (§ V-B). As
we check both the integrity and context of the active xMP
domain index (xmp_index_kernel), adversaries cannot
manipulate the system to enter an invalid domain (§ V-C). At
the same time, we allow legitimate write access to struct
cred instances, e.g., to maintain the number of subscribers;
we guard such code sequences with primitives that enter and
leave the xMP domain right before and after updating the data
structures. Consequently, we meet requirements ¶ and ·.



As every cred instance is uniquely assigned to a specific
task, we bind the integrity of every cred pointer to the
associated task_struct at process creation. We check both
the integrity and the assigned context to the task_struct
inside relevant LSM hooks. This ensures that every interaction
related to access control between user and kernel space via
system calls is granted access only to non-modified process
credentials. Consequently, we eliminate unauthorized updates
to cred instances without affecting normal operation (¸).
Again, a kernel that uses xMP to harden process credentials
does so in a completely transparent to existing applications.

C. Protecting Sensitive Process Data

An important factor for the deployment of security mech-
anisms is their applicability and generality. To highlight this
property, we apply xMP to guard sensitive data in OpenSSL
under Nginx, ssh-agent, mbed TLS, and libsodium. In
each case, we minimally adjust the original memory allocation
of the sensitive data to place them in individual pages, which
are then assigned to xMP domains. Specifically, using the
system calls introduced in § V-D, we grant read-write access
to the xMP domain holding the sensitive data pages, to which
remaining domains do not have any access. We further adjust
authorized parts of the applications to enter the domain just
before reading or writing the isolated data—any other access
from outside the xMP domain crashes the application. In
the following, we summarize the slight changes we made
to the four applications for protecting sensitive data. Note
that an xMP-enabled kernel is backwards compatible with
applications that do not make use of our isolation primitives.
OpenSSL (Nginx): OpenSSL uses the BIGNUM data structure
to manage prime numbers [82]. We add macros that allocate
these structures into a separate xMP domain. Instrumenting the
widely-used library OpenSSL allows to protect a wide range
of applications. In our case, combining the modified OpenSSL
with the Nginx web server (in HTTPS mode) offers protection
against memory disclosure attacks, such as Heartbleed [3].
ssh-agent: To avoid repeatedly entering passphrases for
encrypted private keys, users can use ssh-agent to keep
private keys in memory, and use them for authentication when
needed. This makes ssh-agent a target of memory disclo-
sure attacks, aiming to steal the stored private keys. To prevent
this, we modify the functions sshbuf_get_(c)string to
safely store unencrypted keys in dedicated xMP domains.
mbed TLS: The mbed TLS library manages prime num-
bers and coefficients of type mbedtls_mpi in the
mbedtls_rsa_context [83]. We define the new data
structure secure_mbedtls_mpi and use it for the fields
D, P, Q, DP, DQ, and QP in the mbedtls_rsa_context.
We further adjust the secure_mbedtls_mpi initialization
wrapper to isolate the prime numbers in an exclusive domain.
libsodium (minisign): The minimalistic and flexible
libsodium library provides basic cryptographic services.
By only adjusting the library’s allocation functionality in
sodium_malloc [84], we enable tools such as minisign
to safely store sensitive information in xMP domains.

Table I
PERFORMANCE OVERHEAD OF XMP DOMAINS FOR PAGE TABLES,

PROCESS CREDENTIALS, AND BOTH, MEASURED USING LMBENCH V3.0.

Benchmark PT Cred PT+Cred

L
at

en
cy

syscall() 0.42% 0.64% 0.64%
open()/close() 1.52% 75.74% 78.93%
read()/write() 0.52% 150.84% 149.27%
select() (10 fds) 2.94% 3.83% 3.83%
select() (100 fds) 0.01% 0.31% 0.30%
stat() -1.22% 52.10% 53.33%
fstat() 0.00% 107.69% 107.69%
fork()+execve() 250.04% 9.36% 259.59%
fork()+exit() 461.20% 7.78% 437.31%
fork()+/bin/sh 236.75% 8.49% 240.64%
sigaction() 10.00% 3.30% 10.00%
Signal delivery 0.00% 2.12% 2.12%
Protection fault 1.33% -4.53% -1.15%
Page fault 216.21% -2.58% 216.56%
Pipe I/O 17.50% 32.87% 73.47%
UNIX socket I/O 1.16% 1.45% 2.25%
TCP socket I/O 10.23% 20.71% 37.13%
UDP socket I/O 13.42% 21.98% 41.48%

B
an

dw
id

th

Pipe I/O 7.39% 7.09% 17.49%
UNIX socket I/O 0.10% 6.61% 13.40%
TCP socket I/O 6.89% 5.83% 14.53%
mmap() I/O 1.22% -0.53% 0.83%
File I/O 0.00% 2.78% 2.78%

VII. EVALUATION

A. System Setup

Our setup consists of an unprivileged domain DomU running
the Linux kernel v4.18 on top of the Xen hypervisor v4.12. In
addition, we adjusted the Xen altp2m subsystem so that it is
used from inside guest VMs, as described in § IV and § V. The
host is equipped with an 8-core 3.6GHz Intel Skylake Core
i7-7700 CPU, and 2GB of RAM available to DomU. Although
we hardened the unprivileged domain DomU, the setup is not
specific to unprivileged domains and can be equally applied
to privileged domains, such as Dom0.

B. Performance Evaluation

To evaluate the performance impact of xMP we conducted
two rounds of experiments, focusing on the overhead incurred
by protecting sensitive data in kernel and user space. All
reported results correspond to vanilla Linux vs. xMP-enabled
Linux (both running as DomU VMs), and are means over
10 runs. Note that the virtualization overhead of Xen is
negligible [39] and is therefore disregarded in our setting.

1) Kernel Memory Isolation: We measured the perfor-
mance impact of xMP when applied to protect the kernel’s
page tables (PT) and process credentials (Cred) (§ VI-A
and § VI-B). We used a set of micro (LMbench v3.0) and
macro (Phoronix v8.6.0) benchmarks to stress different system
components, and measured the overhead of protecting (i) each
data structure individually, and (ii) both data structures at the
same time (which requires two disjoint xMP domains).

Table I shows the LMbench results, focusing on latency
and bandwidth overhead. This allows us to get some insight
on the performance cost at the system software level. Overall,
the overhead is low in most cases for both protected page



Table II
PERFORMANCE OVERHEAD OF XMP DOMAINS FOR PAGE TABLES,

PROCESS CREDENTIALS, AND BOTH, MEASURED USING PHORONIX V8.6.0.

Benchmark PT Cred PT+Cred

St
re

ss
Te

st
s

AIO-Stress 0.15% 5.87% 5.99%
Dbench 0.43% 4.74% 3.45%
IOzone (R) -4.64% 26.9% 24.2%
IOzone (W) 0.82% 4.43% 7.71%
PostMark 0.00% 7.52% 7.52%
Thr. I/O (Rand. R) 2.92% 7.58% 10.13%
Thr. I/O (Rand. W) -5.35% 3.01% -1.29%
Thr. I/O (R) -1.06% 19.54% 20.08%
Thr. I/O (W) 1.34% -1.61% -0.27%

A
pp

lic
at

io
ns

Apache 6.59% 9.33% 11.14%
FFmpeg 0.14% 0.43% 0.00%
GnuPG -0.66% -1.31% -2.13%
Kernel build 11.54% 1.84% 12.71%
Kernel extract 2.89% 3.65% 5.91%
OpenSSL -0.33% -0.66% 0.99%
PostgreSQL 4.12% 0.32% 4.43%
SQLite 1.10% -0.93% -0.57%
7-Zip -0.30% 0.26% 0.08%

tables and process credentials. When protecting page tables,
we notice that the performance impact is directly related to
functionality that requires explicit access to page tables, with
outliers related to page faults and process creation (fork()).
Contrary to page tables, we observe that although the kernel
accesses the struct cred xMP domain when creating new
processes, the overhead is insignificant. On the other hand,
the xMP domain guarding process credentials is heavily used
during file operations, which require access to struct cred
for access control. The performance impact of the two xMP
domains behaves additively in the combined setup (PT+Cred).

To investigate the cause of the performance drop for the out-
liers (UNIX socket I/O, fstat(), and read()/write()),
we used the eBPF tracing tools [85]. We applied the
funccount and funclatency tools while executing the
outlier test cases to determine the hotspots causing the per-
formance drop by extracting the exact number and latency
of kernel function invocations. We confirmed that, in contrast
to benchmarks with a lower overhead, the outliers call the
instrumented LSM hooks [79] more frequently. In particu-
lar, the function apparmor_file_permission [81] is
invoked by every file-related system call. (This function is
related to AppArmor, which is enabled in our DomU kernel.)
In this function, even before verifying file permissions, we
validate the context-bound integrity of a given pointer to the
process’ credentials. Although this check is not limited to
this function, it is performed by every system call in those
benchmarks and dominates the number of calls to all other
instrumented kernel functions. For every pointer authentica-
tion, this function triggers the xMP domain to access the
secret key required to authenticate the respective pointer. To
measure the time required for this recurring sequence, we
used the funclatency (eBPF) tool. The added overhead
of this sequence ranges between 0.5–1 µsec. An additional
0.5–4 µsec is required for entering the active xMP domain on

0.
05

-5
00

0.
05

-1
00

0

0.
5-

50
0

0.
5-

10
00

5-
50

0

5-
10

00

20
-5

00

20
-1

00
0

50
-5

00

50
-1

00
0

-10

-5

0

5

10

15

-10

-5

0

5

10

15

O
ve

rh
ea

d
(i

n
%

)

Latency
Throughput

Figure 5. Performance impact of xMP on Nginx with varying file sizes and
number of connections (X-axis: [file size (KB)]-[# requests]).

every context switch—including switches between user and
kernel space on system calls. Consequently, the context-bound
integrity checks affect the performance of light-weight system
calls, e.g., read() or write(), in a more evident way than
system calls with higher execution times or even without any
file access checks. Having identified the hotspot locations, we
can focus on optimizing performance in the future.

Table II presents the results for the set of Phoronix macro-
benchmarks used by the Linux kernel developers to track
performance regressions. The respective benchmarks are split
into stress tests, targeting one specific system component, and
real-world applications. Overall, with only a few exceptions,
the results show that xMP incurs low performance overhead,
especially for page table protection. Specifically, we observe
a striking difference between the read (R) and write (W)
Threaded I/O tests: while the pwrite() system call is
hardly affected by xMP, there is a noticeable performance
drop for pread(). Using the eBPF tracing tools, we found
that the reason for this difference is that the default bench-
mark settings synchronize pwrite() operations. By passing
the O_SYNC flag to the open() system call, pwrite()
returns only after the data has been written to disk. Thus,
compared to pread(), which completes after 1–2 µsec,
pwrite() requires 2–8 msec, and the added overhead of
apparmor_file_permission accumulates and does not
affect pwrite() as much as it affects pread().

2) In-Process Memory Isolation: We evaluated the over-
head of in-process memory isolation using our xMP-protected
versions of the Nginx and mbed TLS servers (§ VI-C). In
both cases, we used the server benchmarking tool ab [86]
to simulate 20 clients, each sending 500 and 1,000 requests.
To compare our results with related work, we run the Nginx
benchmarks with the same configuration used by SeCage [26].
The throughput and latency overhead is negligible in most
cases (Figure 5). Contrary to SeCage, which incurs up to 40%
overhead for connections without KeepAlive headers and ad-
ditional TLS establishment, xMP does not suffer from similar
issues in such challenging configurations, even with small files.
The average overhead for latency and throughput is 0.5%.
For mbed TLS, we used the ssl_server example [87] to



execute an SSL server hosting a 50-byte file. (We chose a
small file to not mask the overhead with I/O.) On average, the
overhead is 0.42% for latency and 1.14% for throughput.

C. Scalability of xMP Domains

Hardware-based memory isolation features, similar to xMP,
support only a small number of domains. For instance, Intel
MPK and ARM Domain Access Control (DAC) implement
only 16 domains. Nevertheless, we investigate scenarios in
which a high number of domains becomes necessary. Mod-
ern infrastructures massively deploy OS-level virtualization
(i.e., containers), for which Linux namespaces [88] provide
an essential building block by establishing different views
on selected global system resources. By integrating xMP
into Linux namespaces to isolate selected system resources
(§ VI), we establish (i) the foundation for hypervisor-assisted
OS-level virtualization, and (ii) the means to evaluate the
scalability of xMP domains.

To that end, we introduce xMP namespaces to isolate
process page tables. (Note that xMP namespaces can be
extended to isolate arbitrary data structures.) Specifically, we
use the unshare() system call to move a process into a new
xMP namespace, effectively placing the process’ page tables
into a new xMP domain—the process’ descendants inherit
their parent’s xMP namespace, effectively protecting their page
tables as well. Page tables of processes belonging to different
namespaces are isolated by different xMP domains, prevent-
ing compromised containers from modifying page tables of
containers belonging to different xMP namespaces.

To measure the impact of an increasing number of xMP
domains, we customized the Phoronix Hackbench scheduler
stress test. Our adjustments cause the benchmark to place
groups of 10 processes each (five senders and five receivers
exchanging 50K messages) into separate xMP namespaces.
In its standard configuration, Xen supports up to 10 altp2m
views, with only eight of them being used for xMP domains—
altp2m[0] is a mirror of the hosts’s original view, and
must not be changed, and altp2m[1] is the restricted view
(§ IV-A). We extended Xen so that we can create up to
256 altp2m views; recall that this limitation stems from the
fact that we encode the xMP domain’s index into the GFP
allocation flags using eight unused bits (§ V-A).

We compare the overhead of an xMP-capable Linux kernel
with a vanilla one. Figure 6 shows the scheduling overhead
of up to 250 distinct xMP namespaces. (Again, results are
means over 10 runs.) Overall, the isolation overhead accu-
mulates linearly with the number of xMP domains—each
domain contains the page tables of 10 processes. However,
by increasing the number of processes (250 xMP domains
correspond to 2.5K processes), the time required to schedule
and run each stress test (i.e., 10 processes exchanging 50K
messages) amortizes the overhead, which can even drop to
about 2%. Further, this experiment presents the ability of our
prototype to scale up to 250 distinct isolation domains, an
order of magnitude more than what can be achieved by existing
schemes, like Intel MPK and ARM DAC (16 domains).

10 30 50 70 90 110 130 150 170 190 210 230 250

O
ve

rh
ea

d
in

%

0
5

10
15

20

Figure 6. Performance impact of up to 250 xMP domains on the scheduler,
measured using the customized Phoronix Hackbench stress test.

Lastly, note that in the experiment above, page tables are
assigned to isolated xMP domains during process creation,
but are populated while the benchmark is executing, due to
copy-on-write and dynamic memory allocations. Therefore,
the experiment also captures the management overhead of
our prototype when it dynamically propagates changes to the
corresponding restricted domain views.

D. Security Evaluation

We evaluated the security of our memory protection primi-
tives using real-world exploits against (i) page tables, (ii) pro-
cess credentials, and (iii) sensitive data in user space. Despite
a strong attacker with arbitrary read and write primitives to
kernel and user memory, by meeting the requirements ¶-¸,
our system blocks illegal accesses to sensitive data.

1) Attacking the Kernel: We assume an attacker who aims
to elevate their privilege using an arbitrary read and write
primitive in kernel memory. To evaluate this scenario, we
used a combination of real-world exploits that achieve the
aforementioned capability. We first reconstructed an exploit to
bypass KASLR [76]. The task_struct of the first process
(init_task) has a fixed offset to the kernel’s base address
and is linked to all processes on the system. This provided
us with the ability to locate sensitive management information
about individual processes, including the root of the page table
hierarchy and process credentials. We then abused CVE-2017-
16995 (i.e., a sign-extension vulnerability in BPF) to gain an
arbitrary read-write primitive to kernel memory.

In the next step, we implemented two different attacks that
target (i) the page tables and (ii) the credentials of a given
process, respectively. In the first attack, we used the write
primitive to modify individual page table entries of the target
process. This allowed us to grant the write permission to
(an otherwise execute-only mapped) kernel code page with
a rarely used system call handler, which is overwritten with
shellcode that disables SMEP and SMAP in the CR4 register.
This lends the attacker the power to inject arbitrary code and
data into kernel memory. In the second attack, we exchanged
the cred pointer in the malicious process’ task_struct
with a pointer to an existing struct cred instance with
higher privileges. In both attacks, we were able to elevate
the privileges of the malicious process. By applying xMP to
protect page tables and process credentials (§ VI-A and VI-B),
we were able to successfully block both attack scenarios.



To systematically evaluate xMP, we consider attacks that
can be equally applied to all kernel structures. We generalize
the attack vectors against sensitive kernel structures in the
following strategies. Under our threat model, attackers can:

• directly modify the data structure(s) of interest;
• redirect a pointer of the targeted data structure to an

injected, attacker-controlled instance;
• redirect a pointer of the targeted data structure to an

existing instance with higher privileges.
xMP withstands modification attempts of the protected data

structures (¶-·), as only authorized kernel code can enter
the associated xMP domains. For instance, when protecting
page tables, without first hijacking the kernel’s execution, the
attacker reaches an impasse on how to modify page tables
isolated in xMP domains. Injecting code is thus prevented in
the first place. Alternatively, the attacker can modify a thread’s
pointer to a sensitive data structure. In this case, the modified
value must comply with the added context-bound integrity (¸)
that is enforced on every context-switch or right before access-
ing the sensitive data structure (§ IV-C). Since attackers do
not know the secret key, they cannot compute an HMAC that
would validate the pointer’s integrity. Consequently, attackers
cannot redirect the pointer to an injected data structure.

To sidestep the secret key, attackers could overwrite the
pointer with an existing pointer (holding a valid HMAC) to a
data structure instance with higher privileges. Yet, as pointers
to xMP-protected data are bound to the thread’s context (¸),
attackers cannot redirect pointers to instances belonging to
other threads. Note that attackers would have to overwrite the
pgd pointer of a privileged thread with the pgd pointer of an
attacker-controlled thread, when targeting page tables.

2) Attacking User Applications: We chose Heartbleed [3]
as a representative data leakage attack due to its high im-
pact. As a result of the lack of a bounds check of the
attacker-controlled payload_length field of OpenSSL’s
HeartbeatMessage, the attacker can reveal up to 64KB
of linear memory that may hold private keys, passwords, and
other sensitive information, without altering the application’s
control flow. By equipping the vulnerable OpenSSL library
with the ability to guard secret material (§ VI-C), we prevented
the sensitive regions from leaking. Illegal accesses caused
an EPT violation that trapped into the #VE handler, which
reported the illegal access and terminated the application.

3) Attacking Protection Primitives: Our user-space API
does not use the VMFUNC instruction, but instead relies
on a new system call (§ V-D). Given that VMFUNC is an
unprivileged instruction, an attacker can still use it in an
attempt to enter different xMP domains. Even if an at-
tacker introduced a VMFUNC instruction in the application’s
memory to mount a VMFUNC faking attack [26], the next
context switch would restore the xMP domain’s state from
xmp_index_[kernel|user], making the kernel immune
to illegal domain switches from user space. The attacker could
try to use a write primitive to modify the kernel’s xMP domain
state in xmp_index_[kernel|user], forcing the kernel
to enter a privileged domain and grant access to sensitive data

on the next context switch. Yet, as we bind the integrity of the
active xMP domain state to the associated thread’s context, any
attempt to tamper with it will crash the process.

Further, mediating the execution of VMFUNC instructions
through the sys_xmp_enter system call introduces gadgets
that allow switching to previously-allocated xMP domains.
Nevertheless, to perform such attacks, the attacker will need
to change the application’s control flow, something that we
assume to be thwarted by orthogonal defenses (§ III).

4) I/O Attacks: Compromised I/O devices or drivers can
access memory that holds sensitive data. To address this threat,
the VMM should confine device-accessible memory (i) by
employing the system’s IOMMU (e.g., Intel VT-d [89]) or
(ii) by means of SLAT. The former strategy ensures that
sensitive memory in one of the xMP domains will not be
mapped by the translation tables of the IOMMU; sensitive
data structures become inaccessible to devices. In the latter
approach, without IOMMU, the guest is likely to use bounce
buffers (e.g., in combination with Virtio [90]) or directly
access the devices. In both cases, a corrupted device or driver
would access guest-virtual addresses, which are regulated by
Xen’s altp2m subsystem. Thus, it becomes impossible to
leak or modify protected information, without first having to
gain arbitrary code execution capabilities in kernel mode.

VIII. DISCUSSION

A. Limitations

The Linux callback-free RCU feature [91] relocates the
processing of RCU callbacks out of the softirq context,
into a dedicated thread (§ V-C3). This allows RCU callbacks
to enter xMP domains without affecting other threads’ xMP
domain state, as we currently do not provide selective memory
protection in IRQ contexts.

Currently, we manually instruct the kernel when to enter
a specific xMP domain. Instead, we could automate this step
by instructing the compiler to bind annotated data structures
to xMP domains. In addition, the compiler could instrument
kernel code with calls that enter/leave the xMP domain im-
mediately before/after accessing the annotated data structure.

Also, we do not support nested xMP domains. In fact,
we prohibit entering domains, without first closing the active
domain; by nesting xMP domains, the state of the opened
domain will be overwritten. To address this, the kernel needs
to securely keep track of the previously opened xMP domains
by maintaining a stack of xMP domain states per thread. Note
that this relates to adding xMP support in IRQ contexts.

B. Intel Sub-Page Write Permission

Intel announced the Sub-Page Write-Permission (SPP) fea-
ture for EPTs [35] to enforce memory write protection on sub-
page granularity. Specifically, with SPP, Intel extends the EPT
with an additional set of SPP tables that determine whether a
128-byte sub-page can be accessed. Selected 4KB guest page
frames with restricted write permissions in the EPT can be
configured to subsequently walk the SPP table to determine
whether or not the accessed 128-byte block can be written.



Once this feature is implemented in hardware, it will enrich
xMP in terms of performance and granularity. Let us consider
the use case of protecting process credentials. Once initialized,
the credentials themselves become immutable. However, meta
information, such as reference counters, must be updated
throughout the lifetime of the cred instance. This requires
to first enter the xMP domain and relax the permissions
to the otherwise read-only credentials, before updating the
metadata. Using SPP, we can arrange struct cred so that
all metadata is placed into writable sub-pages, despite the
memory access restrictions of the xMP domain.

C. Execute-Only Memory

A corollary of the lack of non-readable memory (§ II-A) is
that the x86 MMU does not support execute-only memory—
code pages have to be readable as well. This has allowed ad-
versaries to mount Just-In-Time ROP (JIT-ROP) attacks [73],
which can bypass code randomization defenses. By reading
code pages, an attacker can harvest ROP gadgets and construct
a suitable payload on the fly. A defense against JIT-ROP
attacks is thus to enforce execute-only memory to prevent
the gadget harvesting phase [9], [31], [32], [92]. By defining
execute-only xMP domains for code pages, xMP can offer
similar protection.

D. Alternative Hypervisors and Architectures

Xen is by no means the only system on which xMP can
be integrated. Other hypervisors that implement (or can be
extended with [93]) similar functionality to Xen’s altp2m
can be equally used. Similarly, xMP does not dependent on
Intel CPUs, as it does neither require hardware-supported
EPTP switching nor the in-guest #VE feature—maintaining
and switching among different views can be done in software.
This would also relax Intel’s restriction with respect to the
maximum number of EPTPs, as the number of views would
not be bound to hardware capabilities. For instance, at the
risk of sacrificing performance, we could port xMP to Xen
altp2m on ARM [30], in which altp2m does not rely on
hardware support. On ARM, xMP would also benefit from
PAC [65] for implementing context-bound pointer integrity.

IX. RELATED WORK

While the possibility of non-control data (or data-oriented)
attacks has been identified before [1], Chen et al. [2] were
the first to demonstrate the viability of data-oriented attacks
in real-world scenarios, ultimately rendering them as realistic
threats. With FLOWSTITCH [94], Hu et al. introduced a
tool that is capable of chaining, or rather stitching together,
different data-flows to generate data-oriented attacks on Linux
and Windows binaries, despite fine-grained CFI, DEP, and,
in some cases, ASLR, in place. Hu et al. [5] further show
that data-oriented attacks are in fact Turing-complete. They
introduce Data-Oriented Programming (DOP), a technique for
systematically generating data-oriented exploits for arbitrary
x86-based programs. Similarly, Carlini et al. [4] achieve
Turing-complete computation by using a technique they refer

to as Control Flow Bending (CFB). In contrast to DOP, CFB is
a hybrid approach that relies on the the modification of code
pointers. Still, CFB bypasses common CFI mechanisms, by
limiting code pointer modifications in a way that the modified
control-flows comply with CFI policies. Ispoglou et al. [7] ex-
tend the concept of DOP by introducing a new technique they
coin as Block-Oriented Programming (BOP). Their framework
automatically locates dispatching basic blocks, in binaries that
facilitate the chaining of block-oriented gadgets, which are
then chained together to mount a successful attack.

On the other hand, researchers have started to respond to
data-oriented attacks. For instance, DataShield [95] associates
annotated data types with security sensitive information. Based
on these annotations, DataShield partitions the application’s
memory into two disjoint regions, and inserts bounds checks
that prevent illegal data flows between the sensitive and non-
sensitive memory regions. Similar to our work, solutions based
on virtualization maintain sensitive information in disjoint
memory views [26], [27], [96]. While MemSentry [27] isolates
sensitive data, SeCage [26] additionally identifies and places
sensitive code into a secret compartment. Both frameworks
leverage Intel’s EPTP switching to switch between the secure
compartment and the remaining application code. Yet, in
contrast to our work, MemSentry and SeCage are limited to
user space. Also, SeCage adds complexity by duplicating and
modifying code that would normally be shared (e.g., libraries)
between the secret and non-secret compartments.

EPTI [96] implements an alternative to KPTI using mem-
ory isolation techniques similar to xMP. PrivWatcher [28]
leverages virtualization to ensure the integrity of process
credentials. Contrary to our solution, PrivWatcher creates
shadow copies of struct cred instances, and places them
in a write-protected region. PT-Rand [76] protects page tables
using information hiding. Zabrocki introduces LKRG [97], a
runtime guard for the Linux kernel, ensuring the integrity
of critical kernel components by shadowing selected data
structures or matching their hashes in a database. Although,
LKRG does not employ virtualization, the author considers to
use a VMM for self-protection. Finally, with PARTS [66], Lil-
jestrand et al. introduce a compiler instrumentation framework
to cope with pointer-reuse attacks via the (recently-introduced)
ARMv8.3-A pointer authentication features.

X. CONCLUSION

In this paper we propose novel defenses against data-
oriented attacks. Our system, called xMP, leverages Intel’s vir-
tualization extensions to set the ground for selective memory
isolation primitives, which facilitate the protection of sensitive
data structures in both kernel and user space. We further
equip pointers to data in isolated memory with authentication
codes to thwart illegal pointer redirections. We demonstrate
the effectiveness of our scheme by protecting the page tables
and process credentials in the Linux kernel, as well as sensitive
data in various user applications. We believe that our results
demonstrate that xMP is a powerful and practical solution
against data-oriented attacks.



ACKNOWLEDGMENT

We thank Christopher Roemheld and Joseph Macaluso for
helping us with the Linux kernel extensions and the use cases
regarding user applications, respectively. Further, we thank
our shepherd, Yuval Yarom, and the anonymous reviewers for
their valuable feedback. This work was supported in part by
the European Union’s Horizon 2020 research and innovation
programme, under grant agreement No 830892 (SPARTA), the
Office of Naval Research (ONR), through awards N00014-
17-1-2891 and N00014-17-1-2788, and the National Science
Foundation (NSF), through award CNS-1749895. Any opin-
ions, findings, conclusions, or recommendations expressed
herein are those of the authors and do not necessarily reflect
the views of the aforementioned supporters.

REFERENCES

[1] W. D. Young and J. McHugh, “Coding for a Believable Specification to
Implementation Mapping,” in IEEE Symposium on Security and Privacy
(S&P), 1987.

[2] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-Control-
Data Attacks Are Realistic Threats,” in USENIX Security Symposium
(SEC), 2005.

[3] Synopsys, “The Heartbleed Bug,” http://heartbleed.com/, 4 2014.
[4] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-

Flow Bending: On the Effectiveness of Control-Flow Integrity,” in
USENIX Security Symposium (SEC), 2015.

[5] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-Oriented Programming: On the Expressiveness of Non-control
Data Attacks,” in IEEE Symposium on Security and Privacy (S&P),
2016.

[6] B. Sun, C. Xu, and S. Chong, “The Power of Data-Oriented Attacks,”
Black Hat, Asia, 2017.

[7] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block Oriented
Programming: Automating Data-Only Attacks,” in ACM Conference on
Computer and Communications Security (CCS), 2018.

[8] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow In-
tegrity,” in ACM Conference on Computer and Communications Security
(CCS), 2005.

[9] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny,
“You Can Run but You Can’T Read: Preventing Disclosure Exploits in
Executable Code,” in ACM Conference on Computer and Communica-
tions Security (CCS), 2014.

[10] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and R. H. Deng, “ROPecker: A
Generic and Practical Approach for Defending Against ROP Attack,” in
Network and Distributed System Security Symposium (NDSS), 2014.

[11] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières, “CCFI:
Cryptographically Enforced Control Flow Integrity,” in ACM Conference
on Computer and Communications Security (CCS), 2015.

[12] J. Werner, G. Baltas, R. Dallara, N. Otterness, K. Z. Snow, F. Monrose,
and M. Polychronakis, “No-Execute-After-Read: Preventing Code Dis-
closure in Commodity Software,” in ACM Symposium on Information,
Computer and Communications Security (ASIACCS), 2016.

[13] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-Pointer Integrity,” in USENIX Symposium on Operating System
Design and Implementation (OSDI), 2014.

[14] P. Zieris and J. Horsch, “A Leak-Resilient Dual Stack Scheme for
Backward-Edge Control-Flow Integrity,” in ACM Symposium on Infor-
mation, Computer and Communications Security (ASIACCS), 2018.

[15] PaX Team, “Address Space Layout Randomization (ASLR),” https://
pax.grsecurity.net/docs/aslr.txt, March 2003.

[16] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical Code Randomization
Resilient to Memory Disclosure,” in IEEE Symposium on Security and
Privacy (S&P), 2015.

[17] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely
Rerandomization for Mitigating Memory Disclosures,” in ACM Confer-
ence on Computer and Communications Security (CCS), 2015.

[18] Microsoft, “Control Flow Guard,” https://docs.microsoft.com/en-us/
windows/desktop/SecBP/control-flow-guard, October 2018.

[19] Google, “The Chromium Projects,” https://www.chromium.org/
developers/testing/control-flow-integrity, October 2018.

[20] LLVM, “Control Flow Integrity,” http://clang.llvm.org/docs/
ControlFlowIntegrity.html, October 2018.

[21] M. Castro, M. Costa, and T. Harris, “Securing Software by Enforcing
Data-Flow Integrity,” in USENIX Symposium on Operating System
Design and Implementation (OSDI), 2006.

[22] G. C. Necula, S. McPeak, and W. Weimer, “CCured: Type-Safe
Retrofitting of Legacy Code,” ACM Transactions on Programming
Languages and Systems (TOPLAS), 2002.

[23] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A Safe Dialect of C,” in USENIX Annual Technical
Conference (ATC), 2002.

[24] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “SoftBound:
Highly Compatible and Complete Spatial Memory Safety for C,” ACM
SIGPLAN Notices, 2009.

[25] ——, “CETS: compiler enforced temporal safety for C,” ACM SIGPLAN
Notices, 2010.

[26] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting Memory
Disclosure with Efficient Hypervisor-Enforced Intra-Domain Isolation,”
in ACM Conference on Computer and Communications Security (CCS),
2015.

[27] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos, “No
Need to Hide: Protecting Safe Regions on Commodity Hardware,” in
ACM European Conference on Computer Systems (EuroSys), 2017.

[28] Q. Chen, A. M. Azab, G. Ganesh, and P. Ning, “PrivWatcher: Non-
bypassable Monitoring and Protection of Process Credentials from Mem-
ory Corruption Attacks,” in ACM Symposium on Information, Computer
and Communications Security (ASIACCS), 2017.

[29] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and
A. Kiayias, “Scalability, Fidelity and Stealth in the DRAKVUF Dynamic
Malware Analysis System,” in Annual Computer Security Applications
Conference (ACSAC), 2014.

[30] S. Proskurin, T. Lengyel, M. Momeu, C. Eckert, and A. Zarras, “Hid-
ing in the Shadows: Empowering ARM for Stealthy Virtual Machine
Introspection,” in Annual Computer Security Applications Conference
(ACSAC), 2018.

[31] M. Pomonis, T. Petsios, A. D. Keromytis, M. Polychronakis, and V. P.
Kemerlis, “kRˆX: Comprehensive Kernel Protection against Just-In-
Time Code Reuse,” in IEEE European Symposium on Security and
Privacy (EuroS&P), 2017.

[32] J. Gionta, W. Enck, and P. Ning, “HideM: Protecting the Contents of
Userspace Memory in the Face of Disclosure Vulnerabilities,” in ACM
Conference on Data and Application Security and Privacy (CODASPY),
2015.

[33] S. Brookes, R. Denz, M. Osterloh, and S. Taylor, “ExOShim: Preventing
Memory Disclosure using Execute-Only Kernel Code,” in International
Conference on Cyber Warfare and Security (ICCWS), 2016.

[34] J. Corbet, “Memory Protection Keys,” https://lwn.net/Articles/643797/,
May 2015.

[35] Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s
Manual, Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and
4, 2019.

[36] C. A. Waldspurger, “Memory Resource Management in VMware ESX
Server,” ACM SIGOPS Operating Systems Review (OSR), 2002.

[37] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” ACM
SIGOPS Operating Systems Review (OSR), 2003.

[38] Z. Deng, X. Zhang, and D. Xu, “SPIDER: Stealthy Binary Program
Instrumentation and Debugging via Hardware Virtualization,” in Annual
Computer Security Applications Conference (ACSAC), 2013.

[39] S. Proskurin, J. Kirsch, and A. Zarras, “Follow the WhiteRabbit:
Towards Consolidation of On-the-Fly Virtualization and Virtual Machine
Introspection,” in IFIP International Conference on ICT Systems Secu-
rity and Privacy Protection (IFIP SEC), 2018.

[40] Linux Foundation, “Xen Project,” https://www.xenproject.org/, 2018.
[41] B. Shi, L. Cui, B. Li, X. Liu, Z. Hao, and H. Shen, “ShadowMonitor: An

Effective In-VM Monitoring Framework with Hardware-Enforced Iso-
lation,” in International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), 2018.

[42] Xen-devel, “Alternate p2m design specification,” https://lists.xenproject.
org/archives/html/xen-devel/2015-06/msg01319.html, September 2015.

http://heartbleed.com/
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://docs.microsoft.com/en-us/windows/desktop/SecBP/control-flow-guard
https://docs.microsoft.com/en-us/windows/desktop/SecBP/control-flow-guard
https://www.chromium.org/developers/testing/control-flow-integrity
https://www.chromium.org/developers/testing/control-flow-integrity
http://clang.llvm.org/docs/ControlFlowIntegrity.html
http://clang.llvm.org/docs/ControlFlowIntegrity.html
https://lwn.net/Articles/643797/
https://www.xenproject.org/
https://lists.xenproject.org/archives/html/xen-devel/2015-06/msg01319.html
https://lists.xenproject.org/archives/html/xen-devel/2015-06/msg01319.html


[43] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering Code-
Injection Attacks with Instruction-Set Randomization,” in ACM Con-
ference on Computer and Communications Security (CCS), 2003.

[44] S. Liakh, “NX Protection for Kernel Data,” https://lwn.net/Articles/
342266/, July 2009.

[45] J. Edge, “Kernel Address Space Layout Randomization,” https://lwn.net/
Articles/569635/, October 2013.

[46] J. Corbet, “x86 NX Support,” https://lwn.net/Articles/87814/, June 2004.
[47] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “kGuard:

Lightweight Kernel Protection against Return-to-user Attacks,” in
USENIX Security Symposium (SEC), 2012.

[48] F. Yu, “Enable/Disable Supervisor Mode Execution Protection,” https:
//goo.gl/utKHno, May 2011.

[49] J. Corbet, “Supervisor Mode Access Prevention,” https://lwn.net/
Articles/517475/, October 2012.

[50] ——, “The Current State of Kernel Page-Table Isolation,” https://lwn.
net/Articles/741878/, December 2017.

[51] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard,
“KASLR is Dead: Long Live KASLR,” in Engineering Secure Software
and Systems (ESSoS), 2017.

[52] A. van de Ven, “Add -fstack-protector Support to the Kernel,”
https://lwn.net/Articles/193307/, July 2006.

[53] Open Web Application Security Project (OWASP), “C-Based Toolchain
Hardening,” https://www.owasp.org/index.php/C-Based_Toolchain_
Hardening, January 2019.

[54] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit Object-oriented Programming: On the Difficulty
of Preventing Code Reuse Attacks in C++ Applications,” in IEEE
Symposium on Security and Privacy (S&P), 2015.

[55] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control Jujutsu: On the Weaknesses of
Fine-Grained Control Flow Integrity,” in ACM Conference on Computer
and Communications Security (CCS), 2015.

[56] E. Göktas, B. Kollenda, P. Koppe, E. Bosman, G. Portokalidis, T. Holz,
H. Bos, and C. Giuffrida, “Position-independent Code Reuse: On the
Effectiveness of ASLR in the Absence of Information Disclosure,” in
IEEE European Symposium on Security and Privacy (EuroS&P), 2018.

[57] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler,
and M. Payer, “Control-Flow Integrity: Precision, Security, and Perfor-
mance,” ACM Computing Surveys (CSUR), 2017.

[58] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-Grained Control-Flow
Integrity for Kernel Software,” in IEEE Symposium on Security and
Privacy (S&P), 2016.

[59] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing Forward-Edge Control-Flow In-
tegrity in GCC & LLVM,” in USENIX Security Symposium (SEC), 2014.

[60] J. Corbet, “Kernel Support for Control-Flow Enforcement,” https://lwn.
net/Articles/758245/, June 2018.

[61] Larsen, Per and Homescu, Andrei and Brunthaler, Stefan and Franz,
Michael, “SoK: Automated Software Diversity,” in IEEE Symposium on
Security and Privacy (S&P), 2014.

[62] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis,
“Compiler-Assisted Code Randomization,” in IEEE Symposium on Se-
curity and Privacy (S&P), 2018.

[63] M. Morton, J. Werner, P. Kintis, K. Snow, M. Antonakakis, M. Poly-
chronakis, and F. Monrose, “Security Risks in Asynchronous Web
Servers: When Performance Optimizations Amplify the Impact of Data-
Oriented Attacks,” in IEEE European Symposium on Security and
Privacy (EuroS&P), 2018.

[64] H. Lee, C. Song, and B. B. Kang, “Lord of the x86 Rings: A
Portable User Mode Privilege Separation Architecture on x86,” in ACM
Conference on Computer and Communications Security (CCS), 2018.

[65] Qualcomm, “Pointer Authentication on ARMv8.3,”
https://www.qualcomm.com/media/documents/files/
whitepaper-pointer-authentication-on-armv8-3.pdf, January 2017.

[66] H. Liljestrand, T. Nyman, K. Wang, C. Chinea Perez, J. Ekberg, and
N. Asokan, “PAC it up: Towards Pointer Integrity using ARM Pointer
Authentication,” in USENIX Security Symposium (SEC), 2019.

[67] J.-P. Aumasson and D. J. Bernstein, “SipHash: a fast short-input PRF,” in
International Conference on Cryptology in India (INDOCRYPT), 2012.

[68] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir:
Rethinking Kernel Isolation,” in USENIX Security Symposium (SEC),
2014.

[69] D. P. Bovet and M. Cesati, Understanding the Linux Kernel, 3rd ed.
O’Reilly Media, 2005, ch. Memory Management, pp. 294–350.

[70] J. Bonwick, “The Slab Allocator: An Object-Caching Kernel Memory
Allocator,” in USENIX Summer, 1994.

[71] D. P. Bovet and M. Cesati, Understanding the Linux Kernel, 3rd ed.
O’Reilly Media, 2005, ch. Interrupts and Exceptions, pp. 131–188.

[72] P. McKenney, “What is RCU, Fundamentally?” https://lwn.net/Articles/
262464/, December 2007.

[73] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-
R. Sadeghi, “Just-In-Time Code Reuse: On the Effectiveness of Fine-
Grained Address Space Layout Randomization,” in IEEE Symposium on
Security and Privacy (S&P), 2013.

[74] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading Kernel
Memory from User Space,” in USENIX Security Symposium (SEC),
2018.

[75] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution,” in IEEE Sympo-
sium on Security and Privacy (S&P), 2019.

[76] L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “PT-Rand: Practical
Mitigation of Data-only Attacks against Page Tables,” in Network and
Distributed System Security Symposium (NDSS), 2017.

[77] J. Lee, H. Ham, I. Kim, and J. Song, “POSTER: Page Table Manipu-
lation Attack,” in ACM Conference on Computer and Communications
Security (CCS), 2015.

[78] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and V. Adve,
“Nested Kernel: An Operating System Architecture for Intra-Kernel
Privilege Separation,” ACM SIGPLAN Notices, 2015.

[79] J. Morris, S. Smalley, and G. Kroah-Hartman, “Linux Security Modules:
General Security Support for the Linux Kernel,” in USENIX Security
Symposium (SEC), 2002.

[80] P. Loscocco and S. Smalley, “Integrating Flexible Support for Security
Policies into the Linux Operating System,” in USENIX Annual Technical
Conference (ATC), 2001.

[81] A. Gruenbacher and S. Arnold, “AppArmor Technical Documen-
tation,” http://lkml.iu.edu/hypermail/linux/kernel/0706.1/0805/techdoc.
pdf, SUSE Labs / Novell, April 2007.

[82] OpenSSL, “OpenSSL Manpages v1.0.2,” https://www.openssl.org/docs/
man1.0.2/man3/bn.html, April 2019.

[83] ARM mbed, “mbed TLS v2.16.1 Source Code Documentation,” https:
//tls.mbed.org/api, April 2019.

[84] Libsodium, “Libsodium Documentation,” https://libsodium.gitbook.io/
doc/memory_management, April 2019.

[85] M. Fleming, “A Thorough Introduction to eBPF,” https://lwn.net/
Articles/740157/, December 2017.

[86] Apache HTTP Server Project, “ab - Apache HTTP Server Benchmarking
Tool,” https://httpd.apache.org/docs/2.4/programs/ab.html, April 2019.

[87] ARM mbed, “mbed TLS Sample Programs,” https://github.com/
ARMmbed/mbedtls/blob/master/programs, April 2019.

[88] M. Kerrisk, “Namespaces in Operation, Part 1: Namespaces Overview,”
https://lwn.net/Articles/531114/, January 2013.

[89] Intel Corporation, Intel Virtualization Technology for Directed I/O, 2019.
[90] R. Russell, “Virtio: Towards a De-Facto Standard for Virtual I/O

Devices,” in ACM SIGOPS Operating Systems Review (OSR), 2008.
[91] J. Corbet, “Relocating RCU Callbacks,” https://lwn.net/Articles/522262/,

October 2012.
[92] Y. Chen, D. Zhang, R. Wang, R. Qiao, A. M. Azab, L. Lu, H. Vi-

jayakumar, and W. Shen, “NORAX: Enabling Execute-Only Memory
for COTS Binaries on AArch64,” in IEEE Symposium on Security and
Privacy (S&P), 2017.

[93] R. Quin and B. Kerrigan, “Bareflank Hypervisor,” https://bareflank.
github.io/hypervisor/, September 2019.

[94] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic
Generation of Data-Oriented Exploits,” in USENIX Security Symposium
(SEC), 2015.

[95] S. A. Carr and M. Payer, “Datashield: Configurable Data Confidentiality
and Integrity,” in ACM Symposium on Information, Computer and
Communications Security (ASIACCS), 2017.

[96] Z. Hua, D. Du, Y. Xia, H. Chen, and B. Zang, “EPTI: Efficient Defence
against Meltdown Attack for Unpatched VMs,” in USENIX Annual
Technical Conference (ATC), 2018.

[97] A. Zabrocki, “Linux Kernel Runtime Guard (LKRG) under the Hood,”
CONFidence, 2018.

https://lwn.net/Articles/342266/
https://lwn.net/Articles/342266/
https://lwn.net/Articles/569635/
https://lwn.net/Articles/569635/
https://lwn.net/Articles/87814/
https://goo.gl/utKHno
https://goo.gl/utKHno
https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/193307/
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://lwn.net/Articles/758245/
https://lwn.net/Articles/758245/
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
http://lkml.iu.edu/hypermail/linux/kernel/0706.1/0805/techdoc.pdf
http://lkml.iu.edu/hypermail/linux/kernel/0706.1/0805/techdoc.pdf
https://www.openssl.org/docs/man1.0.2/man3/bn.html
https://www.openssl.org/docs/man1.0.2/man3/bn.html
https://tls.mbed.org/api
https://tls.mbed.org/api
https://libsodium.gitbook.io/doc/memory_management
https://libsodium.gitbook.io/doc/memory_management
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://github.com/ARMmbed/mbedtls/blob/master/programs
https://github.com/ARMmbed/mbedtls/blob/master/programs
https://lwn.net/Articles/531114/
https://lwn.net/Articles/522262/
https://bareflank.github.io/hypervisor/
https://bareflank.github.io/hypervisor/

	Introduction
	Background
	Memory Protection Keys
	The Xen altp2m Subsystem
	In-Guest EPT Management

	Threat Model
	Design
	Memory Partitioning through xMP Domains
	Isolation of xMP Domains
	Context-bound Pointer Integrity

	Implementation
	Buddy Allocator
	Slab Allocator
	Switches across Execution Contexts
	Context Switches
	Hardware Interrupts
	Software Interrupts

	User Space API

	Use Cases
	Protecting Page Tables
	Protecting Process Credentials
	Protecting Sensitive Process Data

	Evaluation
	System Setup
	Performance Evaluation
	Kernel Memory Isolation
	In-Process Memory Isolation

	Scalability of xMP Domains
	Security Evaluation
	Attacking the Kernel
	Attacking User Applications
	Attacking Protection Primitives
	I/O Attacks


	Discussion
	Limitations
	Intel Sub-Page Write Permission
	Execute-Only Memory
	Alternative Hypervisors and Architectures

	Related Work
	Conclusion
	References

