
VTPin: Practical VTable Hijacking Protection for Binaries

Pawel Sarbinowski
Vrije Universiteit Amsterdam
onexemailx@gmail.com

Vasileios P. Kemerlis
Brown University

vpk@cs.brown.edu

Cristiano Giuffrida
Vrije Universiteit Amsterdam

giuffrida@cs.vu.nl
Elias Athanasopoulos

Vrije Universiteit Amsterdam
i.a.athanasopoulos@vu.nl

ABSTRACT
VTable hijacking has lately been promoted to the de facto technique
for exploiting C++ applications, and in particular web browsers.
VTables, however, can be manipulated without necessarily corrupt-
ing memory, simply by leveraging use-after-free bugs. In fact, in
the recent Pwn2Own competitions all major web browsers were
compromised with exploits that employed (among others) use-after-
free vulnerabilities and VTable hijacking.

In this paper, we propose VTPin: a system to protect against
VTable hijacking, via use-after-free vulnerabilities, in large C++
binaries that cannot be re-compiled or re-written. The main idea be-
hind VTPin is to pin all the freed VTable pointers on a safe VTable
under VTPin’s control. Specifically, for every object deallocation,
VTPin deallocates all space allocated, but preserves and updates
the VTable pointer with the address of the safe VTable. Hence, any
dereferenced dangling pointer can only invoke a method provided
by VTPin’s safe object. Subsequently, all virtual-method calls due
to dangling pointers are not simply neutralized, but they can be
logged, tracked, and patched.

Compared to other solutions that defend against VTable hijack-
ing, VTPin exhibits certain characteristics that make it suitable for
practical and instant deployment in production software. First, VT-
Pin protects binaries, directly and transparently, without requiring
source compilation or binary rewriting. Second, VTPin is not an
allocator replacement, and thus it does not interfere with the allo-
cation strategies and policies of the protected program; it intervenes
in the deallocation process only when a virtual object is to be freed
for preserving the VTable pointer. Third, VTPin is fast; Mozilla
Firefox, protected with VTPin, experiences an average overhead of
1%–4.1% when running popular browser benchmarks.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
Control-flow hijacking; use-after-free; VTable protection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’16, December 05–09, 2016, Los Angeles, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4771-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2991079.2991121

1. INTRODUCTION
The recent advances in software hardening have undoubtedly

made exploitation a challenging craft [45]. Yet, despite the plethora
of defenses in place [37], attackers still find ways to compromise
essential commodity software, like web browsers [5, 6]. Modern
exploits are highly sophisticated and typically leverage a variety of
different vulnerabilities to bypass established protections, such as
address space layout randomization (ASLR) [42], non-executable
memory [12], and sandboxing [18]. To this end, temporal safety
errors, and particularly use-after-free vulnerabilities, are becoming
a key component of the attackers’ arsenal [1, 2, 7, 8]. Interestingly,
exploiting use-after-free bugs does not require corrupting memory;
instead, an attacker merely needs to utilize dangling pointers, still
accessible by a process, for hijacking the control flow.

Temporal safety violations are extremely effective when (ab)used
for compromising large C++ programs. Virtual objects contain (at
least) one pointer towards a Virtual Table (VTable), which further
contains (function) pointers to the implementation of the methods
associated with the respective object(s). An attacker can hijack
the VTable by forcing the vulnerable program to carefully allocate
memory with attacker-controlled data; assuming there are still dan-
gling pointers that (now) point to the hijacked VTable, the control
flow of the program can be redirected according to the needs of
the attacker. Notice that VTable hijacking, through use-after-free,
can be combined with other attack vectors for delivering the end-
to-end exploit. In fact, in recent Pwn2Own security contests, all
major web browsers were compromised using exploits that contain
a step where VTable hijacking was the key attack vector [5, 6].

In this paper, we propose VTPin for protecting software against
VTable hijacking in the least intrusive way. VTPin works directly
with C++ binaries that provide Run-time Type Information (RTTI),
does not rely on complex binary analysis or rewriting (often hinder-
ing practical deployment [51]), does not interfere with the strate-
gies and policies imposed by the allocator of the protected pro-
gram, and exhibits low overhead (1%–4.1%). VTPin pins all freed
VTable pointers on a safe VTable by instrumenting every free

call of a running program. For every free, VTPin quickly iden-
tifies if it is associated with a virtual object; in case it is, VTPin
handles the deallocation accordingly, otherwise the deallocation is
forwarded to the program’s allocator. VTPin deallocates all space
allocated by the object, but preserves its VTable pointers. Addi-
tionally, the value of the contained VTable pointer(s) is replaced
with the address of a special VTable that VTPin controls. Any
dangling pointer, if triggered, can only invoke a method provided
by the corresponding safe object. Subsequently, all virtual-method
calls due to dangling pointers are not simply prevented, but can also
be logged, tracked, and patched.

http://dx.doi.org/10.1145/2991079.2991121

VTPin follows two strategies for pinning freed virtual objects.
If the memory allocator provides reallocation of memory with par-
ticular placement, such as the standard GNU allocator, then VT-
Pin pins just the VTable pointer(s) and frees the rest of the ob-
ject. Otherwise, for slab allocators that do not support reallocation
with placement, or for objects with multiple VTable pointers, VT-
Pin pins all the VTable pointers and maintains all data associated
with the freed virtual object. Notice that VTPin handles only the
deallocation of objects; all other memory operations, including the
allocation of virtual objects, are outsourced to the default alloca-
tor of the protected program. VTPin pins only virtual objects, and
in most cases only a single pointer (i.e., 8 bytes) survives. Hence,
the induced memory overhead, as we demonstrate with extensive
measurements that stress the memory footprint of Mozilla Firefox
and Chromium, is low. In addition, VTPin employs a conservative
garbage collector for periodically removing all pinned objects and
reclaiming back their occupied memory.
Scope. VTPin protects VTable pointers, in C++ binaries, from be-
ing hijacked through use-after-free vulnerabilities. Although VT-
Pin focuses only on a very specific class of attacks, we stress that
VTable hijacking via use-after-free is a popular and effective ex-
ploitation vector—as demonstrated by recent security contests [1,
2,7,8]. Moreover, by limiting its scope to a specific, yet important,
class of attacks, VTPin is able to not only complicate such attacks,
but solve the problem entirely and in a practical way (i.e., by just
pre-loading a given binary with minimal impact on its execution).
In Section 2, we show that more general binary-level solutions do
exist, but they yield high overhead, intrusive deployment, or suf-
ficient leeway for attacks, all factors which ultimately hinder their
practical adoption in real-world scenarios.
Contributions. This paper makes the following contributions:

1. We design, implement, and evaluate VTPin: a system to pro-
tect VTable pointers from exploitation through use-after-free
vulnerabilities. VTPin does not require access to the source
code of the protected program, is not based on binary anal-
ysis or rewriting, is highly portable, and does not interfere
with the semantics and policies used by standard allocators.

2. We evaluate VTPin with the C++ programs of SPEC CPU2006,
Chromium, and Mozilla Firefox. Mozilla Firefox over VT-
Pin experiences an average runtime overhead of 1%–4.1%
when executing popular browser benchmarks.

2. BACKGROUND

2.1 VTable Hijacking
Use-after-free vulnerabilities are core assets in modern software

exploitation. As they do not manifest by writing past memory
bounds or overwriting the process’ data structures (i.e., memory
corruption), existing countermeasures for protecting critical data,
such as return addresses stored at the process stack, fail to protect
against use-after-free abuses. Essentially, the exploitation of use-
after-free vulnerabilities is based on performing a series of steps
that can hardly be characterized as fraudulent. The key concept of
use-after-free exploitation is that an adversary can leverage pointers
that (still) point to deallocated memory. Once a chunk of memory is
freed the system can reuse the released memory region as needed.
If the attacker can place her data in the freed area, and cause the
dereference of a pointer that still points to this space, then she can
tamper-with the dereferenced data, and, consequently the data flow
of the program. Although, any (dangling) pointer can be abused in
this way, in the context of C++ programs, use-after-free vulnerabil-
ities are often used to hijack VTable pointers. These pointers are

1 c l a s s P a r e n t {
2 p u b l i c :
3 v i r t u a l vo id t a l k () ;
4 } ;
5
6 c l a s s Boy : p u b l i c P a r e n t {
7 p u b l i c :
8 void t a l k () ;
9 } ;

10
11 c l a s s G i r l : p u b l i c P a r e n t {
12 p u b l i c :
13 void t a l k () ;
14 } ;
15
16 i n t main (i n t argc , char ∗a rgv []) {
17 P a r e n t ∗p1 , ∗p2 ;
18 . . .
19 i n p u t == t rue ? p1 = new Boy () : p1 = new G i r l () ;
20 p1−> t a l k () ;
21 p2 = p1 ;
22 d e l e t e p1 ; /* Destructors of Boy/Parent called */
23 /* p2 is now dangling */
24 . . .
25 /* use-after-free trigger */
26 p2−> t a l k () ;
27 re turn 1 ;
28 }

Figure 1: Example program to demonstrate how use-after-free
vulnerabilities can be (ab)used for VTable hijacking. In line 17
two pointers of type Parent are declared, namely p1 and p2.
We assume that input is true, and p1 is instantiated as Boy.
At line 21, p2 and p1 point to the same location, and at line 22
p1 is deleted. The destructor of Boy and then Parent is called
and then all space occupied by the Boy instance is released, but
p2 still points to the location that p1 was pointing at. If p2 is
accessed (line 26) the program behavior is undefined.

abundant and they are used to trigger indirect branches at runtime;
therefore they are extremely useful for diverting the control flow of
a running process in arbitrary ways.

Figure 1 illustrates the mechanics of a VTable hijacking attack.
The program contains three virtual class definitions: Parent (base
class, lines 1–4), Boy (inherits from Parent, lines 6–9), and Girl

(inherits from Parent, lines 11–14). In line 17, two pointers of
type Parent are declared, namely p1 and p2. Depending on the
value of input, which we assume to be influenced by user input,
pointer p1 can be either instantiated as Boy or Girl (line 19). As-
suming that input is indeed true, p1 will be instantiated as Boy.
Hence, when the virtual method talk is invoked (line 20), the par-
ticular implementation, as provided by Boy, will be executed. The
compiler emits the relevant code for performing this resolution (i.e.,
calling the correct virtual method, depending on the object type);
most compilers, implement this feature by using VTables.

In Figure 2(a), we illustrate the memory layout of the object that
p1 points at. The first 8 bytes are occupied by vfPtr, a pointer
that contains the address of the VTable provided by Boy, followed
by class data (i.e., the internal variables of Boy). Notice that the
VTable itself (of Boy class) is stored in read-only memory and it
further contains pointers for resolving the implementations of the
virtual methods provided by both Boy and Parent. Embedding a
pointer that targets a VTable at the beginning of a virtual object is
critical to resolve the method to be called at runtime. Unfortunately,
the vfPtr pointer (Figure 2(a)) cannot be stored in read-only mem-
ory, since object instances are allocated on the stack, heap, or the
global data section(s)—therefore all VTable pointers (but not the
actual VTables) reside in writable memory.

data

vfPtr

VTable of Boy

p1

p2

Memory layout of p1

 ptr to talk();

 ptr to ~Boy();

 ptr to ~Parent();

(a)

data

vfPtr
p1

p2

p1 is deleted

VTable of Boy
 ptr to talk();

 ptr to ~Boy();

 ptr to ~Parent();

(b)

malicious vfPtr
p1

p2

heap spray

data

VTable-looking data
pointer to attacker's codemalicious vfPtr

malicious vfPtr

malicious vfPtr

malicious vfPtr VTable of Boy
 ptr to talk();

 ptr to ~Boy();

 ptr to ~Parent();

(c)

Figure 2: VTable hijacking mechanics. For the example program of Figure 1, we illustrate, in (a), the memory layout of the object
that p1 points to. The first 8 bytes are occupied by vfPtr, which points to the VTable provided by Boy, followed by the respective
class data. The VTable of Boy, stored in read-only memory, contains pointers to the implementation of the methods Boy supports.
In (b), we illustrate what happens if p1 is deleted, and in (c), how the attacker can take advantage of the dangling pointer (p2). An
adversary can spray memory with the contents of a phony vfPtr that points to attacker-controlled data. Such data can resemble
a valid VTable: i.e., arranged so that if dereferenced through a dangling pointer (Figure 1, line 26), then a forged method will be
executed (e.g., mprotect), instead of the one intended by the original program.

Protection Source Binary Modified Allocator Unmodified Allocator
Control-Flow Integrity
BinCFI [61], CCFIR [60], PathArmor [54], TypeArmor [55]
VTable protection
VTV [53], SafeDispatch [32]
vfGuard [43], VTint [59], T-VIP [24]
Use-after-free protection
Undangle [15], FreeSentry [57], DANGNULL [33]
Conservative GC [14]
Memory analyzers
Purify [28], Valgrind [39]
Secure allocators
Cling [11], DieHard [13, 40], CETS [38]
VTPin

Table 1: Existing mitigation mechanisms. Compared to competing solutions, VTPin does not require access to the source code of
the protected program, and does not interfere with the strategies and policies of the allocator used.

Going back to Figure 1, in line 21, p2 == p1. Essentially, at
this point the memory layout is the one presented in Figure 2(a):
both pointers p1 and p2 point to the vfPtr, which points to the
VTable provided by Boy. It line 22, p1 is deleted. Technically, the
destructor of Parent and Boy is called (in this exact order), and the
space occupied by the Boy instance is marked as free. This space
can be reused for future allocations, and, depending on the heap
allocator of the system, the contents of the area can be zeroed or left
as is. Finally, p2 still points to the location that p1 was pointing at:
i.e., at the vfPtr provided by Boy. At this point, the memory layout
is as depicted in Figure 2(b) and p2 is a dangling pointer. If p2 is
accessed, like for example in line 26 of Figure 1, where talk is
called, the program behavior is undefined. There are basically three
possible scenarios: (a) the program crashes, assuming the freed
memory is zeroed; (b) the talk method of Boy is called, assuming
the freed memory has not been touched by the heap allocator; or
(c) arbitrary code gets executed, assuming the freed memory has
been deliberately reused.

Scenario (c) is the one of interest for exploitation purposes. As
illustrated in Figure 2(c), an adversary may spray [50] memory
with the contents of a malicious vfPtr that points to attacker-
controlled data. Such data can be VTable-looking: i.e., arranged so
that if dereferenced, a forged method will be invoked. Notice, that
the attacker does not inject code, since we assume non-executable

data [12], but rather memory addresses. For example, she can place
the address of mprotect at the tampered-with VTable, which, once
called, changes the permissions of the attacker-controlled memory
and makes it executable. At this point (Figure 2(c)), if p2 is used
(Figure 1, line 26), the attacker can hijack the control flow of the
vulnerable process.

2.2 Existing Mitigations
Given their practical relevance, it comes as no surprise that the

research community has proposed many defenses to tackle VTable
hijacking (and related) attacks. We group all these efforts in the
following four categories and summarize our analysis in Table 1.

Control-flow Integrity. Ensuring that a program executes only
control flows that are part of its original Control Flow Graph (CFG)
is a core concept known as Control-flow Integrity (CFI) [10]. CFI
can protect software against arbitrary control-flow hijacking attacks,
despite the existence of vulnerabilities of any type (including use-
after-free). However, CFI, though being a strong defense, can be
hardly realized without approximating the ideal CFG [54, 55, 60,
61]. This approximation has security consequences: practically any
coarse-grained CFI scheme can be defeated [17, 19, 26, 27, 48] and
even fine-grained schemes are prone to attacks [16, 21, 35, 47].

VTable protection. Proposals for protecting VTable pointers can
be either applied to source code [32, 53] or directly at the binary
level [24, 43, 59]. In contrast to generic indirect branches targeted
by CFI solutions, VTable pointers should be contained in a well de-
fined C++ class hierarchy, which is likely to be unknown if source
code is not available [47]. Generic binary-only solutions that sig-
nificantly raise the bar against advanced code-reuse attacks do ex-
ist [55], however their effectiveness in the presence of complex
class hierarchies is questionable [35].
Use-after-free protection. Several proposals aim solely at prevent-
ing use-after-free vulnerabilities by carefully updating all pointers
of a program so that they do not point to memory areas that can
be reused [15, 33, 57]. Such approaches are very effective against
use-after-free exploitation and typically experience moderate over-
head. However, they all require analysis and restructuring of the
program source code, thus failing to protect binaries. Alternatively,
conservative garbage collectors [14] could be used to mitigate use-
after-free vulnerabilities at the binary level [11], but they typically
mandate custom allocators and their full-coverage application in-
curs nontrivial performance and memory impact (e.g., due to the
frequent garbage collection cycles required [29], as well as because
of accuracy problems [30]).
Memory analyzers. Another approach is based on tracking all
memory operations of a program for detecting safety errors [28,
39]. Such tools can accurately detect memory-related bugs, but
they incur overheads that prevent them from protecting deployed
software. Nevertheless, they are suitable for debugging software
that is under development.
Secure allocators. Secure allocators [11, 13, 38, 40] provide drop-
in replacements for the standard memory allocator, with allocation
strategies that take into account security vulnerabilities. Custom
allocators can thwart use-after-free attacks, but, unfortunately, it
is common for industrial software to already employ and heavily
rely on an embedded allocator for better memory management. For
instance, Google Chrome employs tcmalloc [34], while Mozilla
Firefox uses jemalloc [22]. A secure allocator can protect Mozilla
Firefox or Google Chrome only if their embedded allocator(s) are
disabled (often infeasible in practice).

The type-safe memory reuse strategy of Cling [11] is the clos-
est, in terms of scope, to VTPin. Yet, unlike VTPin, Cling yields
important limitations in practice. First and foremost, Cling cannot
co-exist with custom allocators [11], while VTPin integrates nicely
with them. In addition, Cling attempts to infer allocation wrap-
pers for identifying the type of a given object. However, accurate
type identification is challenging at the binary level, especially on
C++ binaries with complex design patterns (e.g., the factory pat-
tern) [23], which yield not a single, but many levels of allocation
wrappers. This results in type over-approximation and ultimately
may allow sufficient leeway for attacks.
Summary. Using any of the mitigations in Table 1 for protecting
against VTable hijacking attacks has one of the following limita-
tions: (a) source code is needed and the solution does not apply
to binaries [15, 32, 33, 38, 53, 57]; (b) the solution applies to bina-
ries [24, 43, 54, 55, 59–61], but it is ineffective [16, 21, 26, 35, 47];
(c) the solution applies to binaries but the memory allocator must be
replaced [11,13,14,40]; (d) the solution applies to binaries without
replacing the memory allocator, but the overhead is high [28, 39].

3. SYSTEM OVERVIEW
VTPin aims at protecting binary-only software against VTable

hijacking, through use-after-free vulnerabilities, by instrumenting
programs in the least intrusive way and with low overhead. Our
least intrusive requirement entails the following:

• No access to source code or debugging symbols.

• No binary analysis, disassembling, or patching.

• No changes to memory allocation strategies (e.g., via drop-in
allocator replacements).

The core idea behind VTPin is simple, but the mechanics for
realizing such a system can be complicated (see Section 4). For-
tunately, our techniques can be implemented in a highly portable
way, promoting VTPin to a generic solution for mitigating VTable
hijacking through use-after-free vulnerabilities.

VTPin is based on the observation that the majority of use-after-
free (ab)uses are capitalized by hijacking VTable pointers through
strategic re-allocation of memory. Therefore, instead of resolving
and protecting dangling pointers, VTPin ensures that all VTable
pointers are always valid, and thus cannot be maliciously (ab)used
via future re-allocations. Whenever a virtual object is freed, VT-
Pin handles the deallocation and ensures that the VTable pointer
is preserved in a new and safe form. Specifically, VTPin releases
the memory occupied by the virtual object, but preserves the space
taken by all VTable pointers, and overwrites them so that they point
to a (read-only) VTable provided by VTPin itself. Essentially, VT-
Pin pins all freed VTable pointers on a safe VTable. Dangling
pointers clearly survive, but they are effectively neutralized, and,
if triggered, they can be accurately detected—this also makes VT-
Pin a practical tool for identifying use-after-free vulnerabilities. If a
dangling pointer is triggered when VTPin is in place, the program
will not crash, but control will be transferred to a virtual method
that the system controls. Therefore, the dangling pointer access
can be logged, traced, and eventually patched.

We demonstrate VTPin works in Figure 3, using (as a reference)
the vulnerable program presented in Figure 1. Initially, the two
pointers, p1 and p2, point to the VTable pointer of a Boy instance
(Figure 1, line 17), and the memory layout is the one depicted in
Figure 3(a). Once p1 is freed (Figure 1, line 22), as illustrated in
Figure 3(b), VTPin takes control. The system frees all space occu-
pied by the Boy instance, but preserves the vfPtr pointer. Next, it
replaces the value of vfPtr with the address of a safe object con-
trolled by VTPin itself. An adversary may further spray memory
with forged pointers, but vfPtr cannot be hijacked, as shown in
Figure 3(c). If a method is invoked through the dangling pointer
p2 (Figure 1, line 26), a safe method of the special VTPin virtual
object will be executed, and the call will be contained and logged.

The protection offered by VTPin is not provided without a cost.
Preserving all VTable pointers introduces memory overhead. If
the protected program uses the system allocator, then for each de-
allocated virtual object only the VTable pointer (vfPtr; 8 bytes)
survives. Otherwise, if a custom, slab-like allocator is used (e.g.,
jemalloc, tcmalloc), virtual objects are preserved in whole. As
we demonstrate later in Section 5, where we precisely estimate the
memory overhead of VTPin, virtual objects account for a small
fraction of all memory objects, and even complicated benchmark
suites that heavily stress the capabilities of web browsers leak only
a few MBs of data. Moreover, many applications are based on
short-lived process models. For example, popular web servers fork
a new process, occasionally, for serving a new client, and shortly
afterwards the process terminates. In such cases, VTPin can of-
fer protection with practically no memory overhead. On the other
hand, for long-lived processes, VTPin employs a second garbage
collection (GC) step, where memory is periodically scanned for
potential dangling pointers. VTPin releases any preserved VTable
pointer that has no reference to it, and retains all other pointers that
are (possibly) still referenced from other memory locations.

data

vfPtr

VTable of Boy

p1

p2

Memory layout of p1

 ptr to talk();

 ptr to ~Boy();

 ptr to ~Parent();

(a)

data

VTPin vfPtr
p1

p2

p1 is deleted

VTPin VTable
pointers to safe

methods

VTable of Boy
 ptr to talk();

 ptr to ~Boy();

 ptr to ~Parent();

(b)

VTPin vfPtr
p1

p2

heap spray

VTPin VTable
pointers to safe

methods

malicious vfPtr

malicious vfPtr

malicious vfPtr

VTable-looking data
pointer to attacker's code

VTable of Boy
 ptr to talk();

 ptr to ~Boy();

 ptr to ~Parent();

(c)

Figure 3: VTable hijacking prevention when VTPin is in place. Initially, in (a), the two pointers, p1 and p2, point to a Boy instance
(Figure 1, line 17). Once p1 is freed (Figure 1, line 22), in (b), VTPin frees all space occupied by the Boy instance, but preserves
the vfPtr pointer. (If the memory allocator used does not allow re-allocating the object at the same address, then VTPin will fully
preserve the memory used by the object.) Additionally, the system replaces the old vfPtr with the address of a safe virtual object
controlled by VTPin itself. An adversary may further spray memory with forged pointers, as in (c), but the VTable pointer cannot
be hijacked. If a method is invoked through the dangling pointer p2 (Figure 1, line 26), a safe method of the special VTPin virtual
object will be executed, and the call will be contained and logged.

Notice, that VTPin can be extremely conservative at this stage,
since the majority of the preserved pointers will not be referenced
(i.e., we assume that protected programs do not intentionally con-
tain a vast amount of dangling pointers). This additional GC step is
a costly operation. However, we stress that, since it is only used
to reclaim dead VTable pointers (unlike traditional conservative
garbage collectors [14]), it can be carried out infrequently with very
low memory and performance impact on the running program. We
further elaborate on this aspect in Section 5.5, where we evaluate
the time needed to scan the memory of a process and free any re-
maining non-referenced VTable pointers.

3.1 Virtual Objects
VTPin protects software without requiring access to code (source

or binary), or modifying the memory allocator used. To this end, it
instruments all free calls issued by a program, and intervenes only
when a free operation is called on a virtual object. Hence, VTPin
has to infer if a pointer is allocated to a virtual object or not. In the
following, we discuss the basic algorithm for resolving pointers to
virtual objects, and in Section 4 we provide the technical details for
implementing the algorithm in the VTPin prototype.

Given a pointer, ptr, VTPin first checks if ptr is valid (i.e., non-
null); if it is, then VTPin extracts the first 8 bytes of the memory
block pointed by ptr, and treats them as a VTable pointer (vfPtr).
Next, it examines all the read-only memory regions of the running
process to check if the address vfPtr points to belongs to them. If
the address is not found, then it is certain that ptr is not associated
with a virtual object, since VTables are stored in read-only memory
regions. Examining every read-only memory range is easy and fast,
as all shared objects are linearly mapped and ASLR, or fine-grained
randomization [25, 31, 41, 56], has no impact.

If vfPtr is not found in read-only memory, VTPin outsources
the deallocation operation to the underlying program allocator. Oth-
erwise, ptr is consider potentially associated with a virtual object.
To ultimately infer whether ptr is indeed associated with a vir-
tual object, VTPin uses the RTTI mechanism provided by C++ [4].
Specifically, it assumes the ptr is pointing to a virtual object, and
traverses memory to discover its class type. If the class type is
successfully found during this traversal, then ptr is certainly asso-
ciated with a virtual object. Notice, that there is high probability,
during a memory traversal, for VTPin to touch unmapped mem-
ory and cause a fault. Such faults are handled by VTPin without
impacting the running program, as we further discuss in Section 4.

3.2 Multiple Inheritance
C++ supports multiple inheritance, and the ABI [4] suggests how

VTables of virtual objects that inherit from several classes should
be laid out in memory. In particular, two different layouts are pos-
sible. The first layout applies to cases where the class of the object
instance inherits from none or a single class. Notice that whether
the base class also inherits from other classes does not affect the
layout. In this case, the object contains a single VTable pointer.
This pointer points to a “merged” VTable that has been created by
merging the VTable of the derived class with the VTable of the
base class. For this layout, VTPin can easily pin the single VTable
pointer and release the rest of the virtual object. However, in cases
of multiple inheritance, where a class inherits from two, or more,
classes directly, the layout is fairly different. The object now con-
tains as many virtual pointers as the number of classes from which
it inherits. For each class there is a VTable pointer, at a fixed offset
from the start of the object, pointing to the corresponding VTable
of that class. In this case, VTPin cannot just pin several VTable
pointers and release the rest of the object. Being overly conserva-
tive, it pins all the VTable pointers and preserves the memory of
the object. In Section 4.5, we discuss how to distinguish virtual ob-
jects with multiple from single inheritance, and in Section 5.2 we
evaluate the frequency of multiple inheritance objects.

4. IMPLEMENTATION
Our prototype implementation of VTPin is written in C/C++,

consists of ∼2000 LOC, and targets (C++) Linux binaries on x86-
64 systems—VTPin itself is compiled with GCC (g++). As stressed
in Section 3, VTPin is highly portable. In this section, not only we
provide the implementation details of VTPin, but we also expand
on various technical aspects that need adjustment when VTPin is
meant to offer protection to binaries on other platforms.

4.1 Portability Requirements
Implementing VTPin on any platform is possible as long as the

following requirements are met:

1. Hooking free. VTPin needs to intercept each free call for
pinning VTable pointers. In particular, VTPin must be able
to hook free directly, if the system allocator is in place, or
place hooks in a custom allocator otherwise [3].

2. Allocation with placement. VTPin preserves VTable point-
ers, while deallocating the rest of a virtual object. To enforce

this property, VTPin needs to manage memory in a very pre-
cise way: i.e., reserve 8 bytes at the exact address that the
original virtual object was allocated at. The implemented
prototype is based on the standard glibc allocator, which
offers in-place realloc functionalities at a specific mem-
ory address. Once realloc is provided with a smaller size,
it simply keeps all contents up to the new size and discards
the rest [9]. Other allocators [22, 34] implement realloc
in a different way; the reallocated memory block is always
placed at an address that is different from the one that it was
initially allocated at. If no such realloc functionality is
available, VTPin resorts to keeping the entire virtual object
in memory, overwriting all the contained VTable pointers,
and garbage-collecting the object at a later point in time.

3. RTTI support. As C++ offers support for Run-time Type
Information, it is possible to infer the type of a particular
pointer at runtime. Compilers are free to implement RTTI
differently [46,52], but they all export the same API (type_-
info and similar) for handling RTTI requests [4]. VTPin is
based on the RTTI implementation of GCC and LLVM.

4. Handling invalid memory accesses. VTPin uses the RTTI
functionality provided by the compiler for inferring, at run-
time, if a pointer is associated with a virtual object (Sec-
tion 3.1). However, accessing the RTTI properties of a non-
virtual object, by traversing memory, may result in touching
unmapped memory. Therefore, VTPin needs to either handle
and recover from a SIGSEGV signal or probe memory with-
out causing a segfault. Most platforms support handling
SIGSEGV in user space. For example, in Microsoft Windows
programs can use Structured Exception Handling [36], and in
Linux programs compiled with GCC can transparently con-
vert signals to C++ exceptions (-fnon-call-exceptions).
Probing memory without causing a segfault is also possi-
ble on Linux (and other Unix-like OSes) via system calls like
mincore, which fail when the respective memory address
(i.e., the first argument of mincore) is not mapped. VTPin
implements both techniques.

4.2 Basic Components
VTPin is implemented as a shared library that can be preloaded

using LD_PRELOAD on Linux (DYLD_INSERT_LIBRARIES on OSX,
etc.) for instrumenting all free calls of a running binary. The sys-
tem consists of three components: (a) a memory map that contains
all read-only memory regions; (b) a safe VTable where all virtual
objects are pinned when deallocated; and (c) a secondary thread
that scans memory at configurable intervals and reclaims pinned
pointers that no longer have dangling references.

4.2.1 Memory Map
VTPin maintains a memory map with all allocated and read-only

memory pages. As compilers place VTables on read-only pages,
VTable pointers should point to such pages. This property is used
for quickly checking if a freed pointer is associated with a virtual
object (Section 3.1). VTPin collects these pages during bootstrap
by reading the /proc/self/maps file of the running binary, and,
successively, by hooking dlopen for updating the map with shared
objects that are mapped at runtime. All read-only memory is spread
in the virtual address space in non-overlapping regions, which can
be sorted. Checking if an address belongs to these regions can be
done efficiently by maintaining a splay tree [20].

4.2.2 Safe VTable
VTPin, early at its initialization phase, allocates a special virtual

object, which contains the implementation of several virtual meth-
ods. Every time a virtual object is deallocated, its VTable pointer
is preserved and its value is swapped to point to the VTable of the
safe object (Figure 3). Any dangling pointer related to the deal-
located object, if triggered, invokes a method implemented by the
safe object, and thus exploitation can be easily contained. Each
method of the safe object can be arbitrarily implemented according
to the needs of the administrator (or developer). For the prototype
discussed here, each method logs the address of the instance that
called the method. Program execution should not be terminated,
since the dangling pointer is no longer dangerous. Hence, use-
after-free attacks that aim at a denial of service, which otherwise
could be still dangerous—for example when (dangling) pointers
are nullified after deallocation—are also alleviated.

4.2.3 Garbage collection
VTPin pins the VTable pointers of virtual objects once they are

deallocated, and adds their addresses to a special data structure,
called VTPit. Next, it periodically scans the stack, heap, and global
data section(s) of the process, and checks for addresses contained
in VTPit. If such addresses exist, then (possible) dangling pointers
exist as well, and the object is marked accordingly (in VTPit). Af-
ter the scan completes, the VTPit data structure is fully examined
again, and every object that was not marked as possibly having a
dangling pointer, is finally freed. This process can be parallelized,
aggressively, by scanning different memory regions with different
CPU cores. The regions to be scanned are determined by parsing
/proc/self/maps. By default, VTPin opts for a simple nonpar-
allel GC strategy, triggering a complete memory sweep every time
the overall size of memory occupied by pinned objects exceeds a
particular threshold (100 MB by default). However, as we discuss
in Section 5.5, additional configurations are possible.

4.3 Virtual Object Resolution
A high-level overview of how VTPin works is sketched in Fig-

ure 4. Given a pointer to be freed, VTPin infers if the pointer
is associated with a virtual object using the algorithm outlined in
Section 3.1. First, the memory map is checked to see if the (to-be-
pinned) VTable pointer points to a read-only region. Then, RTTI is
used for verifying that the pointer is indeed associated with a virtual
object. VTPin incorporates two methods for RTTI resolution.

The first method employs SIGSEGV signals. The pointer for the
expected RTTI (type_info) structure is resolved based on the Ita-
nium ABI that both LLVM and GCC implement [4]. Figure 5
shows the structure of the RTTI information in memory for a given
pointer (ptr). In case there is no RTTI information associated
with the given pointer, this operation fails by emitting a SIGSEGV

signal for the calling thread. As VTPin is compiled using GCC
(g++), -fnon-call-exceptions is used in compilation for trans-
lating signals to C++ exceptions. RTTI resolution is performed in
a try/catch block, and, in case unmapped memory is accessed, a
custom exception handler is called for handling SIGSEGV. Notice,
that once the exception is raised, and once the handler is finished,
an additional free is performed for deallocating the object that
handled the exception. This additional free is carefully issued by
VTPin to avoid infinite loops.

The second method tries to validate the type_info structure by
probing the memory locations, shown in Figure 5, one by one. If at
any step the memory is unmapped, or if a VTable pointer points to
writable memory (even though it should point to read-only mem-
ory), it can be deduced that the RTTI structure is invalid and the

!""#"""""$""#%#"""&&&&&&&&&'$()&*+,-*.,'/.0($+,-

!""#%#"""$""#%1"""&&&&&&&&&'$$)&*+,-*.,'/.0($+,-

!2.../342+"""$2.../343+"""&'$()&*56'*7,+*7,+08/'79:$64'077+9'$";<;60;";";%=

!2.../3/39"""$2.../3/3+"""&'$$)&*56'*7,+*7,+08/'79:$64'077+9'$";<;60;";";%=

!2.../3/34"""$2.../3/>3"""&'$()&*7,+*(3=?=#$7,-5($@-5*7,+-66?.,7/6$<;%1;60

!2.../>">2"""$2.../>">3"""&'$$)&*7,+*(3=?=#$7,-5($@-5*7,+-66?.,7/6$<;%1;60

!2.../>">>"""$2.../>"9A"""&'$()&*7,+*(3=?=#$7,-5($@-5*7,+-66?-,6$<;%1;60

!2.../><9A"""$2.../><9#"""&'$$)&*7,+*(3=?=#$7,-5($@-5*7,+-66?-,6$<;%1;60

!2.../><91"""$2.../><+4"""&'$()&*7,+*(3=?=#$7,-5($@-5*7,+-67$<;%1;60

!2.../>#++"""$2.../>#+4"""&'$$)&*7,+*(3=?=#$7,-5($@-5*7,+-67$<;%1;60

!2.../>#+."""$2.../>#42"""&'$()&*7,+*(3=?=#$7,-5($@-5*7,+-66?40B)9C$<;%1;60

!2.../>=4="""$2.../>=42"""&'$$)&*7,+*(3=?=#$7,-5($@-5*7,+-66?40B)9C$<;%1;60

!2.../>=43"""$2.../>=4+"""&'$()&*56'*7,+*(3=?=#$7,-5($@-5*@40-8*DEF$%=;60

!2.../>349"""$2.../>34+"""&'$$)&*56'*7,+*(3=?=#$7,-5($@-5*@40-8*DEF$%=;60

;;;

!2...."/A/"""$2....1A9%"""&'$()&*C007G,C*7,+'9':*7,+(57;60

!2....1A9<"""$2....1399"""&'$$)&*C007G,C*7,+'9':*7,+(57;60

!2....19"+"""$2....19A4"""&'$()&*6/45',C:*-66*7,+*667*7,+667A;60

!2....14A4"""$2....14A."""&'$$)&*6/45',C:*-66*7,+*667*7,+667A;60

!2....14#%"""$2....14=""""&'$()&*6/45',C:*-66*7,+*6B,B/*7,+6B,B/A;60

!2....1/1."""$2....1/=<"""&'$$)&*6/45',C:*-66*7,+*6B,B/*7,+6B,B/A;60

!2....1/=A"""$2....1.#+"""&'$()&*6/45',C:*-66*7,+*-66*7,+-66A;60

!2....=%#9"""$2....=%#."""&'$$)&*6/45',C:*-66*7,+*-66*7,+-66A;60

!2....=%1A"""$2....=%2#"""&'$()&*6/45',C:*-66*7,+*5C,7*7,+-665C,7A;60

!2....=A2#"""$2....=A29"""&'$$)&*6/45',C:*-66*7,+*5C,7*7,+-665C,7A;60

!2....=A2+"""$2....=A2/"""&'$()&*-6)')5+*7,+*H6*7,+)7H6#;60

!2....=12H"""$2....=12/"""&'$$)&*-6)')5+*7,+*H6*7,+)7H6#;60

!2....=12."""$2....=13A"""&'$()&*-6)')5+*7,+*7,+4*6'4*7,+)74#;60

!2....=23<"""$2....=23A"""&'$$)&*-6)')5+*7,+*7,+4*6'4*7,+)74#;60

!2....=23#"""$2....=2+/"""&'$()&*-6)')5+*)'*6'4*7,+-6)'#;60

!2....=>+/"""$2....=>+."""&'$$)&*-6)')5+*)'*6'4*7,+-6)'#;60

VTableptr
Binary Search

Memory Map

Not Found

??7,+4?.'//I)C'J KEELI)C'J
Exception

Found

Safe VTable

8C),-?B/CM0H"IJN

8C),-?B/CM0H%IJN

;;;

8C),-?B/CM0HOIJN

8C),-?.'//I)C'J

Pin VTable

Figure 4: VTPin prototype. Given a pointer to be freed, VTPin infers whether the pointer is associated with a virtual object or
not (Section 3.1). First, the memory map is searched for locating a possible VTable, and then RTTI resolution is used. Once VTPin
identifies that a pointer is associated with a virtual object, it pins the VTable pointer of that object to a safe VTable. VTPin uses
realloc for shrinking the object to 8 bytes and discarding the rest of it. Finally, VTPin copies the VTable address of the safe object
to the preserved 8 bytes containing the VTable pointer. VTable hijacking through dangling pointers is not possible anymore, since
triggering such a pointer will eventually call a virtual method implemented by the safe object.

ptr

VTable
ptr

type_info

*type_info **type_info

Class
name

::name

Figure 5: Memory layout expected during RTTI resolution.
Each shaded block denotes a memory location probed with the
mincore syscall to check whether it is mapped, or not, before
accessing it. ptr is the pointer intercepted by our free hook.

original object is not virtual. To probe the memory without causing
a SIGSEGV, VTPin uses the mincore system call, which fails (i.e.,
ENOMEM in Linux) when the memory is unmapped. By default, VT-
Pin uses this second method to probe memory locations, since, on
preliminary tests, SIGSEGV handling exhibited worse performance
(i.e., extra 2–9%). Note that while mincore-based probing is fairly
efficient, we believe that platform-specific, user-mode-only prob-
ing methods may further improve performance. For example, the
recent Intel transactional synchronization extensions (TSX) allow
a user thread to efficiently infer unmapped memory locations from
transaction aborts without involving the kernel [44]. However, due
to its portability limitations (TSX is only available in recent Intel
CPUs and often disabled due to implementation bugs), we decided
against incorporating such a method in our current prototype.

4.4 VTable Pinning
Once VTPin identifies that a pointer to be freed is associated

with a virtual object, it proceeds and pins the respective VTable
pointer(s) to a safe VTable (Figure 4). In cases of single inheriting
objects, VTPin uses realloc as provided by glibc for shrinking
the object to 8 bytes. This action preserves (at the original mem-
ory address) the first 8 bytes, where the (still valid) VTable pointer
is stored, and deallocates the rest of the object [9]. Finally, VTPin

copies the VTable address of the safe object to the preserved 8 bytes
of the object. This action essentially pins the old VTable pointer to
a safe VTable controlled by VTPin. VTable hijacking through dan-
gling pointers is not possible anymore, as triggering such a pointer
will invoke a virtual method implemented by the safe object.

Notice that not all memory allocators follow the semantics of
glibc when implementing realloc. Many implementations [22,
34] return a fresh pointer located at a different memory address,
no matter if the new object occupies less or more space than the
originally-allocated one. VTPin favors transparency and does not
require changes in the semantics followed by the memory alloca-
tor. VTPin needs only a custom function for reallocating an object
at a particular memory address. This function can be any private
function (not realloc), which is meant to be used only by VTPin
for offering protection to the running process. Thus, all policies
related to the memory allocation of the protected program are pre-
served. If by no means such a function can be made available, then
VTPin resorts to preserving the entire virtual object instead of free-
ing it—and releasing it at a later point in time, once no dangling
pointers to it are found by the memory-scan thread (Section 4.2.3).
The entire virtual object is also preserved in cases of multiple in-
heritance. Since the objects in those cases contain more than one
virtual pointer, VTPin cannot reallocate memory at their specific
addresses (malloc does not provide that functionality).

4.5 Handling Multiple Inheritance
VTPin needs to determine whether to preserve only the VTable

pointer or the entire object. The entire object is preserved in cases
of multiple inheritance, as several VTable pointers are contained in
it. VTPin gets the size of the object with malloc_usable_size1,
and then traverses the memory occupied by the object to find VTable
pointers that point to a nearby (in memory) VTable compared to the
1malloc_usable_size is a non-standard interface provided by
all allocators tested with VTPin (i.e., ptmalloc2/glibc, tcmal-
loc, jemalloc) for introspection purposes. However, notice that
free does not require a size argument; every allocator has a way of
knowing the exact size of the memory block that is to be reclaimed.

first VTable pointer of the object. In case VTPin finds more than
one VTable pointer contained in the virtual object, then the class
is considered to make use of multiple inheritance and the complete
object is preserved. Notice that all contained VTable pointers are
pinned and therefore neutralized.

5. EVALUATION
In this section, we assess the security effectiveness of VTPin,

and evaluate its associated memory and runtime overheads. We
test our prototype with the C++ benchmarks (all but 471.omnetpp
due to limitations of our prototype) from the SPEC CPU2006 suite,
Mozilla Firefox v47, and Chromium v50. All experiments were
carried out on a host running Ubuntu Linux v14.04 (64-bit), armed
with a 2GHz quad-core Intel Core i5-3320M CPU and 8GB RAM.

5.1 Effectiveness
We evaluated the effectiveness of VTPin by employing the same

three (publicly available) exploits used by the authors of VTrust [58].
All three exploits target Firefox and rely on use-after-free vulner-
abilities and VTable hijacking. The tests were performed on an
Ubuntu Linux v14.04 (64-bit) virtual machine, with the latest ver-
sion of Metasploit framework running on the host machine. Each
corresponding Firefox version was compiled with GCC and the
’ac_add_options --enable-cpp-rtti’ flag was added to the
default configuration. The original exploits target Windows XP/SP3,
so we had to port them to Linux; they match the following CVEs:
CVE-2013-1690 (Firefox v17.0), CVE-2011-0065 (Firefox v3.5)
and CVE-2013-0753 (Firefox v17.0.1). All exploits successfully
triggered the respective vulnerabilities, which we cross-checked by
inspecting their stacktraces, and they were all thwarted by VTPin.

5.2 Deallocation Calls
Table 2 summarizes the distribution of the instrumented free

calls, as recorded by VTPin, for the C++ benchmarks of the SPEC
CPU2006 suite, as well as for Mozilla Firefox and Chromium. For
SPEC CPU2006 we run the respective benchmarks until comple-
tion. Each recorded free call may correspond to deallocating: (a) a
definitely non-virtual object; or (b) a possibly virtual object. The
former means that the pointer about to be freed does not point to a
VTable—in practice it points to a writeable memory block (recall
that VTables are always kept in read-only pages). For the latter sce-
nario(s), we further resolve object types using RTTI. If the resolu-
tion is not successful, we surmise that the deallocation corresponds
to a non-virtual object as well (as mentioned in Section 3.1).

Given the above, Table 2 should be interpreted as follows (us-
ing xalanc as an example). After running xalanc to completion,
VTPin recorded a total of 126,929,346 free invocations. 1,594
calls were not handled by VTPin, since the system had not boot-
strapped at that time; these calls are associated with loading long-
lived dynamic shared objects during startup. Furthermore, there
were 81,211 free invocations with null as argument (in that case
VTPin returns immediately), and 126,780,565 calls regarding non-
virtual objects—126,780,487 calls with a vfPtr that does not point
to a VTable (i.e., scenario (a) above), and 78 calls (with a seemingly
valid vfPtr) for which RTTI resolution failed. All in all, VTPin
resolved 65,898 virtual objects, while 27,481 (41.7%) of them were
virtual objects belonging to a class with multiple inheritance.

Several observations can be made based on Table 2. First, the
deallocation of virtual objects is only a small percentage (in most
cases less than 1%) of the total deallocations. The highest percent-
age is recorded when Firefox is running the SunSpider benchmark,
where the deallocations of virtual objects account for ∼14% of all
deallocations. Second, most deallocations that are not related with

a virtual object are cleared fast, without relying on RTTI resolution;
VTPin quickly infers that the pointer to be freed is not associated
with any VTable (column invalid vfPtr). Lastly, whenever VTPin
decides to take the slow path, i.e., to perform a resolution based
on RTTI, the decision is correct in most of the cases; only a small
fraction of all RTTI resolutions fail (column RTTI failed).

5.3 Memory Overhead
VTPin preserves VTable pointers or (whole) virtual objects. Al-

though the memory occupied by pinned objects is periodically re-
claimed, it is interesting to explore its volume. For this, we hook
malloc and record the size of the requested memory block, and
the pointer returned, on each invocation. In parallel, we trace all
the free calls. The pointer that is freed is associated to the respec-
tive malloc invocation, giving us the actual size for each virtual
object detected by VTPin. For each benchmark, we maintain the
cumulative allocation size, increased/decreased by S when an al-
location/deallocation of size S takes place. We then calculate the
maximum cumulative allocation size, as observed during the life-
cycle of each benchmark, at the end of a given run. In parallel,
we account for any operations that affect virtual objects, and mea-
sure the extra memory required by VTPin when using a slab-like
allocator or the standard glibc allocator.

Table 3 summarizes our findings. For brevity, we focus our
browser memory analysis on Firefox, which maintains many more
virtual objects that yield significantly higher pressure on the mem-
ory footprint. Notice that, when the glibc allocator is used, VTPin
exhibits negligible memory overhead across all the benchmarks.
When a slab allocator is used (and VTPin needs to retain entire
virtual objects), the memory overhead is, as expected, more promi-
nent. Nonetheless, only two benchmarks, Peacekeeper and xalanc,
force VTPin’s default configuration to garbage collect dead objects
after hitting the 100 MB threshold. Our worst-case memory over-
head with a slab allocator (less than 30%) is comparable to that of
existing solutions. For example, Cling [11] reports a memory over-
head of 40% for xalanc. Again, if the glibc allocator is in place,
our worst-case memory overhead drops to less than 20%.

5.4 Performance Overhead
In Table 4, we summarize the results of the runtime overhead

imposed by VTPin. Again, the SPEC CPU2006 benchmarks run to
completion and each experiment was repeated 10 times. For Fire-
fox and Chromium, we use standard JavaScript and HTML5 bench-
marks, since they are more accurate for measuring the performance
of web browsers. In the following, we discuss each benchmark
category separately.
SPEC CPU2006. namd and soplex do not (heavily) use virtual
objects (Table 2), and thus the overhead imposed by VTPin is prac-
tically zero. dealII involves virtual objects, but the exhibited
slowdown is negligible (∼1.8%). Finally, xalanc, an XML-based
benchmark, which massively allocates and deallocates memory in-
curs a relatively higher overhead (4.9%).
Mozilla Firefox/Chromium. Mozilla Firefox and Chromium were
both tested with all popular browser benchmarks: i.e., SunSpider,
Kraken, Peacekeeper, and Octane. Notice that each benchmark re-
ports scores based on different metrics. For SunSpider and Kraken,
which mainly stress JavaScript operations, VTPin imposes an over-
head of 4.1% and 1.2%, respectively. The rest of the benchmarks
incur less overhead, practically less than 1%. Similar overheads
are reported for Chromium, as well. We also observed our default
garbage collection strategy to yield a very low impact on our bench-
marks. Even for Firefox/Peacekeeper, which reported the highest
number of garbage collection sweeps (i.e.,, 3), we observed a GC-

Application Calls Unhandled null Non-virtual Non-virtual Virtual Virtual
(invalid vfPtr) (RTTI failed) (all) (multi. inheritance)

483.xalanc 126,929,346 1,594 81,211 126,780,487 78 65,898 27.481 (41.70%)
447.dealII 12,173,483 1,594 857,082 11,313,200 11 1,596 1263 (71.90%)
444.namd 2,944 1,594 28 1,322 0 0 0
450.soplex/1 2,816 1,594 6 1,213 0 3 0
450.soplex/2 191,361 1,594 12 189,751 0 4 0
453.povray 2,569,867 1,594 151,060 2,415,154 1,990 69 0
462.libquantum 2063 178 0 0 0 0 0
473.astar 1116981 181 0 0 0 0 0
Firefox/SunSpider 2,102,173 1,747 226,331 1,562,756 7,613 303,726 8,462 (2.78%)
Firefox/Kraken 1,708,089 1,600 157,846 1,329,169 7,673 211,507 5,939 (2.80%)
Firefox/Peacekeeper 33,478,893 178 15,820,851 14,614,465 119,131 2,924,268 17,752 (0.60%)
Firefox/Octane 2,328,826 178 607,237 1,591,611 7,082 122,718 4,353 (3.54%)
Chromium/SunSpider 473,217 16 30,603 437,928 3,804 867 308 (35.5%)
Chromium/Kraken 340,390 15 25,222 310,511 3,535 1,107 468 (42.2%)
Chromium/Peacekeeper 467,963 15 37,848 425,051 4,208 841 358 (42.5%)
Chromium/Octane 270,036 15 24,731 238,534 4,759 1,997 828 (41.4%)

Table 2: Distribution of free calls for the C++ benchmarks of the SPEC CPU2006 suite, as well as for Mozilla Firefox and
Chromium.

Benchmark Max memory VTPin/norealloc (%) VTPin/realloc (%)
Firefox
SunSpider 131,309 KB 38,616 KB (29.4%) 3,462 KB (2.63%)
Octane 321,166 KB 16,740 KB (5.21%) 1,549 KB (0.48%)
Peacekeeper 624,546 KB 102,400 KB (16.4%) 21,632 KB (3.46%)
Kraken 1,240,534 KB 28,674 KB (2.31%) 2,559 KB (0.20%)
SPEC CPU2006
483.xalanc 373,889 KB 102,400 KB (27.4%) 68,350 KB (18.2%)
447.dealII 107,035 KB 372 KB (0.34%) 272 KB (0.25%)
450.soplex/1 16,231 KB 496 B (0.00%) 24 B (0.00%)
450.soplex/2 15,758 KB 608 B (0.00%) 32 B (0.00%)
453.povray 3,278 KB 12 KB (0.36%) 552 B (0.01%)

Table 3: Memory footprint of virtual objects for Firefox (when running several benchmarks) and SPEC CPU2006 (only benchmarks
that contain virtual objects are included). Max memory refers to the maximum cumulative allocation size observed during the
execution of each benchmark. The VTPin/norealloc column (default on Firefox) depicts the amount of memory used by VTPin in
absence of adequate realloc support from the underlying allocator (e.g.,, via a slab allocator). The VTPin/realloc column (default
on SPEC) lists the amount of memory used by VTPin when adequate realloc support is available (e.g., via the glibc allocator).
Note that VTPin’s default configuration bounds memory leakage to 100 MB.

induced overhead impact of only +1.7%. Our results on Firefox
and Chromium suggest that VTPin can secure real-world software
with negligible (less than 5%) overhead.

5.5 Collecting Pinned VTables
To further investigate our garbage collection performance, we

evaluated the time for VTPin to scan memory and collect pinned
pointers. For this purpose, Table 5 lists the time needed for scan-
ning the heap (which dominates the scanning time) of Mozilla Fire-
fox for collecting 10K, 100K and 1M pinned pointers. All pinned
pointers are stored in one of two C++ unordered_maps, as pro-
vided by STL, and when the heap scan runs one buffer is freed
while the other continues to fill via new free calls. This strat-
egy eliminates the need to block other threads while the heap is
scanned. Our results show that, even for large heap sizes (of sev-
eral MBs), such as the one of Mozilla Firefox, the scanning process
can complete in a few seconds (up to 10 seconds for scanning 10M
of pinned pointers on a single thread). In addition, our results con-
firm that our garbage collection strategy is heavily parallelizable,

with a scan being up to 3 times faster with 4 threads running on
different cores compared to the single thread scenario. Since such
scan takes place infrequently (every 100 MB of pinned pointers by
default), the overall performance of the protected program is not
affected in practice. This is also reflected in the performance over-
head results presented for our benchmarks earlier.

6. RELATED WORK
Many techniques have been proposed for defending against var-

ious exploitation approaches. Control-flow Integrity (CFI) [10] is
a generic concept for ensuring that an attacker cannot tamper-with
the control flow of a running process. In the case of VTable hijack-
ing, CFI can protect the vulnerable program, as VTable pointers
are constrained and thus unable to point-to any foreign VTable in-
troduced at runtime [53]. Alas, CFI requires perfect knowledge of
the Control Flow Graph (CFG), and, in practice, can be only real-
ized as an approximation. Specifically, all coarse-grained forms of
CFI [60,61] suffer from inherent limitations and it has been shown
that they can be bypassed [26].

Benchmark Vanilla VTPin (overhead)
SPEC CPU2006
483.xalanc 183.42 192.5 (1.049x)
447.dealII 23.3 23.73 (1.018x)
450.soplex/1 32.06 32.564 (1.015x)
450.soplex/2 4.33 4.39 (1.013x)
462.libquantum 74.66 75.19 (1.007x)
444.namd 43.802 44.859 (1.024x)
453.povray 174.51 175.2 (1.004x)
473.astar 319.3 321.76 (1.007x)
Firefox
SunSpider 400.3ms ± 2.0% 416.7ms ± 3.3% (1.041x)
Kraken 1,653.3 ± 1.1% 1,674.4 ± 1.2% (1.012x)
Peacekeeper 2,843 ± 0.1% 2,919 ± 0.4% (1.027x)
Octane 18,320 ± 1.5% 18,378 ± 1.9% (1.003x)
Chromium
SunSpider 3,616ms ±3.1 % 3,668ms ± 1.4% (1.014x)
Kraken 12,945 ±1.8 % 13,137 ± 1.9% (1.015x)
Peacekeeper 166 ±1.4 % 160 ± 0.7% (1.036x)
Octane 3,636 ± 1.3% 3,670 ± 1.2% (1.009x)

Table 4: Performance overhead of SPEC CPU2006, and
Firefox and Chromium when running popular web browser
benchmarks. For SunSpider and Kraken, which mainly stress
JavaScript operations, VTPin imposes an overhead of 4.1%
and 1.2%, respectively on Firefox. The overhead imposed to
benchmarks that do not heavily use virtual objects is practi-
cally zero. On the other hand, xalanc, an XML-based bench-
mark, which massively allocates and deallocates memory has
an overhead of 4.9%. Notice, also, that for Firefox/Peacekeeper
the overhead includes the garbage-collection phase, which is
applied when the amount of pinned virtual objects exceeds the
size of 100MB.

Heap size Objects GC (1 thread) GC (4 threads)
64,675 KB 10K 1.30sec 0.60sec
64,675 KB 100K 1.41sec 0.71sec
64,675 KB 1M 1.73sec 0.87sec

128,675 KB 10K 1.59sec 0.68sec
128,675 KB 100K 2.59sec 0.77sec
128,705 KB 1M 2.77sec 1.76sec
512,675 KB 10K 6.17sec 2.85sec
512,675 KB 100K 9.67sec 2.94sec
512,675 KB 1M 10.87sec 5.64sec

Table 5: Time needed for scanning the heap (which dominates
the scanning time) of Mozilla Firefox for collecting 10K, 100K,
and 1M of pinned pointers, respectively. Since this is easily par-
allelizable, duration was also measured when running garbage
collection on 4 CPU cores.

Since VTables are a primary asset for attackers, the research
community has focused on applying narrow-scoped CFI just for
protecting VTables [24, 32, 43, 53, 59]. All techniques that work
with binaries [24, 43, 59] have been demonstrated imperfect, since
recovering correctly all the semantics related to the C++ class hier-
archy (without access to source code) is still an open problem [47].
For techniques that work at the source level [32, 53] it is still ques-
tionable if they are indeed bullet-proof. Compared to all CFI-based
solutions for protecting VTables, VTPin can work directly with bi-
naries, without suffering from problems related to the C++ class
hierarchy [47], and can offer a sound solution.

VTPin protects VTables only from use-after-free vulnerabilities.
This particular type of vulnerability has been addressed by many
studies [15, 33, 57]. However, in contrast to VTPin, for all these
proposals access to source code is required. Another option is to
provide a custom memory allocator that carefully re-uses mem-
ory [11, 13, 38], but this option needs the program allocator to be
replaced. On the other hand, VTPin aims at being as transparent
as possible, and for that reason it is not offered as an allocator re-
placement. In fact, VTPin can be freely used in cooperation with
any custom allocator, even in combination with allocators that pro-
tect against use-after-free bugs, as it handles specially only deal-
locations associated with virtual objects. For example, Cling [11]
protects against use-after-free exploitation, but it is possible for an
object of the same type to be allocated at a memory area previously
occupied. This particular instance of use-after-free vulnerability
can be prevented by VTPin at a low cost, without disabling Cling.

Finally, there are memory analyzers [28, 39, 49], which offer
managed memory allocation, but their imposed overhead is dramat-
ically high, making them suitable only for debugging. In contrast,
VTPin experiences low overheads: 1%–4.1% when running pop-
ular web browser benchmarks, and 0.4%–4.9% when running the
SPEC CPU2006 suite.

7. CONCLUSION
In this paper we proposed VTPin: a system for protecting C++

binaries from VTable hijacking. Compared to existing protection
mechanisms, VTPin exhibits certain characteristics that make it
suitable for practical and instant deployment in production soft-
ware. First, VTPin protects binaries directly without requiring ac-
cess to the source code or relying on complex binary analysis and
rewriting techniques. Second, VTPin is not an allocator replace-
ment, and as such, it does not interfere with the allocator’s strate-
gies and policies; VTPin intervenes in the deallocation process only
when a virtual object is to be freed, so as to preserve the VTable
pointer. Third, VTPin is fast. Mozilla Firefox experiences an over-
head ranging from 1% to 4.1%, on popular browser benchmarks,
while the overhead of SPEC CPU2006 ranges from 0.4% to 4.9%.

Availability
Our prototype implementation of VTPin is freely available at:
https://github.com/uberspot/VTPin

Acknowledgments
We thank the anonymous reviewers for their valuable comments.
This work was supported by the European Commission through
project H2020 ICT-32-2014 “SHARCS” under Grant Agreement
No. 644571.

8. REFERENCES
[1] Advanced Exploitation of Mozilla Firefox Use-after-free

Vulnerability (MFSA 2012-22). http:
//www.vupen.com/blog/20120625.Advanced_Exploitation_
of_Mozilla_Firefox_UaF_CVE-2012-0469.php.

[2] Advanced Exploitation of Mozilla Firefox Use-After-Free
Vulnerability (Pwn2Own 2014).
http://www.vupen.com/blog/20140520.Advanced_
Exploitation_Firefox_UaF_Pwn2Own_2014.php.

[3] Hooking the memory allocator in Firefox.
https://glandium.org/blog/?p=2848.

[4] Itanium C++ ABI.
https://mentorembedded.github.io/cxx-abi/abi.html.

https://github.com/uberspot/VTPin
http://www.vupen.com/blog/20120625.Advanced_Exploitation_of_Mozilla_Firefox_UaF_CVE-2012-0469.php
http://www.vupen.com/blog/20120625.Advanced_Exploitation_of_Mozilla_Firefox_UaF_CVE-2012-0469.php
http://www.vupen.com/blog/20120625.Advanced_Exploitation_of_Mozilla_Firefox_UaF_CVE-2012-0469.php
http://www.vupen.com/blog/20140520.Advanced_Exploitation_Firefox_UaF_Pwn2Own_2014.php
http://www.vupen.com/blog/20140520.Advanced_Exploitation_Firefox_UaF_Pwn2Own_2014.php
https://glandium.org/blog/?p=2848
https://mentorembedded.github.io/cxx-abi/abi.html

[5] Pwn2Own 2015: The year every web browser went down.
http://www.zdnet.com/article/
pwn2own-2015-the-year-every-browser-went-down/.

[6] Pwn2Own 2016: Hackers Earn $460,000 for 21 New Flaws.
http://www.securityweek.com/
pwn2own-2016-hackers-earn-460000-21-new-flaws.

[7] (Pwn2Own) Adobe Flash Player AS3 ConvolutionFilter
Use-After-Free Remote Code Execution Vulnerability.
http://www.zerodayinitiative.com/advisories/ZDI-15-134/.

[8] (Pwn2Own) Google Chrome Blink Use-After-Free Remote
Code Execution Vulnerability.
http://www.zerodayinitiative.com/advisories/ZDI-14-086/.

[9] realloc() – GNU C Library.
http://bazaar.launchpad.net/~vcs-imports/glibc/master/view/
head:/malloc/malloc.c#L4235.

[10] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-Flow Integrity. In Proc. of ACM CCS, pages
340–353, 2005.

[11] P. Akritidis. Cling: A Memory Allocator to Mitigate
Dangling Pointers. In Proc. of USENIX SEC, pages 177–192,
2010.

[12] S. Andersen and V. Abella. Changes to Functionality in
Microsoft Windows XP Service Pack 2, Part 3: Memory
Protection Technologies, Data Execution Prevention.
Microsoft TechNet Library, September 2004.
http://technet.microsoft.com/en-us/library/bb457155.aspx.

[13] E. D. Berger and B. G. Zorn. DieHard: Probabilistic
Memory Safety for Unsafe Languages. In Proc. of ACM
PLDI, pages 158–168, 2006.

[14] H.-J. Boehm, A. J. Demers, and S. Shenker. Mostly Parallel
Garbage Collection. In Proc. of ACM PLDI, pages 157–164,
1991.

[15] J. Caballero, G. Grieco, M. Marron, and A. Nappa.
Undangle: Early Detection of Dangling Pointers in
Use-after-free and Double-free Vulnerabilities. In Proc. of
ISSTA, pages 133–143, 2012.

[16] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross.
Control-Flow Bending: On the Effectiveness of
Control-Flow Integrity. In Proc. of USENIX SEC, pages
161–176, 2015.

[17] N. Carlini and D. Wagner. ROP is Still Dangerous: Breaking
Modern Defenses. In Proc. of USENIX SEC, pages 385–399,
2014.

[18] Chromium OS. Sandbox. https://www.chromium.org/
developers/design-documents/sandbox.

[19] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose.
Stitching the Gadgets: On the Ineffectiveness of
Coarse-Grained Control-Flow Integrity Protection. In Proc.
of USENIX SEC, pages 401–416, 2014.

[20] D. Dhurjati and V. Adve. Backwards-Compatible Array
Bounds Checking for C with Very Low Overhead. In Proc. of
ICSE, pages 162–171, 2006.

[21] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard,
H. Okhravi, and S. Sidiroglou-Douskos. Control Jujutsu: On
the Weaknesses of Fine-Grained Control Flow Integrity. In
Proc. of ACM CCS, pages 901–913, 2015.

[22] J. Evans. A Scalable Concurrent malloc(3) Implementation
for FreeBSD. In Proc. of BSDCan, 2006.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[24] R. Gawlik and T. Holz. Towards Automated Integrity

Protection of C++ Virtual Function Tables in Binary
Programs. In Proc. of ACSAC, pages 396–405, 2014.

[25] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced
Operating System Security Through Efficient and
Fine-grained Address Space Randomization. In Proc. of
USENIX SEC, pages 475–490, 2012.

[26] E. Göktaş, E. Athanasopoulos, H. Bos, and G. Portokalidis.
Out Of Control: Overcoming Control-Flow Integrity. In
Proc. of IEEE S&P, pages 575–589, 2014.

[27] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos,
and G. Portokalidis. Size Does Matter: Why Using
Gadget-Chain Length to Prevent Code-Reuse Attacks is
Hard. In Proc. of USENIX SEC, pages 417–432, 2014.

[28] R. Hastings and B. Joyce. Purify: Fast Detection of Memory
Leaks and Access Errors. In Proc. of USENIX ATC, pages
125–136, 1992.

[29] M. Hirzel and A. Diwan. On the Type Accuracy of Garbage
Collection. In Proc. of ISMM, pages 1–11, 2000.

[30] M. Hirzel, A. Diwan, and J. Henkel. On the Usefulness of
Type and Liveness Accuracy for Garbage Collection and
Leak Detection. ACM Trans. Program. Lang. Syst.,
24(6):593–624, Nov. 2002.

[31] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W.
Davidson. ILR: Where’d My Gadgets Go? In Proc. of IEEE
S&P, pages 571–585, 2012.

[32] D. Jang, Z. Tatlock, and S. Lerner. SAFEDISPATCH:
Securing C++ Virtual Calls from Memory Corruption
Attacks. In Proc. of NDSS, 2014.

[33] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and
W. Lee. Preventing Use-after-free with Dangling Pointers
Nullification. In Proc. of NDSS, 2015.

[34] S. Lee, T. Johnson, and E. Raman. Feedback directed
optimization of TCMalloc. In Proc. of MSPC, 2014.

[35] J. Lettner, B. Kollenda, A. Homescu, P. Larsen, F. Schuster,
L. Davi, A.-R. Sadeghi, T. Holz, and M. Franz.
Subversive-C: Abusing and Protecting Dynamic Message
Dispatch. In Proc. of USENIX ATC, pages 209–221, 2016.

[36] Matt Pietrek. A Crash Course on the Depths of Win32
Structured Exception Handling. January 1997. https:
//www.microsoft.com/msj/0197/exception/exception.aspx.

[37] Microsoft. Enhanced Mitigation Experience Toolkit, 2016.
http://www.microsoft.com/emet.

[38] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic.
CETS: Compiler-Enforced Temporal Safety for C. In Proc.
of ISMM, pages 31–40, 2010.

[39] N. Nethercote and J. Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In Proc. of
ACM PLDI, pages 89–100, 2007.

[40] G. Novark and E. D. Berger. DieHarder: Securing the Heap.
In Proc. of ACM CCS, pages 573–584, 2010.

[41] V. Pappas, M. Polychronakis, and A. D. Keromytis.
Smashing the Gadgets: Hindering Return-Oriented
Programming Using In-place Code Randomization. In Proc.
of IEEE S&P, pages 601–615, 2012.

[42] PaX Team. Address Space Layout Randomization (ASLR),
2003. http://pax.grsecurity.net/docs/aslr.txt.

[43] A. Prakash, X. Hu, and H. Yin. vfGuard: Strict Protection for
Virtual Function Calls in COTS C++ Binaries. In Proc. of
NDSS, 2015.

[44] Rafal Wojtczuk. TSX improves timing attacks against
KASLR. https://labs.bromium.com/2014/10/27/

http://www.zdnet.com/article/pwn2own-2015-the-year-every-browser-went-down/
http://www.zdnet.com/article/pwn2own-2015-the-year-every-browser-went-down/
http://www.securityweek.com/pwn2own-2016-hackers-earn-460000-21-new-flaws
http://www.securityweek.com/pwn2own-2016-hackers-earn-460000-21-new-flaws
http://www.zerodayinitiative.com/advisories/ZDI-15-134/
http://www.zerodayinitiative.com/advisories/ZDI-14-086/
http://bazaar.launchpad.net/~vcs-imports/glibc/master/view/head:/malloc/malloc.c#L4235
http://bazaar.launchpad.net/~vcs-imports/glibc/master/view/head:/malloc/malloc.c#L4235
http://technet.microsoft.com/en-us/library/bb457155.aspx
https://www.chromium.org/developers/design-documents/sandbox
https://www.chromium.org/developers/design-documents/sandbox
https://www.microsoft.com/msj/0197/exception/exception.aspx
https://www.microsoft.com/msj/0197/exception/exception.aspx
http://www.microsoft.com/emet
http://pax.grsecurity.net/docs/aslr.txt
https://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/

tsx-improves-timing-attacks-against-kaslr/.
[45] T. Rains, M. Miller, and D. Weston. Exploitation Trends:

From Potential Risk to Actual Risk. In RSA Conference,
2015.

[46] P. V. Sabanal and M. V. Yason. Reversing C++. In BlackHat,
2007.

[47] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R.
Sadeghi, and T. Holz. Counterfeit Object-oriented
Programming: On the Difficulty of Preventing Code Reuse
Attacks in C++ Applications. In Proc. of IEEE S&P, 2015.

[48] F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns,
M. Contag, and T. Holz. Evaluating the Effectiveness of
Current Anti-ROP Defenses. In Proc. of RAID, pages
88–108, 2014.

[49] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov.
AddressSanitizer: A Fast Address Sanity Checker. In Proc.
of USENIX ATC, pages 309–318, 2012.

[50] A. Sotirov. Heap Feng Shui in JavaScript. In Blackhat 2007,
2007.

[51] A. Tang, S. Sethumadhavan, and S. Stolfo. Heisenbyte:
Thwarting memory disclosure attacks using destructive code
reads. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, CCS ’15, pages
256–267, New York, NY, USA, 2015. ACM.

[52] shifan@freecity.cn. C++ Object Model.
http://lifegoo.pluskid.org/upload/doc/object_models/C++%
20Object%20Model.pdf.

[53] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,
U. Erlingsson, L. Lozano, and G. Pike. Enforcing
Forward-Edge Control-Flow Integrity in GCC & LLVM. In

Proc. of USENIX SEC, pages 941–955, 2014.
[54] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras,

L. Sambuc, A. Slowinska, H. Bos, and C. Giuffrida. Practical
Context-Sensitive CFI. In Proc. of ACM CCS, pages
927–940, 2015.

[55] V. van der Veen, E. Göktaş, M. Contag, A. Pawloski,
X. Chen, S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and
C. Giuffrida. A Tough call: Mitigating Advanced
Code-Reuse Attacks At The Binary Level. In Proc. of IEEE
S&P, pages 934–953, May 2016.

[56] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary
Stirring: Self-randomizing Instruction Addresses of Legacy
x86 Binary Code. In Proc. of ACM CCS, pages 157–168,
2012.

[57] Y. Younan. FreeSentry: Protecting Against Use-After-Free
Vulnerabilities Due to Dangling Pointers. In Proc. of NDSS,
2015.

[58] C. Zhang, S. A. Carr, T. Li, Y. Ding, C. Song, M. Payer, and
D. Song. VTrust: Regaining Trust on Virtual Calls. In Proc.
of NDSS, 2016.

[59] C. Zhang, C. Songz, K. Z. Chen, Z. Cheny, and D. Song.
VTint: Protecting Virtual Function Tables’ Integrity. In Proc.
of NDSS, 2015.

[60] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres,
S. McCamant, D. Song, and W. Zou. Practical Control Flow
Integrity & Randomization for Binary Executables. In Proc.
of IEEE S&P, pages 559–573, 2013.

[61] M. Zhang and R. Sekar. Control Flow Integrity for COTS
Binaries. In Proc. of USENIX SEC, pages 337–352, 2013.

https://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/
http://lifegoo.pluskid.org/upload/doc/object_models/C++%20Object%20Model.pdf
http://lifegoo.pluskid.org/upload/doc/object_models/C++%20Object%20Model.pdf

	Introduction
	Background
	VTable Hijacking
	Existing Mitigations

	System Overview
	Virtual Objects
	Multiple Inheritance

	Implementation
	Portability Requirements
	Basic Components
	Memory Map
	Safe VTable
	Garbage collection

	Virtual Object Resolution
	VTable Pinning
	Handling Multiple Inheritance

	Evaluation
	Effectiveness
	Deallocation Calls
	Memory Overhead
	Performance Overhead
	Collecting Pinned VTables

	Related Work
	Conclusion
	References

