Adaptive Defenses for Commodity Software through
Virtual Application Partitioning

Dimitris Geneiatakis Georgios Portokalidis Vasileios P. Kemerlis Angelos D. Keromytis

Columbia University
Department of Computer Science
New York, NY, USA

{dgen, porto, vpk, angelos}@cs.columbia.edu

ABSTRACT

Applications can be logically separated to parts that face different
types of threats, or suffer dissimilar exposure to a particular threat
because of external events or innate properties of the software.
Based on this observation, we propose the virtual partitioning of
applications that will allow the selective and targeted application
of those protection mechanisms that are most needed on each par-
tition, or manage an application’s attack surface by protecting the
most exposed partition. We demonstrate the value of our scheme
by introducing a methodology to automatically partition software,
based on the intrinsic property of user authentication. Our approach
is able to automatically determine the point where users authen-
ticate, without access to source code. At runtime, we employ a
monitor that utilizes the identified authentication points, as well as
events like accessing specific files, to partition execution and adapt
defenses by switching between protection mechanisms of varied in-
tensity, such as dynamic taint analysis and instruction-set random-
ization. We evaluate our approach using seven well-known network
applications, including the MySQL database server. Our results
indicate that our methodology can accurately discover authentica-
tion points. Furthermore, we show that using virtual partitioning to
apply costly protection mechanisms can reduce performance over-
head by up to 5x, depending on the nature of the application.

Categories and Subject Descriptors

D.2.5 [Testing and Debugging]: Monitors; D.4.6 [Security and
Protection]: Information flow controls

General Terms

Performance, Reliability, Security

Keywords

Application partitioning, adaptive defenses, risk management, au-
thentication, dynamic taint analysis, instruction-set randomization,
information flow tracking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CCS’12, October 16-18, 2012, Raleigh, North Carolina, USA.

Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$15.00.

1. INTRODUCTION

Software faces a multitude of threats that enable attackers to
execute arbitrary code through code-injection and code-reuse at-
tacks [15, 35, 42, 49], bypass security mechanisms like user au-
thentication [7, 9], and exfiltrate sensitive data [12, 19]. Often-
times, attacks are enabled by bad system design and configura-
tion errors [8,45,48], or even originate from otherwise “trusted”
users [18,47]. A plethora of defensive mechanisms that mitigate
such threats have been proposed in the past [1,2, 6,28, 32, 54, 55],
but very few of them have seen broad adoption [34].

Two of the largest obstacles in the adoption of these security
defenses are the requirement for source code by approaches that
are applied at compile time [2,32] and the significant performance
overhead imposed by solutions operating solely on binaries [28,
55]. Techniques that are both lightweight and require no software
recompilation have been also proposed [1,31], but they often ad-
dress a narrower set of threats. Furthermore, many of these tech-
niques are not orthogonal to each other and cannot be easily inte-
grated. That is, even when they can be combined, their cumulative
overhead becomes prohibitive.

This paper builds on the observation that software does not have
uniform security requirements throughout its execution. In particu-
lar, different parts or components of an application are usually tar-
geted by different types of attacks, or suffer dissimilar exposure to a
specific threat, because of external events or innate properties of the
software. For instance, protecting a service against sensitive data
leaks is only relevant after first reading the data. Similarly, con-
sider an FTP server that serves both authorized and public users. In
the latter case, the server is intrinsically more exposed to exploits
because more of its functionality is accessible by everyone. In both
examples, execution is partitioned to segments with different secu-
rity requirements. If we can identify these partitions, we can apply
diverse protection mechanisms as and when needed to control their
exposure to different types of threats, while avoiding cumulative
overheads.

We propose virtually partitioning the execution of applications,
and adapting the defenses being deployed based on the executing
partition. The benefits of using adaptive defenses are twofold. First,
it enables us to apply multiple protection mechanisms selectively,
disabling mechanisms that are not relevant, or of a high priority,
in favor of deploying more appropriate ones. Second, it provides
a risk management mechanism that is orthogonal to existing pro-
tection schemes. In essence, virtual partitioning provides a tunable
knob that controls the intensity of the defenses being applied in
exchange for more resources (e.g., CPU cycles or memory).

Our work focuses on automatically identifying how intrinsic prop-
erties of the software partition it to segments with disparate secu-
rity requirements. We postulate that using events, such as reading
sensitive data from a database (DB), for separating an application
into different partitions is straightforward and can in fact be imple-
mented by intercepting process-operating system (OS) interactions.
We support our claim by implementing a runtime environment that
can partition applications based on such events, and apply informa-
tion flow tracking to monitor sensitive information.

However, our main goal is to describe a more generic and flex-
ible framework for virtually partitioning applications. We present
a methodology for automatically determining how and where user
authentication splits application execution to partitions with asym-
metric exposure to attacks, by dynamically profiling binaries at run-
time and without the need for source code, debugging symbols, or
any other information about the application at hand. We have de-
veloped a runtime environment that uses the virtual partitions to
dynamically adapt the defensive mechanisms applied on binaries at
runtime. We reuse existing schemes, such as dynamic taint anal-
ysis (DTA) [20] and instruction-set randomization (ISR) [36], and
apply them selectively on the pre- and post-authentication parts of
the application.

Others works [4, 37,40, 51] have also focused on shrinking the
attack surface of applications by reducing the parts that are exposed
to attack, and isolating the most vulnerable parts, using techniques
like sandboxing and privilege separation. However, most of these
schemes are bound to specific applications that need to be a priori
designed to work that way, or require access to source code.

To the best of our knowledge, this is the first work on virtual
partitioning. We applied our approach on well-known server appli-
cations utilizing their built-in authentication mechanisms, as well
as commonly used frameworks such as Pluggable Authentication
Modules (PAM) [44]. Our findings demonstrate that we can au-
tomatically identify their authentication points with accuracy. We
evaluate our runtime to verify its ability to dynamically switch be-
tween different protection mechanisms, and determine the perfor-
mance benefits that can be gained by reducing the intensity of de-
fenses after user authentication. For this purpose, we utilized DTA
and ISR on the pre- and post-authentication partitions respectively.

Results show that we can greatly reduce the user-observable over-
head of DTA by up to 5x, by replacing DTA with ISR after the
user successfully authenticates. Although other configurations (i.e.,
combinations of mechanisms) may not enjoy the same improve-
ments in performance, virtual partitioning can still be used to adapt
the applied defenses. The main contributions of this paper can be
summarized in the following:

e We present a methodology for automatically detecting the
authentication point of any given program. It operates on
binary-only software and requires little, or no, supervision.

e We enable adaptive software defenses, using multiple protec-
tion mechanisms applicable at commodity software, offering
a diverse and affordable “risk management” scheme, in con-
trast to always-on and attack-specific protection approaches
that are frequently not adopted due to their overhead.

e We implemented a virtual partitioning runtime, which can be
applied on existing well-known applications (e.g., MySQL
and OpenSSH).

e Our software is freely available. We believe this can facilitate
experimentation with virtual partitioning using a variety of
software properties and external events.

Access
common Access

Connect data sensitive bi ¢
User Authenticate data e
actions
Listening
process
Spawn U
process [e

Figure 1: Virtual partitioning example: A user connects to an
FTP server and performs various actions. The execution of
the servicing process can be separated into different segments,
based on the intrinsic properties of the server, like user authen-
tication and accessing sensitive data.

The rest of the paper is structured as follows. In Section 2, we
describe the main concept behind virtual partitioning. Section 3
elaborates on how user authentication can be used to automatically
partition applications, and presents our methodology for determin-
ing the authentication points using binaries alone. In Section 4,
we introduce our runtime environment that dynamically applies the
partitioning and the various security mechanisms. We evaluate and
discuss our approach in Sections 5 and 6 respectively. Section 7
surveys related work. Finally, we conclude this paper in Section 8.

2. VIRTUAL PARTITIONING

Virtual partitioning is based on the observation that applications,
throughout their execution, face different types of threats or suffer
dissimilar exposure to a particular threat, because of external events
or innate properties of the software. This fact implicitly partitions
their execution to segments with divergent security needs, which
we can identify for diversifying the applied protection mechanisms,
deploying what is needed, when it is needed, or use a multitude of
security techniques without inflicting cumulative overheads.

Figure 1 depicts an FTP server, like Pure-FTPd, as it executes
to handle a new user connection. When a user connects, the lis-
tening process spawns a new process to service the connection,
and the user is called to authenticate. Authentication is an intrin-
sic characteristic of the FTP server as it partitions the execution
of the user process to pre- and post-authentication parts. The pre-
authentication part can be exercised by anyone who connects to
the server. Exploiting a vulnerability in this part can enable a re-
mote user to access the files of all FTP users and possibly gain
administrator privileges [10, 14]. Even if the server drops admin-
istrator privileges and runs as the authenticated user immediately
after authentication (i.e., it is designed and implemented following
the least privilege principle and privilege separation), protecting the
pre-authentication part is crucial because it runs with elevated priv-
ileges. In fact, even if anyone could obtain a valid account on the
FTP server (e.g., as in the case of an FTP-based Dropbox [16] ser-
vice), protecting the pre-authentication part protects the privileged
part of the server that can access the data of all users.

Additionally, other external events can be also used to further
partition the execution of an application to segments with varying
security needs. As an example consider a scenario of accessing data
of some importance on the server, which is also shown in Figure 1.
In certain cases, it may be desirable to employ information flow
tracking as soon as “sensitive” data has been accessed, to prevent
their transmission over the network or monitor their use for future
auditing [12, 19].

2.1 Benefits of Virtual Partitioning

The previous example aimed at demonstrating that even appli-
cations that have carefully implemented privilege separation can
be partitioned to smaller segments with different security require-
ments. By identifying these partitions and virtually segmenting
software execution, we can improve its security and provide a way
to manage risks by applying diverse protection mechanisms on its
partitions. We discuss the core benefits of virtual application parti-
tioning below:

(a) Manage the Attack Surface of Applications to Balance Risk
and Performance. We already discussed that services often
suffer from vulnerabilities [9, 35, 49] that allow attackers to
take control, by executing arbitrary code and/or bypassing au-
thentication. At the same time, powerful protection mecha-
nisms [28, 36, 55] that can be applied on any program, includ-
ing commodity software, incur prohibitively high overheads,
oftentimes exceeding 100%. For example, we can regard the
unauthenticated partition of Pure-FTPd in Figure 1 as being
more exposed to such attacks, since it usually runs with ele-
vated privileges, and because users with valid credentials are
considered “trusted”. Note that this stands for services that
authentication carries such a significance. Nevertheless, open
systems where anybody can easily create an account (e.g., Web
services like Facebook and GMail), also suffer from similar
threats.

In such systems, bypassing authentication could allow mali-
cious users to subsume the identity of other users. Thus, in
cases where software partitions face asymmetric exposure to an
attack, partitioning enables us to apply a heavyweight protec-
tion mechanism on the most exposed part of a program, while
we can use a more lightweight mechanism, or none at all, for
the authenticated partition. In this fashion, we control how
much to harden the security of different parts of a program, po-
tentially incurring significantly less overhead when compared
to securing it uniformly (see Section 5).

(b) Apply Multiple Protection Mechanisms without Incurring
Cumulative Overheads. The two partitions of a service can
have different primary security concerns. For example, after a
user successfully authenticates with the FTP server, the process
servicing him executes with reduced privileges. The primary
concern now is no longer a remote attacker bypassing authenti-
cation or gaining administrator privileges, but threats such as
data leakage and privilege escalation. In such cases, where
the partitions face exposure to different threats, partitioning en-
ables us to use different mechanisms to address them.

Instruction-set randomization (ISR) [36] or dynamic taint anal-
ysis (DTA) [28] could be used on the unauthenticated partition
to protect against arbitrary code execution attacks, while in-
formation flow tracking (IFT) [57] could be used to protect
from sensitive data leakage after a particular file is accessed
by the user. This way, we can enable different security mech-
anisms based on what is needed the most by each partition,
while not incurring cumulative overheads. Moreover, it en-
ables us to apply mechanisms that could otherwise conflict with
each other. For instance, both DTA and IFT require a data flow
tracking framework. Utilizing such a framework to implement
the mechanisms concurrently can be challenging and can also
magnify their respective overheads.

Threads servicing users

Threads servicing users

Process
Process

Listening thread
One-thread-per-user model

Worker-thread model

Figure 2: One-thread-per-user and worker-thread models for
multi-threaded/-process servers. In the former, a different
thread is assigned to service each user, while in the latter each
user message can be processed by a different thread.

2.2 Applicability to Different Software
Architectures

According to Welsh et al. [52], most Internet services are built by
following the multi-threaded or multi-process server model, where
multiple clients connect to a server for requesting a service. How-
ever, due to the increased hardware parallelism available today, be-
cause of the advent of multi-core CPUs, multi-threaded architec-
tures are nowadays favored. This is predominantly done in the two
ways shown in Figure 2.

One-thread-per-user model. Concurrent users are handled by
spawning a new process or thread for servicing each user request.
Many popular servers, such as Pure-FTPd, OpenSSH, Exim, SN-
MPd, MySQL, PostgreSQL, and x11vnc are build using this model.
In such cases, the execution of every thread can be considered lin-
ear, and we can partition execution into an almost arbitrary num-
ber of segments based on a variety of conditions that occur over
time. For example, most of these servers support user authentica-
tion to prevent or restrict unauthenticated users. If we can identify
the part of the code that handles user authentication, we can use
its outcome to split execution to unauthenticated and authenticated
partitions. Similarly, we can monitor the files being opened and
read by a thread to further partition, when a particular set of data
is accessed. In this manner, we can virtually partition all software
that follows the one-thread-per-user model based on events occur-
ring at various points during execution, but not by the part of the
code being executed. That is, virtual partitioning is not spatial.

Worker-thread model. Multiple threads are still allocated, but
there is no strict association between an execution thread and a
user. For instance, consider the Apache web server. Requests are
received by a thread in the server, and distributed to the various
worker threads for processing. Even though at any point in time,
a user’s connection is processed by a single thread, all the user’s
requests are not processed by the same thread. In this mode, we
can still identify events like user authentication to partition execu-
tion, but as every thread continuously switches between serving dif-
ferent users (possibly a mix of authenticated and newly connected
users), switching between partitions becomes more complex. Es-
sentially, we need to be able to build an association between clients
and worker threads to determine the partition of each thread dynam-
ically (i.e., each time work is assigned to it). Tackling such appli-
cations is beyond the scope of this paper, but it remains a problem
that we plan to investigate in the future.

Alternatively, developers can also adopt a single-process event-
driven model, where execution is completely driven by I/O events
(e.g., think of the lighttpd web server). Since reasoning about con-
trol flow in this type of systems is extremely difficult [50], we con-
sider virtual partitioning to be a bad fit for such applications.

3. PARTITIONING BASED ON USER
AUTHENTICATION

We propose a methodology for automatically partitioning an ap-
plication based on user authentication. Our approach aims at au-
tomatically determining the exact point where users are authenti-
cated, or alternatively identifying a small set of potential authen-
tication points from which the most appropriate can be manually
selected, without access to application source code. The very na-
ture of the authentication process assists us in this case because its
outcome is binary. It either succeeds or fails, causing the execution
flow of the application to follow a different path in each case. This
means that it exists at least one point (i.e., a function or branch)
in the program, where execution flow changes based on whether
authentication was successful or not. We call such locations au-
thentication points.

We determine an application’s authentication points by monitor-
ing its execution flow when a user successfully authenticates, and
comparing it with another flow produced from a failed authentica-
tion attempt. This process is based on the following observations.
First, the application contains a function that performs the user au-
thentication. This is also the case for functions that only perform
requests to remote authentication services, such as Kerberos [27].
This function needs to signal the application of its outcome, fre-
quently by returning a value. In other cases, it may only update a
global variable or an argument, but the control flow will still deviate
either within this function, or in one of its calling functions. Rely-
ing on these observations, we record three types of execution flow
information in order to identify a branch or/and a function, where
execution flow changes as a result of the authentication process:

1. Function return value, expressed as an unsigned integer.

2. The outcome of conditional branch instructions, which can
be either taken or fall-through. For instance, in the x86 ar-
chitectures, instructions like JL, JNL, and so on, may jump
to the address hardcoded in the instruction itself, depending
on the outcome of a previous comparison (indicated by the
respective bit on the EFLAGS register).

3. The runtime function call graph (FCG) of the application.
This is a directed graph that represents the functions being
called, as well as the calling relationships between them (e.g.,

S0 = £20) = f30).

Figure 3 illustrates the methodology used to automatically deter-
mine authentication points. First, we profile the application by per-
forming a series of successful and failed authentication attempts,
while we record the information listed above using a control flow
monitor (CFM). The collected information is stored in a DB and
processed by our flow trace analyzer (FTA) to produce a list of
possible authentication points. In the remainder of this section, we
elaborate on the operation of these two components.

3.1 Control Flow Monitor

We built the CFM using Intel’s Pin [25] dynamic binary instru-
mentation framework (DBI). Pin enables developers to instrument
any binary application, and create tools that can monitor, or aug-
ment, various aspects of its execution. In our case, we created
a Pintool that injects small pieces of monitoring code before ev-
ery branch instruction, as well as at the entry and exit points of
functions. For branches, our code records the relative address of
each branch, and whether it was taken or not. The relative ad-
dress of a branch is expressed using the name of the executable
image containing it (e.g., the name of the binary or a dynamic

shared library) and its offset from the beginning of the image (e.g.,
sshd+101346). Similarly, for the called functions we record
their name (if available), their relative address, and their return
value. Since CFM records relative addresses (instead of absolute
ones) both for branches and functions, it can properly handle stripped
applications (i.e., applications that do not include any symbol in-
formation), and operates in systems where address space layout
randomization (ASLR) [34] is in effect. This is because ASLR
randomizes only the base address of certain system components
(e.g., stack, heap, and text image) when the process/program is cre-
ated, without affecting the relative distance between intra-module
objects.

The output of CFM is tightly bound to the specific binary being
profiled. That is, compiling and running the same application on
different systems can produce different traces. However, we can
“move” the authentication point between different systems, if the
binary was build using the same parameters. The recorded informa-
tion is stored into a MySQL DB as name-value pairs, along with the
information of whether the trace belongs to a successful or failed
authentication run (this is supplied to the CFM by the user driving
the profiling). Particularly for branches, we store their relative ad-
dress and a boolean value indicating whether it was taken, while for
functions we store their relative address and their return value as an
unsigned integer. Note that the CFM extends the capabilities of ex-
isting tracing tools, like /trace, as it records all function calls made
(instead of only shared library functions), as well as fine-grained
control flow information, such as the outcomes of branches.

3.2 Flow Trace Analyzer

The FTA analyzes the information stored in the DB to identify
potential authentication points. An initial classification is made by
looking for differences in the branches taken, and the values re-
turned between successful and failed authentication attempts. In
every case, there should be at least one branch different, and possi-
bly functions that return different values, representing the deviation
in execution flow due to the distinct authentication outcomes.

We examine whether a particular branch or function name (i.e., a
relative address) has a distinct value (i.e., whether it was taken for
branches, and the return value for functions) depending on the trace
it belongs into. For instance, in the flow traces shown in Figure 3,
the function check_scramble always returns O when authenti-
cation is successful and 1 when it fails. This is implemented by
a MySQL stored procedure that exports the unique function-return
value and branch-boolean pairs, effectively producing a list of dis-
tinct branch-outcome and function-return value pairs. For brevity,
we will refer to the branches and functions of such pairs as dbranch
and dfunc respectively. We use the differing branches and functions
to identify potential authentication points. In particular, we define a
dbranch as an authentication point when one of the following rules,
in order of appearance, is satisfied.

Rule 1: a dbranch is located within a dfunc. For example, fun-
ction f2() in Figure 4 returns different values depending on the suc-
cess of the authentication, and contains a branch with a different
outcome. This corresponds to the optimal case, where the respec-
tive dbranch is identified as being an authentication point.

Rule 2: a dbranch is located in one of the parent functions of
a dfunc. This condition attempts to capture functions that do not
actually perform the authentication themselves, but simply convey
its outcome through their return value. For instance, consider a
function querying a remote authentication service. If function f2(),
shown in Figure 4, did not return any value, but still contained a
dbranch, it would be identified as an authentication point by this
rule.

CFM

Authentication attempts
Successful Failed

Authenticated user

Unauthenticated user FTA

traces traces

Brgqch 3
decisions

0 = mysql_shal_input
0 = mysql shal result
0 = check scramble

mysql_shal_input

mysqgl shal result
check _scramble

(2] (==

Application

0 = my_net_write
0 = vio_is_blocking

strnlen
my_well_formed_len_mb

o o

Control flow monitor

Flow traces

Figure 3: We use application profiling to automatically determine the authentication point of an application. The control flow monitor
(CFM) logs the function calls and branch decisions performed by the application, while performing a series of successful and failed
authentication attempts. We later analyze the collected traces with the flow trace analyzer (FTA) to determine the locations where
execution flow changes. These locations constitute potential authentication points.

f1()

(b) Failed authentication.

(a) Successful authentica-
tion.

Figure 4: Example with the type of information collected by
the profiler. The larger circles represent functions, and the
numbers their return values. The smaller inner circles denote
branches within the functions. This example contains all the in-
dicators used by the FTA to determine possible authentication
points: different return values, branch outcomes, and func-
tions. The highlighted circles indicate differences between the
flows of successful and failed authentication runs.

Rule 3: the FCG differs after a dbranch. This rule is useful
for applications where the result of the authentication process is
returned through a function argument or global variable, instead of
the return value. For instance, consider that both functions f2() and
/3() in Figure 4 do not return a value. However, f2() and its parent
function fI() contain a dbranch, and the FCG deviates based on
the outcome of the authentication (function f4() in Figure 4(a) is
replaced by f5() in Figure 4(b)). In this case, f1() is identified as a
possible authentication point.

If multiple authentication points are identified, we select the one
that has been picked out by the most rules. We prioritize the rules,
so for example, between authentication points picked by Rule 1 and
Rule 2, we prefer the first. However, if two authentication points are
found equally fit, we rely on the FCG and pick the dbranch or dfunc
evaluated first. Finally, it is possible that no dfunc is found and the
FCG does not deviate, but at least one dbranch exists. This consists
a worst case scenario that we believe is only viable in artificial or
very small programs (e.g., a program contained in a single, or only
a couple, of functions). In this case, we consider the last evaluated
dbranch as a possible authentication point.

The above rules formulate the conditions that occur when the ex-
ecution path of an application changes depending on the result of
the authentication process. Using them, we can identify any ap-
plication’s authentication point, as we experimentally demonstrate
in Section 5. Note that in our approach we monitor the execution
path followed by an application taking into account only the user’s
authentication input.

4. VIRTUAL PARTITIONING RUNTIME

4.1 The Pin DBI Framework

To partition binaries at runtime, we developed an environment
based on the Pin [25] DBI framework. It enables developers to
augment, modify, or simply monitor the execution of a binary at
the instruction level. This is achieved through an extensive API that
allows Pintools to instrument an application by installing callbacks
to inspect instructions, routines, and so forth, or to modify the ap-
plication by removing or adding instructions. The added code, re-
ferred to as analysis code, is combined with the original code using
just-in-time (JIT) compilation and stored in a code cache where it
is executed from. Hence, each code block is translated only once.

We chose Pin because it can run unmodified binaries and it al-
lows us to intercept all the events that we could use for virtually par-
titioning an application. Furthermore, in the past it has been used
to implement various security mechanisms [20,29,36,39,57]. Note
that although Pin can run on multiple architectures (e.g., x86/x86-
64/IA64/ARM Linux, x86/x86-64 Windows, x86 MacOS X), we
developed and tested our prototype on x86 Linux.

4.2 Supporting Multiple Partitions

To accommodate multiple partitions, we utilize Pin’s versioning
capabilities. Pin (v2.9 and later) has added inherent support for
multiple code caches, or multiple instrumentation versions, which
allow Pintools to instrument the same piece of code in different
ways. Initially, an application runs in version zero that corresponds
to the default code cache. Pintools can alter the code cache version
that a certain thread is executing from, either statically when spe-
cific code blocks are encountered, or dynamically from the analysis
code (e.g., based on some condition). When a thread switches to a
new version, execution continues from a new code cache allocated
for that version.

In case a block of code has not been instrumented for a certain
version, the instrumentation routines defined by the Pintool will be
invoked again. Note that newly spawned threads and forked pro-
cesses execute in the same version as their parent (i.e., the thread
that called c1one). We created a Pintool for running an application
in three different modes, or versions, using the versioning capabil-
ities presented above (more versions can be accommodated to host
more protection mechanisms). Version 0 runs the application over
Pin, as is, and without instrumenting it with additional code, while
Versions 1 and 2 can include different types of instrumentation for
transparently applying various security techniques on the binary.

4.3 Switching Between Partitions

Based on authentication. Switching between different parti-
tions based on an authentication point is straightforward. Our tool
receives the authentication point identified in the profiling phase,
and uses it to install analysis code that moves execution among
partitions. For instance, if we determined that taking a particular
branch indicates successful authentication, we use Pin’s API to set
up an analysis routine to execute if the branch is taken, so as to
switch the version of the executing thread.

Based on data access. Accessing data of a particular interest
can be also used as an event to partition application execution. For
example, reading data or even opening a file can be used as a point
where we can dynamically switch between partitions. We monitor
file accessing system calls to switch to a different partition when
user-configured files are opened or when data are read from them.
We accomplish this by intercepting system calls like open, dup,
and close to keep track of the file descriptors that correspond to
the user-configured files. Furthermore, we monitor the read sys-
tem call and switch partitions, when it is called with a file descriptor
in the tracked set.

4.4 Protection Mechanisms

We incorporated two freely available Pintools, namely /ibdft [20]
and ISR using Pin [36] in our tool. The first enables us to ap-
ply dynamic taint analysis (DTA) on applications. DTA can be
used to protect from control-flow diversion attacks, like buffer over-
flows [28], by tracking network data and enforcing how they are
used (e.g., disallowing their use as control data). DTA can also
prevent information leaks [57], by tracking selected data and dis-
allowing certain operations, like transmitting tagged data over the
network. ISR provides protection against code-injection through
instruction-set randomization. DTA is a powerful protection tech-
nique, but incurs high overheads, while on the other hand, ISR pro-
tects against a smaller group of attacks, but it is faster.

These mechanisms can be applied in different ways based on the
desired use of partitioning, as discussed in Section 2.1. If we desire
to harden the pre-authentication partition of an application against
memory corruption attacks and use a more lightweight mechanism
after that, we can employ DTA before authentication and ISR after.
To address different types of threats, like memory corruptions at-
tacks before authentication and sensitive information leaks, we can
use ISR before authentication and DTA after. We could even utilize
DTA on both partitions, but to different ends (i.e., memory exploits
prevention vs. information leaks detection).

We can also disable all protection mechanisms, and run a parti-
tion simply over Pin with no additional instrumentation. Currently,
we are not able to detach and reattach Pin to a single thread of an
application, so threads need to keep running over Pin. However,
if an application utilizes one process per user and if henceforth we
do not desire to switch to another partition, we could detach Pin
entirely, running the process natively with no additional overhead.

S. EVALUATION

In this section, we evaluate the performance implications of us-
ing virtual partitioning to apply different security techniques on the
identified partitions, as well as the accuracy of our methodology
in automatically determining authentication points. We employ
seven Linux server applications, namely MySQL, Samba, x11vnc,
SVNserve, PostgreSQL, OpenSSH, and Pure-FTPd. Our evalua-
tion testbed consisted of a single host featuring two 2.66GHz quad-
core Intel Xeon X5500 CPUs and 24GB of RAM, running Debian
Linux v6 (“squeeze” with kernel v2.6.32).

5.1 Identifying Authentication Points

We profiled and analyzed the applications using the methodology
described in Section 3. For those applications supporting more than
one authentication mechanism, like OpenSSH and Pure-FTPd, we
tested each of them individually. Note that in order to discover the
authentication points, we did not use any kind of input fuzzing [43].
The only input modified was the credentials. Table 1 summarizes
the results of our analysis. The FTA successfully discovered the
correct authentication point in all cases. For the applications in Ta-
ble 1, we only had to perform a single successful and a single failed
authentication attempt, while collecting traces with the CFM. Other
applications may require more traces to be collected before the FTA
can identify an authentication point. However, these results indi-
cate that our methodology works well with commodity software.

The authentication points for MySQL, Samba, and OpenSSH
(configured with public key authentication), were determined by
a single rule (Rule 2). In contrast, multiple rules (Rule I and 2) se-
lected an authentication point in the case of PostgreSQL, OpenSSH,
and Pure-FTPd, when authenticating through the PAM [44] mech-
anism. This is because the result of the authentication process is
used in more than one locations in the application. We followed
the strongest indicator (Rule 1), as described in Section 3. Last,
Rule 3 determined the authentication points for OpenSSH, Pure-
FTPd, SVNserve, and x11vnc, when password authentication was
employed, since a function-return value pair (i.e., a dfunc) was not
found.

Note that when OpenSSH and Pure-FTPd authenticate through
PAM, we identified the same authentication point. In particular,
the FTA initially detected two functions that both matched Rule 1
and 2, namely verify_pwd_hashand _unix_verify_ pwd.
We can infer, by simply examining the function names, that both
are part of the authentication process. The FTA utilized the FCG
to select the first authentication point, even though selecting either
one would still be correct. Our FCG defined the relationship be-
tween these functions as follows: pam_sm_authenticate —
_unix_verify_pwd— verify_pwd_hash, which indicates
that the caller function only uses the value returned by the callee,
and hence, results in the selection of verify_pwd_hash.

One might argue that the authentication points, and particularly
the functions, can be identified by manually inspecting the source
code. However, this is far from being practical, as source code or
debugging symbols are not always available (i.e., not applicable
to commodity software), and even when they are, most applica-
tions consist of hundreds of thousands lines of code (LOC) and
numerous symbol names. For example, MySQL v5.0.67 has more
than a million LOC and ten thousand symbols, as reported by the
cloc[30] and nm (1) utilities respectively. Additionally, function
names are not always indicative (e.g., consider check_scramble
in MySQL), and as many applications implement their own custom
authentication mechanisms (i.e., the top 5 applications in Table 1),
documentation (when available) does not necessarily provide any
insight on the matter.

. Authentication Function/return value Branch Matched
Service
scheme address rules
MySQL Custom password check_scramble/0 mysqld+2616425 2
verification
Samba Custom password hash_password_check/1l smbd+1598125 2
verification
SVNserve Custom password not applicable svnserve+28684 3
verification
PostgreSQL Custom password md5_crypt_verify/0 postgres+1656160 2
verification
x11vnc Custom password not applicable vncserver+66913 3
verification
OpenSSL public key RSA_public_decrypt/35 | libcrypto+564191 2
OpenSSH signature verification
PAM framework verify_pwd_hash/0 pam_unix+25607 1&2
Unix password not applicable sshd+101346 3
verification
Pure-FTPd PAM framework verify_pwd_hash/0 pam_unix+25607 1&2
Unix password not applicable pure-ftpd+28296 3
verification

Table 1: Authentication points identified by the FTA. The table lists the function-return value pairs and branches that determine
successful authentication, as they were selected by FTA. Note that some applications support multiple authentication schemes. In all
cases, we manually verified that that selected authentication point is correct by inspecting each application’s source code.

For the applications implementing their own custom authentica-
tion mechanisms, we validated the identified authentication points
by manually inspecting the source code for the functions that were
selected by the FTA. In the case of MySQL, we located the function
check_scramble, which according to the developers’ comments
“returns zero in the case of correct password otherwise a non-zero
value”. In Samba, the function hash_password_check was
annotated by developers with “compare password hashes against
those from the SAM”, while the md5_crypt_verify function
in PostgresSQL checks user encrypted or plain-text passwords de-
pending on the configured method used for authentication.

When using PAM, we located the verify_ pwd_hash fun-
ction in the source code, however we did not find any comment
regarding its functionality. On the other hand, the documentation
pointed us to pam_authenticate, which performs authenti-
cation by calling pam_sm_authenticate. After further ex-
amining the source code, we discovered the following relation-
ship: pam_sm_authenticate — _unix_verify_pwd —
verify_pwd_hash, which confirms the correctness of our re-
sult. When using Unix password verification with OpenSSH and
Pure-FTPd, we identified only one particular branch, and not a fun-
ction, as an authentication point, because the result is returned via
an argument (see Rule 3 in Section 3.2). Specifically, Pure-FTPd
uses the pw_unix_check function to check a password’s cor-
rectness, and updates its first argument (AuthResult * const
result) with its outcome. The same is true for x11vnc that uses
its own password verification mechanism.

Finally, when OpenSSH was configured to use public key-based
authentication, we identified RSA_public_decrypt, which is
called by openssh_RSA_verify in OpenSSL’s source code.
According to the documentation, the function returns the size of
the recovered message digest on success and -1 otherwise.

5.2 Partitioned Execution

One of the applications of virtual partitioning is to manage the
attack surface of software that inherently consists of segments with
asymmetric exposure to attacks, as we described in Section 2.1.
The first part of our evaluation showed that we can automatically

detect such partitions based on user authentication. In this section,
our goal is to evaluate the performance benefits that can be reaped,
by utilizing virtual partitioning to apply otherwise expensive pro-
tection mechanisms on the most exposed part of applications. This
allows us to strike a balance between the overhead imposed on the
application and its exposure to attacks.

In particular, we evaluate the configurations described in Sec-
tion 4.2. We employ DTA in the pre-authentication partition of the
application and switch to either ISR, or no protection, in the post-
authentication partition. We compare these two configurations with
running the application natively, under Pin with no instrumentation
(null Pintool), and entirely under ISR or DTA. We should note that
when employing DTA, ISR is also active, since utilizing ISR for
the entire execution was more efficient than activating it after au-
thenticating.

Among the applications listed in Table 1, we used OpenSSH,
Pure-FTPd, Samba, and MySQL for this part of the evaluation.
For the first three, we transferred 1GB of randomly generated data
over a 1Gbps connection, and measured the average throughput and
total execution time needed to complete the transfer. For conve-
nience, we used public key and PAM authentication for OpenSSH
and Pure-FTPd respectively. For the MySQL server, we used its
own test-insert benchmark suite, which reports the time needed to
complete a set of actions, like table creation, data insertion and se-
lection, and so on. All tests were iterated 20 times, and figures draw
the average and standard deviation (std.dev.).

Figure 5 illustrates the time required to complete MySQL’s test-
insert benchmark. Applying DTA and ISR on the server for the
entire duration of the test increases execution time by 4.8x and
2.6x respectively, when compared to native execution. In contrast,
partitioning slows down execution by 1.8x and 2.6x, when using
DTA only for the non-authenticated part of the execution, and then
switching to no instrumentation and ISR respectively. We observe
that the overhead of applying DTA diminishes, as the unauthen-
ticated partition runs only for a short period of time. In general,
partitioned execution performs similarly to the mechanism applied
on the authenticated partition.

Native
Pin

S

DA

D A Pin

DA S

otal ime sec

Figure 5: Time to complete MySQL’s fest-insert benchmark
suite. The test performs a collection of different SQL opera-
tions (table creation, data insertion and selection) and includes
user authentication. The six bars correspond to running the
server natively, under a null Pintool, DTA, and ISR, and with
virtual partitioning (DTA/Pin, DTA/ISR).

Figures 6 and 7 show the results of our experiments when the vir-
tual partitioning is applied on Pure-FTPd, Samba, and OpenSSH.
Particularly, Figure 6 draws the time needed to complete the trans-
fer of 1GB file when the server runs natively, under the different
protection schemes, and using our partitioning solution. Corre-
spondingly, Figure 7 draws the achieved throughput. These experi-
ments corroborate the results of MySQL, as we see a similar pattern
in the performance of these servers. A notable difference is that as
the experiments become more short-lived, the performance of con-
figurations running under virtual partitioning falls somewhere in
between the performance of the individual mechanisms, instead of
being closer to the faster one. For instance, as illustrated in Fig-
ure 6, transferring the data using DTA/Pin partitioning takes 22.64s
on average, which is between the ISR transfer (21.50s) and the DTA
transfer (25.52s). It should be noted that when using such a config-
uration we can achieve significant performance improvements on
CPU-bound applications, such as OpenSSH and MySQL.

In Figure 8, we employ partitioning based on data access and
apply DTA to detect information leaks. We run the MySQL server
natively, under Pin, using DTA to detect information leaks, and
using DTA along with partitioning. We use MySQL’s fest-ATIS
benchmark, which creates 28 tables, inserts data, performs a series
of select operations on them, and then deletes them. When using
DTA, we configured the table airport as being sensitive, so all data
being read from the table were tagged and tracked. With parti-
tioning, DTA is only activated when data are first read from this
table, after the tables are created and a set of selects has already
been performed. We observe that, in this particular setup, employ-
ing partitioning performs approximately 2z faster than having DTA
enabled continuously.

Finally, we calculated how many instructions were encountered
and translated by Pin when running in the different partitions (re-
member Pin only translates each instruction once for every ver-
sion), and compared it with the actual number of instructions exe-
cuted on pre- and post-authentication segments. We illustrate the
results in Figure 9. As expected, we observe that all applications
execute for the most part in the authenticated partition. Interest-
ingly, we see that OpenSSH uses more code to perform user au-
thentication than to later copy the data, even though the majority of
its instructions run in the authenticated partition.

2 Bl Native
[W Pin
& B s

O ba
© B DAPN
£ 0 DAS
©
1]
o«
@ /|
g 1 =
o 1T

T T T T T T T T T T T // T

ecution ime sec

Figure 6: Total execution time for Pure-FTPd, Samba, and
OpenSSH, when operating under different configurations. We
transfer 1GB of data over a 1Gbps link.

hel

o

[

5

o

[}

Qo

€

©

1]

» Bl Native

0

g, B Pin
H s
O bA
Il DAPIn
[0 bAas

T T T T T T T T T T 1

roug put s

Figure 7: Throughput for Pure-FTPd, Samba, and OpenSSH,
when operating under different configurations. We transfer
1GB of data over a 1Gbps link.

MySQL follows a somewhat similar pattern. Such services are
great candidates for virtual partitioning, since the area of code that
is exposed to all network users is relatively large, while their exe-
cution is concentrated in the post-authentication partition.

6. DISCUSSION

Virt