
sysfilter: Automated System Call Filtering for Commodity Software

Nicholas DeMarinis Kent Williams-King Di Jin
Rodrigo Fonseca Vasileios P. Kemerlis

Department of Computer Science
Brown University

Abstract
Modern OSes provide a rich set of services to applications,
primarily accessible via the system call API, to support the
ever growing functionality of contemporary software. How-
ever, despite the fact that applications require access to part of
the system call API (to function properly), OS kernels allow
full and unrestricted use of the entire system call set. This not
only violates the principle of least privilege, but also enables
attackers to utilize extra OS services, after seizing control
of vulnerable applications, or escalate privileges further via
exploiting vulnerabilities in less-stressed kernel interfaces.

To tackle this problem, we present sysfilter: a binary
analysis-based framework that automatically (1) limits what
OS services attackers can (ab)use, by enforcing the principle
of least privilege with respect to the system call API, and
(2) reduces the attack surface of the kernel, by restricting the
system call set available to userland processes. We implement
sysfilter for x86-64 Linux, and present a set of program
analyses for constructing system call sets statically, and in
a scalable, precise, and complete (safe over-approximation)
manner. In addition, we evaluate our prototype in terms of cor-
rectness using 411 binaries (real-world C/C++ applications)
and ≈38.5K tests to assert their functionality. Furthermore,
we measure the impact of our enforcement mechanism(s),
demonstrating minimal, or negligible, run-time slowdown.
Lastly, we conclude with a large scale study of the system
call profile of ≈30K C/C++ applications (from Debian sid),
reporting insights that justify our design and can aid that of
future (system call-based) policing mechanisms.

1 Introduction

Software is continuously growing in complexity and size.
/bin/true, the “tiny” command typically used as aid in
shell scripts, was first introduced in the 7th edition of the
Unix distribution (Bell Labs) and consisted of zero lines of
code (LOC); by 2012, in Ubuntu, true has grown up to 2.3
KLOC [28]. Likewise, the bash binary has gone from 11.3
KB (Unix V5, 1974) up to 2.1 MB (Ubuntu, 2014) [28].

This constant stream of additional functionality integrated
into modern applications, i.e., feature creep, not only has
dire effects in terms of security and protection [1, 71], but
also necessitates a rich set of OS services: applications need
to interact with the OS kernel—and, primarily, they do so
via the system call (syscall) API [52]—in order to perform
useful tasks, such as acquiring or releasing memory, spawning
and terminating additional processes and execution threads,
communicating with other programs on the same or remote
hosts, interacting with the filesystem, and performing I/O and
process introspection.

Indicatively, at the time of writing, the Linux kernel (v5.5)
provides support for 347 syscalls in x86-64. However, not
every application requires access to the complete syscall
set; e.g., ≈45%/65% of all (C/C++) applications in Debian
“sid” (development distribution) [86] do not make use of
execve/listen in x86-64 Linux. In other words, roughly
one-half of these applications do not require the ability (and
should not be permitted) to invoke other programs or accept
network connections. Alas, the OS kernel provides full and
unrestricted access to the entirety set of syscalls. This is not
only a violation of the principle of least privilege [76], but also
allows attackers to: (a) utilize additional OS services after seiz-
ing control of vulnerable applications [69], and (b) escalate
their privileges further via exploiting vulnerabilities in unused,
or less-stressed, OS kernel interfaces [33–35, 43, 65, 66].

To mitigate the effects of (a) and (b) above, we present
sysfilter: a framework to (automatically) limit what OS
services attackers can (ab)use, by enforcing the principle of
least privilege with respect to the syscall API [69], and reduce
the attack surface of the OS kernel, by restricting the syscall
set available to userland processes [43]. sysfilter consists
of two parts: system call set extraction and system call set
enforcement. The former receives as input a target applica-
tion, in binary form, automatically resolves dependencies to
dynamic shared libraries, constructs a safe—but tight—over-
approximation of the program’s function-call graph (FCG),
and performs a set of program analyses atop the FCG, in order
to extract the set of developer-intended syscalls.



The latter enforces the extracted set of syscalls, effectively
sandboxing the input binary. We implemented sysfilter in
x86-64 Linux, atop the Egalito framework [95], while our
program analyses, crafted as “passes” over Egalito’s inter-
mediate representation, are scalable, precise, and complete.
sysfilter can extract a tight over-approximation of the set
of developer-intended syscalls for ≈90% of all C/C++ ap-
plications in Debian sid, in less than 200s (or for ≈50% of
these apps in less than 30s; § 5). Moreover, sysfilter re-
quires no source code (i.e., it operates on stripped binaries,
compiled using modern toolchains [26, 67]), and can sandbox
programs that consist of components written in different lan-
guages (e.g., C, C++) or compiled-by different frameworks
(GCC, LLVM). Importantly, sysfilter does not rely (on any
form of) dynamic testing, as the results of this approach are
usually both unsound and incomplete [62].

Further, we evaluate sysfilter across three dimensions:
(1) correctness, (2) performance overhead, and (3) effective-
ness. As far as (1) is concerned, we used 411 binaries from
various packages/projects, including the GNU Coreutils (100,
672), SPEC CINT2006 (12, 12), SQLite (7, 31190), Redis (6,
81), Vim (3, 255), Nginx (1, 356), GNU M4 (1, 236), GNU
Wget (1, 130). MariaDB (156, 2059), and FFmpeg (124,
3756), to extract and enforce their corresponding syscall sets;
once sandboxed, we stress-tested them with ≈38.5K tests.
In all cases, sysfilter managed to extract a complete and
tight over-approximation of the respective syscall sets, demon-
strating that our prototype can successfully handle complex,
real-world software. (The numbers A,B in parentheses denote
the number of binaries analyzed/enforced and the number of
tests used to stress-test them, respectively.)

Regarding (2), we used SPEC CINT2006, Nginx, and
Redis—i.e., 19 program binaries in total. In all cases, the
sandboxed versions exhibited minimal, or negligible, run-time
slowdown due to syscall filtering; we explored a plethora of
different settings and configurations, including interpreted vs.
JIT-compiled filters, and filter code that implements sandbox-
ing using a linear search (within the respective syscall set) vs.
filter code that utilizes a skip list-based approach. Lastly, with
respect to (3), we investigated how sysfilter can reduce
the attack surface of the OS, by inquiring what percentage
of all C/C++ applications in Debian sid (≈30K binaries in
total) can exploit 23 Linux kernel vulnerabilities after hard-
ened with sysfilter. Although sysfilter does not defend
against control- or data-flow hijacking [87] our results demon-
strate that it can mitigate attacks by means of least privilege
enforcement and (OS) attack surface reduction.

We conclude our work with a large scale study of the syscall
sets of ≈30K C/C++ applications (Debian sid), reporting
insights regarding the syscall set sizes (i.e., the number of
syscalls per binary), most- and least-frequently used syscalls,
syscall site distribution (libraries vs. main binary), and more.
The results of this analysis not only guide our design, but can
also aid that of future syscall policing mechanisms.

2 Background and Threat Model

Adversarial Capabilities In this work, we consider userland
applications that are written in memory-unsafe languages,
such as C/C++ and assembly (ASM). The attacker can trigger
vulnerabilities, either in the main binaries of the applications
or in the various libraries the latter are using, resulting in mem-
ory corruption [87]. Note that we do not restrict ourselves to
specific kinds of vulnerabilities (e.g., stack- or heap-based
memory errors, or, more generally, spatial or temporal mem-
ory safety bugs) [59,60] or exploitation techniques (e.g., code
injection, code reuse) [13, 78, 79, 87, 97].

More specifically, the attacker can: (a) trigger memory
safety-related vulnerabilities in the target application, multiple
times if needed, and construct and utilize exploitation prim-
itives, such as arbitrary memory writes [16] and reads [81];
and (b) use, or combine, such primitives to tamper-with criti-
cal data (e.g., function and vtable pointers, return addresses)
for hijacking the control flow of the target application and
achieve arbitrary code execution [83] via means of code in-
jection [97] or code reuse [10, 13, 24, 29, 32, 78, 79]. In terms
of adversarial capabilities, our threat model is on par with the
state of the art in C/C++/ASM exploitation [41, 87]. Lastly,
we assume that the target applications consist of benign code:
i.e., they do not contain malicious components.
Hardening Assumptions The primary focus of this work
is modern, x86-64 Linux applications, written in C, C++, or
ASM (or any combination thereof), and compiled in a position-
independent [64] manner via toolchains that (by default) do
not mix code and data [3, 4], such as GCC and LLVM.1 In
addition to the above, we assume the presence of stack un-
winding information (.eh_frame section) in the ELF [12]
files that constitute the target applications.

In § 3, we explain in detail the reasons for these two
requirements—i.e., position-independent code (PIC) and
.eh_frame sections. However, note that (a) PIC is enabled
by default in modern Linux distributions [14, 95], while
(b) .eh_frame sections are present in modern GCC- and
LLVM-compiled code [3, 95]. The main reason for (a) is full
ASLR (Address Space Layout Randomization): in position-
dependent executables ASLR will only randomize the process
stack and mmap- and brk-based heap [7]. Moreover, PIC in
x86-64 incurs negligible performance overhead due to the ex-
istence of PC-relative data transfer instructions (%rip-relative
mov) and extra general-purpose registers (16 vs. 8 in x86). As
far as (b) is concerned, stack unwinding information is man-
dated by C++ code for exception handling [49], while both
GCC and LLVM emit .eh_frame sections even for C code to
support interoperability with C++ [95] and various features of
certain libc (C library) implementations—e.g., backtrace
in glibc (GNU C Library).

1Andriesse et al. [4], and Alves-Foss and Song [3], have independently
verified that modern versions of both GCC and LLVM do not mix code and
data. icc (Intel C++ Compiler) still embeds data in code [3].



Lastly, we assume a Linux kernel with support for
seccomp-BPF (SECure COMPuting with filters) [36]. (All
versions ≥ v3.5 provide support for seccomp-BPF in
x86-64.) Every other standard userland hardening feature
(e.g., NX, ASLR, stack-smashing protection) is orthogonal
to sysfilter; our proposed scheme does not require nor
preclude any such feature. The same is also true for less-
widespread mitigations, like CFI [9,96], CPI [40,53], code ran-
domization/diversification [38, 41, 94], and protection against
data-only attacks [68].

3 Design and Implementation

Approach sysfilter aims at mitigating the effects of ap-
plication compromise by restricting access to the syscall
API [52]. The benefits of this approach are twofold: (1) it
limits post-exploitation capabilities [69], and (2) it prevents
compromised applications from escalating their privileges fur-
ther via exploiting vulnerabilities in unused, or less-stressed,
kernel interfaces [33–35, 43, 65, 66].

The main idea behind (1) is that applications need to inter-
act with the kernel—and they primarily do so via the syscall
API—in order to perform useful tasks. Indicatively, at the
time of writing, the Linux kernel (v5.5) provides support for
347 syscalls in x86-64. (This number does not include the
syscalls needed for executing 32-bit x86 applications atop
a 64-bit kernel, or 64-bit processes that adhere to the x32
ABI [50].) However, despite the fact that applications only
require access to part of the aforementioned API to function
properly (e.g., non-networked applications do not need access
to the socket-related syscalls), the OS kernel provides full
and unrestricted access to the entirety set of syscalls.

This approach violates the principle of least privilege [76]
and enables attackers to utilize additional OS services after
seizing control of vulnerable applications. By restricting ac-
cess to certain syscalls, sysfilter naturally limits what OS
services attackers can (ab)use and enforces the principle of
least privilege with respect to the syscall API: i.e., programs
are allowed to issue only developer-intended syscalls.

As far as (2) is concerned, multiple studies have repeatedly
divulged that the exploitation of vulnerabilities in kernel (or in
even lower-level, more-privileged [19,99]) code is an essential
part of privilege escalation attacks [33–35, 43, 65, 66]. To this
end, sysfilter reduces the attack surface of the OS kernel,
by restricting the syscall set available to userland processes,
effectively providing defense-in-depth protection.
Overview sysfilter consists of two parts (see Figure 1):
(1) a syscall-set extraction component; and (2) a syscall-set
enforcement component. The former receives as input the
target application in binary form (ELF file), automatically
resolves all dependencies to dynamic shared libraries (.so
ELF objects), and constructs a safe over-approximation of
the program’s FCG—across all objects in scope. Finally, it
performs a set of program analyses atop FCG, in order to make

the over-approximation as tight as possible and construct the
syscall set in question. Note that the tasks above are performed
statically and the syscall set returned by the extraction tool is
complete: i.e., under any given input, the syscalls performed
by the corresponding process are guaranteed to exist in the
syscall set—this includes syscalls that originate from the
binary itself, libc, or any other dynamically-loaded shared
library. The latter part enforces the extracted set of syscalls,
effectively sandboxing the input binary. Specifically, given a
set of syscall numbers, the enforcement tool converts them to
a BPF program [54] to be used with seccomp-BPF [36].

3.1 System Call Set Extraction

3.1.1 Analysis Scope

The input to the syscall-set extraction component of
sysfilter is an (x86-64) ELF file that corresponds to the
main binary of the application (see Figure 1A). sysfilter
requires PIC as input, which is the default setting in mod-
ern Linux distributions [14, 95]. Once sysfilter verifies
that the main binary is indeed PIC, adds it to the analysis
scope, and proceeds to resolve dependencies regarding dy-
namic shared libraries. This is accomplished by first checking
the PT_INTERP header, which conventionally contains the
path of the respective dynamic linker/loader (e.g., /lib64/-
ld-linux-x86-64.so), followed by iterating the .dynamic
ELF section for DT_NEEDED entries that correspond to the
names of the required shared libraries. Each of these libraries
is added to the analysis scope and their .dynamic section
is also scanned, recursively, to recover additional (library)
dependencies. The process stops when all explicit dynamic
library dependencies are resolved and the related ELF files
have been added to the analysis scope.

In addition to the above, it is also possible to provide as
input a set of implicit dynamic shared object dependencies to
sysfilter: i.e., a list of additional .so ELF files that need
to be added to the analysis scope, irrespectively of whether
they exist in any of the loaded objects’ .dynamic section (see
Figure 1B). This functionality is important in order to support
the analysis of binaries that have run-time dependencies to
shared objects (e.g., via dlopen) or use LD_PRELOAD.

3.1.2 Function-Call Graph Construction

Once every ELF object is added to the analysis scope,
sysfilter proceeds with the construction of the function-
call graph (FCG) of the whole program. The FCG contains
parts of the code (functions) that are reachable, under any
possible input to the corresponding process. Note that for
every included .so ELF object in the analysis scope, not all
of their code is used: e.g., applications that link with libc,
libpthread, libdl, etc., do not make full use of the latter;
usually, only part of library functionality is utilized [1, 71].



binary
code (PIC)
.dynamic
.eh_frame

libc
code (PIC)
.dynamic
.eh_frame

lib...
code (PIC)
.dynamic
.eh_frame

lib...
code (PIC)
.dynamic
.eh_frame

libplugin
code (PIC)
.dynamic
.eh_frame

A

Implicit dependencies

B

Analysis Scope Call Graph Construction

Entry points
Functions

C

Syscall Set Construction

...
mov $0x2,%eax
syscall
...
mov $0x0,%eax
syscall
...

...
mov $0x1,%eax
syscall
...
mov $0x3,%eax
syscall
...

JSON output
{0,1,2,3}

D

System Call Set Extraction System Call Set Enforcement

BPF filter gen.E
...
BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K,

0, 3, 0);
BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K,

1, 2, 0);
BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K,

2, 1, 0);
BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K,

3, 0, 1);
BPF_STMT(BPF_RET|BPF_K,

ALLOW);
BPF_STMT(BPF_RET|BPF_K,

DENY);

InjectionF

binary
code (PIC)
.dynamic
.eh_frame

libsysfilter.so
code (PIC)
.dynamic
.eh_frame

Figure 1: The sysfilter Architecture. The tool consists of two parts: the system call set extraction part (left) and the system
call set enforcement part (right). The former receives as input the target application in binary form, automatically resolves all
dependencies to dynamic shared libraries, constructs a safe over-approximation of the program’s FCG—across all objects in
scope—, and, finally, performs a set of program analyses atop the FCG, in order to extract the set of developer-intended syscalls.
The latter enforces the extracted set of syscalls, effectively sandboxing the input binary, using seccomp-BPF.

Precise Disassembly Obtaining the complete and precise
disassembly of arbitrary binary programs is an undecidable
task [91]. The problem stems from two main reasons: (a) not
being able to decisively differentiate code from data [91];
and (b) not being able to precisely identify function bound-
aries [5, 6]. Fortunately, modern toolchains, like GCC and
LLVM, (1) do not mix code and data [3, 4] and (2) embed
stack unwinding information to (x86-64) C/C++ binaries [95].
sysfilter takes advantage of (1) and (2) in order to pre-
cisely disassemble the executable code from all ELF files in
the analysis scope, without requiring symbols or debugging
information (If such information is available, sysfilter will
use it, but our techniques are designed for stripped binaries.)

More specifically, for each .so object in the analysis
scope, sysfilter uses the stack unwinding information
(.eh_frame section) to get the exact boundaries of all
functions in executable sections (e.g., .text, .plt). More-
over, special care is taken to correctly identify functions of
crtstuff.c (libgcc), which are compiled into the sections
.init and .fini, as well as into crtbegin.o. Armed with
precise information about function boundaries, and given the
strict separation of code and data, sysfilter performs a lin-
ear sweep, in all code regions that correspond to identified
functions, to disassemble their executable code. The resulting
disassembly does not contain any invalid instruction, due to
data treated as code or incorrect function boundary detec-
tion, nor it misses instructions due to unidentified code—the
resulting disassembly is complete, precise, and accurate.
Direct Call Graph Building upon the precise disassembly
obtained during the previous step, sysfilter proceeds to
construct the FCG of the input program. First, it puts together
the direct call graph (DCG): i.e., the part of the FCG that cor-
responds to directly-invoked functions/code. This is achieved
by first adding to the DCG the entry point of the main binary,

followed by all the functions whose addresses are stored at the
subsequent (ELF) sections: .preinit_array, .init_array,
and .fini_array; the code/function in .init and .fini is
also added to the DCG. Subsequently, the same process is
repeated for every other .so ELF object in the analysis scope.
At the end of this step, a set of initial functions are added to
the DCG, which correspond to the entry points of the code
that is executed during the initialization/finalization of the
respective process by the dynamic linker/loader (ld.so). It
is also possible to provide as input a set of implicit function
dependencies (see Figure 1B). Again, this is required to aid
the analysis of binaries that have run-time dependencies to
certain functions (e.g., via dlsym) or use LD_PRELOAD.

Next, the code of each such function in the DCG is scanned,
linearly, to identify direct call instructions that target other
functions in the respective ELF objects. Branch instructions,
like (un)conditional jmp, which cross function boundaries
are also taken into consideration as they are typically used
for implementing tail-call elimination [84]. Each identified
target function (callee) is also added to the DCG, and the
process is repeated until no additional functions can be added.
Cross-shared library calls, via the Procedure Linkage Table
(PLT), are handled by inspecting the .dynsym, and .dynstr,
sections of the ELF files in scope and “emulating” the binding
(symbol resolution) rules of ld.so.2 (Direct cross-.so object
calls via PLT are treated as direct intra-.so function calls.)

The net result of the above is the construction of the part
of the FCG that contains the entry point(s) and the initial-
ization/finalization functions of the ELF objects in scope
(plus the implicitly-added functions, if provided), followed
by every other function that is directly-reachable from them
(i.e., reachable by following the targets of direct call/jmp
instructions and resolving PLT entries).

2This is analogous to executing ld.so with ‘LD_BIND_NOW=1’.



Address-taken Call Graph The aforementioned process
does not take into consideration functions targeted-by indirect
call/jmp instructions. Such instructions have as operand a
(general-purpose) register, or a memory location, which stores
the target address (i.e., address of the callee), and are typically
used for dereferencing function pointers (C/C++) and imple-
menting dynamic dispatch (C++) [77]. Resolving the target
addresses of indirect call/jmp instructions, statically, is a
hard problem [72], mostly due to the imprecision of points-to
analysis [44]. (Note that resolving target addresses using dy-
namic testing is even more problematic, as the results of this
approach usually lack soundness [62].) Starting with DCG,
sysfilter proceeds to over-approximate the FCG by con-
structing, what we refer to as, the address-taken call graph
(ACG). The process of constructing the ACG is complete:
i.e., it never excludes functions that can be executed by the
program (under any possible input).

The first step in the construction of the ACG is the identi-
fication of all address-taken functions: i.e., functions whose
address appears in rvalue expressions, function arguments,
struct/union initializers, and C++ object initializers, or
functions that correspond to virtual methods (C++). The set of
all address-taken (AT) functions is a superset of the possible
targets of every indirect call site in scope. This is because indi-
rect call/jmp instructions take as operands (general-purpose)
registers, or memory locations, which can only hold absolute
addresses; therefore, in order for a function to end-up being
invoked via an indirect call/jmp instruction, its address much
first be “taken”, and then loaded in the respective operand (be
it a register or memory location).
sysfilter leverages the fact that every ELF object in the

analysis scope is compiled as PIC, in order to identify all AT
functions. More specifically, locations in code, or data, ELF
regions that correspond to absolute function addresses must al-
ways have accompanying relocation entries (relocs), if PIC
is enabled [14]. sysfilter begins with identifying all the re-
location sections (i.e., sections of type SHT_REL or SHT_RELA)
in the ELF objects in scope. Next, it processes all the relocs,
searching for cases where the computation of the relocation
involves the starting address of a function (recall that we have
already identified the boundaries of every function in scope,
during the construction of the DCG). Every such function,
whose starting address is used in relocs computation, is
effectively an AT function. The same function can have its ad-
dress taken multiple times in different locations (e.g., function
arguments, rvalue expressions in function bodies, or as part
of global struct/union/C++ object initializers). Relocations
that are applied to special sections (e.g., .plt, .dynamic) are
ignored, as they are only related to dynamic binding.

Armed with the set of all AT functions, sysfilter pro-
ceeds with computing the reachable functions from (each one
of) them using the same approach we employed for construct-
ing the DCG. ACG effectively contains as “entry points” the
discovered AT functions, followed by every other function that

is directly-reachable from them. The combined set of func-
tions in DCG and ACG is a superset of the set of functions in
the program’s FCG: i.e., V [FCG] ⊆ (V [DCG] ∪ V [ACG]).
Vacuumed Call Graph Although DCG ∪ ACG is a safe
over-approximation of FCG, it is not a tight one, as every AT
function included in the considered call graph is (potentially)
“polluting” it in a considerable manner by bringing in scope
every other function that is reachable from itself. In order to
keep the over-approximation as tight as possible, sysfilter
prunes the ACG using a technique for software debloating [1,
71]. In particular, we begin with the observation that each
time the address of a function is taken, a code pointer is
created. By taking into account the location (ELF section) that
such code pointers are created, sysfilter further separates
those found in code (e.g., .text) and data (e.g., .(ro)data)
regions. For the former, it iterates every function that has been
deemed as unreachable, and checks if the address of an AT
function is only taken within functions that are (strictly) not
part of the call graph. If this condition is true, it removes
the respective AT function from ACG, which may result in
additional removals (e.g., everything directly-reachable from
the removed AT function); sysfilter iteratively performs
the above until no additional functions can be pruned.

For the latter case, sysfilter cannot prune AT functions
using the same approach, as the resulting code pointers can
be part of encapsulating data structures whose usage cannot
be tracked without access to access to symbol (or debug-
ging) information. However, if such information is indeed
available—note that modern toolchains (GCC, LLVM) in-
clude symbols in the resulting ELF objects (.symtab section)
by default, while popular Linux distributions provide sym-
bols for their packaged binaries—, sysfilter can (more
aggressively) eliminate AT functions from data sections as
follows. First, it leverages symbol information to identify the
bounds ([OBJ_BEGIN - OBJ_END]) of global data objects
(i.e., symbols of type OBJECT/GLOBAL). Next, it checks for
relocs that: (a) correspond to AT functions; and (b) fall
within the bounds of any global object. The net result of
this approach is the identification of statically-initialized ar-
rays of code pointers or data structures that contain code
pointers. Lastly, sysfilter iterates every function that has
been classified as unreachable, and checks if OBJ_BEGIN is
taken only within such functions. Again, if this condition is
true, it marks the AT functions that correspond to the object
beginning at OBJ_BEGIN as unreachable, and iteratively per-
forms the purging process until no additional functions can be
classified as unreachable. We refer to the pruned ACG, com-
bined with DCG, as vacuumed call graph (VCG). Specifically,
VCG = DCG ∪ ACG′, where ACG′ denotes the pruned ACG
using the approach outlined above (see Figure 1C). Again,
VCG is a complete, tight over-approximation of the true FCG:
i.e., sysfilter only excludes functions that can never be
executed by the program (under any possible input); more
formally: V [FCG] ⊆ V [VCG] ⊆ (V [DCG] ∪ V [ACG]).



1 #define ctor __attribute__((constructor))
2 typedef void (*fptr)(void);
3
4 void f10(void) { ... }
5 ctor void f9(void) { ... f10(); ... }
6 void f8(void) { ... }
7 void f7(void) { ... f8(); ... }
8 void f6(void) { ... }
9 void f5(void) { ... fp_arr[n](); ... }

10 void f4(void) { ... f5(); ... }
11 void f3(void) { ... }
12
13 fptr f2(void) { ... return &f4; }
14 fptr f1(void) { ... return &f3; }
15
16 fptr fp;
17 fptr fp_arr[] = {&f6, &f7};
18
19 int main(void)
20 {
21 ...
22 fp = f1();
23 ...
24 fp();
25 return EXIT_SUCCESS;
26 }

Figure 2: VCG Construction Example. Without symbol
information V [VCG] = {main,f1,f3,f6,f7,f8,f9,f10},
whereas with symbols (or debugging information) available,
V [VCG] = {main,f1,f3,f9,f10}.

Figure 2 illustrates a C-like program, which we will be
using as an example to demonstrate the VCG construc-
tion. sysfilter will initially include main (ln. 19) and
f9 (ln. 5). DCG will also include all the directly-reachable
functions from the above initial set: f1 (reachable from
main, ln. 22) and f10 (reachable from f9, ln. 22). Hence,
V [DCG] = {main,f1,f9,f10}. Next, sysfilter will pro-
ceed with the construction of the ACG, which, initially, will
include all the address-taken functions: f3 (ln. 14), f4 (ln. 13),
and f6 and f7 (ln. 17). ACG will also include all the directly-
reachable functions from set of AT functions: f5 (reachable
from f4, ln. 10) and f8 (reachable from f7, ln. 7). Thus,
V [ACG] = {f3,f4,f5,f6,f7,f8}.

sysfilter will then continue with pruning the ACG as
follows. First, it will remove f4, as its address is only taken
in function f2 (ln. 13), which is unreachable. This will also
result in removing f5, as it is only directly-reachable from f4
(ln. 10). If the respective ELF object is stripped, the pruning
process will terminate at this point, resulting in the following
set of functions: V [ACG′] = {f3,f6,f7,f8}. If symbol (or
debugging) information is available, then sysfilter can
perform more aggressive pruning by identifying that fp_arr
is not referenced by any function in scope. Therefore, the AT
functions f6 and f7 can also be removed, as well as f8 that
is directly-reachable only from f7 (ln. 7). The net result of
the above is the following set of functions: V [ACG′′] = {f3}.

To summarize, without symbol information, V [VCG] =
V [DCG] ∪ V [ACG′] = {main,f1,f3,f6,f7,f8,f9,f10},
whereas with symbols (or debugging information) available,
V [VCG] = V [DCG] ∪ V [ACG′′] = {main,f1,f3,f9,f10}.
Interested readers are referred to the appendix (§ A) for more
information about how sysfilter handles GNU IFUNC and
NSS symbols, overlapping code, and hand-written assembly.

3.1.3 System Call Set Construction

The x86-64 ABI dictates that system calls are performed
using the syscall instruction [30].3 Moreover, during the
invocation of syscall, the system call number is placed in
register %rax. Armed with the program’s VCG, sysfilter
constructs the system call set in question as follows.

First, it identifies all reachable functions that include
syscall instructions, by performing a linear sweep in each
function f ∈ V [VCG] to pinpoint syscall instances. Once
the set of all the reachable syscall instructions is estab-
lished, sysfilter continues with performing a simple value-
tracking analysis to resolve the exact value(s) of %rax on ev-
ery syscall site. The process relies on standard live-variable
analysis using use-define (UD) chains [2, § 9.2.5]. Specifi-
cally, sysfilter considers that syscall instructions “use”
%rax and leverages the UD links to find all the instructions
that “define” it. In most cases, %rax is defined via constant-
load instructions (e.g., mov $0x3,%eax), and by collecting
such instructions and extracting the respective constant values,
sysfilter can assemble system call sets. If %rax is defined
via instructions that involve memory operands, sysfilter
aborts (or issues a warning, if invoked accordingly) as the
resulting system call set may be incomplete [72]. The output
of the syscall-set extraction component is the collected set of
system call numbers in JSON format (see Figure 1D).

We opt for applying the analysis above in an intra-
procedural manner, as our results indicate that this strategy
works well in practice (see § 5); system call invocation is
architecture-specific, and typically handled via libc using
the following pattern (in x86-64): ‘mov $SYS_NR, %eax;
syscall’, where $SYS_NR = {$0x0, $0x1, ...}. One ex-
ception is the handling of the syscall() function [48], which
performs system calls indirectly by receiving the respective
system call number as argument. If syscall() is not-address
taken in VCG, then sysfilter first identifies the reachable
functions that directly-invoke syscall(), and performs intra-
procedural, value-tracking on register %rdi (first argument,
system call number). If the address of syscall() is taken
in the reachable VCG, then sysfilter aborts (or issues a
warning, if invoked accordingly) as the resulting system call
set may, again, be incomplete.

3Performing syscalls via software interrupts (e.g., int $0x80), or
sysenter, is only supported in x86-64 Linux to allow executing 32-bit appli-
cations over a 64-bit kernel. sysfilter focuses solely on 64-bit applications
(i.e., it does not consider syscalls via int $0x80 or sysenter).



1 #define ARCH AUDIT_ARCH_X86_64
2 #define NRMAX (X32_SYSCALL_BIT - 1)
3 #define ALLOW SECCOMP_RET_ALLOW
4 #define DENY SECCOMP_RET_KILL_PROCESS
5
6 struct sock_filter filter[] = {
7 BPF_STMT(BPF_LD | BPF_W | BPF_ABS ,
8 (offsetof(struct seccomp_data , arch))),
9 BPF_JUMP(BPF_JMP| BPF_JEQ|BPF_K , ARCH , 0, 7),

10 BPF_STMT(BPF_LD | BPF_W | BPF_ABS ,
11 (offsetof(struct seccomp_data , nr))),
12 BPF_JUMP(BPF_JMP|BPF_JGT|BPF_K , NRMAX , 5, 0),
13 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 0, 3, 0),
14 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 1, 2, 0),
15 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 15, 1, 0),
16 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 60, 0, 1),
17 BPF_STMT(BPF_RET|BPF_K , ALLOW),
18 BPF_STMT(BPF_RET|BPF_K , DENY) };

Figure 3: Classic BPF (cBPF) Program. Compiled-by
sysfilter, enforcing the following syscall set: 0 (read),
1 (write), 15 (exit), and 60 (sigreturn). The filter checks
if the value of field nr (syscall number) ∈ {0,1,15,60} via
means of linear search.

3.2 System Call Set Enforcement
The input to the syscall-set enforcement component of
sysfilter is the set of allowed system calls, as well as the
ELF file that corresponds to the main binary of the application
(see Figure 1E). Armed with the set of developer-intended
syscalls, sysfilter uses seccomp-BPF [36] to enforce it at
run-time. The latter receives as input a BPF “program” [54],
passed via prctl, or seccomp, which is invoked by the ker-
nel on every system call. Note that BPF programs are exe-
cuted in kernel mode by an interpreter for BPF bytecode [54],
while just-in-time (JIT) compilation to native code is also sup-
ported [11]. In addition, the Linux kernel provides support for
two different BPF variants: (a) classic (cBPF) and (b) extended
(eBPF) [46]; seccomp-BPF makes use of cBPF only.

The input to seccomp-BPF programs (filters) is a fixed-size
struct (i.e., seccomp_data; see Figure 8 in Appendix B),
passed by the kernel, which contains a snapshot of the system
call context: i.e., the syscall number (field nr), architecture
(field arch), as well as the values of the instruction pointer
and syscall arguments. sysfilter performs filtering based
on the value of nr as follows: if (nr ∈ {0,1, ...}) then
ALLOW else DENY, where {0,1, ...} is the set of allowed
system call numbers. Given such a set, sysfilter compiles
a cBPF filter that implements the above check via means of
linear or skip list-based search. Figure 3 depicts a filter that
uses the linear search approach to enforce the following set of
syscalls: read (0), write (1), exit (15), and sigreturn (60).
Ln. 7 – 12 implement a standard preamble, which asserts that
the architecture is indeed x86-64. This check is crucial as
it guarantees that the mapping between the allowed syscall
numbers and the syscalls performed is the right one.

For instance, suppose that this check is missing, and
getuid (102)—a harmless syscall—exists in the allowed set.
If the target process (x86-64) is compromised, and the at-
tacker issues syscall no. 102, via int $0x80 (or sysenter),
then the filter will allow the syscall but the kernel will exe-
cute socketcall instead: i.e., the syscall with number 102
in x86 (32-bit), effectively giving the attacker network-access
capabilities. The check in ln. 9 rejects every architecture dif-
ferent from x86-64, while the check in ln. 12 rejects syscalls
that correspond to the x32 ABI [50].4 The bulk part of the
enforcement/search is implemented in ln. 13 – 16 (BPF_JEQ
statements). Note that cBPF does not allow loops, and there-
fore sysfilter implements the linear search using loop un-
winding (i.e., ‘if-else if-...-else’ construct). In case
of a non-permitted syscall, sysfilter terminates the pro-
cesses (ln. 4, SECCOMP_RET_KILL_PROCESS). Figure 9, in the
appendix (§ B), illustrates a cBPF filter that uses the skip list
approach to implement the search.
sysfilter injects the compiled filter as follows.

First, it generates a dynamic shared object, namely
libsysfilter.so. Next, it links the aforementioned
shared object with the main binary, using patchelf [61];
libsysfilter.so includes only a single function,
install_filter, registered as a constructor. The net
result of the above is that ld.so will automatically load
libsysfilter.so, and invoke install_filter, during
the initialization of the main binary (see Figure 1F).
install_filter attaches the compiled cBPF filter, at load-

time, using the seccomp system call [47]. Importantly, be-
fore invoking seccomp (with SECCOMP_SET_MODE_FILTER),
the no_new_privs attribute of the calling thread is asserted,
via invoking prctl (with PR_SET_NO_NEW_PRIVS), disabling
the acquisition of new privileges via further execve-ing pro-
grams that make use of set-user-ID, set-group-ID, or other
capabilities. Lastly, install_filter passes the argument
SECCOMP_FILTER_FLAG_TSYNC [47] to seccomp for making
the respective filter visible to all executing threads, while it
also uses SECCOMP_FILTER_FLAG_SPEC_ALLOW [47] to dis-
able the speculative store bypass (SSB) mitigation. Note that
the latter is configurable; however, the SSB mitigation is
only relevant when BPF programs of unknown provenance
are loaded in kernel space to further assist mounting Spectre
attacks [37] (variant 4 [25])—sysfilter cBPF programs are
not malicious nor attacker-controlled.

Once the filter is installed using the method outlined above,
the respective process can execute only developer-indented
syscalls. Note that ld.so is included in the analysis scope,
and hence the initialization/finalization of additional libraries,
at run-time (e.g., via dlopen/dlclose), as well as any other
ld.so-related functionality, is supported seamlessly.

4If the target binary is going to be executed atop an x86-64 Linux kernel
that does not support x86 emulation (CONFIG_IA32_EMULATION=n) nor the
x32 ABI (CONFIG_X86_X32=n), then sysfilter can further optimize the
generated filters by omitting the arch-related preamble.



Crucially, no_new_privs guarantees that filters are pinned
to the protected process during its lifetime—i.e., even if the
process is completely compromised, attackers cannot remove
filters. Recall that the filtering itself takes place in kernel
mode using only the syscall number as input; the syscall
arguments are not inspected, and user space memory is not
accessed, thereby avoiding the pitfalls related to concurrency
and (wrapper-based) syscall filtering [17, 92]. In addition,
applications that make use of seccomp-BPF are seamlessly
supported as well. BPF filters are stackable, meaning that more
than one filter can be attached to a process; if multiple filters
exist, the kernel always enforces the most restrictive action.
Handling execve sysfilter prevents enforcement by-
passes via the execution of different programs. Specifically,
even if a (compromised) process is allowed to invoke execve,
it still cannot extend its set of allowed syscalls by invoking
a different executable that has a (potentially) larger set of
allowed syscalls; the same is also true if the process tries to
craft a rogue executable in the filesystem, which allows all
syscalls (or some of the blocked ones), and execute it. Filter
pinning and stacking are essential for ensuring that processes
can only reduce their set of allowed syscalls, in accordance to
the principle of least privilege [76], but they do interfere with
execve as they are preserved process attributes.

For example, suppose that programs P1 and P2 have
the following syscall sets. P1: 0 (read), 1 (write),
15 (exit), and 59 (execve); P2: 0 (read), 1 (write),
2 (open), 3 (close), 8 (lseek), 9 (mmap), 11 (munmap),
56 (clone), 61 (wait4), 79 (getcwd), 96 (gettimeofday),
102 (getuid), 115 (getgroups), 202 (futex), 292 (dup3),
and 317 (seccomp). If P2 is normally-invoked, then it will
operate successfully. However, if P2 is invoked via P1, then
the resulting process will not be able to issue any other syscall
than read, write, exit, and execve (the last two are not even
required by P2). To deal with this issue, sysfilter supports
two different execve modes: (a) union and (b) hierarchical.

In union mode, given a set programs {P1,P2, ...,PN}
that can be invoked in any combination, via execve, with
SY S1,SY S2, ...,SY SN being their allowed sets of syscalls,
sysfilter constructs a filter that enforces the union of
SY S1,SY S2, ...,SY SN and attaches it to all of them. This
will result in each process functioning correctly, as it has
support for the syscalls it requires, but overly-approximates
least privilege—every program effectively inherits the priv-
ileges (with respect to the syscall API) of all others in
the set. In the example above, union would result in ex-
ecuting both P1 and P2 with the following syscall set:
{0 – 3,8,9,11,15,56,59,61,79,96,102,115,202,292,317}.

In hierarchical mode, sysfilter begins with the
same approach as above, but further rectifies (reduces)
syscall sets each time a process invokes execve. In our
example, this would result in executing P1 with the set
{0 – 3,8,9,11,15,56,59,61,79,96,102,115,202,292,317},
further reduced to {0 – 3,8,9,11,56,61,79,96,102,115,202,

292,317} right before execve-ing P2. Note that the hierar-
chical mode still results in certain processes being a bit more
privileged (with respect to accessing OS services), but not all.

If special treatment regarding execve is required for a par-
ticular (set of) program(s), then a recipe can be provided to the
enforcement tool, along with the respective syscall sets, which
describes how sysfilter should operate on execve calls.
If union mode is specified, then sysfilter merely splices
together a set of different syscall sets (provided via separate
JSON files), and compiles a single filter that is attached to all
programs in scope. In case of hierarchical mode, the recipe de-
scribes the (execve) relationships between callers and callees,
allowing sysfilter to construct different filters, one for each
program in scope, which adhere to the model above.

More importantly, our results (§ 5) indicate that recipe
creation can be automated, to some extent, by employing
static value-tracking analysis to resolve the first argument of
execve calls. However, note that sysfilter is not geared to-
wards sandboxing applications that invoke arbitrary scripts or
programs (e.g., command-line interpreters, managed runtime
environments); other schemes, like Hails [21], SHILL [56],
and the Web API Manager [82], are better suited for this task.

3.3 Prototype Implementation

Our prototype implementation consists of ≈ 2.5 KLOC of
C/C++ and ≈ 150 LOC of Python, along with various shell
scripts (glue code; ≈ 120 LOC). More specifically, we imple-
mented the extraction tool atop the Egalito framework [95].
Egalito is a binary recompiler; it allows rewriting binaries
in-place by first lifting binary code into a layout-agnostic,
machine-specific intermediate representation (IR), dubbed
EIR, and then allowing “tools” to inspect or alter it.

We implemented the extraction tool as an Egalito “pass”
(C/C++), which creates the analysis scope, constructs the
VCG, and extracts the respective syscall set, using the tech-
niques outlined in § 3.1. Note that we do not utilize the binary
rewriting features of Egalito; we only leverage the frame-
work’s API to precisely disassemble the corresponding bina-
ries and lift their code in EIR form, which, in turn, we use for
implementing the analyses required for constructing the DCG,
identifying all AT functions for building the ACG, pruning
unreachable parts of the call graph for assembling the VCG,
identifying syscall instructions, performing value-tracking,
etc. We chose Egalito over similar frameworks as it employs
the best jump table analysis to date.

The enforcement tool is implemented in Python and
is responsible for generating the cBPF filter(s), and
libsysfilter.so, and attaching the latter to the main binary
using patchelf (see § 3.2). Lastly, during the development
of sysfilter we also improved Egalito by adding better
support for hand-coded assembly, fixing various symbol res-
olution issues, and re-architecting parts of the framework to
reduce memory pressure. (We upstreamed all our changes.)



Application Version Syscalls Tests Pass?

FFmpeg (124) 4.2 167 3756 3
GNU Core. (100) 8.31 148 672 3
GNU M4 (1) 1.14 70 236 3
MariaDB (156) 10.3 153 2059 3
Nginx (1) 1.16 128 356 3
Redis (6) 5.0 104 81 3
SPEC CINT. (12) 1.2 82 12 3
SQLite (7) 3.31 139 31190 3
Vim (3) 8.2 163 255 3
GNU Wget (1) 1.20 107 130 3

Table 1: Correctness Test. The numbers in parentheses count
the different binaries included in the application/package.
“Syscalls” indicates the number of system calls in the allowed
set; in case of applications with multiple binaries that number
corresponds to the unique syscalls across the syscall sets of
all binaries in the package. “Tests” denotes the number of
tests run from the validation suite of the application.

4 Evaluation

We evaluate sysfilter in terms of (1) correctness, (2) run-
time performance overhead, and (3) effectiveness.
Testbed We used two hosts for our experiments: (a) run-
time performance measurements were performed on an 8-
core Intel Xeon W-2145 3.7GHz CPU, armed with 64GB of
(DDR4) RAM, running Devuan Linux (v2.1, kernel v4.16);
(b) analysis tasks were performed on an 8-core AMD Ryzen
2700X 3.7GHz CPU, armed with 64GB of (DDR4) RAM, run-
ning Arch Linux (kernel v5.2). All applications (except SPEC
CINT2006) were obtained from Debian sid (development
distribution) [86], as it provides the latest versions of upstream
packages along with debug/symbol information [93].
Correctness We used 411 binaries from various packages/-
projects with sysfilter, including GNU Coreutils, Nginx,
Redis, SPEC CINT2006, SQLite, FFmpeg, MariaDB, Vim,
GNU M4, and GNU Wget, to extract and enforce their corre-
sponding syscall sets. The results are shown in Table 1. Once
sandboxed, we stress-tested them with ≈38.5K tests from
the projects’ validation suites. (Note that we did not include
tests that required the application to execute arbitrary external
programs, such as tests with arbitrary commands used in Vim
scripts, Perl scripts in Nginx, and arbitrary shell scripts to
load data in SQLite and M4.) In all cases, sysfilter man-
aged to extract a complete and tight over-approximation of
the respective syscall sets, demonstrating that our prototype
can successfully handle complex, real-world software.
Performance To assess the run-time performance impact of
sysfilter, we used SPEC CINT2006 (std. benchmarking
suite), Nginx (web server), and Redis (data store)—i.e., 19
program binaries in total; the selected binaries represent the
most performance-sensitive applications in our set and are
well-suited for demonstrating the relative overhead(s). We

also explored different settings and configurations, including
interpreted vs. JIT-compiled BPF filters, and filter code that
implements sandboxing using a linear search vs. filter code
that utilizes a skip list-based approach (§ 3.2). In the case
of SPEC, we observed a run-time slowdown ≤1% under all
conditions and search methods.

Figure 4 and Figure 5 illustrate the impact of sysfilter
on Nginx (128) and Redis (103)—the numbers in parentheses
indicate the corresponding syscall set sizes, while “Binary”
corresponds to skip list-based filters. We configured Nginx
to use 4 worker processes and measured its throughput us-
ing the wrk tool [23], generating requests via the loopback
interface from 4 threads, over 256 simultaneous connections,
for 1 minute. Overall, sysfilter diminishes reduction in
throughput by using skip list-based filters (compared to lin-
ear search-based ones) when JIT is disabled, with maximum
reductions in throughput of 18% and 7%, respectively. The
differences in compilation strategy appear to be normalized
by jitting, which showed a maximum drop in throughput of
6% in all conditions. We evaluated Redis similarly, using the
memtier tool [73], performing a mix of SET and GET requests
with a 1:10 req. ratio for 32 byte data elements. The requests
were issued from 4 worker threads with 128 simultaneous
connections, per thread, for 1 minute. sysfilter incurs max-
imum throughput reductions of 11% and 3%, with and without
JIT support, respectively. Lastly, toggling SECCOMP_FILTER_-
FLAG_SPEC_ALLOW [47] (for enabling the SSB mitigation)
incurs an additional ≈10% overhead in all cases.
Effectiveness To assess the security impact of syscall filtering,
we investigated how sysfilter reduces the attack surface
of the OS kernel, by inquiring what percentage of all C/C++
applications in Debian sid (≈30K main binaries) can exploit
23 (publicly-known) Linux kernel vulnerabilities—ranging
from memory disclosure and corruption to direct privilege
escalation—even after hardened with sysfilter. A list of
the number of binaries in our dataset affected by each CVE is
shown in Table 2. Depending on the exact vulnerability, the
percentage of binaries that can still attack the kernel ranges
from 0.09% – 64.34%. Although sysfilter does not defend
against particular types of attacks (e.g., control- or data-flow
hijacking [87]), our results demonstrate that it can mitigate
real-life threats by means of least privilege enforcement and
(OS) attack surface reduction.

5 Large-scale System Call Analysis

We conclude our work with a large scale study regarding the
syscall profile of all C/C++ applications in Debian sid, re-
porting insights regarding syscall set sizes (e.g., the number of
syscalls per binary), most- and least-frequently used syscalls,
syscall site distribution (libraries vs. main binary), and more.
The results of this analysis not only justify our design, but
can also aid that of future syscall policing mechanisms.



1KiB 100 KiB 1 MiB
Request size

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

Linear Linear + JIT Binary Binary + JIT

Figure 4: Impact of sysfilter on Nginx.

GET SET
Operation

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

T
hr

ou
gh

pu
t

Linear Linear + JIT Binary Binary + JIT

Figure 5: Impact of sysfilter on Redis.

0 50 100 150 200 250 300 350
Syscall Count

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
D

F

All syscalls

Maximum number of syscalls
used by a single binary

Figure 6: Number of Syscalls per Binary.

We consider packages from the three major Debian reposi-
tories, namely main, contrib, and nonfree. At the time of
writing, the Debian sid distribution contains over 50K pack-
ages listed for the x86-64. We exclude, however, packages
that do not contain executable code, such as documentation
packages (*-doc), development headers (*-dev), and debug
symbols (*-dbg, *-dbgsym); meta-packages and virtual pack-
ages; architecture-agnostic packages that do not include x86-
64 binaries; and packages containing only shared libraries.
Note that shared libraries and other excluded packages can be
installed during processing, as dependencies of main applica-
tion packages. We processed a total of 33829 binaries across
8922 packages, 30398 (91.3%) of which could be analyzed
successfully. The median runtime for the extraction tool is
about 30s per binary, with 90% of binaries completing within
200s. For a single FCG pass, the median runtime is reduced
to about 10s per binary.

Number of Syscalls per Binary Many binaries only use a
small portion of the syscall API. Figure 6 shows the distribu-
tion of the number of syscalls used by each binary processed.

Out of the total set of 347 syscalls, the maximum number
of syscalls used by one binary is only 215 syscalls, which
represents 62% of the total syscall API. We observe that this
distribution has a long tail: i.e., the median syscall count per
binary is 90 syscalls, with the 90th percentile at 145 syscalls.

With one exception, we find that all binaries processed use
at least 40 syscalls. The sole exception is the statically-linked
binary mtcp_restart that uses only 17 syscalls—this binary
performs syscalls directly, without using any library wrappers.
In the general case, even the simplest of programs, such as
/bin/false, utilize 40 syscalls due to the paths included by
initialization functions that load shared libraries: e.g., mmap
and mprotect are ubiquitous as they are always reachable
from _start, even before main is invoked.
Syscalls from Libraries When extracting syscalls from each
binary, we record which of its shared libraries contained a
syscall instruction for each invocation. After libc, the sec-
ond most common library is libpthread (used by 68.7% of
binaries), in which we observe 40 syscalls—upon further in-
vestigation we found that this is due to glibc’s use of macros
to directly invoke syscalls. The next most common libraries
that invoke syscalls directly are libstdc++ (37% of binaries),
which invokes futex (202) directly; libnss_resolve (32%
of binaries, 3 syscalls), and libglib-2.0 (17%, 5 syscalls).

While we leave a comprehensive analysis of library syscalls
to a future study, we note a few common themes. Libraries
tend to directly invoke syscalls with no libc wrapper func-
tion available, such as futex, and gettid. We also observe
many libraries directly invoking syscalls specific to their core
functionality, perhaps to handle circumstances where exist-
ing wrappers are unavailable or insufficient. For instance,
we note cryptographic libraries, such as libgcrypt and
libcrypto, directly invoking cryptographic-related syscalls,
like getrandom and keyctl.
Effectiveness of FCG Approximation Figure 7 shows the
number of syscalls we extract from each binary using the three
FCG approximation methods (§ 3.1.2): DCG, DCG ∪ ACG,
and VCG, sorted by the count for the VCG. Each binary rep-
resents three points on the figure (i.e., one for each method).



CVE Syscall(s) Involved Vulnerability Type Binaries (%)

CVE-2019-11815 clone, unshare Memory corruption 19558 (64.34)
CVE-2013-1959 write Direct privilege escalation 19558 (64.34)
CVE-2015-8543 socket Type confusion 19128 (62.93)
CVE-2017-17712 sendto, sendmsg Memory corruption 19057 (62.69)
CVE-2013-1979 recvfrom, recvmsg Direct privilege escalation 18968 (62.40)
CVE-2016-4998 setsockopt Memory disclosure 17360 (57.11)
CVE-2016-4997 setsockopt Memory corruption 17360 (57.11)
CVE-2016-3134 setsockopt Memory corruption 17360 (57.11)
CVE-2017-18509 setsockopt, getsockopt Memory corruption 17416 (57.29)
CVE-2018-14634 execve, execveat Memory corruption on suid program 16775 (55.18)
CVE-2017-14954 waitid Memory disclosure 14064 (46.27)
CVE-2014-5207 mount Direct privilege escalation 11412 (37.54)
CVE-2018-12233 setxattr Memory corruption 3356 (11.04)
CVE-2016-0728 keyctl Memory corruption 2827 (9.30)
CVE-2014-9529 keyctl Memory corruption 2827 (9.30)
CVE-2019-13272 ptrace Direct privilege escalation 127 (0.42)
CVE-2018-1000199 ptrace Memory corruption 127 (0.42)
CVE-2014-4699 fork, clone, ptrace Register value corruption 121 (0.40)
CVE-2014-7970 pivot_root DoS 79 (0.26)
CVE-2019-10125 io_submit Memory corruption 58 (0.19)
CVE-2017-6001 perf_event_open Direct privilege escalation 51 (0.17)
CVE-2016-2383 bpf Memory corruption 35 (0.12)
CVE-2018-11508 adjtimex Memory disclosure 26 (0.09)

Table 2: Effectiveness Analysis. The column “Binaries” indicates the number (and percentage) of binaries observed in the large
scale analysis on Debian sid applications that use the system calls related to the respective vulnerability. (Underlined entries
correspond to vulnerabilities that involve namespaces.)

For all binaries, the count for the VCG is always in between
that of DCG and DCG ∪ ACG. Thus, for our dataset, VCG
represents a safe, tight over-approximation of the FCG.
dl{open, sym} and execve By employing our value-
tracking approach (see § 3.1.3), sysfilter can resolve
≈89% of all dlsym arguments, ≈37% of all dlopen argu-
ments, and ≈30% of all execve arguments. We observed a
few cases in common libraries where value-tracking fails,
which may benefit from special handling (§ A): e.g., ≈50%
of dlsym failures relate to NSS functionality, while ≈5% of
dlopen failures involve Kerberos plugins. Lastly, we found
two isolated cases where sysfilter was unable to construct
syscall sets: Qemu and stress-ng contain arbitrary syscall
dispatchers (like glibc’s syscall()), which is expected
given their functionality. Otherwise, we find that syscall sites
follow strictly the pattern ‘mov $SYS_NR, %eax; syscall’.

6 Related Work

Syscall-usage Analysis Tsai et al. [88] performed a study
similar to ours (on binaries in Ubuntu v15.04) to character-
ize the usage of the syscall API, as well as that of ioctl,
fcntl, prctl, and pseudo-filesystem APIs. Their study fo-
cuses on quantifying API complexity and security-related
usage trends, such as unused syscalls and adoption of secure

APIs over the legacy ones. Our study focuses specifically on
the syscall API as a means of evaluating our extraction tool.
We consider this work complementary, and focus on making
the analysis more scalable, precise, and complete. Specifically,
and in antithesis to sysfilter, the call graph construction
approach of Tsai et al. does not consider initialization/final-
ization code nor does it identify AT functions that are part of
global struct/union/C++ object initializers.
Static System Call Filtering Syscall filtering has been ex-
tensively studied in the past, in various contexts. Indeed,
sysfilter shares many of the problems, and proposed so-
lutions, with the seminal work by Wagner and Dean [89],
which uses static analysis techniques to model sequences of
valid syscalls as a non-deterministic finite automaton (NDFA).
This work, as well as others from its era [22], aim at building
models of program execution for intrusion detection purposes.
In contrast, sysfilter focuses on building optimized (OS-
enforceable) seccomp-BPF filters by determining the total set
of syscalls, independent of ordering, which provides a more
compact representation and eliminates the challenges related
to control flow modeling. Moreover, sysfilter employs
binary analysis, whereas Wagner and Dean’s work requires re-
compiling target binaries and shared libraries, which severely
limits the deployability of their scheme.

Shredder [55] performs static analysis on Windows bina-
ries to identify API calls, and arguments, used by applications.



0 5000 10000 15000 20000 25000 30000
Binary

50

100

150

200

Sy
sc

al
lC

ou
nt

DCG ∪ ACG VCG DCG

Figure 7: Syscall Count for Different FCG Construction
Methods. The number of syscalls reported for each binary is
shown, sorted by the count for the VCG.

Specifically, it restricts calls to syscall wrapper functions, via
trampolines, but requires CFI for effective protection. Inde-
pendently and concurrently to our work, Ghavamnia et al. pro-
posed Confine [20]: a (mostly) static analysis-based system
for automatically extracting and enforcing syscall policies on
“containerized” (i.e., Docker) applications. Confine requires
access to C library code (e.g., glibc or musl), while its call
graph construction approach considers every function in non-
libc code within scope. In addition, it relies on objdump, and,
hence, requires symbols for precise disassembly. sysfilter
can operate on stripped binaries, while our FCG construction
approach produces much tighter syscall sets.

Similar to sysfilter, Zeng et al. [98] identify valid sets
of syscalls using binary analysis, but their approach lacks
soundness: its call graph approximation method relies, in part,
on points-to analysis to resolve the targets of function pointers.
In antithesis, sysfilter identifies all address-taken functions
in order to avoid the impression issues associated with this
method. Further, Zeng et al. perform the enforcement using a
customized Linux kernel to provide per-process system call
tables, whereas our seccomp-BPF based approach is available
in stock Linux kernel v3.5 or later.
Dynamic System Call Filtering Systrace [69] uses dynamic
tracing to generate system call policies and implements a
userspace daemon for enforcement. Mutz et al. [58] and
Maggi et al. [51] develop statistical models for host-based
intrusion detection, which as a design choice inherently gives
false negatives, potentially impeding valid program execution.
Ostia [18] provides a system call sandboxing mechanism
that delegates policy decisions to per-process agents, while
a plethora of earlier work on container debloating [90], and
sandboxing [42, 90], also relies on dynamic tracing. In con-
trast, sysfilter does not rely on dynamic syscall tracing or
statistical models, which can generate incomplete policies—

instead, sysfilter safely over-approximates a program’s
true syscall set and thus will not break program execution.
seccomp-BPF in Existing Software Firefox [57],
Chrome [8], and OpenSSH [63] use seccomp-BPF to sand-
box themselves using manually-crafted policies, while con-
tainer runtimes, such as Docker and Podman, allow the use
seccomp-BPF policies to filter container syscalls. By default,
Docker applies a filter that disables 44 syscalls [15], and Pod-
man has support for tracing syscalls dynamically with ptrace
to build a profile for containers. Both also fully support user-
specified filters [75]. sysfilter can be seamlessly integrated
with such software, providing the apparatus for generating
the respective syscall sets automatically/precisely.
Binary Debloating sysfilter shares goals and analy-
sis approaches with recent software debloating techniques.
Quach et al. [71] propose a compiler-based approach that em-
beds dependency information into programs, and uses a cus-
tom loader to selectively load only required portions of shared
libraries in memory. TRIMMER [80] specializes LLVM byte-
code based on a user-defined configuration, while the work of
Koo et al. [39] utilizes coverage information to remove code
based on feature directives. C-Reduce [74], Perses [85], and
CHISEL [27] use delta-debugging techniques to compile min-
imized programs using a series of provided test cases. Unlike
previous approaches, Razor [70] does not require source code,
and implements a dynamic tracer to reconstruct the program’s
FCG from a set of test cases. The analysis used by Nibbler [1]
is the most similar to sysfilter. However, Nibbler requires
symbols, whereas sysfilter operates on stripped binaries.

7 Conclusion

We presented sysfilter: a static (binary) analysis-based
framework that automatically limits what OS services attack-
ers can (ab)use, by enforcing the principle of least privilege,
and reduces the attack surface of the OS kernel, by restrict-
ing the syscall set available to userland processes. We in-
troduced a set of program analyses for constructing syscall
sets in a scalable, precise, and complete manner, and evalu-
ated our prototype in terms of correctness using 411 binaries,
from various real-world C/C++ projects, and ≈38.5K tests to
stress-test their functionality when armored with sysfilter.
Moreover, we assessed the impact of our syscall enforce-
ment mechanism(s) using SPEC CINT2006, Nginx, and Re-
dis, demonstrating minimal run-time slowdown. Lastly, we
concluded with a large scale study about the syscall profile
of ≈30K C/C++ applications (Debian sid). We believe that
sysfilter is a practical and robust tool that provides a solu-
tion to the problem of unlimited access to the syscall API.

Availability
The prototype implementation of sysfilter is available at:
https://gitlab.com/brown-ssl/sysfilter

https://gitlab.com/brown-ssl/sysfilter


Acknowledgments
We thank our shepherd, Aravind Prakash, and the anonymous
reviewers for their valuable feedback. This work was sup-
ported by the Office of Naval Research (ONR) and the De-
fense Advanced Research Projects Agency (DARPA) through
awards N00014-17-1-2788 and HR001118C0017. Any opin-
ions, findings, and conclusions or recommendations expressed
herein are those of the authors and do not necessarily reflect
the views of the US government, ONR, or DARPA.

References
[1] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis,

and Georgios Portokalidis. Nibbler: Debloating Binary Shared Li-
braries. In Annual Computer Security Applications Conference (AC-
SAC), pages 70–83, 2019.

[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools. Pearson Education, 2nd
edition, 2006.

[3] Jim Alves-Foss and Jia Song. Function Boundary Detection in Stripped
Binaries. In Annual Computer Security Applications Conference (AC-
SAC), pages 84–96, 2019.

[4] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska, and
Herbert Bos. An In-Depth Analysis of Disassembly on Full-Scale
x86/x64 Binaries. In USENIX Security Symposium (SEC), pages 583–
600, 2016.

[5] Dennis Andriesse, Asia Slowinska, and Herbert Bos. Compiler-agnostic
Function Detection in Binaries. In IEEE European Symposium on
Security and Privacy (EuroS&P), pages 177–189, 2017.

[6] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David
Brumley. BYTEWEIGHT: Learning to Recognize Functions in Binary
Code. In USENIX Security Symposium (SEC), pages 845–860, 2014.

[7] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and
Dan Boneh. Hacking Blind. In IEEE Symposium on Security and
Privacy (S&P), pages 227–242, 2014.

[8] Chromium Blog. A safer playground for your linux and
chrome os renderers. https://blog.chromium.org/2012/11/
a-safer-playground-for-your-linux-and.html.

[9] Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz,
Stefan Brunthaler, and Mathias Payer. Control-Flow Integrity: Preci-
sion, Security, and Performance. ACM Computing Surveys (CSUR),
50(1):1–33, 2017.

[10] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, Hovav Shacham, and Marcel Winandy. Return-Oriented Pro-
gramming without Returns. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 559–572, 2010.

[11] Jonathan Corbet. BPF: the universal in-kernel virtual machine. https:
//lwn.net/Articles/599755/.

[12] Gabriel Corona. The ELF file format. https://www.gabriel.urdhr.
fr/2015/09/28/elf-file-format/.

[13] Solar Designer. Getting around non-executable stack (and fix). https:
//seclists.org/bugtraq/1997/Aug/63.

[14] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and
Sanitization. In IEEE Symposium on Security and Privacy (S&P),
pages 128–142, 2020.

[15] Docker Documentation. Seccomp Security Profiles for Docker. https:
//docs.docker.com/engine/security/seccomp/.

[16] Common Weakness Enumeration. CWE-123: Write-what-where Con-
dition. https://cwe.mitre.org/data/definitions/123.html.

[17] Tal Garfinkel. Traps and Pitfalls: Practical Problems in System Call
Interposition Based Security Tools. In Network and Distributed System
Security Symposium (NDSS), pages 163–176, 2003.

[18] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia: A Delegating
Architecture for Secure System Call Interposition. In Network and
Distributed System Security Symposium (NDSS), 2004.

[19] Jason Geffner. VENOM: Virtualized Environment Neglected Opera-
tions Manipulation. http://venom.crowdstrike.com.

[20] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis
Polychronakis. Confine: Automated System Call Policy Generation for
Container Attack Surface Reduction. In International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), 2020.

[21] Daniel B Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières,
John C Mitchell, and Alejandro Russo. Hails: Protecting Data Privacy
in Untrusted Web Applications. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 47–60, 2012.

[22] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller. Detecting Manip-
ulated Remote Call Streams. In USENIX Security Symposium (SEC),
pages 61–79, 2002.

[23] Will Glozer. wrk – a HTTP benchmarking tool. https://github.
com/wg/wrk.

[24] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Por-
tokalidis. Out Of Control: Overcoming Control-Flow Integrity. In IEEE
Symposium on Security and Privacy (S&P), pages 575–589, 2014.

[25] Google Project Zero. speculative execution, variant 4: speculative store
bypass. https://bugs.chromium.org/p/project-zero/issues/
detail?id=1528.

[26] LLVM Developer Group. The LLVM Compiler Infrastructure. https:
//llvm.org.

[27] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. Ef-
fective Program Debloating via Reinforcement Learning. In ACM
SIGSAC Conference on Computer and Communications Security (CCS),
pages 380–394, 2018.

[28] Gerard J. Holzmann. Code Inflation. IEEE Software, (2):10–13, 2015.

[29] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek
Saxena, and Zhenkai Liang. Data-Oriented Programming: On the
Expressiveness of Non-Control Data Attacks. In IEEE Symposium on
Security and Privacy (S&P), pages 969–986, 2016.

[30] Intel. System V Application Binary Interface. https:
//software.intel.com/sites/default/files/article/
402129/mpx-linux64-abi.pdf.

[31] GNU Compiler Collection (GCC) Internals. Com-
mon Function Attributes. https://gcc.gnu.org/
onlinedocs/gcc/Common-Function-Attributes.html#
Common-Function-Attributes.

[32] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias
Payer. Block Oriented Programming: Automating Data-Only Attacks.
In ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS), pages 1868–1882, 2018.

[33] Vasileios P. Kemerlis. Protecting Commodity Operating Systems
through Strong Kernel Isolation. PhD thesis, Columbia University,
2015.

[34] Vasileios P. Kemerlis, Michalis Polychronakis, and Angelos D.
Keromytis. ret2dir: Rethinking Kernel Isolation. In USENIX Security
Symposium (SEC), pages 957–972, 2014.

[35] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D.
Keromytis. kGuard: Lightweight Kernel Protection against Return-to-
user attacks. In USENIX Security Symposium (SEC), pages 459–474,
2012.

https://blog.chromium.org/2012/11/a-safer-playground-for-your-linux-and.html
https://blog.chromium.org/2012/11/a-safer-playground-for-your-linux-and.html
https://lwn.net/Articles/599755/
https://lwn.net/Articles/599755/
https://www.gabriel.urdhr.fr/2015/09/28/elf-file-format/
https://www.gabriel.urdhr.fr/2015/09/28/elf-file-format/
https://seclists.org/bugtraq/1997/Aug/63
https://seclists.org/bugtraq/1997/Aug/63
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/seccomp/
https://cwe.mitre.org/data/definitions/123.html
http://venom.crowdstrike.com
https://github.com/wg/wrk
https://github.com/wg/wrk
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://llvm.org
https://llvm.org
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes


[36] The Linux Kernel. Seccomp BPF (SECure COMPuting
with filters). https://www.kernel.org/doc/html/latest/
userspace-api/seccomp_filter.html.

[37] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Ex-
ploiting Speculative Execution. In IEEE Symposium on Security and
Privacy (S&P), pages 1–19, 2019.

[38] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P. Kemerlis, and
Michalis Polychronakis. Compiler-assisted Code Randomization. In
IEEE Symposium on Security and Privacy (S&P), pages 461–477, 2018.

[39] Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis Polychronakis.
Configuration-Driven Software Debloating. In European Workshop on
Systems Security (EuroSec), pages 1–6, 2019.

[40] Volodymyr Kuznetzov, László Szekeres, Mathias Payer, George Can-
dea, R. Sekar, and Dawn Song. Code-Pointer Integrity. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
pages 147–163. 2014.

[41] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz.
SoK: Automated Software Diversity. In IEEE Symposium on Security
and Privacy (S&P), pages 276–291, 2014.

[42] Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shenefiel, Rui Ma, Yuewu
Wang, and Qi Li. Speaker: Split-Phase Execution of Application Con-
tainers. In International Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment (DIMVA), pages 230–251, 2017.

[43] Yiwen Li, Brendan Dolan-Gavitt, Sam Weber, and Justin Cappos. Lock-
in-Pop: Securing Privileged Operating System Kernels by Keeping on
the Beaten Path. In USENIX Annual Technical Conference (ATC),
pages 1–13, 2017.

[44] Percy Liang and Mayur Naik. Scaling Abstraction Refinement via
Pruning. In ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 590–601, 2011.

[45] The GNU C Library. System Databases and Name Service
Switch. https://www.gnu.org/software/libc/manual/html_
node/Name-Service-Switch.html.

[46] Linux Programmer’s Manual. bpf – perform a command on an extended
BPF map or program. http://man7.org/linux/man-pages/man2/
bpf.2.html.

[47] Linux Programmer’s Manual. seccomp – operate on Secure Computing
state of the process. http://man7.org/linux/man-pages/man2/
seccomp.2.html.

[48] Linux Programmer’s Manual. syscall – indirect system call. http:
//man7.org/linux/man-pages/man2/syscall.2.html.

[49] Generic Part Linux Standard Base Core Specification. Excep-
tion Frames. https://refspecs.linuxbase.org/LSB_5.0.0/
LSB-Core-generic/LSB-Core-generic/ehframechpt.html.

[50] H. J. Lu and Mike Frysinger. x32 System V Application Binary
Interface. https://sites.google.com/site/x32abi/.

[51] Federico Maggi, Matteo Matteucci, and Stefano Zanero. Detecting In-
trusions through System Call Sequence and Argument Analysis. IEEE
Transactions on Dependable and Secure Computing (TDSC), 7(4):381–
395, 2008.

[52] Linux Programmer’s Manual. syscalls – Linux system calls. http:
//man7.org/linux/man-pages/man2/syscalls.2.html.

[53] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières.
CCFI: Cryptographically Enforced Control Flow Integrity. In ACM
SIGSAC Conference on Computer and Communications Security (CCS),
pages 941–951, 2015.

[54] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New
Architecture for User-level Packet Capture. In USENIX Winter Confer-
ence, pages 259–270, 1993.

[55] Shachee Mishra and Michalis Polychronakis. Shredder: Breaking
Exploits through API Specialization. In Annual Computer Security
Applications Conference (ACSAC), pages 1–16, 2018.

[56] Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong.
SHILL: A Secure Shell Scripting Language. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages 183–199,
2014.

[57] MozillaWiki. Security/Sandbox/Seccomp. https://wiki.mozilla.
org/Security/Sandbox/Seccomp.

[58] Darren Mutz, Fredrik Valeur, Giovanni Vigna, and Christopher Kruegel.
Anomalous System Call Detection. ACM Transactions on Information
and System Security (TISSEC), pages 61–93, 2006.

[59] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. SoftBound: Highly Compatible and Complete Spatial
Memory Safety for C. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 245–258, 2009.

[60] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. CETS: Compiler Enforced Temporal Safety for C. In ACM
SIGPLAN International Symposium on Memory Management (ISMM),
pages 31–40, 2010.

[61] NixOS. patchelf – A small utility to modify the dynamic linker
and RPATH of ELF executables. https://github.com/NixOS/
patchelf.

[62] A. Jefferson Offutt and J. Huffman Hayes. A Semantic Model of
Program Faults. ACM SIGSOFT Software Engineering Notes (SEN),
21(3):195–200, 1996.

[63] OpenSSH. Release Notes. https://www.openssh.com/txt/
release-6.0.

[64] Oracle Solaris, Linker and Libraries Guide. Position-Independent
Code. https://docs.oracle.com/cd/E26505_01/html/E26506/
glmqp.html.

[65] Marios Pomonis, Theofilos Petsios, Angelos D. Keromytis, Michalis
Polychronakis, and Vasileios P. Kemerlis. kRˆX: Comprehensive Ker-
nel Protection against Just-In-Time Code Reuse. In European Confer-
ence on Computer Systems (EuroSys), pages 420–436, 2017.

[66] Marios Pomonis, Theofilos Petsios, Angelos D. Keromytis, Michalis
Polychronakis, and Vasileios P. Kemerlis. Kernel Protection against
Just-In-Time Code Reuse. ACM Transactions on Privacy and Security
(TOPS), 22(1):1–28, 2019.

[67] GNU Project. The GNU Compiler Collection. https://gcc.gnu.
org.

[68] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P.
Kemerlis, and Michalis Polychronakis. xMP: Selective Memory Pro-
tection for Kernel and User Space. In IEEE Symposium on Security
and Privacy (S&P), pages 584–598, 2020.

[69] Niels Provos. Improving Host Security with System Call Policies. In
USENIX Security Symposium (SEC), pages 257–272, 2003.

[70] Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo
Kim, and Wenke Lee. RAZOR: A Framework for Post-deployment
Software Debloating. In USENIX Security Symposium (SEC), pages
1733–1750, 2019.

[71] Anh Quach, Aravind Prakash, and Lok Yan. Debloating Software
through Piece-Wise Compilation and Loading. In USENIX Security
Symposium (SEC), pages 869–886, 2018.

[72] Ganesan Ramalingam. The Undecidability of Aliasing. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 16(5):1467–
1471, 1994.

[73] Redis Labs. NoSQL Redis and Memcache traffic generation and
benchmarking tool. https://github.com/RedisLabs/memtier_
benchmark.

https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
http://man7.org/linux/man-pages/man2/bpf.2.html
http://man7.org/linux/man-pages/man2/bpf.2.html
http://man7.org/linux/man-pages/man2/seccomp.2.html
http://man7.org/linux/man-pages/man2/seccomp.2.html
http://man7.org/linux/man-pages/man2/syscall.2.html
http://man7.org/linux/man-pages/man2/syscall.2.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
https://refspecs.linuxbase.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html
https://sites.google.com/site/x32abi/
http://man7.org/linux/man-pages/man2/syscalls.2.html
http://man7.org/linux/man-pages/man2/syscalls.2.html
https://wiki.mozilla.org/Security/Sandbox/Seccomp
https://wiki.mozilla.org/Security/Sandbox/Seccomp
https://github.com/NixOS/patchelf
https://github.com/NixOS/patchelf
https://www.openssh.com/txt/release-6.0
https://www.openssh.com/txt/release-6.0
https://docs.oracle.com/cd/E26505_01/html/E26506/glmqp.html
https://docs.oracle.com/cd/E26505_01/html/E26506/glmqp.html
https://gcc.gnu.org
https://gcc.gnu.org
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark


[74] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison,
and Xuejun Yang. Test-Case Deduction for C Compiler Bugs. In
ACM SIGPLAN conference on Programming Language Design and
Implementation (PLDI), pages 335–346, 2012.

[75] Valentin Rothberg. Generate SECCOMP Profiles for Containers Us-
ing Podman and eBPF. https://podman.io/blogs/2019/10/15/
generate-seccomp-profiles.html.

[76] Jerome H. Saltzer and Michael D. Schroeder. The Protection of Infor-
mation in Computer Systems. IEEE, 63(9):1278–1308, 1975.

[77] Pawel Sarbinowski, Vasileios P. Kemerlis, Cristiano Giuffrida, and
Elias Athanasopoulos. VTPin: Practical VTable Hijacking Protection
for Binaries. In Annual Computer Security Applications Conference
(ACSAC), pages 448–459, 2016.

[78] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. Counterfeit Object-oriented
Programming: On the Difficulty of Preventing Code Reuse Attacks in
C++ Applications. In IEEE Symposium on Security and Privacy (S&P),
pages 745–762, 2015.

[79] Hovav Shacham. The Geometry of Innocent Flesh on the Bone: Return-
into-libc without Function Calls (on the x86). In ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), pages 552–
561, 2007.

[80] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaf-
far. TRIMMER: Application Specialization for Code Debloating. In
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 329–339, 2018.

[81] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, and Ahmad-Reza Sadeghi. Just-In-Time Code
Reuse: On the Effectiveness of Fine-Grained Address Space Layout
Randomization. In IEEE Symposium on Security and Privacy (S&P),
pages 574–588, 2013.

[82] Peter Snyder, Cynthia Taylor, and Chris Kanich. Most Websites Don’t
Need to Vibrate: A Cost-Benefit Approach to Improving Browser Secu-
rity. In ACM SIGSAC Conference on Computer and Communications
Security (CCS), pages 179–194, 2017.

[83] Brad Spengler. PaX: The Guaranteed End of Arbitrary Code Execution.
In G-Con2, 2003.

[84] Guy Lewis Steele Jr. Debunking the “Expensive Procedure Call” Myth
or, Procedure Call Implementations Considered Harmful or, LAMBDA:
The Ultimate GOTO. In ACM National Conference, pages 153–162,
1977.

[85] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong
Su. Perses: Syntax-Guided Program Reduction. In International
Conference on Software Engineering (ICSE), pages 361–371, 2018.

[86] Debian The Universal Operating System. The unstable distribution
(“sid”). https://www.debian.org/releases/sid/.

[87] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eter-
nal War in Memory. In IEEE Symposium on Security and Privacy
(S&P), pages 48–62, 2013.

[88] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E.
Porter. A Study of Modern Linux API Usage and Compatibility: What
to Support When You’re Supporting. In European Conference on
Computer Systems (EuroSys), pages 1–16, 2016.

[89] David Wagner and Drew Dean. Intrusion Detection via Static Analysis.
In IEEE Symposium on Security and Privacy (S&P), pages 156–168,
2000.

[90] Zhiyuan Wan, David Lo, Xin Xia, Liang Cai, and Shanping Li. Min-
ing Sandboxes for Linux Containers. In International Conference on
Software Testing, Verification and Validation (ICST), pages 92–102,
2017.

[91] Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat Kantarcioglu,
and Bhavani Thuraisingham. Differentiating Code from Data in x86 Bi-
naries. In European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML-PKDD), pages 522–536, 2011.

[92] Robert N. M. Watson. Exploiting Concurrency Vulnerabilities in Sys-
tem Call Wrappers. In USENIX Workshop on Offensive Technologies
(WOOT), 2007.

[93] Debian Wiki. Using Symbols Files. https://wiki.debian.org/
UsingSymbolsFiles.

[94] David Williams-King, Graham Gobieski, Kent Williams-King, James P.
Blake, Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P. Ke-
merlis, Junfeng Yang, and William Aiello. Shuffler: Fast and Deploy-
able Continuous Code Re-Randomization. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages 367–382,
2016.

[95] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Gra-
ham Patterson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P.
Kemerlis. Egalito: Layout-Agnostic Binary Recompilation. In ACM
SIGPLAN International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pages 133–
147, 2020.

[96] Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang, Kevin W. Hamlen,
and Zhiqiang Lin. CONFIRM: Evaluating Compatibility and Relevance
of Control-flow Integrity Protections for Modern Software. In USENIX
Security Symposium (SEC), pages 1805–1821, 2019.

[97] Yves Younan, Wouter Joosen, and Frank Piessens. Runtime Coun-
termeasures for Code Injection Attacks against C and C++ Programs.
ACM Computing Surveys (CSUR), 44(3):1–28, 2012.

[98] Qiang Zeng, Zhi Xin, Dinghao Wu, Peng Liu, and Bing Mao. Tailored
Application-specific System Call Tables. Technical report, Pennsylva-
nia State University, 2014.

[99] Hanqing Zhao, Yanyu Zhang, Kun Yang, and Taesoo Kim. Breaking
Turtles All the Way Down: An Exploitation Chain to Break out of
VMware ESXi. In USENIX Workshop on Offensive Technologies
(WOOT), 2019.

A VCG Special Cases

GNU IFUNC GCC, along with the GNU Binutils and glibc,
provide support for (a GNU-specific feature, named) indi-
rect functions. Such symbols are of type STT_GNU_IFUNC
and have an associated resolver function that will “return”
the actual/target function to be used in lieu of the indirect
(IFUNC) symbol [31]. The resolution takes place via PLT,
at run-time; IFUNCs are typically used for customizing the
symbol resolution of ld.so, and selecting among different
function implementations that use processor-specific features.
sysfilter links every call via an IFUNC PLT entry with:
(1) the respective resolver function, and (2) all its potential
targets in VCG—the latter are easily identifiable as they are
functions whose address is taken in the resolver.
GNU NSS The Name Service Switch (NSS) [45] is used by
glibc to select among different name resolution mechanisms
(e.g., flat-file databases, DNS, LDAP). Specifically, glibc
consults nsswitch.conf to determine the mapping between
various databases (i.e., passwd, shadow, group, hosts, etc.)
and resolution mechanisms (e.g., files, dns, ldap). Each
such mechanism corresponds to a different dynamic shared

https://podman.io/blogs/2019/10/15/generate-seccomp-profiles.html
https://podman.io/blogs/2019/10/15/generate-seccomp-profiles.html
https://www.debian.org/releases/sid/
https://wiki.debian.org/UsingSymbolsFiles
https://wiki.debian.org/UsingSymbolsFiles


object (e.g., libnss_files.so, libnss_dns.so, libnss_-
ldap.so), which provides a specific implementation of the
NSS API. Depending on the contents of nsswitch.conf,
glibc loads the analogous .so ELF file, using dlopen, and
invokes the relevant functions (NSS), after obtaining their ad-
dresses via dlsym. sysfilter parses nsswitch.conf, and
makes use of the implicit library/function dependency mech-
anism to add the matching ELF object(s) and function(s) in
the analysis scope (§ 3.1.1) and VCG (§ 3.1.2), respectively.
Overlapping Functions Certain versions of glibc include
functions whose body overlaps with that of other functions. In
particular, in v2.24 of glibc, ≈ 30 functions are completely
embedded inside others (e.g., connect wraps __connect-
_nocancel). In cases where, say, f1() overlaps with f2(),
and &f1() < &f2(), both functions can be (in)directly-
invoked by others, but if f1() gets executed, f2() will be
invoked as well, as the execution will fall through to the latter.
sysfilter supports such cases by carefully inspecting func-
tion boundaries (.eh_frame section; § 3.1.2), and connecting
the respective functions in DCG, accordingly.
Hand-written Assembly ASM code is not problematic for
sysfilter as long as it adheres to our hardening assumptions
(§ 2). sysfilter does not support non-PIC objects (§ 3.1.1);
hence, if ASM code that is embedded in binaries is analyzed,
it will be PIC (by construction). If .eh_frame records (for
hand-written ASM) are missing, or code and data are mixed,
then the precision of our analyses will be affected. Thankfully,
however, the (hand-written) ASM code that is linked-with
popular binaries/libraries oftentimes contains annotations to
support stack unwinding and (C++) exception handling [49].
Lastly, if partial information regarding function boundaries
is available, sysfilter will resort to using a combination of
linear and recursive disassembly techniques, and state-of-the-
art heuristics [94], for approximating function boundaries.

B Enforcement Details

1 struct seccomp_data {
2 int nr; /* syscall number */
3 __u32 arch; /* architecture (x86-64) */
4 __u64 instruction_pointer; /* IP value */
5 __u64 args[6]; /* syscall arguments */
6 };

Figure 8: struct seccomp_data. Passed by the Linux
kernel to seccomp-BPF filters on every syscall. The field
nr is filled with the system call number, while arch and
instruction_pointer are filled with the respective archi-
tecture, and value of the instruction pointer, during the time
of executing syscall (i.e., AUDIT_ARCH_X86_64 and %rip,
in x86-64). Likewise, args[6] is a six-element array, filled
with the syscall arguments (i.e., the values of registers %rdi,
%rsi, %rdx, %r10, %r8, and %r9, in x86-64).

1 #define ARCH AUDIT_ARCH_X86_64
2 #define NRMAX (X32_SYSCALL_BIT - 1)
3 #define ALLOW SECCOMP_RET_ALLOW
4 #define DENY SECCOMP_RET_KILL_PROCESS
5
6 struct sock_filter filter[] = {
7 BPF_STMT(BPF_LD | BPF_W | BPF_ABS ,
8 (offsetof(struct seccomp_data , arch))),
9 BPF_JUMP(BPF_JMP| BPF_JEQ|BPF_K , ARCH , 0, 7),

10 BPF_STMT(BPF_LD | BPF_W | BPF_ABS ,
11 (offsetof(struct seccomp_data , nr))),
12 BPF_JUMP(BPF_JMP|BPF_JGE|BPF_K , 61, 11, 0),
13 BPF_JUMP(BPF_JMP|BPF_JGE|BPF_K , 8, 5, 0),
14 BPF_JUMP(BPF_JMP|BPF_JGE|BPF_K , 2, 2, 0),
15 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 1, 19, 0),
16 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 0, 18, 19),
17 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 3, 17, 0),
18 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 2, 16, 17),
19 BPF_JUMP(BPF_JMP|BPF_JGE|BPF_K , 11, 2, 0),
20 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 9, 14, 0),
21 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 8, 13, 14),
22 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 56, 12, 0),
23 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 11, 11, 12),
24 BPF_JUMP(BPF_JMP|BPF_JGE|BPF_K , 115, 5, 0),
25 BPF_JUMP(BPF_JMP|BPF_JGE|BPF_K , 96, 2, 0),
26 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 79, 8, 0),
27 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 61, 7, 8),
28 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 102, 6, 0),
29 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 96, 5, 6),
30 BPF_JUMP(BPF_JMP|BPF_JGE|BPF_K , 292, 2, 0),
31 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 202, 3, 0),
32 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 115, 2, 3),
33 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 317, 1, 0),
34 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K , 292, 0, 1),
35 BPF_STMT(BPF_RET|BPF_K , ALLOW),
36 BPF_STMT(BPF_RET|BPF_K , DENY) };

Figure 9: Classic BPF (cBPF) Program. Compiled-
by sysfilter, enforcing the following syscall set:
0 (read), 1 (write), 2 (open), 3 (close), 8 (lseek),
9 (mmap), 11 (munmap), 56 (clone), 61 (wait4),
79 (getcwd), 96 (gettimeofday), 102 (getuid),
115 (getgroups), 202 (futex), 292 (dup3), and
317 (seccomp). The filter checks if the value of field
nr∈ {0,1,2,3,8,9,11,56,61,79,96,102,115,202,292,317}
via means of (deterministic) skip list-based search. The
BPF_JEQ statements assert if the value of nr is one of the 16
allowed syscalls, whereas BPF_JGE statements implement the
“shortcuts” in the search process.


	Introduction
	Background and Threat Model
	Design and Implementation
	System Call Set Extraction
	Analysis Scope
	Function-Call Graph Construction
	System Call Set Construction

	System Call Set Enforcement
	Prototype Implementation

	Evaluation
	Large-scale System Call Analysis
	Related Work
	Conclusion
	VCG Special Cases
	Enforcement Details

