Shuffler: Fast and Deployable Continuous Code Re-Randomization

David Williams-King! Graham Gobieski' Kent Williams-King?
James P. Blake! Xinhao Yuan' Patrick Colp? Michelle Zheng'
Vasileios P. Kemerlis® Junfeng Yang! William Aiello?

Columbia University

Abstract

While code injection attacks have been virtually elim-
inated on modern systems, programs today remain vul-
nerable to code reuse attacks. Particularly pernicious are
Just-In-Time ROP (JIT-ROP) techniques, where an at-
tacker uses a memory disclosure vulnerability to discover
code gadgets at runtime. We designed a code-reuse de-
fense, called Shuffler, which continuously re-randomizes
code locations on the order of milliseconds, introducing
a real-time deadline on the attacker. This deadline makes
it extremely difficult to form a complete exploit, partic-
ularly against server programs that often sit tens of mil-
liseconds away from attacker machines.

Shuffler focuses on being fast, self-hosting, and non-
intrusive to the end user. Specifically, for speed, Shuffler
randomizes code asynchronously in a separate thread and
atomically switches from one code copy to the next. For
security, Shuffler adopts an “egalitarian™ principle and
randomizes itself the same way it does the target. Lastly,
to deploy Shuffler, no source, kernel, compiler, or hard-
ware modifications are necessary.

Evaluation shows that Shuffler defends against all
known forms of code reuse, including ROP, direct JIT-
ROP, indirect JIT-ROP, and Blind ROP. We observed
14.9% overhead on SPEC CPU when shuffling every
50 ms, and ran Shuffler on real-world applications such
as Nginx. We showed that the shuffled Nginx scales up
to 24 worker processes on 12 cores.

1 Introduction

At present, programs hardened with the latest mainline
protection mechanisms remain vulnerable to code reuse
attacks. In a typical scenario, the attacker seizes con-
trol of the instruction pointer and executes a sequence
of existing code fragments to form an exploit [54]. This
is fundamentally very difficult to defend against, as the
program must be able to run its own code, and yet the
attacker should be prevented from running out-of-order
instruction sequences of that same code. One popular

ZUniversity of British Columbia

3Brown University

mitigation is to deny the attacker knowledge about the
program’s code through randomization. Unfortunately,
memory disclosure vulnerabilities are common in the
real world, with 500-2000 discovered per year over the
last three years [20]. Such vulnerabilities can be used
to read the program’s code, at runtime, and unravel any
static randomization in a so-called Just-In-Time ROP
(JIT-ROP) attack [55].

We propose a system, called Shuffler, which provides a
deployable defense against JIT-ROP and other code reuse
attacks. Other such defenses have appeared in the lit-
erature, but all have had significant barriers to deploy-
ment: some utilize a custom hypervisor [4, 17, 33, 57];
others involve a modified compiler [7,10,13,40,42], run-
time [10,42], or operating system kernel [4,7,17]. Note
that there is a security risk in any solution that requires
additional privileges, as an attacker can potentially gain
access to that elevated privilege level. Also, modified
components present a large barrier to the adoption of the
system and have less chance of incorporating upstream
patches and updates, so users may continue to run vul-
nerable software versions. In comparison, Shuffler runs
in userspace alongside the target program, and requires
no system modifications beyond a minimal patch to the
loader. Shuffler can be deployed amongst existing cloud
infrastructure, adopted by software distributors, or used
at small scale by individual security-conscious users.

Shuffler operates by performing continuous code re-
randomization at runtime, within the same address space
as the programs it defends. Most defenses operating at
the same level of privilege as their target do not consider
defending their own attack surface. In contrast, we boot-
strap into a self-hosted and self-modifying egalitarian
environment—Shuffler actually shuffles itself. We also
defend all of a program’s shared libraries, and handle
multithreading and process forks, shuffling each child
independently. Our current prototype does not handle
certain hand-coded assembly, but in principle, all exe-
cutable code in a process’s address space can be shuffled.

With Shuffler, we aim to rapidly obsolete leaked infor-
mation by rearranging memory as fast as possible. Shuf-
fler operates within a real-time deadline, which we call
the shuffle period. This deadline constrains the total ex-
ecution time available to any attack, since no informa-
tion about the memory layout transfers from one shuf-
fle period to the next. We achieve a shuffle period on
the order of tens of milliseconds, so fast that it is nearly
impossible to form a complete exploit. Shuffler creates
new function permutations asynchronously in a separate
thread, and then atomically migrates program execution
from one copy of code to the next. This migration re-
quires a vanishingly small global pause time, as program
threads continue to execute unhindered 99.7% of the time
(according to SPEC CPU experiments). Thus, if the host
machine has a spare CPU core, shuffling at faster rates
does not significantly impact the target’s performance.
Shuffler’s default behaviour is to use a fixed shuffling
rate, but it can work with different policies. For instance,
if the system is under reduced load, a new vulnerability
is announced, or an intrusion detection system raises an
alarm, the shuffling rate can be increased dynamically.

Our system operates on program binaries, analyzing
them and performing binary rewriting. This analysis
must be complete and precise; missing even a single code
pointer and failing to update it upon re-randomization
can cause correctness issues. Because of the difficulty
of binary analysis, we leverage existing compiler and
linker flags to preserve symbols and relocations. Some
(but not all [46]) vendors strip symbol information from
binaries to impede reverse engineering, but reversing
stripped binaries is still feasible using disassemblers like
IDA Pro [27]. We anticipate that vendors would be will-
ing to include (obfuscated) symbols and relocations in
their binaries, given the additional defensive possibili-
ties. For instance, relocations enable shuffling but are
also required for executable base address randomization
on Windows. In the open-source Linux world, high-
level build systems are already designed to support the
introduction of additional compiler flags [26], allowing
distribution-wide security hardening [25,29, 58].

Evaluation shows that our system successfully defends
against all known forms of code reuse, including ROP,
direct JIT-ROP, indirect JIT-ROP, and Blind ROP. We ran
Shuffler on a range of programs including web servers,
databases, and Mozilla’s SpiderMonkey Javascript inter-
preter. We successfully defend against a Blind ROP at-
tack on Nginx, and against a JIT-ROP attack on a toy web
server. Shuffler incurs 14.9% overhead on SPEC CPU
when shuffling every 50 ms, and has good scalability on
Nginx when shuffling up to 24 workers every 50 ms. We
show that a 50 ms shuffle period is orders of magnitude
faster than the time required by existing JIT-ROP attacks,
which take 2.3 to 378 seconds to complete [52,55].

Our main contributions are as follows:

1. Deployability: We design a re-randomization de-
fense against JIT-ROP and code reuse, which runs
without modification to the source, compiler, linker,
or kernel, and with minimal changes to the loader.

2. Speed: We introduce a real-time deadline on the or-
der of milliseconds for any disclosure-based attack,
using a new asynchronous re-randomization archi-
tecture that has low latency and low overhead.

3. Egalitarianism: We describe how we bootstrap our
defense into a self-hosting environment, thus avoid-
ing any expansion of the trusted computing base.

4. Augmented binary analysis: We show that com-
plete and precise analysis is possible on binaries by
leveraging information available from today’s com-
pilers (namely, symbols and relocations).

2 Background and Threat Model

Attack taxonomy Many attacks seen in the wild
against running programs are based on control-flow hi-
jacking. An attacker uses a memory corruption vulner-
ability to overwrite control data, like return addresses
or function pointers, and branches to a location of their
choosing [2]. In the early days, that location could be
a buffer where the attacker had directly written their de-
sired exploit code, thus enacting a so-called code injec-
tion attack. Nowadays, the widespread deployment of
Write-XOR-Execute (WAX) [15] ensures that pages can-
not be both executable and writable, which has led to the
effective demise of code injection.

In response, attackers began to create code reuse at-
tacks, stitching together pieces of code already present
in a program’s code section. The first and simplest such
attack was return-to-libc (ret21ibc) [51,56], where an
attacker redirects control flow to reuse whole 1ibc func-
tions, such as system, after setting up arguments on
the stack. A more sophisticated technique called Return-
Oriented Programming (ROP) [54] was soon discovered,
where an attacker stitches together very short instruction
sequences ending with a return instruction (or other in-
direct branch instructions [9, 36])—sequences known as
gadgets. The terminating return instruction allows the at-
tacker to jump to the next gadget, and the attacker may
set up the stack to contain the addresses of a desired
“chain” of gadgets. ROP has been shown to be Turing-
complete, and there are tools known as ROP compilers
which can automatically generate ROP chains [52].

Defenses against code reuse The research community
has proposed two main categories of defenses against
code reuse. The first is Control Flow Integrity (CFI) [1],
which tries to ensure that every indirect branch taken

by the program is in accordance with its control-flow
graph. However, both coarse-grained CFI [61, 62] and
fine-grained CFI [47] can be bypassed through careful
selection of gadgets [11,23,28].

The second category of defense is code randomization,
performed at load-time to make the addresses of gad-
gets unpredictable. Module-level Address Space Lay-
out Randomization (ASLR) is currently deployed in all
major operating systems [49, 60]. Fine-grained random-
ization schemes have been proposed at the function [6],
basic block [59], and instruction [38] level. These de-
fenses spurred a noteworthy new attack called Just-In-
Time ROP (JIT-ROP) in 2013 [55]. In JIT-ROP, the at-
tacker starts with one known code address, recursively
reads code pages at runtime with a memory disclosure
vulnerability, then compiles an attack using gadgets in
the exfiltrated code. The authors conclude that no load-
time randomization scheme can stand against this attack.

Defenses in the JIT-ROP era The first defenses
against JIT-ROP concentrated on preventing recursive
gadget harvesting. Oxymoron [5] and Code Pointer In-
tegrity [40] proposed an inaccessible table to hide the
true destination of call instructions. Other works pro-
posed execute-only memory, either with a custom hy-
pervisor [17,57] or software emulation [4, 33]. Un-
fortunately, preventing the direct disclosure of memory
pages is insufficient. Indirect JIT-ROP [14, 24] shows
that harvesting code pointers from data pages allows the
location of gadgets to be inferred, without ever being
read. Leakage-resilient diversification [10, 17] combines
execute-only memory with fine-grained ASLR and func-
tion trampolines. Thus, code pages cannot be read and
their contents cannot be inferred through pointers. This
defense is currently still effective, though implementing
execute-only memory without extensive system modifi-
cations remains challenging.

Continuous re-randomization Following a handful
of early re-randomization schemes [19, 34], researchers
began to realize that continuous re-randomization can de-
fend against JIT-ROP. If code is re-randomized between
the time it is leaked and when a gadget chain is invoked,
the attack will fail because the gadgets no longer exist.
For instance, Remix [13] continuously re-randomizes
the basic block ordering within functions, so that gadgets
no longer stay at constant offsets. The system utilizes an
LLVM compiler pass to add padding NOPs so that there
will be enough space to reorder blocks. However, this
intra-function randomization is vulnerable to attacks that
leverage function locations or reuse function pointers.
The closest system to Shuffler is TASR [7]. TASR is a
source-level technique which performs re-randomization
based on pairs of read/write system calls, between any
program output (which may leak information) and any

program input (which may contain an exploit). How-
ever, TASR requires kernel and compiler modifications,
is currently only applicable to C programs, and has high
performance overhead, as we discuss in Section 5.5.

Finally, another form of ROP called Blind ROP [8] tar-
gets servers that fork workers. Since the workers inherit
the parent’s address space layout, Blind ROP brute forces
them without worrying about causing crashes. Run-
timeASLR [42] uses heavyweight instrumentation to al-
low re-randomization of the child process on fork.

2.1 Threat Model

Shuffler is built upon continuous re-randomization. We
aim to defend against all known forms of code reuse at-
tacks, including ROP, direct JIT-ROP, indirect JIT-ROP,
and Blind ROP. We assume that protection against code
injection (W”X) is in place, and that an x86-64 architec-
ture is in use. Our system does not require (and, in fact,
is orthogonal to) other defensive techniques like intra-
function ASLR, stack smashing protection, or any other
compiler hardening technique.
On the attacker’s side, we assume:

1. The attacker is performing a code reuse attack, and
not code injection (handled by WAX [15]) or a data-
only attack [12] (outside the scope of Shuffler).

2. The attacker has access to 1) a memory disclosure
vulnerability that may be invoked repeatedly to read
arbitrary memory locations, and 2) a memory cor-
ruption vulnerability for bootstrapping exploits.

3. Any memory read or write that violates memory
permissions (or targets an unmapped page) will
cause a detectable crash, and the attacker has no
meta-information about page mappings.!

4. The attacker knows the re-randomization rate and
can time their attack to start at the very beginning
of a shuffling period, maximizing the time that code
addresses remain the same.

Our technique is particularly effective when defend-
ing long-lived processes and network-facing applica-
tions, such as servers. Note that network-based attack-
ers have additional latency induced by communication
delays, each time they invoke a vulnerability; see Sec-
tion 6.3 for details.

3 Design

This section presents the design goals of Shuffler, along
with its architecture, and outlines significant technical
challenges.

ISuch as access to /proc/<pid>/maps.

Compiler symbols Code sandbox 1

Auggnted 9

binary binary

‘
rewriting’ |

Linker relocations

analysis
[y = generates
enerates e: ?
9 %= =){ Code sandbox 2
o Shuffler
Program | Libraries Shuffler |

\-)...

Figure 1: Shuffler architecture. We use symbols and re-
locations (0) for augmented binary analysis (1), rewrite
code into shufflable form (2), and asynchronously create
new code copies at runtime (3), while self-hosting (4).

3.1 Goals

The main goals of Shuffler are:

e Deployability: We aim to reduce the burden on
end-users as much as possible. Thus, we require no
direct access to source code, no static binary rewrit-
ing on disk, and no modifications to system compo-
nents (except our small loader patch).

e Security: Our goal is to defeat all known code reuse
attacks, without expanding the trusted computing
base. We constrain the lifetime of leaked informa-
tion by providing a configurable shuffling period,
mitigating code reuse and JIT-ROP attacks.

e Performance: Because time is an integral part of
our security model, speed is of the essence. We aim
to provide low runtime overhead, and also low total
shuffling latency to allow for high shuffling rates.

3.2 Architecture

Shuffler is designed to require minimal system modi-
fications. To avoid kernel changes, it runs entirely in
userspace; to avoid requiring source or a modified com-
piler, it operates on program binaries. Performing re-
randomization soundly requires complete and precise
pointer analysis. Rather than attempting arbitrary binary
analysis, we leverage symbol and relocation information
from the (unmodified) compiler and linker. Options to
preserve this information exist in every major compiler.
Thus, we are able to achieve completely accurate disas-
sembly in what we call augmented binary analysis—as
shown in Figure 1 part (1) and detailed in Section 3.3.
At load-time, Shuffler transforms the program’s code
using binary rewriting (Figure 1 part (2)). The goal of
rewriting is to be able to track and update all code point-
ers at runtime. We avoid the taint tracking used by related
work [7,42] because it is expensive and would introduce
races during asynchronous pointer updates. Instead, we
leverage our complete and accurate disassembly to trans-
form all code pointers into unique identifiers—indices

into a code pointer table. These indices cannot be altered
after load time (the potential security implications of this
choice are discussed in Section 6), but they trade off very
favorably against performance and ease of implementa-
tion. We handle return addresses (dynamically generated
code pointers) differently, encrypting them on the stack
rather than using indices, thereby preventing disclosure
while maintaining good performance.

Our system performs re-randomization at the level of
functions within a specific shuffle period, a randomiza-
tion deadline specified in milliseconds. Shuffler runs in a
separate thread and prepares a new shuffled copy of code
within this deadline, as shown in Figure 1 part (3). This
step is accelerated using a Fenwick tree (see Section 4.4).
The vast majority of the re-randomization process is per-
formed asynchronously: creating new copies of code,
fixing up instruction displacements, updating pointers in
the code table, etc. The threads are globally paused only
to atomically update return addresses. Since any existing
return addresses reference the old copy of code, we must
revisit saved stack frames and update them. Each thread
walks its own stack in parallel, following base point-
ers backwards to iterate through stack frames (a process
known as stack unwinding); see Section 3.3 for details.

Shuffler runs in an egalitarian manner, at the same
level of privilege as target programs, and within the same
address space. To prevent our own code from being used
in a code reuse attack, Shuffler randomizes it the same
way it does all other code (Figure 1 part (4)). In fact,
our scheme uses binary rewriting to transform all code
in a userspace application (the program, Shuffler, and all
shared libraries) into a single code sandbox, essentially
turning it into a statically linked application at runtime.
Bootstrapping from original code into this self-hosting
environment is challenging, particularly without substan-
tially changing the system loader.

3.3 Challenges

Changing function pointer behaviour Normal binary
code is generated under the assumption that the pro-
gram’s memory layout remains consistent and function
pointers have indefinite lifetime. Re-randomization in-
troduces an arbitrary lifetime for each block of code,
and so re-randomization becomes an exercise in avoid-
ing dangling code pointers. Failing to update even one
such pointer may cause the program to crash, or worse,
fall victim to a use-after-free attack.

Hence, we need to accurately track and update every
code pointer during the re-randomization process. We
opt to statically transform all code pointers into unique
identifiers—namely, indices into a hidden code pointer
table. Relying on accurate and complete disassembly
(discussed next), we transform all initialization points to
use indices. Then, wherever the code pointer is copied

throughout memory, it will continue to refer to the same
entry in the table. This scheme does not affect the seman-
tics of function pointer comparison. Iterating through
and updating the pointer values stored in the table can
be done quickly and asynchronously.

Some code pointers are dynamically generated, in par-
ticular, return addresses on the stack. We could dy-
namically allocate table indices, but on the x86 architec-
ture, call/ret pairs are highly optimized, and replac-
ing them with the table mechanism would involve a large
performance degradation [22,43]. Instead, we allow or-
dinary calls to proceed as usual, and at re-randomization
time we unwind the stack and update return addresses
to new values. Rather than leave return addresses ex-
posed on the stack, we encrypt each address with an
XOR cipher. Every callee is responsible for disguising
the return address on the top of the stack, encrypting it at
function entry and decrypting before any function exit.
Callers, meanwhile, are responsible for erasing the (now
unencrypted) return address immediately after the called
function returns. Even though the address is never used
by the program, it is still a (leakable) dangling reference.
The encryption key can be unique to each function and
changed during each stack unwind; see Section 4.1.

Augmented binary analysis The commonly accepted
wisdom is that program analysis can be performed at the
source level (requiring access to source code) or at the
binary level (plagued with completeness issues). In this
work, we propose a middle ground, augmented binary
analysis, which involves analyzing program binaries that
have additional information included by the compiler.
Compiler-generated binaries are much more amenable
to analysis than hand-crafted binaries. We use existing
compiler flags and have no visibility into the source code,
and yet can achieve complete disassembly.

The common problems with binary analysis are dis-
tinguishing code from data, and distinguishing pointers
from integers. To tackle these issues, we require that
(a) the compiler preserve the symbol table, and (b) that
the linker preserve relocations. The symbol table in-
dicates all valid call targets and makes disassembly
straightforward—we iterate through symbols and disas-
semble each one independently; there is no need for a
linear sweep or recursive traversal algorithm [53]. Relo-
cations are used to indicate portions of an object file (or
executable) that need to be patched up once its base ad-
dress is known. Since each base address is initially zero,
every absolute code pointer must have a relocation—but
as object files are linked together, most code pointers get
resolved and their relocations are discarded. We simply
ask the linker to preserve these relocations.

These two augmentations enable complete and accu-
rate disassembly, for any optimization level—at least on
the ~30 programs that we tested, many of which have

sizable codebases. We describe the details of our aug-
mented binary analysis in Section 4.2.

Bootstrapping into shuffled code As stated above,
Shuffler defends its own code the same way it defends
all other code—Ileading to a difficult bootstrapping prob-
lem. Shuffled code cannot start running until the code
pointer table is initialized, requiring some unshuffled
startup code. Shuffled and original code are incompati-
ble if they use code pointers; the process of transforming
code pointers to indices overwrites data that the original
code accesses, and then the original code will no longer
execute correctly. For example, if Shuffler naively be-
gan fixing code pointers while making code copies with
memcpy, it would at some point break the memcpy im-
plementation, because the latter uses code pointers for a
jump table.2 Hence, we would have to call new func-
tions as they became available, and carefully order the
function-pointer rewrite process to avoid invalidating any
functions currently on the call stack.

Instead, we opted for a simpler and more general so-
lution. Shuffler is split into two stages, a minimal and
a runtime stage. The minimal stage is completely self-
contained, and it can safely transform all other code,
including 1ibc and the second-stage Shuffler. Then it
jumps to the shuffled second stage, which erases the pre-
vious stage (and all other original code). The second
stage inherits all the data structures created in the first so
that it can easily create new shuffled code copies. From
this point on, Shuffler is fully self-hosting.

4 Implementation

Shuffler runs in userspace on x86-64 Linux. It shuffles
binaries, all the shared libraries that a binary depends
on, as well as itself. The shuffling process runs asyn-
chronously in a thread, without impeding the execution
of the program’s threads. Figure 2 shows a running snap-
shot of shuffled code. Code pointers are directed through
the code pointer table and return addresses are stored on
the stack, encrypted with an XOR cipher. In each shuf-
fle period, Shuffler makes a new copy of code, updates
the code pointer table and sends a signal to all threads
(including itself); each thread unwinds and fixes up its
stack. Shuffler waits on a barrier until all threads have
finished unwinding, then erases the previous code copy.

Our Shuffler implementation supports many system-
level features, including shared libraries, multiple
threads, forking (each child gets it own Shuffler thread),
{set,long}jmp, system call re-entry, and signals.
Shuffler does not currently support d1lopen or C++ ex-
ceptions. Yet, it does expose several debugging features,
notably, exporting shuffled symbol tables to GDB and
printing shuffled stack traces on demand.

2This crash took place in an earlier prototype of Shuffler.

Code sandbox Per-thread stack

Old code

indirect jump
a calling index b

return address

addr of b return address

%gs
func addr /

func addr New code

func addr HIC return address

Source instruction Transformation

lea funcptr, %rax lea index, %rax

call x%rax callg *%gs: (%rax)

mov (%rax,%rbx,8),%rll

callg *(Srax, $rbx, 8) callg +%gs: (3r11)

A ARG

Jmp *%rax Jmpg *%gs: ($rax)

mov %$rll, %fs:0x88

mov (%rax,%rbx,8),%rll
jmpg * (%$rax, $rbx,8) — mov %gs: (%rll),3rll

xchg %rll, %$fs:0x88

Jmpg *%$fs:0x88

I

I

1

1

1

a 1

I

Code pointer !
table n !
% I

‘

I

I

I

I

I

I

I

T

',v" %rsp

indirect jump
a calling index b

Yofs+C

XOR key

Return address XOR

T~

Code shuffling per|per Execution migration
process thread

Code pointer indirection

Figure 2: Overview of shuffled code at runtime, as Shuf-
fler executes a shuffle pass. The old code is shown with
solid lines and the new code with dotted lines.

4.1 Transformations to Support Shuffling

Code pointer abstraction We allocate the code
pointer table at load-time and set the base address of the
GS segment (selected by the $gs register) at it. Then, we
transform every function pointer at its initialization point
from an address value to an index into this table. We use
relocations generated by the compiler and preserved by
the linker flag —q to find all such code pointers. Pointer
values are deduplicated as they are assigned indices in
the table, for more efficient updating. Jump tables are
handled similarly, with indices assigned to each offset
within a function that is used as a target. Note that in-
dices may also be assigned dynamically by Shuffler (e.g.,
so that set jmp works across shuffle periods).

We must also transform the code so that indices are in-
voked properly. As shown in the Figure 3a, every instruc-
tion which originally used a function pointer value is
rewritten to instead indirect through the $gs table. This
adds an extra memory dereference. Since x86 instruc-
tions can contain at most one memory reference, if there
is already a memory dereference, we use the caller-saved
register $r11 as scratch space. For (position-dependent)
jump tables, there is no register we can safely overwrite,
so we use a thread-local variable allocated by Shuffler as
a scratch space (denoted as $fs:0x88).

Return-address encryption We encrypt return ad-
dresses on the stack with a per-thread XOR key. We
reuse the stack canary storage location for our key; our
scheme operates similarly to stack canaries, but does not
affect the layout of the stack frame. As shown in Fig-
ure 3b, we add two instructions at the beginning of every
function (to disguise the return address) and before every
exit jump (to make it visible again); after each call, we

(a) Transforms to support the code pointer table.

Transformation
mov %fs:0x28,%rll
function begin — xor %$rll, (%rsp)
function begin
mov %fs:0x28,%rll
ret / jmp x*%rax — xor %rll, (%$rsp)
ret / jmp *%rax
call anything
mov $0x0, -8 (%rsp)

Source instruction

call anything —

(b) Transforms to support return address encryption.

Figure 3: Binary rewriting transformations performed
by Shuffler. $fs:0x28 is the stack canary, $rll is
a scratch register, and $fs: 0x88 is a scratch variable.

insert a mov instruction to erase the now-visible return
address on the stack. We again use $r11 as a scratch
register, since it is a caller-saved register according to
the x86-64 ABI, and thus safe to overwrite.

Displacement reach A normal call instruction has a
32-bit displacement and must be within + 2GB of its tar-
get to “reach” it. Shared libraries use Procedure Linkage
Table trampolines to jump anywhere in the 64-bit address
space. We wish to use only 32-bit calls and still enable
function permutation; thus, we place all shuffled code at
most 2GB apart, and transform calls through the PLT into
direct function calls. Essentially, we convert dynamically
linked programs into statically linked ones at runtime.

4.2 Completeness of Disassembly

We demonstrate the complete and precise disassembly
of binaries that have been augmented with a symbol table
and relocations. The techniques shown here are sufficient
to analyze 1ibc, 1ibm, 1ibstdc++, the SPEC CPU
binaries, and the programs listed in our performance
evaluation section. While shuffling these libraries and
programs, we encountered myriad special cases. Fig-
ure 4 lists the main issues we faced, which would also
need to be handled by other systems performing similar
analyses. The issues boil down to: (a) dealing with inac-
curate/missing metadata, especially in the symbol table;
(b) handling special types of symbols and relocations;
and (c) discovering jump table entries and invocations.

Issue | Description

How to handle

Missing symbol sizes

Internal GCC functions have a symbol size of zero.

Hard-code sizes; _start is 42 bytes.

Fall-through symbols

Functions implicitly fall through to the following function.

Attach a copy of the following code.

Overlapping symbols

Some functions are a strict subset of an enclosing function.

Binary search for targets very carefully.

Symbol aliases

Symbol tables have many names for the same function.

Pick one representative name.

Ambiguous names

One LOCAL name, multiple versions (bsloww in libm).

Look up address resolved by the loader.

Pointers to
static functions

For pointers to functions within the same module, the offset
is known, and object files contain no relevant relocations.

Determine if 1ea instructions target a
known symbol (not completely sound).

noreturn GCC always generates a NOP after calls to noreturn | Detect when at a NOP following a call
function calls functions like 1 ongjmp, but omits unwind information. and use unwind info from at the call.
COPY relocations Object initialized in one library, then memcpy’d to another. | Track data symbols, not just code.
IFUNC symbols Return pointer to actual function to call (cached in PLT). Statically evaluate from lea refs.
Conditional Does not appear in normal GCC-generated code. Used in | Can do XOR’ing both before and after,

tail recursion

hand-coded assembly by glibc (Lowlevellock.h).

works whether or not the jump is taken.

Indirect tail rec.

Difficult to tell apart from jump-table jumps.

Use a function epilogue heuristic.

Finding jump tables

Jump tables are not clearly delineated.

See the text for a discussion on this.

Figure 4: Special cases in augmented binary disassembly.

Jump tables One major challenge is identifying
whether relocations are part of jump tables, and distin-
guishing between indirect tail-recursive jumps and jump-
table jumps. If we fail to realize a relocation in a jump
table, we will calculate its target incorrectly and the jump
will branch to the wrong location; if we decide that a
jump table’s jump is actually tail recursive, we will insert
return-address decryption instructions before it, corrupt-
ing $r11 and scrambling the top of the stack.

GCC generates jump tables differently in position-
dependent and position-independent code (PIC).
Position-dependent jump tables use 8-byte direct point-
ers, and are nearly always invoked by an instruction
of the form jmpg * ($rax, $rbx,8) at any opti-
mization level. PIC jump tables use 4-byte relative
offsets added to the address of the beginning of the
table—and the lea that loads the table address may be
quite distant from the final indirect jump. To find PIC
jump tables, we use outgoing %rip-relative references
from functions as bounds and check if they point at
sequences of relocations in the data section.’ Note that
R_X86_64_PC32 relocations must have 4 bytes added
to their value (the displacement size) if present in an
instruction, and they must not if present in a jump table.

It is difficult to tell whether a jmpg *%rax instruc-
tion is used for indirect tail recursion, or a PIC jump ta-
ble. In our system, we must distinguish these to decide
whether to decrypt the return address or not. We do this
with a heuristic that pairs function epilogues with func-
tion prologues. We use a linear sweep to record push
instructions in the function’s first basic block, and keep
a log of the pop instructions seen since the last jump

3Fortunately, GCC only emits jump tables of size five or more,
which makes this heuristic very accurate.

(within a window size). If an indirect jump is preceded
by pop instructions that are in the reverse order of the
push instructions, we assume we have found a function
epilogue and that the jump is indirect tail recursive.

4.3 Bootstrapping and Requirements

We carefully bootstrap into shuffled code using two li-
braries (stage 1 and stage 2) so that the system never
overwrites code pointers for the module that is currently
executing. These libraries are injected into the target
using LD_PRELOAD.* Rather than reimplement loader
functionality, we defer to the system loader to create
a valid process image, and then take over before the
program—or even its constructors—begin executing.
The constructor of stage 1 is called before any other
via the linker mechanism -z initfirst.5 Then, by
setting breakpoints in the loader itself, stage 1 makes sure
all other constructors run in shuffled code. The last con-
structor to be called (a side effect of LD_PRELOAD) is
stage 2’s own constructor; stage 2 creates a dedicated
Shuffler thread, erases the original copy of all other code,
and resumes execution at the shuffled ELF entry point.

4.3.1 Full Shuffling Requirements

Compiler flags We require the program binary and
all dependent libraries to be compiled with -W1, —q,
a linker flag that preserves relocations. Since we
require symbols and DWARF unwind information,
the user must avoid —s, which strips symbols, and
—-fno-asynchronous-unwind-tables, which
elides DWARF unwind information. For simplicity, we
do not support some DWARF 3 and 4 opcodes, so the
user may need to pass —gdwarf-2 when compiling

4LD_PRELOAD=./libshufflel.so:./libshuffle.so
5We require a patch to fully use this mechanism; see Section 4.3.1.

C++. Finally, we found that some SPEC CPU programs
required —fno-omit-frame-pointer, due to a
limitation in our DWARF unwind implementation.

System modifications The -z initfirst loader
feature currently only supports one shared library, and
libpthread already uses it. To maintain compatibil-
ity with 1ibpthread, we patched the loader to support
constructor prioritization in multiple libraries. Our 24-
line patch transforms a single variable into a linked list.
(We have submitted our patch to glibc for review.)

Since shuffled functions must be within + 2GB of
each other, we simplify Shuffler’s task and map all
ELF PT_LOAD sections into the lower 32 bits of the
address space (l-line change to the loader). Since
glibc and 1ibdl refer directly to variables in the
loader with only 32-bit displacements, we also place the
loader itself into that region, preresolving its relocations
with prelink [3]. Finally, we disabled a manually-
constructed jump table in the vfprintf of glibc,
which used computed got o statements (1-line change).
No other library changes were necessary.

4.4 Implementation Optimizations

Generating new code The Shuffler thread maintains a
large code sandbox that stores shuffled (and currently ex-
ecuting) functions. In each shuffle period, every function
within the sandbox is duplicated and the old copies are
erased. The sandbox is split in half so that one half may
be easily erased with a single mprotect system call.®
Performance suffers if each function is written to an in-
dependent location in the sandbox. The bottleneck is in
issuing many mprotect system calls (we do not want
to expose the whole sandbox by making it writable).
Instead, we maintain several buckets (64KB—1MB) and
each function is placed in a random bucket; when a
bucket fills up, it is committed with an mprotect call
and a fresh bucket is allocated. The Memory Protection
Keys (MPK) feature on upcoming Intel CPUs [16] may
allow buckets to be created even more efficiently.
Generating function addresses with high entropy (i.e.,
uniformly at random) is a challenging task. The simplest
allocator would pick random addresses repeatedly until
a free location is found, but this may require many at-
tempts due to fragmentation. Instead, we use a Fenwick
Tree (or Binary Indexed Tree) [30,32] for our allocations.
Our tree keeps track of all valid addresses for new buck-
ets, storing disjoint intervals; it also tracks the sum of
interval lengths (i.e., the amount of free space). We can
select a random number less than this sum and be assured
that it maps to some valid free location, and compute this

OThis also clears the old code from the instruction cache, since
Linux’s updates to the Translation Lookaside Buffer (TLB) flush the
appropriate cache lines as per Section 4.10.4 of the Intel manual [39].

mapping in logarithmic time. This guarantees that each
allocation is selected uniformly at random.

Stack unwinding Stack unwinding is performed by
parsing the DWARF unwind information from the exe-
cutable. This information is used by exception handling
code, and by the debugger to get accurate stack traces.
We found that the popular library 1ibunwind [35] was
quite unwieldy, used unwind heuristics, and made it dif-
ficult to add an address-translation mechanism. Hence,
we wrote a custom unwind library with a straightforward
DWAREF state machine, using binary search to translate
between shuffled and original addresses. We generate
DWAREF information for new code inserted through bi-
nary rewriting, and also record the points where return
addresses are (or are not) encrypted.

Binary rewriting Shuffler’s load-time transformations
are all implemented through binary rewriting. We disas-
semble each function with diStorm [21] and produce in-
termediate data structures which we call rewrite blocks.
Rewrite blocks are similar to basic blocks but may be
split at arbitrary points to accommodate newly inserted
instructions. Through careful block splitting, we can
choose whether incoming jumps execute or skip over
new instructions as appropriate. This data structure also
allows fast linear updates of internal offsets for jump in-
structions. We promote 8-bit jumps to 32-bit jumps (it-
eratively) if the jump targets have become too far away.
Once jumps and other data structures are consistent, the
final code size is known and we create the first shuffled
copy of a function. The runtime shuffling process copies
the shuffled version of each function to a new location
and patches it without invoking the rewriting procedure.

5 Performance Evaluation

Unless otherwise noted, performance results were mea-
sured on a dual-socket 2.8GHz Westmere Xeon X5660
machine, with 64GB of RAM and 24 cores (hyperthread-
ing enabled), running Ubuntu 16.04 with GCC 4.8.4.

5.1 SPEC CPU2006 Overhead

We ran Shuffler on all C and C++ benchmarks in SPEC
CPU2006, over a range of different shuffling periods.
The SPEC baseline was compiled with its default set-
tings (-02). The shuffled versions were compiled
the same way with the addition of -W1, —g (see Sec-
tion 4.3.1), and also —fno-omit—-frame-pointer
due to a limitation in our DWARF unwind implementa-
tion. Since Shuffler does not yet support C++ exceptions,
we replaced exceptions with conventional control flow in
omnetpp (20-line change) and povray (15 lines).

Effect of shuffling rate Figure 5 shows the overhead
observed by the single-threaded SPEC benchmarks at
different shuffling rates, excluding the overhead of the

60

shuffle once X1

200ms shuffling %

100ms shuffling & 50ms shuffling |

50
40

30

20 |
10 |-

Runtime overhead (%)

-10

Figure 5: Shuffler performance (shown as overhead percentage) on SPEC CPU2006 at different shuffling rates.

40

Miscellaneous =i

35 Update code pointer table zzzzz -
Fix call instructions &y
30 Sort function list &= o |
Memcpy code mmm Wy

25 _ Stack unwind (synchronous) T il |

20

Time in milliseconds

Y. Y. Y U T Y T, Y, Vo o Vo Vo o %
Q0 % o % G T 0 D B % B G G,

%, Con 2. Ty s S0, g, Q5. 0y Ay 8 s, o A, T 0y,

O Dos 0 T Y %, %, o, Uy O 8 R, S0, 2 %, %, %

2 &

G, 2 o Ty Y 0 ", % Y
06 o/b

Figure 6: SPEC CPU continuous shuffling breakdown.
Synchronous (stack unwind) overhead is barely visible
at the bottom. Data for omnet pp was not gathered.

Shuffler thread. The average overheads are 7.99% (shuf-
fling once), 13.5% (200ms shuffling), 13.7% (100ms
shuffling), and 14.9% (50ms shuffling). Considering that
thousands of shuffles were performed in each case (the
runtime per program is from 3.5-10 minutes), the ob-
served overhead is acceptable. Note that faster shuf-
fling rates do not cause significant slowdown, because
the static code rewriting cost is paid only once (up-front).

Asynchronous overhead By design, Shuffler offloads
the majority of the shuffling computations onto another
CPU core (see Figure 6). We assume that the protected
system is not at full capacity and has sufficient cycles to
execute the Shuffler thread concurrently.

We can, however, approximate the shuffling overhead:
the asynchronous shuffling time divided by the shuf-
fling period yields the CPU load. Assuming gcc asyn-
chronously shuffles in 25 milliseconds, it would use 50%
of the offload core in a shuffle period of 50 milliseconds,
and 25% in a shuffle period of 100 milliseconds. We
confirmed this approximation by measuring the reported
CPU usage once per second, as each SPEC CPU program
ran. The true overheads were within a few percentage

@
S

Jump table &xx=
Return-address XOR weizzin .
Code pointer indexing

o
S
T

N
o

n
o

Runtime overhead (%)
w
o

o

o

Figure 7: Static transformation overheads in SPEC CPU.

points of the approximation. For instance, xalancbmk
was predicted to use 61.31% of the CPU in the Shuffler
thread and in fact used 58.64%. This overhead is exam-
ined in more detail in Section 5.2.

Synchronous overhead The only synchronous work
in Figure 6 is the short time when the program thread
is interrupted via a signal to perform stack unwind-
ing. Shuffler’s stack unwind performance is linear in
the call stack depth, processing 3247 stack frames per
millisecond (including the thread barrier synchronization
time between Shuffler and the program threads). Most
SPEC programs have modest call stack depths, except
xalancbmk, where certain stages have call stacks at
least 20,000 deep (up to 45,000), and take up to 6 ms
to unwind. The highest average unwind time is 0.53 ms
for gcc; the Shuffler thread unwinds itself in ~0.025 ms.

5.1.1 Static overhead on SPEC CPU

In Figure 7, we break down the overhead observed due to
static code transformations (when only shuffling once).
This overhead is purely from the inserted instructions.
The average overhead is 2.68% due to jump table rewrit-
ing, 4.36% due to return address encryption, and 4.78%
due to code pointer abstraction. Jump table numbers are
relative to a baseline with jump tables; everything else,
to one without (the baselines only differ by 0.45%).

KXX]

XX

X2

o W%
shuffle 100ms
100ms nice+19
shuffle 50ms

X XXX

Normalized throughput (%)
[XXX

Figure 8: Shuffler thread impact on Nginx throughput.
t-on-n means ¢ worker processes pinned to n cores.

Jump tables Jump table overhead can be high, because
our transformation to support code pointer indices is in-
efficient for position-dependent jump tables (see Sec-
tion 4.2). With greater compiler integration or more thor-
ough binary rewriting, this overhead can be reduced.

Return-address encryption The return-address en-
cryption overhead increases as the program makes more
function calls. The 4.36% overhead is higher than for
a straightforward stack canary scheme. However, it
also provides disclosure resilience for return addresses,
which is essential for our method. Other strong shadow
stack schemes are available [22], with comparable per-
formance. We could use dynamically allocated table
indices for return addresses, but disrupting call/ret
pairs has high performance overhead [22,43].

Code pointer abstraction The code pointer abstrac-
tion overhead is high when the program makes a large
number of indirect calls. For instance, xalancbmk
makes 3.35 million indirect calls on the test input size,
3.60 billion calls on train, and likely an order of magni-
tude more on ref. This overhead is mostly unavoidable;
the layer of indirection introduced by these transforma-
tions is what allows Shuffler to invalidate old code ad-
dresses without using (code) pointer tracking. We con-
firmed with the Linux perf tool that the percentage
overhead from code pointer abstraction corresponds to
the percentage of the newly inserted instructions.

5.2 Nginx Overhead

We ran performance experiments on the Nginx 1.4.6
web server. Our setup used two dual hex-core machines
on a dedicated gigabit network, each with Turbo mode
and hyperthreading disabled (hence 12 cores each). The
client machine was the same one used for SPEC CPU,
and the server had two 2.50GHz Xeon E5-2640 CPUs.
To generate client load, we used the multithreaded
Siege [31] benchmarking tool. We used a request size
of 100 bytes with 32 concurrent connections. This con-
figuration ensures that the server is CPU-bound; larger
sizes may exceed network bandwidth, while more con-
nections cause CPU scheduling delays on the client ma-
chine. Measurements are reported as the average of five

= 40000

c

Q

[

& 30000 -

8 -

£ 20000 [I
g ” baseline

g 10000 shuffle 100ms ------ |
2 shuffle 50ms -
£ 100ms nice+19 — ——
= 0 |) ‘ :

1 2 4 6 12 o4

Number of worker processes (pinned to 4 cores)

(a) Nginx workers and Shuffler threads pinned to 4 cores.

< 40000

=

o

(5] -
$ 30000 —
[%2]

S | -

£ e e

£ 20000 [R

g : baseline

< 10000 shuffle 100me - |
: shuffle 50ms -

= 0 ! . 100ms nice+19 ——--

s

| : ; ° 12 24

Number of worker processes (run on all 12 cores)

(b) Shuffled Nginx running on all 12 available cores.

Figure 9: Shuffled Nginx performance at a larger scale.

30-second runs. Siege reported a latency of less than 10
milliseconds, and a concurrency level between 30.86 and
31.76, for all baseline and shuffled test cases.

Shuffler thread overhead First, we investigated the
performance of Shuffler threads in Nginx. In the be-
ginning, Nginx has one master process and one Shuffler
thread, and then it forks into a user-specified number of
worker processes (each with their own Shuffler thread).
In our evaluation, we pinned all Nginx workers and their
associated Shuffler threads to a case-dependent number
of cores, and excluded the master and its Shuffler thread
by pinning them to a different core on the same socket.

The results are shown in Figure 8. In the 1-on-1 case,
there is one Nginx worker process and its Shuffler thread
on a single core. These two threads will compete for
scheduling time slices on the same core, and whenever
the Shuffler thread is scheduled, throughput is stalled
(since Nginx can only run on the same core). Shuf-
fler takes about 15 milliseconds to shuffle Nginx, so we
would expect 15% slowdown at 100 millisecond shuf-
fling and 30% slowdown at 50 millisecond shuffling. The
measurements track this expectation quite closely.

Some cases have greater overcommitting, e.g., 4-on-2
has four Nginx workers plus four Shuffler threads on two
cores. Overhead is still reasonable, and the throughput is
around 85%-90% of the baseline. Setting the Shuffler
threads to lower priority (nice +19) at 100 ms does not
increase throughput here, although it does help when a
greater portion of the system is in use (see below).

1000

he)
c
o
& 800
5 T
g 600
g .
2 400 baseline .
g shuffle once ------
2 200 shuffle every 50ms - 3}
©
= 0 ! .) ‘ ‘ ‘
1 2 3 4 5 6 7 8

Number of concurrent client threads

Figure 10: MySQL transaction throughput as measured
by SysBench. Shuffle once and shuffle every 50ms incurs
the same overhead.

Full-scale Nginx overhead In our second set of Nginx
experiments, we pinned all threads (including the master
process) to a certain number of cores. Figure 9a shows
the results when pinned to four cores on the same socket,
and Figure 9b shows the results with no pinning (i.e.,
all 12 cores available for scheduling). In the four-core
case, the overhead starts to get very high with 12 and 24
workers. This is because the Linux scheduler must try to
place all worker threads, Shuffler threads, and the master
(for a total of 26 or 50 threads) onto a mere four cores. To
assist the scheduler, we made each Shuffler thread set its
nice value to +19 (low priority) at 100 ms, which results
in longer shuffling latencies but greater throughput since
Nginx worker threads get more CPU time.

In the case of no CPU pinning (Figure 9b), Shuffler
performance tracks the baseline very well. There is less
overcommitting here: even in the 24 worker case, each
core has two workers and two Shuffler threads to sched-
ule. In the nice+19 case, shuffling latencies (for 24-on-
12) are high with average 18.1 ms and std. dev. 266,
instead of the original average 17.4 ms, std. dev. 39.
Overall, we measured small speedups over the baseline,
which is likely experimental noise; Shuffler threads do
not significantly impact the overall system performance.
This full-system experiment incorporates the master pro-
cess overhead, as well as kernel I/O threads, which nor-
mally ignore userspace CPU pinning (and use idle cores).

5.3 Other Macro Benchmarks

MySQL We shuffled MySQL continuously every
50 ms (asynchronous shuffling takes 30 ms), querying
its 10 million row database using SysBench on local-
host. The machine had 24 cores and MySQL used the
default of 16 threads. Figure 10 shows that the perfor-
mance overhead (30.9%) is almost completely due to
static rewriting, and shuffling every 50ms has the same
performance as shuffling once. This is partially because
unlike Nginx, where workers are separate processes and
thus require separate Shuffler threads, MySQL worker
threads are all randomized by a single Shuffler thread.

Program Code + Syms/Relocs Data Structs + Overhead
Shuffler 0.16MB + 0.15MB (included below)
SQLite 2.20MB + 1.63MB 32.2MB + 23.7MB
Nginx 3.14MB + 2.68MB 45.7MB + 37.7MB
Xalan 4.36MB + 5.09MB 76.7MB + 44.3MB

Figure 11: Program size and Shuffler overhead.

So using multithreaded workers instead of multiprocess
workers can amortise Shuffler’s performance overhead,
with an appropriate tradeoff in security (see Section 6.2).

SQLite SQLite has a reasonably small codebase which
only takes the Shuffler thread 5 milliseconds to shuffle.
We shuffled it at 20 ms for a week without incident.

Mozilla’s SpiderMonkey We shuffled the JavaScript
engine SpiderMonkey and it passed its test suite of 3600
test cases. We had to disable JIT code generation (Ion-
Monkey); Shuffler could in future handle JIT code if it
was informed of when new code chunks were generated.

5.4 Memory Overhead

Figure 11 reports the code/relocation/symbol section
sizes for programs and their libraries. Shuffler’s total
memory overhead consists of: an in-flight copy of all
code sections; the code pointer table (1MB); one signal
stack (64KB) per thread; metadata structures like reloca-
tion and symbol hash tables; and the current permuted
list of functions (32 bytes per function). For alloca-
tion efficiency, code copies are stored in a preallocated
160MB sandbox. We use a custom malloc implemen-
tation [41], and report its bookkeeping/fragmentation
overhead separately. The permuted function list is de-
stroyed and recreated for each shuffle period.

5.5 TASR Performance Comparison

The closest re-randomization system to Shuffler is
TASR [7], which has a reported overhead of 0-10%
(2.1% average) on SPEC CPU. However, those numbers
are against a baseline compiled with —Og, which only
performs optimizations that preserve debugging informa-
tion. Such optimizations are fairly limited: we found that
SPEC CPU with —0g is 30% slower than with the normal
optimization level ~02. In other words, TASR’s perfor-
mance overhead is 30-40% relative to the true baseline
(while Shuffler’s is under 15%). Unfortunately, using
—0g is intrinsic to any scheme like TASR that requires
accurate tracking of source-level variables.

Additionally, TASR’s scheme of randomizing on I/O
system call pairs provides strong guarantees, but seems
unlikely to scale to real-world server applications. In the
case of Nginx, we measured that processing a 100KB re-
quest takes 0.22 milliseconds. Let us assume that TASR
can randomize Nginx in 15 milliseconds (note that this

is Shuffler’s rate—TASR is likely to take even longer
since it injects and runs a pointer updater process). Since
TASR re-randomizes after each request, it would incur
15 milliseconds of latency per 0.22 milliseconds of use-
ful work, resulting in 1.5% of the original throughput.
The scheme could be extended to allow multiple requests
to run in parallel, but this would still require 68 threads
on 68 cores to maintain the original throughput.

6 Security Analysis

In this section, we show how Shuffler defends against ex-
isting attacks assuming all its mechanisms are in place,
including code pointer indirection, return address en-
cryption, and continuous shuffling every r milliseconds.
Then, we discuss other possible attacks against the Shuf-
fler infrastructure, and follow up with some case studies.

6.1 Analysis of Traditional Attacks

Normal ROP It s fairly obvious that a traditional ROP
attack will fail when the target is being shuffled, because
the addresses of gadgets are hard-coded into the exploit.
Shuffler’s code sandbox currently has 27 bits of entropy
(a 31-bit sandbox should be possible as per Section 4.1)
and gadgets could be anywhere in the sandbox. Thus,
if the ROP attack uses N distinct gadgets, the chance of
it succeeding is approximately 272"V, Any attack which
desires better odds needs to incorporate a memory dis-
closure component to discover what Shuffler is doing.

Indirect JIT-ROP Indirect JIT-ROP relies on leaked
code pointers and computes gadgets accordingly. Be-
cause code pointers are replaced with table indices, the
attacker cannot gather code pointers from data structures;
nor can the attacker infer code pointers from data point-
ers, since the relative offset between code and data sec-
tions changes continuously. While the attacker can dis-
close indices, these are not nearly as useful as addresses:
they can only be used to jump to the beginning of a func-
tion, and they cannot reveal the locality of nearby func-
tions. We assume indices are randomly ordered at load
time, with gaps (traps) in the index space to prevent an
attacker from easily brute-forcing it [18]. The table itself
is a potential source of information, but the table’s loca-
tion is randomized and it is continuously moved (see Sec-
tion 6.2 below). Return addresses are encrypted with an
XOR cipher, so disclosing them does not reveal true code
addresses. In fact there are no sources of code pointers
accessible to an attacker by way of memory disclosure,
and so indirect JIT-ROP is impossible by construction.

Direct JIT-ROP In direct JIT-ROP [55], the attacker
is assumed to know one valid code address, and employs
a memory disclosure recursively, harvesting code pages
and finding enough gadgets for a ROP attack. A control
flow hijack is used to kick off the exploit execution.

Our argument against JIT-ROP is threefold. First, the
attacker must be able to obtain the first valid code ad-
dress, and as described for indirect JIT-ROP, there is no
accessible source of code pointers in the program. Thus
the attacker must resort to brute force or side channels (as
for Blind ROP below). Secondly, once an attack has been
completely constructed, there is no easy way to jump to
an address of the attacker’s choosing: indirect calls and
jumps treat their operands as table indices, not addresses,
while return statements mangle the return address before
branching to a target. The attacker must therefore use a
partial return address overwrite (described below in Sec-
tion 6.2), which itself has a significant chance of failure.

Thirdly, and most importantly, the entire attack must
be completed within the shuffle period of » milliseconds.
No useful information carries over from one shuffle pe-
riod to the next, and all previously discovered code pages
and gadgets are immediately erased. If the attacker can
do everything in r milliseconds, they win; thus, the de-
fender should select a small enough r to disrupt any an-
ticipated attacks. We discuss the attack time required in
Section 6.3. The fastest published attack times are on the
order of several seconds, not tens of milliseconds.

Blind ROP Blind ROP [8] tries to infer the layout of a
server process by probing its workers, which are forked
from the parent and have the same layout. The attack
uses a timing channel to infer information about the par-
ent based on whether the child crashed or not. Shuffler
easily thwarts this attack because it randomizes child and
parent processes independently.

6.2 Shuffler-specific Attacks

Breaking XOR encryption Our XOR encryption is
less vulnerable to brute force than typical XOR ciphers.
Leaking multiple return addresses does not allow the at-
tack to easily construct linear relations, because there are
two unknowns: random values (addresses) encrypted un-
der a random key. The addresses are re-randomized dur-
ing each shuffle period, and the XOR key could be too.
If every function uses it own key, the attacker’s task be-
comes even harder [10]. The keys are stored at unknown
addresses in thread-local storage. While there is a small
window of two instructions after calls during which the
unencrypted return address is visible on the stack, this
would be difficult to exploit because the attacker cannot
insert any intervening instructions—though a determined
attacker might try to do so from another thread.

It is possible to bypass XOR in other ways. For exam-
ple, an attacker might partially overwrite an encrypted re-
turn address, attempting to increment the return address
by a small amount without knowing the plaintext value.
This could be used to initiate execution of a misaligned
gadget, or to trampoline through a return instruction and
jump straight to an attacker-controlled address. Such an

attack would be difficult; the attacker would need to find
a function on the call stack with appropriate known code
layout, and then brute-force several bits of the canary.

Ciphertext-only attacks The attacker could attempt
to swap valid code pointer indices. This allows an at-
tacker to jump to the beginning of functions whose ad-
dress is taken, similar to the restrictions under coarse-
grained Control Flow Integrity (CFI) [61, 62]—and such
defenses have been bypassed [23,36]. The mapping be-
tween indices and functions would have to first be dis-
covered (subject to permutation and traps). We consider
this a data-only attack [12]. As per Section 2.1, we do
not attempt to add to the literature for data-only attacks.”

The attacker might swap valid encrypted return ad-
dresses on the stack. This is equivalent to jumping to
call-preceded gadgets (as in coarse-grained CFI), but us-
ing only those functions which occur on the call stack.
While such an attack may be theoretically possible, it
has not been demonstrated in the literature—especially
within the constraints of a single shuffle period, where
return addresses change every r milliseconds.

Parallel attacks When Shuffler is defending a multi-
threaded program, every thread uses the same shuffled
code layout. Thus, an attacker might run a parallel dis-
closure attack, multiplying the information that may be
gathered from a single-threaded program. However, par-
allel disclosure is limited by dependencies—often one
page’s address is computed from another’s content, so
the disclosures are not parallelizable. In the worst case,
defending a parallel attack requires a linearly faster shuf-
fling rate. Currently, the user can run a multiprocess pro-
gram instead (like Nginx) to avoid this issue. We also
used the $gs register to store our code pointer table in-
tentionally, so that code could be shared between threads.
It would be fairly straightforward to use the thread-local
%$fs register instead to maintain separate code copies
and pointer tables for each thread, at a corresponding in-
crease in memory and CPU use.

Exploiting the Shuffler infrastructure Since Shuffler
runs in an egalitarian manner in the same address space
as the target, it may be vulnerable to attack. Shuffler’s
code is shuffled and defended in the same way as the tar-
get, and any specific functionality (e.g., dynamic index
allocation) is not accessible through static references.
However, Shuffler’s data structures might be disclosed
at runtime—e. g., to reveal the location of every chunk of
code. We are careful to place sensitive information in ex-
actly one data structure, the list of chunks, which is itself
destroyed and moved in each shuffle period. There is a
single global pointer to this list, which is stored in the
%gs table along with code pointers.

"Thwarting this means updating indices at runtime; see Section 3.2.

Shuffler’s code pointer table might itself be used to ex-
ecute functions, or read or write function locations. As
described earlier in Section 6.1, we assume that the table
contains traps or invalid entries. This impedes execution
of gadgets and requires the index-to-code mapping to be
unravelled first. However, the table can be read and writ-
ten directly with $gs-relative gadgets—which are not
used by shuffled code but may occur at misaligned off-
sets. Writes can be disallowed using page permissions.
Reads yield information that is only useful for one shuf-
fle period; it is also a “chicken-and-egg” problem to rely
on such a gadget to find one’s gadgets.

Although the table contains many addresses that the
attacker would like to disclose, we assume that the ta-
ble location is randomized and is continuously mov-
ing during the shuffling process. The table’s location
is only stored in kernel data structures and the register
%$gs. While x86 has a new instruction to read %gs,
called RDGSBASE, it must be enabled through proces-
sor control flags (Linux v4.6 does not support that fea-
ture). Thus, the attacker must find the table’s loca-
tion through cache timing attacks or allocation spray-
ing [37,48], which has not been shown to be effective
against a continuously moving target.

Finally, even if all of Shuffler’s data is disclosed, the
addresses for the next shuffle period can be made unpre-
dictable by reseeding Shuffler’s random number genera-
tor with the kernel-space PRNG /dev/urandom.

Shuffler thread compromise If the Shuffler thread
crashes for whatever reason, the target program could
continue executing its current copy of code unhindered
(and undefended). To guard against this, we install sig-
nal handlers for common fatal signals. Our default policy
is to terminate the process if a crash occurs in Shuffler
code. We could also attempt to restart the Shuffler thread
(as is done on fork). Instead of causing an outright crash,
the attacker could attempt to hang the Shuffler thread,
e.g., by pretending that another thread has been created
through data structure corruption. This particular tech-
nique would cause all threads to hang in the post-unwind
synchronization barrier, inside Shuffler code, which is
not very useful for an attacker. Still, if a user is concerned
that the Shuffler thread may be compromised, an exter-
nal watchdog can periodically ensure (e.g., by examining
/proc/<pid>/maps) that shuffling is still occurring.

6.3 Case Studies

Disclosing memory pages When conducting a JIT-
ROP attack, the attacker has a tradeoff: either quickly
scan memory pages for desired gadgets, which may re-
quire many source pages; or, spend more time looking
for gadgets in a small number of pages, which can be
computationally prohibitive. The original JIT-ROP [55]
attack searches through 50 pages to find the gadgets for

an attack, and takes 2.3-22 seconds to carry out a full ex-
ploit. The ROP compiler Q [52] can attack executables as
small as 20KB, but due to their use of heavyweight sym-
bolic execution and constraint solving, their published
real-world attack computation times are 40—378 seconds.

Fetching pages takes time because real memory dis-
closures do not execute instantaneously. The origi-
nal JIT-ROP [55] attacks can harvest 3.2, 22.4, and
84 pages/second (i.e., requiring between 12 and 312
milliseconds per page). We reproduced Heartbleed on
OpenSSL 1.0.1f using Metasploit [45] and found that
the attack takes 60ms to complete (17.2ms per additional
disclosure), when the attacker is on the local machine.

Network communication latency For server pro-
grams, the network communication latency must be
added to every memory disclosure’s execution time. Ac-
cording to data from WonderProxy [50], long-distance
packet speeds are about 22% the speed of light. We
tested this by communicating between servers on the east
and west coast of the United States, observing 65.94 and
67.57 ms ping times, where 59.27 was predicted. Thus,
every millisecond of round-trip ping implies a physical
separation of 41 miles (66 km). For example, to per-
form a single disclosure and then a control-flow hijack
against a server shuffled every 20 milliseconds, the at-
tacker would need to be within 820 miles (1320 km).

Continuous re-randomization ensures that addresses
are only valid for a short time period. One could elimi-
nate this time window entirely by introducing artificial
latency for requests. Each request response would be
held in an outgoing queue until a re-randomization has
occurred—increasing the server’s latency, but guarantee-
ing that all leaked information is already out-of-date.

Small-scale JIT-ROP attack We created a small vul-
nerable server to simulate a JIT-ROP scenario. The pro-
gram prints its stack canary and a known code address,
using inline assembly to read the code pointer table. We
have an 8-byte memory disclosure (a request which over-
runs a buffer and corrupts a pointer). We use this vulner-
ability repeatedly to leak a full 4KB page (which takes
8 milliseconds over loopback). Finally, we overwrite a
return address to point at a leaked function. With 8 mil-
lisecond shuffling or faster, the attack crashes the target;
at slower shuffling rates, the attack succeeds.

Real-world Blind-ROP attack We reproduced the
Blind-ROP [8] attack against Nginx 1.4.0 (using CVE-
2013-2028 [44]). We measured that the attack takes
seven minutes to complete. When Nginx was shuffled,
the attack was unable to find the Procedure Linkage Ta-
ble or stack canary; it received false feedback since par-
ent and child processes are randomized independently.

7 Discussion and Future Work

The commonly accepted wisdom is that performing anal-
ysis on binaries is challenging. In fact, while hand-
crafted binaries can be pathological, compiler-generated
code is relatively straightforward to disassemble. Thus,
building binary-level defenses is quite possible, espe-
cially for symbol- and relocation-augmented binaries.
We are able to perform continuous re-randomization
quite efficiently. This is partially because program code
size is small, and because the cost of code rewriting is
paid only once up-front (not during each shuffle). How-
ever, while shuffling in a separate thread is excellent for
efficiency, it can lead to unpredictable shuffling laten-
cies, especially under load. Ideally, the target code would
need to check in periodically with Shuffler and not run
indefinitely. Also, while we currently use a single Shuf-
fler thread, the shuffling process is parallelizable to mul-
tiple worker threads if higher shuffling rates are desired.
Most defensive techniques exist outside the infrastruc-
ture they defend, or declare themselves part of the trusted
computing base. We hope that Shuffler’s design will in-
spire more egalitarian techniques, and in general more
techniques that pay attention to their own attack surface.

8 Conclusion

We present Shuffler, a system which defends against
all forms of code reuse through continuous code re-
randomization. Shuffler randomizes the target, all of the
target’s libraries, and even the Shuffler code itself—all
within a real-time shuffling deadline. Our focus on egali-
tarian defense allows Shuffler to operate at the same level
of privilege as the target, from within the same address
space, enabling deployment in environments such as the
cloud. We require no modifications to the compiler or
kernel, nor access to source code, leveraging only exist-
ing compiler flags to preserve symbols and relocations.
For the best possible performance, we perform shuffling
asynchronously, making use of spare CPU cycles on idle
cores. Programs spend 99.7% of their time running un-
hindered, and only 0.3% of their time running stack un-
winding to migrate between copies of code. Shuffler can
randomize SPEC CPU every 50 milliseconds with 14.9%
overhead. We shuffled real-world applications including
MySQL, SQLite, Mozilla’s SpiderMonkey, and Nginx.
Finally, Shuffler scales well on Nginx, up to a full sys-
tem load of 24 worker processes on 12 cores.

9 Acknowledgements

We thank the anonymous reviewers, our shepherd An-
drew Baumann, and Mihir Nanavati for their valuable
comments. This paper was supported in part by ONR
N00014-12-1-0166 and N00014-16-1-2263; NSF CCF-
1162021, CNS-1054906, and CNS-1564055; an NSF
CAREER award; and an NSERC PGS-D award.

References

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

ABADI, M., BuDIU, M., ERLINGSSON, U., AND LIGATTI, J.
Control-flow integrity. In Proc. of ACM CCS (2005).

ALEPHONE. Smashing the stack for fun and profit.
https://users.ece.cmu.edu/~adrian/630-£04/
readings/AlephOne97.txt, 1997.

ARCH WIKI. Prelink. https://wiki.archlinux.org/
index.php/Prelink, 2015.

BACKES, M., HoLz, T., KOLLENDA, B., KOPPE, P., NURN-
BERGER, S., AND PEWNY, J. You can run but you can’t read:
Preventing disclosure exploits in executable code. In Proc. of
ACM CCS (2014).

BACKES, M., AND NURNBERGER, S. Oxymoron: Making fine-
grained memory randomization practical by allowing code shar-
ing. In Proc. of USENIX Security (2014), pp. 433-447.

BHATKAR, S., SEKAR, R., AND DUVARNEY, D. C. Efficient
techniques for comprehensive protection from memory error ex-
ploits. In Proc. of USENIX Security (2005), pp. 271-286.

BIGELOW, D., HOBSON, T., RUDD, R., STREILEIN, W., AND
OKHRAVI, H. Timely rerandomization for mitigating memory
disclosures. In Proc. of ACM CCS (2015), pp. 268-279.

BITTAU, A., BELAY, A., MASHTIZADEH, A., MAZIERES, D.,
AND BONEH, D. Hacking blind. In Proc. of IEEE S&P (2014),
pp. 227-242.

BLETSCH, T., JIANG, X., FREEH, V. W., AND LIANG, Z.
Jump-oriented programming: a new class of code-reuse attack.
In Proc. of ACM CCS (2011), pp. 30-40.

BRADEN, K., CRANE, S., DAVI, L., FRANZ, M., LARSEN, P.,
LIEBCHEN, C., AND SADEGHI, A.-R. Leakage-resilient layout
randomization for mobile devices. In Proc. of NDSS (2016).

CARLINI, N., BARRESI, A., PAYER, M., WAGNER, D., AND
GRross, T. R. Control-flow bending: On the effectiveness of
control-flow integrity. In Proc. of USENIX Security (2015),
pp. 161-176.

CHEN, S., XU, J., SEZER, E. C., GAURIAR, P., AND IYER,
R. K. Non-control-data attacks are realistic threats. In Proc. of
USENIX Security (2005).

CHEN, Y., WANG, Z., WHALLEY, D., AND LU, L. Remix: On-
demand live randomization. In Proc. of ACM CODASPY (2016),
pp. 50-61.

CONTI, M., CRANE, S., DAvVI, L., FRANZ, M., LARSEN, P.,
NEGRO, M., LIEBCHEN, C., QUNAIBIT, M., AND SADEGHI,
A.-R. Losing control: On the effectiveness of control-flow
integrity under stack attacks. In Proc. of ACM CCS (2015),
pp. 952-963.

CORBET, J. x86 NX support. http://lwn.net/Articles/
87814/, 2004.

CORBET, J. Memory protection keys [Iwn.net].
lwn.net/Articles/643797/,2015.

https://

CRANE, S., LIEBCHEN, C., HOMEscu, A., DAvi, L.,
LARSEN, P., SADEGHI, A.-R., BRUNTHALER, S., AND
FRANZ, M. Readactor: Practical code randomization resilient to
memory disclosure. In Proc. of IEEE S&P (2015), pp. 763-780.

CRANE, S.J., VOLCKAERT, S., SCHUSTER, F., LIEBCHEN, C.,
LARSEN, P., DAvI, L., SADEGHI, A.-R., HoLz, T., DE SUT-
TER, B., AND FRANZ, M. It’s a TRaP: Table randomization and
protection against function-reuse attacks. In Proc. of ACM CCS
(2015), pp. 243-255.

CURTSINGER, C., AND BERGER, E. D. Stabilizer: Statistically
sound performance evaluation. In Proc. of ACM SIGARCH (Mar.
2013), pp. 219-228.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

CVEDETAILS. Vulnerability distribution of CVE security vul-
nerabilities by types. https://www.cvedetails.com/
vulnerabilities-by-types.php, 2016.

DaBAH, G. distorm3.
distorm/, 2003-2012.

DANG, T. H., MANIATIS, P., AND WAGNER, D. The perfor-
mance cost of shadow stacks and stack canaries. In Proc. of ACM
CCS (2015), pp. 555-566.

Davl, L., LEHMANN, D., SADEGHI, A.-R., AND MONROSE,
F. Stitching the gadgets: On the ineffectiveness of coarse-grained
control-flow integrity protection. In Proc. of USENIX Security
(Aug. 2014).

DAVI, L., LIEBCHEN, C., SADEGHI, A.-R., SNow, K. Z., AND
MONROSE, F. Isomeron: Code randomization resilient to (just-
in-time) return-oriented programming. In Proc. of NDSS (2015).

http://ragestorm.net/

DEBIAN. Hardening - Debian Wiki. https:
//wiki.debian.org/Hardening, 2015.
DEBIAN. sbuild - Debian Wiki. https://

wiki.debian.org/sbuild, 2016.

EAGLE, C. The IDA pro book: the unofficial guide to the world’s
most popular disassembler. No Starch Press, 2011.

EvaNs, 1., LONG, F., OTGONBAATAR, U., SHROBE, H., RI-
NARD, M., OKHRAVI, H., AND SIDIROGLOU-DOUSKOS, S.
Control jujutsu: On the weaknesses of fine-grained control flow
integrity. In Proc. of ACM CCS (2015), pp. 901-913.

FEDORA. Harden All Packages - Fedora Project.
https://fedoraproject.org/wiki/Changes/
Harden_All_Packages, 2016.

FENWICK, P. M. A new data structure for cumulative frequency
tables. Software: Practice and Experience 24,3 (1994), 327-336.

FULMER, J. Siege home.
siege-home/, 2012.

https://www.joedog.org/

GEEKSFORGEEKS. Binary indexed tree or Fenwick tree.
http://www.geeksforgeeks.org/binary-indexed-
tree-or-fenwick-tree-2/,2015.

GIONTA, J., ENCK, W., AND NING, P. HideM: Protecting the
contents of userspace memory in the face of disclosure vulnera-
bilities. In Proc. of ACM CODASPY (2015), pp. 325-336.

GIUFFRIDA, C., KUIJSTEN, A., AND TANENBAUM, A. S.
Enhanced operating system security through efficient and fine-
grained address space randomization. In Proc. of USENIX Secu-
rity (2012), pp. 475-490.

GNU. The libunwind project. http://
savannah.nongnu.org/projects/libunwind/, 2014.

GOKTAS, E., ATHANASOPOULOS, E., Bos, H., AND POR-
TOKALIDIS, G. Out of control: Overcoming control-flow in-
tegrity. In Proc. of IEEE SOSP (2014).

GOKTAS, E., GAWLIK, R., KOLLENDA, B., ATHANASOPOU-
LOS, E., PORTOKALIDIS, G., GIUFFRIDA, C., AND Bos, H.
Undermining information hiding (and what to do about it). In
Proc. of USENIX Security (2016).

HISER, J., NGUYEN-TUONG, A., Co, M., HALL, M., AND
DAVIDSON, J. W. ILR: Where’d My Gadgets Go? In Proc. of
IEEE SOSP (2012), pp. 571-585.

INTEL. Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3A: System Programming Guide, Part 1, Mar
2010.

KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA, G.,
SEKAR, R., AND SONG, D. Code-pointer integrity. In Proc. of
USENIX OSDI (2014), pp. 147-163.

https://users.ece.cmu.edu/~adrian/630-f04/readings/AlephOne97.txt
https://users.ece.cmu.edu/~adrian/630-f04/readings/AlephOne97.txt
https://wiki.archlinux.org/index.php/Prelink
https://wiki.archlinux.org/index.php/Prelink
http://lwn.net/Articles/87814/
http://lwn.net/Articles/87814/
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
http://ragestorm.net/distorm/
http://ragestorm.net/distorm/
https://wiki.debian.org/Hardening
https://wiki.debian.org/Hardening
https://wiki.debian.org/sbuild
https://wiki.debian.org/sbuild
https://fedoraproject.org/wiki/Changes/Harden_All_Packages
https://fedoraproject.org/wiki/Changes/Harden_All_Packages
https://www.joedog.org/siege-home/
https://www.joedog.org/siege-home/
http://www.geeksforgeeks.org/binary-indexed-tree-or-fenwick-tree-2/
http://www.geeksforgeeks.org/binary-indexed-tree-or-fenwick-tree-2/
http://savannah.nongnu.org/projects/libunwind/
http://savannah.nongnu.org/projects/libunwind/

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

LEE, D. A memory allocator. http://g.oswego.edu/dl/
html/malloc.html, 2000.

Lu, K., NURNBERGER, S., BACKES, M., AND LEE, W. How
to make ASLR win the clone wars: Runtime re-randomization.
In Proc. of NDSS (2016).

MCCAMANT, S., AND MORRISETT, G. Evaluating SFI for a
CISC Architecture. In Proc. of USENIX Security (2006).

MITRE CORPORATION. CVE-2013-2028. http:
//cvemitre.org/cgi-bin/cvename.cgi?name=
CVE-2013-2028,2013.

MOORE, H., ET AL. The Metasploit Project.
www.metasploit.com/, 2009.

MSDN. Symbols and symbol files - Windows 10 hardware
dev. https://msdn.microsoft.com/en-us/library/
f£558825.aspx, 2016.

http://

N1U, B., AND TAN, G. Modular control-flow integrity. In Proc.
of ACM PLDI (2014).

OIKONOMOPOULOS, A., ATHANASOPOULOS, E., Bos, H.,
AND GIUFFRIDA, C. Poking holes in information hiding. In
Proc. of USENIX Security (2016).

PAX TEAM. PaX address space layout randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt, 2003.

REINHEIMER, P. Miles per millisecond: A look at the Won-
derProxy network. https://wonderproxy.com/blog/
miles—-per-milisecond/, 2011.

ROGLIA, G. F., MARTIGNONI, L., PALEARI, R., AND BR-
USCHI, D. Surgically returning to randomized lib(c). In Proc.
of USENIX ACSAC (2009), pp. 60—69.

SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. Q: Ex-
ploit hardening made easy. In Proc. of USENIX Security (2011),
pp. 25-25.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

SCHWARZ, B., DEBRAY, S., AND ANDREWS, G. Disassembly
of executable code revisited. In Proc. of IEEE WCRE (2002),
pp. 45-54.

SHACHAM, H. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Proc. of
ACM CCS (2007), pp. 552-61.

SNow, K. Z., MONROSE, F., DAvI, L., DMITRIENKO, A.,
LIEBCHEN, C., AND SADEGHI, A.-R. Just-in-time code reuse:
On the effectiveness of fine-grained address space layout random-
ization. In Proc. of IEEE SOSP (2013).

SOLAR DESIGNER. Ipr libc return ex-
ploit. http://insecure.org/sploits/
linux.libc.return.lpr.sploit.html, 1997.

TANG, A., SETHUMADHAVAN, S., AND STOLFO, S. Heisen-
byte: Thwarting memory disclosure attacks using destructive
code reads. In Proc. of ACM SIGSAC (2015), pp. 256-267.

UBUNTU. Security/features - Ubuntu Wiki.
https://wiki.ubuntu.com/Security/

Features#Userspace_Hardening, 2016.

WARTELL, R., MOHAN, V., HAMLEN, K. W., AND LIN, Z.
Binary stirring: Self-randomizing instruction addresses of legacy
x86 binary code. In Proc. of ACM CCS (2012), pp. 157-168.

XU, J., KALBARCZYK, Z., AND IYER, R. Transparent run-

time randomization for security. In Proc. of IEEE SRDS (2003),
pp- 260-269.

ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEKERES, L.,
MCCAMANT, S., SONG, D., AND ZoU, W. Practical control
flow integrity and randomization for binary executables. In Proc.
of IEEE SOSP (2013).

ZHANG, M., AND SEKAR, R. Control flow integrity for COTS
binaries. In Proc. of USENIX Security (2013).

http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2028
http://www.metasploit.com/
http://www.metasploit.com/
https://msdn.microsoft.com/en-us/library/ff558825.aspx
https://msdn.microsoft.com/en-us/library/ff558825.aspx
http://pax.grsecurity.net/docs/aslr.txt
https://wonderproxy.com/blog/miles-per-milisecond/
https://wonderproxy.com/blog/miles-per-milisecond/
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
https://wiki.ubuntu.com/Security/Features#Userspace_Hardening
https://wiki.ubuntu.com/Security/Features#Userspace_Hardening

	Introduction
	Background and Threat Model
	Threat Model

	Design
	Goals
	Architecture
	Challenges

	Implementation
	Transformations to Support Shuffling
	Completeness of Disassembly
	Bootstrapping and Requirements
	Full Shuffling Requirements

	Implementation Optimizations

	Performance Evaluation
	SPEC CPU2006 Overhead
	Static overhead on SPEC CPU

	Nginx Overhead
	Other Macro Benchmarks
	Memory Overhead
	TASR Performance Comparison

	Security Analysis
	Analysis of Traditional Attacks
	Shuffler-specific Attacks
	Case Studies

	Discussion and Future Work
	Conclusion
	Acknowledgements

