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ABSTRACT
Developers today have access to an arsenal of toolkits and libraries
for rapid application prototyping. However, when an application
loads a library, the entirety of that library’s code is mapped into
the address space, even if only a single function is actually needed.
The unused portion is bloat that can negatively impact software
defenses by unnecessarily inflating their overhead or increasing
their attack surface. Recent work has explored debloating as a way
of alleviating the above problems, when source code is available.
In this paper, we investigate whether debloating is possible and
practical at the binary level. To this end, we present Nibbler: a
system that identifies and erases unused functions within shared
libraries. Nibbler works in tandem with defenses like continuous
code re-randomization and control-flow integrity, enhancing them
without incurring additional run-time overhead. We developed and
tested a prototype of Nibbler on x86-64 Linux; Nibbler reduces the
size of shared libraries and the number of available functions, for
real-world binaries and the SPEC CINT2006 suite, by up to 56%
and 82%, respectively. We also demonstrate that Nibbler benefits
defenses by showing that: (i) it improves the deployability of a
continuous re-randomization system for binaries, namely Shuffler,
by increasing its efficiency by 20%, and (ii) it improves certain fast,
but coarse and context-insensitive control-flow integrity schemes
by reducing the number of gadgets reachable through returns and
indirect calls by 75% and 49% on average.

CCS CONCEPTS
• Security and privacy→ Systems security; Software and ap-
plication security; Software security engineering; Software reverse
engineering; Information flow control.
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1 INTRODUCTION
Software developers rely heavily on shared libraries for rapid app-
lication prototyping and development. However, as they are utilized
bymore andmore diverse applications, they grow in complexity and
size, accumulating an abundance of new features, while retaining
old, potentially unused ones. When an application loads a shared
library, all of this functionality is included in all of the application’s
processes, even if only a single function is actually used.

This bloat of code affects binary programs and libraries, which
frequently suffer from critical vulnerabilities [18] that enable attack-
ers to compromise them despite broadly-deployed defenses, such
as data execution prevention (DEP) [4] and address-space layout
randomization (ASLR) [52]. Code bloat impedes the adoption of
novel defenses, like continuous code re-randomization [6, 14, 74, 76]
(e.g., because of increased run-time overhead), while it can also re-
strict the effectiveness of others, like control-flow integrity (CFI) [1]
(i.e., because of over-permissiveness).

Recent work [53] has explored debloating for applications and
libraries by proposing an LLVM-based framework that analyzes
code at compile time and embeds function-dependency metadata
in the emitted binaries. That information is used by a modified
loader to debloat libraries, dynamically-loaded by the application,
by overwriting unused shared-library code. Its results confirmed
that a large part of library code is indeed not needed by applications,
and, therefore, it is possible to debloat them without restricting
their functionality. The question this paper aims to answer is: is it
possible to debloat binary-only software, to what extent, and what
are the security benefits? Binary-only, dynamically-linked or shared
libraries can still be found in many settings: commercial software
is usually distributed without source code, and even open-source
software may depend on legacy binary-only, shared libraries.

To answer this question, we design and implement Nibbler : a sys-
tem that analyzes binary applications and the libraries they depend
on to identify and erase unused library code. Nibbler generates thin
versions of shared libraries, which can be used instead of the orig-
inal, bloated ones with any of the analyzed applications. Nibbler
focuses on shared libraries as they have a series of advantages over
static libraries in real-world deployments: (i) application binaries
are smaller, (ii) the code of shared libraries is efficiently shared by
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applications, so it is not duplicated in physical memory, (iii) shared
libraries can be developed in different programming languages than
C/C++ (e.g., Go), (iv) they facilitate maintainability (e.g., updating
and patching), (v) their load-time addresses can be individually
randomized by ASLR, and (vi) shared libraries with (L)GPL license
can be used by applications without distribution complications.

Previous attempts to debloat binaries [46] used bounded ad-
dress tracking [34] to statically determine the set of used functions,
which was prone to errors, requiring the manual whitelisting of
certain functions to avoid program crashes. In antithesis, Nibbler
over-approximates the function-call graph (FCG) of applications
to conservatively include all code that could potentially be used
(assuming no manual library loading occurs). So, even though Nib-
bler also predominantly relies on static analysis, it does not lead to
application crashes nor require maintaining a whitelist.

As binary analysis is an undecidable problem in general [75], we
focus on non-obfuscated compiler-generated code, and leverage
symbol and relocation information—produced during compilation—
to correctly disassemble binaries. We expect that software vendors
will be willing to provide (anonymized) symbols and relocations
for their libraries to facilitate debloating and retrofitting defenses.
For instance, relocation information is already included in many
modern libraries to support ASLR, and various operating system
vendors offer symbol files [19, 43] for their most popular libraries. If
such information is not available, disassembly may still be possible
using advanced reverse-engineering tools [28, 48, 62, 70, 73].

With Nibbler, we overcome various challenges pertaining to FCG
reconstruction of binaries. For example, certain compiler optimiza-
tions make transitions between functions implicit. The treatment of
function pointers is another challenge, as failure to detect the usage
of one could lead to incorrectly excluding used code. We propose a
novel analysis for detecting address-taken (AT) functions (i.e., func-
tions that have their address referenced as a constant) [53], which
are not unused and iteratively eliminate them, while we include
all others. Finally, a challenge of more technical nature is precisely
mapping the policies applied by the system loader when resolving
symbols, which includes things like special symbols resolved based
on the actual configuration of the system (e.g., the CPU model). We
found that this intricacy is not addressed in earlier studies [46, 53].

We developed a prototype of Nibbler for x86-64 Linux and tested
it with real-world applications, including the GNUCoreutils, the Ng-
inx web server, theMySQL database server, and the SPEC CINT2006
benchmark suite. Our evaluation shows that Nibbler reduces library
code size and functions in scope, including the notoriously hard
to analyze GNU libc (glibc), by up to 56% and 82%, respectively.
While Nibbler does not focus on applications that manually load
libraries with dlopen(), we also developed a profiling tool for col-
lecting symbols loaded by applications at run time, similarly to
training approaches employed by earlier studies [53]. We evalu-
ate Nibbler with run-time profiling using the Chromium browser,
which extensively loads libraries at run time. On average, we reduce
code size and functions in scope by 25.98% and 34.95%, respectively.

We evaluate the security benefits of debloated code, by running
the Nginx web server with thinned libraries under Shuffler [76],
a continuous re-randomization system for binaries. We observe
a throughput improvement of 20%, which increases the deploya-
bility of the defense. We also developed an analysis framework

to determine the effect of debloated code on certain CFI tech-
niques [42, 68, 81, 82], including real-world CFI solutions, like
Microsoft’s Control-Flow Guard [42] and LLVM’s CFI enforce-
ment [68]. For coarse, context-insensitive techniques [81, 82], we
found that the number of gadgets that can be targeted by function
returns is reduced by 75% on average. The number that can be
targeted by indirect function calls is reduced by 49% on average,
because our analysis detects and removes unused address-taken
functions. While the number of gadgets remaining in the applica-
tion is still significant, the analysis performed by Nibbler clearly
improves the effectiveness of some CFI defenses. Finally, we look
at whether debloating can reduce attack surface by removing vul-
nerabilities. Unlike what is suggested by previous work [53], we
argue that this type of debloating cannot reduce attack surface, as,
by design, it only removes code that is never used by applications.

Below, we summarize the contributions of this paper:
• We design and develop a practical system, Nibbler, which
removes bloat from binary shared libraries without requiring
source code and recompilation.

• We devise a novel method for detecting unused address-
taken functions, which allows Nibbler to detect and elimi-
nate, safely, more unused code.

• We evaluate the debloating capabilities of Nibbler with real-
world binaries and the SPEC CINT2006 suite, and show that
it removes 33%–56% of code from libraries, and 59%–82% of
the functions in scope.

• We demonstrate the benefit of debloating to security tech-
niques, like continuous code re-randomization, by integrat-
ing Nibbler with an existing system [76], where we observe
a 20% run-time improvement for Nginx.

• We demonstrate the benefits to coarse-grained CFI [42, 81,
82] by analyzing the evaluated applications to find that, on
average, Nibbler removes 75% of the available gadgets.

• We discuss the limitations of this type of debloating, which
only eliminates unused code, in terms of attack surface re-
duction and vulnerability removal.

The rest of this paper is organized as follows. Sec. 2 provides
background information and motivates our work by discussing
how Nibbler improves existing defenses. We present the design of
Nibbler and our methodology for thinning shared libraries in Sec. 3.
In Sec. 4, we briefly discuss how we implemented Nibbler and some
challenges we had to overcome. Sec. 5 presents the results from
evaluating Nibbler, Sec. 6 discusses limitations of debloating, in
general, and Sec. 7 summarizes related work. We conclude in Sec. 8.

2 BACKGROUND AND MOTIVATION
2.1 Software Exploitation Techniques
Attacks against software written in C and C++ are currently employ-
ing multiple vulnerabilities to overcome defenses like ASLR [52]
and DEP [4]. They first reveal the layout of the targeted applica-
tion, either by exploiting information leakage vulnerabilities [63]
or using other guessing techniques [64] to bypass ASLR. Then,
they exploit memory-safety bugs (e.g., use-after-free) to take con-
trol of a code pointer, hijack control flow, and, ultimately, perform
code-reuse to achieve arbitrary code execution, despite DEP.
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Such attacks employ techniques like ROP [60] and return-to-libc
(ret2libc) [20]. The first reuses entire functions, while the latter
chains arbitrary pieces of code terminating in indirect control-
flow instructions, called gadgets. Other techniques, inspired by
the above, include JOP [13], COP [25], COOP [58], CFB [11], and
Control Jujutsu [22]. Code bloat is a boon for attackers, as more code
implies more potential gadgets to pick from, making development
of payloads easier and faster, and facilitating automation [12].

2.2 Continuous Code Re-randomization
Continuous code re-randomization techniques [6, 14, 24, 74, 76]
mitigate exploits by continuously moving code at run time with
high frequency. This introduces a real-time deadline for attackers,
who only have milliseconds between exposing the layout of the
process and mounting a code-reuse attack. Essentially, they aim
to invalidate the leaked information before they can be used by
exploits. A high re-randomization frequency can be pivotal against
browser exploits [63] that utilizemalicious JavaScript (JS) to execute
the whole locally, using the leaked information almost immediately.
Run-time overhead is also crucial, as lightweight defenses are a lot
more likely to be adopted than heavyweight ones. By removing
unneeded code, there is less code that needs to be shuffled at run
time, so we can improve continuous re-randomization solutions
both in terms of frequency and overhead.

2.3 Control-flow Integrity Defenses
CFI is a technique proposed by Abadi et al. [1], which aims to en-
force the control flow of the original program, forbidding arbitrary
transitions. It aims to prevent the control-flow hijacking part of at-
tacks, after code pointers are taken over. There have been multiple
instantiations of CFI [50, 51, 71, 81, 82] with different granularity,
overhead, and requirements.

Applying CFI on binaries and achieving low overhead has been
particularly problematic. The most deployable solutions enforce a
coarse version of CFI [50, 81, 82], without employing context in their
enforcement of the control-flow graph (CFG). These defenses only
allow functions to return to code segments that follow a function
invocation (i.e., CALL-preceded gadgets) and indirect function calls
to address-taken and library-exported functions (which can be
called through a pointer). Nibbler enhances these CFI techniques
in two ways by removing unnecessary code: (i) there are less CALL-
preceded gadgets for returns to target, and (ii) there are less AT
functions that can be targeted by indirect calls.

3 DESIGN
Nibbler is designed primarily for the (Linux) ELF file format [69].
We believe our techniques are applicable to other settings, such
as Microsoft Windows and the PE file format [77], but leave this
for future work. We focus on the x86-64 architecture, but Nibbler’s
requirements (disassembly, library symbols, etc.) are also available
on other contemporary architectures, such as x86 and ARM.

3.1 Overview
Figure 1 depicts a high-level overview of Nibbler. Given a set of
binary applications, Nibbler processes the shared libraries they use,
disassembles them, and statically analyzes them to reconstruct the

Libraries

Application(s)

Thinned Libraries

Nibbler

Symbols

Relocations

Erased code

AT Function

Prunning

Function

Erasure 

FCG

Reconstruction

Disassembly

FCGs 

Composition

Unreachable

Code

Detection

Figure 1: Approach overview.

FCG of each library. Then, the functions required by applications
and the already-extracted library FCGs are composed to determine
functions that are never called (i.e., unreachable code), by any of the
applications of the set. At this point, Nibbler considers all functions
that may be called through a function pointer as used.

The analysis over-approximates the set of functions that could
(potentially) be used to eliminate the possibility of error, assum-
ing no manually-loaded libraries. We then perform an iterative
analysis that detects functions pointers that can never be used and
also remove them. Finally, Nibbler produces a set of new (thinned)
libraries that can be used with the input binaries, where the extra
code has been erased by overwriting it with a trapping instruc-
tion [17]. Each library only needs to be analyzed once and the
results of the analysis are cached in a database.

3.2 Disassembly
Obtaining the complete disassembly of an arbitrary binary pro-
gram is an undecidable problem [75]. However, modern compiler-
generated binaries can be linearly disassembled (verified on GCC
and Clang [5]), especially since we use symbol information to accu-
rately identify function boundaries. For functions that are exported
by libraries, we also record the following additional metadata: (i)
the type of the function’s symbol (FUNC or IFUNC), (ii) its binding,
which dictates its scope (GLOBAL or WEAK for externally-visible sym-
bols), and (iii) its version (e.g., memcpy@@GLIBC_2.14). Note that
this information is always available in shared libraries for exported
symbols, by definition.

GNU IFUNC-type symbols. These allow for the run-time selec-
tion of a target, decided by a gateway function commonly referred
to as a resolver function. Typically, this mechanism is used to se-
lect between different function implementations that use processor
features such as SSE, AVX, etc which are more efficient but not al-
ways available. IFUNC symbols point to resolver functions which
themselves contain references to multiple targets. To avoid special-
izing an application to a specific environment, Nibbler preserves
all possible IFUNC targets if the IFUNC symbol is called.
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Relocation section '.rela.plt' 
  Offset          Info           Type           Sym. Value   Sym.Name+Addend
000000208018  000200000007 R_X86_64_JUMP_SLO 0000000000000000 __open + 0
000000208020  000300000007 R_X86_64_JUMP_SLO 0000000000000000 free + 0
000000208028  000400000007 R_X86_64_JUMP_SLO 0000000000000000 strncpy + 0

<strncpy@plt>:
ba0:   ff 25 82 74 20 00       jmpq   *0x207482(%rip)  # strncpy@GOT

ba6:   68 02 00 00 00          pushq  $0x2
bab:   e9 c0 ff ff ff          jmpq   b70              # PLT0

<crypt_r>:
ea0:   41 55                   push   %r13
...
f35:   e8 66 fc ff ff          callq  ba0 <strncpy@plt>

Figure 2: call to function in shared library in crypt_r(),
libcrypt-2.19.so.

3.3 Library FCG Reconstruction
We use the disassembly and symbol information to statically recon-
struct the FCG of each library. The goal is to resolve the targets of
function calls. On x86, compilers use two classes of instructions to
perform this task, specifically CALL and JMP instructions; we handle
both the same way. Function calls are further classified into three
categories: (i) calls targeting library-local functions, (ii) calls target-
ing functions in other shared libraries, and (iii) indirect calls that
use pointers. We ignore cases where the targeted function is the
same function (recursion)—i.e., multiple edges between functions
are collapsed to a single one.

3.3.1 Calls to Local Functions. To resolve these calls, we go over the
disassembled code and search for CALL and JMP instructions with
an immediate value (i.e., a constant) as operand/argument. During
execution, the CPU adds the value of the immediate to the address
of the next instruction to calculate the address to transfer control
to (PC-relative addressing). When the target address matches the
starting address of a function, we add an edge between these two
functions (caller-callee) in the FCG.

3.3.2 Calls to Functions in Shared Libraries. These calls are (usu-
ally) resolved lazily at run time, when a function is first invoked. The
mechanism employed on Linux and other Unix-like systems uses
two specially crafted sections called the Procedure Linkage Table
(PLT) and the Global Offset Table (GOT) [38]. Without going into
too many details, calls to external functions are performed through
the PLT. For example, in Figure 2, the call at address 0x0f35 targets
an entry in the PLT that corresponds to the strnpy() function.
PLT entries are also code, which on the first invocation call the
dynamic linker/loader to resolve the desired symbol. Subsequent
calls direct control into the resolved function.

The dynamic linker/loader (ld.so(8)) resolves external func-
tions by name (e.g., strnpy in the example above). The name of
the targeted function is indicated by the second instruction of a
PLT entry, the one at address 0x0ba6 in Figure 2. This instruction
pushes an offset in another table onto the stack, 0x02 in our exam-
ple. That table essentially contains a list of references to symbol
names (i.e., the string “strncpy” in our example). We have analyzed
the steps taken by the loader and mirrored the steps in Nibbler to
link such functions calls with symbol names. Resolution of these
symbols occurs during the FCG composition step.

3.3.3 Calls using Pointers. These function invocations are per-
formed using a pointer, which can be dynamically computed at run
time. In binary form, they correspond to CALL or JMP instructions
(with register or memory as an operand).

Unfortunately, statically resolving the set of potential targets of
such calls is a hard problem [34]. Instead of attempting to do so and
risk introducing errors, like CodeFreeze [46], Nibbler is designed
to identify all the functions that could be potentially called through
a pointer, and assumes that any of them may indeed be invoked.
We compute the set of indirectly-invoked functions by analyzing
the disassembly and relocation information to identify where the
address of a function is taken, and a pointer is generated. A func-
tion used as a callback, for example, will have its address taken at
least once which will add the function to the list of (all) indirect
targets. This over-approximation circumvents the limitations of
static analysis to accurately track pointers in memory. Note that
in Sec. 3.5 we present a method for further trimming the set of
indirectly-invoked functions, thereby producing more tight FCGs.
We employ two strategies to detect AT functions:

1) Function pointers in disassembled code. When a program
assigns a function pointer to a variable, instructions are gener-
ated to obtain its address and store it in memory or a register. The
address of the function is either directly used as an immediate
(mostly on 32-bit systems) or expressed using PC-relative address-
ing (x86-64). Nibbler scans the disassembled code for move (MOV)
and load-effective address (LEA) instructions, looking for operands
that match function addresses. Since the set of function addresses is
known, this heuristic works very well, especially on x86-64 where
PC-relative addressing is used extensively. However, an optimizing
compiler could perform arithmetic to compute target addresses,
and detecting such cases would require data-flow (e.g. value set)
analysis. We do look at operands for ADD/SUB arithmetic instruc-
tions, because they may occasionally contain function references.
But in our experiments we never saw an address computation split
between multiple instructions (and hence data-flow analysis was
not required).

2) Function pointers via relocation information. Relocations
are usually created to facilitate relocating code and data at load-time
(e.g., for enabling ASLR). Each entry corresponds to a particular
offset in the binary, typically a pointer to a function or global data
object. Relocation entries describe how that address should be ad-
justed when the target entity is relocated. Modern systems support
multiple relocation types [30, Chapter 4.4], which define different
ways of calculating the “fix” to the targeted offset. Nibbler parses
them to identify any function pointers that were not discovered
in the previous step, mainly, in data sections. Relocations of type
R_X86_64_IRELATIVE requiremore complex handling, as they spec-
ify that the targeted address should be patched based on the return
value of a resolver function. Nibbler handles them by scanning the
body of resolver functions, adding any code pointers referenced
there in the list of targets that could be potentially returned at run
time. Essentially, it connects all of the implementations to the FCG
to retain support for indirectly-invoked functions.
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3.4 Unreachable Code Detection
We analyze the application binaries and compose the FCGs of used
libraries to conservatively estimate the library functions that are
needed by the applications. Assuming the set of used libraries
is known, our algorithm is complete by design and ensures that
unused functions can be safely removed. Applications that manually
load additional libraries at runtime are discussed in Sec. 3.7.

3.4.1 Identification of Required Symbols. At this stage, Nibbler cal-
culates which library symbols are required by the input applications.
It does so by processing them to determine the library symbols they
refer to. These are obtained by scanning the PLT sections of the bi-
naries to obtain the required symbol names, similarly to the process
described in Sec. 3.3.2. Initialization and cleanup routines defined in
libraries are also added in the set of required symbols, since they are
called by the dynamic linker/loader during library loading or un-
loading. Such functions are defined (as arrays of function pointers)
in special sections in binaries. Some of these are: .preinit_array,
.init, .init_array, .ctors, .fini, .fini_array, and .dtors.
Nibbler essentially manages to capture the non-trivial startup pro-
cedure of x86 ELF-compliant systems [29]. At this stage, we still
consider that all AT functions are required.

3.4.2 Composition of Function-Call Graphs. We compose the FCGs
of libraries, adding edges between callers and callees, the same
way the dynamic linker/loader does when a program executes. To
connect the various graphs, we start by resolving each graph’s calls
to external functions. In the simplest case, this requires looking for
a function symbol with the same name as the one referenced by a
call site. At load-time this process is performed by ld.so, which
enforces various rules that Nibbler replicates faithfully.

In particular, we enforce the following: (a) LOCAL symbols are
ignored; (b) GLOBAL symbols have precedence over WEAK ones; and
(c) when the particular version of a symbol requested is not found,
we use the one defined as default. Default symbols are denoted by
the two ’@@’ characters (e.g., putwchar@@GLIBC_2.2.5). Note that
there can only be one default version [21]. When resolving symbols,
it is possible that multiple symbols with the same name exist. There
may be multiple local symbols with the same name, or a local
symbol with the same name as a global one. For inter-library symbol
resolution, all symbols except weak or global ones are ignored. The
dynamic linker/loader resolves WEAK and GLOBAL symbol references
according to library load order. We did not implement all intricacies
of library load order—a complex process, e.g., dependencies can be
recursive—but rather create links to all weak/global functions of
the same name in our graph. This approach produces a super-graph
that may include more code than necessary, but it is guaranteed to
include all functions that could be possibly used.

3.4.3 Collection of Unused Functions. At this point, we can use the
composed FCG and the required symbols extracted in the previous
steps to create an over-approximated set of used functions. The
graph actually consists of multiple, potentially disconnected, sub-
graphs; we focus on the ones that include required symbols, such as
library functions invoked by one of the applications or AT functions.
These nodes act as starting points that allow us to designate their
whole sub-graph as used. All other functions are unreachable code
that we can remove from libraries.

Listing 1: AT functions within function defined in
crypto/bn/bn_exp.c:of openssl-1.1.0j.
int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, ...)
{

...
static const bn_mul_mont_f mul_funcs[4] = {

bn_mul_mont_t4_8, bn_mul_mont_t4_16,
bn_mul_mont_t4_24, bn_mul_mont_t4_32

};
...

}

3.5 AT Function Pruning
To reduce the number of AT functions included in the FCG, we
introduce an analysis that takes into account the location a code
pointer was found. Initially, we separate pointers found in data
(e.g., .rodata) and code (e.g., .text) segments. For the latter, we
iterate every function that has been classified as unused by our
algorithm, and check if an AT function’s address is only taken
within unused functions. If this condition is true, we mark the
respective AT function as unused. Note that this may result in
additional (function) sub-graphs to be deemed unused, and so we
iteratively perform this process until no additional functions can
be classified as unused. For example, consider the function shown
in Listing 1, which defines and uses the static array of function
pointers bn_mul_mont_f[]. If Nibbler detects that the function is
unused, the pointers contained in the array, which will actually be
stored in the data segment, can also be ignored.

To eliminate AT functions in data segments (e.g., in .(ro)data),
we proceed as follows. First, we leverage symbol information to
identify the bounds ([OBJ_BEGIN – OBJ_END]) of global data objects
(i.e., symbols of type OBJECT/GLOBAL). Next, we check for relocation
entries that: (a) correspond to AT functions; and (b) fall within
the bounds of any global object. Our approach basically identifies
statically-initialized arrays of function pointers or data structures
that contain function pointers. Lastly, like before, we iterate every
function that has been classified as unused by our algorithm, and
check if OBJ_BEGIN is taken only within unused functions. Again,
if this condition is true, we mark the AT functions that correspond
to the object beginning at OBJ_BEGIN as unused, and we iteratively
perform this process until no additional function sub-graphs can
be classified as unused. Note that the above process is complete; it
only excludes AT functions that are used by unreachable code.

3.6 Function Erasure
Nibbler erases functions that are not part of the application FCG
by overwriting them with a single byte instruction, namely int3,
which causes a trap and interrupts execution.1 Attempts to use the
removed code will lead to termination of the running process [17].

3.7 Application-loaded Libraries
Application-loaded libraries are libraries which are explicitly loaded
through calls to dlopen(). Pointers to functions in such a library

1Both int3 and hlt [76] are used in related work for “erasing” code. We chose int3 as
it raises a SIGTRAP, rather than a SIGSEGV, signal; SIGSEGV has many potential causes.
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<__write>:
dbbf0:       83 3d dd eb 2c 00 00    cmpl   $0x0,0x2cebdd(%rip)  
dbbf7:       75 10                   jne    dbc09 <__write+0x19>

Figure 3: A fall-through function reuses another’s code.

can be dynamically retrieved using dlsym(). It is very hard to stati-
cally determine the set of libraries and functions that are invoked in
this way, and, as such, all the libraries and symbols that are required
by the program. Nibbler cannot guarantee the safety of debloating
an application which calls dlopen. However, in our experience,
profiling the application with common workloads reveals the addi-
tional dependencies. Previous approaches concur with this [53].

As an alternative, we can be conservative and avoid debloating
any applications that manually load libraries, or leverage software
packaging semantics to include additional code in scope (e.g., all
the .so files included in a particular package). To determine how
frequently application-loaded libraries are used, we examined the
source code of 25,526 Debian (v9) packages, using apt-src. After
processing, we determined that 9,792 contain at least one file of C
or C++ code, and 1,351 of them (13.8% of the C/C++ packages) call
dlopen()/dlsym() and hence may perform manual library loading.

3.8 Challenges
Function Aliases. One function may be encompassed by many
symbols of the same size (but often different type or scope), in
effect creating aliases for the same function. We treat all aliases as
a single entity and a reference to any name is sufficient to prevent
the function from being removed.
Fall-through Functions. Some symbols share code (or overlap)
with other symbols. This requires that we employ caution when
erasing an unused function, as its bytes may be shared by another
symbol. A frequent case in GNU libc is fall-through functions,
shown in Figure 3, where one function performs a few checks and
then drops into the beginning of another function. We carefully
identify each function which does not terminate in a control-flow
transfer, forming a reference to the following function and prevent-
ing its removal if the previous function is used.
Noreturn Functions. Functions that the compiler knows will
terminate can be marked with the __noreturn__ GCC attribute,
which will be recursively propagated if possible. When generat-
ing a call to such a function, like __fortify_fail, the compiler
may simply stop generating code afterwards (which would be un-
reachable). Luckily, we always observed the compiler generating
a nop following the CALL in this case, which allows us to avoid
(incorrectly) classifying this case as a fall-through function.
GNU libc Sub-libraries. While we view libc as a single library
that is used by C/C++ programs, its most popular version, GNU
libc (glibc), actually consists of sub-libraries that implement
back-ends to common interfaces. For example, different name ser-
vices, like the Network Information Service (NIS) and the Domain
Name Service (DNS), are implemented in shared libraries (libnss_-
dns.so and libnss_nis.so in this case). These are loaded by libc
at run time, when a particular API is accessed. To avoid erasing any

libc functions that may be used by functions in those libraries, we
include all their symbol requirements in our analysis.
Zero-sized Symbols.Certain internal functions, like _start (GCC-
inserted), have a symbol of size zero. These functions have known
semantics (e.g., _start calls __libc_start_main), and so we add
them to the FCG for completeness, marking them as non-removable.

4 NIBBLER IMPLEMENTATION
We developed a prototype of Nibbler using Python on Linux. In this
section, we provide some information on the implementation of Nib-
bler’s core components, and discuss certain noteworthy challenges
that we had to overcome.

4.1 Components
The disassembly and static analysis components of Nibbler were
written in Python (≈7 KLOC).We used the objdump Linux utility for
linear disassembly and symbol information, and the pyelftools
Python package to access ELF files. The algorithms described in
Sec. 3, regarding FCG reconstruction and AT function elimination,
were developed from scratch.
Obtaining Symbols. Since by default all binaries installed on
Linux are stripped of symbols, we developed a tool for fetching
the debug packages corresponding to the binaries and libraries
we want to process. It uses the build-id of an installed library to
find a corresponding match in the debug repositories, and auto-
matically download it using Debian’s package management tools
(i.e., apt(8)).

4.2 Application-loaded Libraries
We implemented a tool to collect the libraries and symbols which
are manually loaded by programs with dlopen(). We exploited the
linker’s auditing interface in Linux [39] to introduce “hooks” that
are called before any operation is performed, such as searching
and opening a library, resolving a symbol, etc. Specifically, we
developed a shared library that sets up hooks to receive all pertinent
information from the loader, filters events unrelated to dynamic
loading, and logs the rest. The tool can be easily activated by setting
the LD_AUDIT environment variable before running an application.

5 EVALUATION
We evaluate Nibbler, using the following application suites on
Debian GNU/Linux x86-64 (v9, Stretch): Coreutils (v8.26), Nginx
(v1.10.3), MySQL (v5.5.8), and SPEC CINT2006; we also used the
stock GNU libc (v2.24). We applied Nibbler on Nginx and MySQL
individually, as well as on all the binaries in Coreutils and SPEC
CINT20062, treating them as sets of applications. In addition, we
applied Nibbler on all the above applications, considering them as a
single set totaling 117 binaries. The end result is five sets of thinned
libraries. Note that for every application set, we generate one set of
libraries to satisfy the requirements of all the included binaries.

We verified if Nibbler correctly removes only unused code by
running the following tests; they all completed successfully.

2Excluding perlbench that did not compile successfully.
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• Coreutils: We run the built-in high-coverage test suite, in-
voked through ‘make check’.

• Nginx: We used Siege [33] to perform requests on a running
server, as well as Nginx’s official test suite.

• MySQL: We used the officially-provided test suite, invoked
through ‘mysql-test-run.pl’.

• SPEC: We used the ‘ref’ workload.

5.1 Debloating
5.1.1 Library-code Reduction with Nibbler. Table 1 summarizes the
code reduction achieved by Nibbler on the application sets that
do not manually load libraries. It performs the best with Nginx,
where 55.95% of library code, in terms of bytes, is removed. On
the other hand, for Coreutils, which include a large number of
diverse utilities, we are able to eliminate 32.85% of library code. If
we combine all 117 applications (last row), we achieve a reduction
of 47.80%. If we instead focus on removed functions, reduction is
between 58.81% – 81.57%, as many smaller functions are removed.

Bloat is not equally distributed in libraries. In the worst case
(libcrypto), we found that 93.82% of its functions are not used
by any of the four application sets. In the best case (libpcre), we
removed 13.29% of its functions, however, this was also one of the
smallest libraries in our set. Table 2 highlights the per-library code
reduction achieved by Nibbler in libraries used by all four applica-
tion sets. We think that these results demonstrate the heavy bloat
in certain libraries, making their thinned versions great candidates
even for system-wide replacement.
Comparison with Piece-wise [53]. While direct comparison is
not possible, because Quach et al. focus on debloating individual
programs, we highlight our differences using Coreutils and SPEC
to provide some perspective to the reader. The mean reduction, in
the number of functions, Piece-wise achieves, with respect to these
two program sets, is 79% and 85%, respectively; Nibbler achieves
58.81% and 73.37%. This difference is primarily due to the fact that
we debloat libraries for sets of applications, instead of individual
binaries. In addition, the lack of semantics in binary code prevents
us from effectively using analyses to eliminate more AT functions,
while we preserve multiple versions of a used symbol in thinned
libraries (Piece-wise keeps only one).

5.1.2 Reduction with Application-loaded Libraries. Chromium (web
browser; v57) is a large, complex application that performs manual
library loading. To debloat it, we profile it by: i) visiting the top
sites in Alexa’s “Top 500 Global Sites” list [2], exercising a broad
range of functionality, such as video playback, animations, etc., and
ii) using Chromium’s comprehensive test suite [67], which includes
a plethora of tests related to layout and rendering, conformance
to certain web standards, UI events, and Chrome-specific APIs.
During profiling the browser loaded 63 additional libraries. After
including the used symbols in Nibbler, we included an additional
3241 functions or approximately 1MB of code. Table 3 lists the
10 (out of 84) most thinned libraries and total code reduction in
Chromium. Finally, we browsed the top-10 sites in Alexa’s list,
which did not result in new libraries being loaded. Our experiment
confirms the results of previous work [53], which showed that
profiling can be sufficient to debloat manually-loaded libraries in
certain applications.
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Figure 4: Nginx throughput for vanilla Shuffler, and Nib-
bler+Shuffler, over an undefended baseline.

5.2 Benefits on Defenses
5.2.1 Continuous Code Re-randomization. By identifying and re-
moving unused code, Nibbler can reduce the overhead of certain
security techniques, thereby easing their adoption and improving
software security. Shuffler [76] is a system realizing such a tech-
nique: continuous re-randomization of a target program and all
its libraries, including its own code. It does so asynchronously,
from a background thread, preparing a new copy of the code every
20 ms (in case of Nginx), and then signaling all other threads to
migrate to this new copy. Because of this asynchronous design,
all functions must be re-randomized, during each shuffle period,
as the system cannot determine in advance what will be required.
Nibbler’s library thinning can combine excellently with Shuffler’s
defense. We fused Nibbler with Shuffler, on Nginx 1.4.6, trimming
functions that would never be used during execution, reducing the
amount of work that Shuffler must perform. Overall, we nibbled
≈1.6K functions (out of ≈6.2K) or 26%.

In our experiment, we used 4 Nginx worker processes, pinned
to 2 CPU cores; Shuffler threads (one per worker) were also pinned
to the same cores. Shuffler’s asynchronous overhead will take CPU
time away from the target program, reflecting in a throughput drop.
We ran 32 client threads (using the benchmark tool Siege [33])
pinned to 4 other cores on the same system, which was sufficient
to saturate the server. This experiment is a smaller scale version of
the Nginx experiment included in the original paper [76].

Results are shown in Figure 4. Nibbler+Shuffler performance
improves substantially when there are more Shuffler workers, and
hence more CPU time is being spent on asynchronously copying
code. In the 2-cores, 1-worker case, one core runs the Nginx worker
and one executes the Shuffler thread, so Nibbler has little impact.
However, if we assume a carefully provisioned system with few
resources to spare, Nibbler can improve Shuffler’s performance sig-
nificantly. Overall, the geometric mean of throughput improved
from 50.51% (Shuffler) to 60.54%, a relative increase of 19.87%.

This makes sense since we trimmed 26% of the code; due to
Shuffler’s design, we expect a linear increase in performance as the
amount of code decreases. Additionally, we expect these results
to scale to larger experiments, since Shuffler spends very little
time on coordination (0.3% of overall runtime [76]). If the server
is multiprocess, every process gets its own independent Shuffler
thread, andNibbler still reduces the overhead linearly. If the server is
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Table 1: The effect of Nibbler on various application sets. The table summarizes library-code reduction in terms of code bytes
and functions removed. The Vanilla column corresponds to the original libraries.

Application Set Code Reduction (Lib. Set)

App(s) Set Size Functions Code (KB)

# of Bin. # of Lib. Vanilla Removed Reduction (%) Vanilla Removed Reduction (%)

a) Coreutils 104 11 4754 2796 58.81% 2164.61 711.01 32.85%
b) SPEC 11 5 7808 5729 73.37% 2431.15 1104.93 45.44%
c) Nginx 1 7 8599 7015 81.57% 2917.77 1632.71 55.95%
d)MySQL 1 8 7979 5524 69.23% 2522.66 1010.17 40.04%

a) + b) + c) + d) 117 16 14438 10622 73.57% 4621.53 2208.93 47.80%

Table 2: Code removed from common libraries in our appli-
cation set (Coreutils, Nginx, MySQL, and SPEC CINT2006).

Library Unused Code

Functions Bytes

librt 52 (72.22%) 8.88 KB (71.64%)
libattr 17 (53.12%) 3.35 KB (38.17%)
libgcc 113 (66.86%) 36.02KB (56.10%)
libdl 8 (33.33%) 0.55 KB (26.70%)
libcrypto 4770 (93.82%) 1043.96 KB (83.57%)
libz 83 (40.84%) 40.84 KB (60.91%)
libpthread 139 (46.80%) 19.42 KB (36.89%)
libpcre 21 (13.29%) 33.26 KB (10.09%)
libc 1539 (53.27%) 297.90 KB (24.93%)
libm 426 (66.56%) 172.16 KB (39.76%)
libstdc++ 2719 (71.31%) 309.14 KB (45.04%)
libgmp 438 (66.46%) 176.60 KB (46.43%)
libselinux 225 (63.20%) 50.51 KB (53.13%)
libacl 42 (60.00%) 11.75 KB (69.99%)
libcap 21 (75.00%) 3.38 KB (49.97%)
libcrypt 9 (23.08%) 0.91 KB (4.29%)

multithreaded, Shuffler’s overhead decreases as more cores become
available, and Nibbler still reduces the overhead proportionally.

5.2.2 Control-flow Integrity. Nibbler improves low-overhead, coarse
CFI schemes in two ways. First, it reduces the number of (CALL-
preceded) ROP gadgets that are accessible to attackers. To quantify
this gain, we built a gadget analysis framework (details in App. A),
atop the Capstone disassembler [54] to calculate the reduction of
CFI-resistant [78] gadgets in thinned libraries.

Table 4 reports the results of our analysis. The Suite column cor-
responds to the different applications used, along with their thinned
libraries; the numbers in parentheses indicate code reduction. Total
reports the overall reduction of the gadgets (thinned vs. vanilla) in
each library, whereas the rest of the columns (Stack – NOP) present
the reduction of certain gadget classes. For the different gadget
types, we used the semantic definitions of Snow et al. [63], with
additional (sub)categories for precision. (Gadget reduction when
CFI is not in place can be found in App. B.)

Table 3: 10 most debloated libraries in Chromium.

Library Unused Code

Functions Bytes

libgtk 4886 (49.06%) 994.70 KB (41.03%)
libxml2 1260 (48.26%) 423.87 KB (46.70%)
libc 1606 (46.93%) 316.35 KB (26.25%)
libgio 1749 (38.65%) 289.00 KB (35.13%)
libgnutls 826 (36.26%) 212.32 KB (27.76%)
libnss3 2763 (70.56%) 172.14 KB (18.05%)
libbglib 840 (40.64%) 154.70 KB (32.37%)
libasound 1053 (36.15%) 152.99 KB (27.61%)
libm 375 (61.68%) 137.77 KB (32.00%)
libstdc++ 842 (28.45%) 115.45 KB (22.47%)
libX11 433 (22.29%) 111.08 KB (19.95%)

Total 20946 (34.95%) 4198.22 KB (25.98%)

Second, Nibbler reduces the number of functions that can be tar-
geted by indirect functions calls, by eliminating function pointers
that are never used in applications (Sec. 3.5). Specifically, our anal-
ysis eliminates 45.19%, 57.86%, 57.75%, and 36.60% of AT functions
in the four tested applications suites: Coreutils, SPEC, Nginx, and
MySQL; 49.08% when we combine all of them.

All in all, the reduction of the CFI-resistant gadgets is analo-
gous to the achieved code reduction, but, on average, the gadget
reduction rate(s) are higher, suggesting thatNibbler can increase con-
siderably the precision of backward-edge CFI schemes [81, 82]. More
importantly, Nibbler can eliminate certain gadget classes in vari-
ous libraries (100% reduction), like Load Reg. (load a register from
another register or the stack), Memory (memory read/write), Arith-
metic+Mem. (arithmetic computations with memory operands),
Logic (logic computations), and Branch (indirect JMP/CALL), even
on applications that experience moderate code reduction rates, such
as Coreutils, as shown in Table 4 (underlined entries). As expected,
when CFI is not present, Nibbler can achieve compelte gadget elim-
ination in less cases (see Table 6 in App. B).

5.3 Performance Overhead
Memory. Nibbler can be applied on an entire system or on smaller
sets of applications. In the latter case, if the original version of a
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Table 4: CFI-resistant gadget reduction results. The percentages correspond to removed gadgets (thinned vs. vanilla). Entries
marked with ‘N/A’ indicate absence of certain gadget classes in vanilla.

Suite Total
Gadget Type

Stack Load Reg. Memory Arithmetic Logic Branch Syscall NOP
Pivot Lift Reg. Stack Load Store Reg. Mem. Reg. Mem. jmp call

SPEC
libpthread (92.79%) 97.0% N/A N/A 95.7% 100.0% 100.0% 86.5% 97.5% 100.0% 100.0% 100.0% N/A N/A 88.4% 97.5%
libm (39.76%) 52.3% N/A N/A N/A 18.5% 0.0% 0.0% 50.7% 0.0% 100.0% N/A N/A N/A N/A 57.7%
libc (42.01%) 75.8% 91.7% 0.0% 75.6% 78.0% 72.6% 66.2% 75.9% 74.7% 62.6% 76.9% 25.0% 62.1% 73.3% 79.7%
libgcc (72.35%) 45.7% 0.0% N/A 39.8% 60.3% 21.1% 11.1% 69.8% N/A 40.0% N/A N/A N/A N/A 59.4%
libstdc++ (48.88%) 80.1% 0.0% 50.0% 48.3% 79.5% 76.4% 69.7% 72.1% 77.8% 44.8% 100.0% 100.0% 35.7% N/A 78.6%

Coreutils
libpthread (39.94%) 56.8% N/A N/A 61.1% 57.7% 62.5% 56.8% 42.5% 100.0% 55.8% 0.0% N/A N/A 55.8% 56.2%
libdl (75.41%) 97.8% N/A N/A 100.0% 100.0% 100.0% 100.0% 93.8% N/A 100.0% N/A N/A 100.0% N/A 96.8%
libselinux (53.13%) 70.3% N/A N/A 80.7% 64.0% 90.0% 66.7% 76.1% N/A 78.4% N/A N/A 94.4% N/A 67.2%
libacl (69.99%) 58.8% N/A N/A 63.9% 71.7% N/A 60.0% 36.8% 100.0% 57.9% N/A N/A N/A N/A 61.1%
librt (71.64%) 69.4% N/A N/A 64.8% 76.3% 60.0% 50.0% 65.4% N/A 62.5% 0.0% N/A 66.7% 72.7% 78.1%
libpcre (10.15%) 17.1% N/A N/A 25.0% 16.9% 10.0% 30.0% 7.7% N/A 33.3% N/A 50.0% 0.0% N/A 21.4%
libc (28.28%) 59.8% 50.0% 0.0% 63.5% 56.7% 58.8% 55.5% 62.6% 63.7% 44.6% 38.5% 25.0% 57.6% 58.7% 65.3%
libattr (38.17%) 63.4% N/A N/A 50.0% 100.0% 100.0% 100.0% 45.5% 100.0% 100.0% N/A N/A N/A N/A 38.5%
libgmp (46.43%) 65.5% N/A N/A 86.3% 59.6% 79.7% 73.8% 71.4% 38.9% 72.4% 0.0% 100.0% 85.7% N/A 70.9%
libgcc (92.26%) 95.0% 80.0% N/A 95.5% 100.0% 86.0% 88.9% 96.2% N/A 100.0% N/A N/A N/A N/A 96.9%
libcap (49.97%) 60.2% N/A N/A 40.9% 50.0% N/A 87.5% 61.5% N/A 40.0% N/A N/A N/A N/A 61.9%

MySQL
libm (44.25%) 52.8% N/A N/A N/A 19.2% 0.0% 0.0% 52.2% 0.0% 100.0% N/A N/A N/A N/A 58.9%
libpthread (34.33%) 49.4% N/A N/A 53.5% 54.2% 62.5% 43.2% 37.5% 100.0% 51.2% 0.0% N/A N/A 46.5% 46.2%
libz (29.37%) 58.5% N/A N/A 53.1% 62.0% 37.0% 60.0% 52.9% 50.0% 72.7% N/A N/A 37.5% N/A 56.2%
libc (34.23%) 67.0% 91.7% 0.0% 67.0% 66.4% 64.3% 56.3% 67.6% 63.2% 54.7% 61.5% 25.0% 50.0% 60.0% 72.5%
libgcc (56.10%) 42.3% 0.0% N/A 39.8% 49.2% 19.3% 11.1% 66.0% N/A 40.0% N/A N/A N/A N/A 56.2%
libstdc++ (45.04%) 77.5% 0.0% 0.0% 46.2% 76.8% 70.4% 60.5% 69.1% 58.3% 37.9% 100.0% 100.0% 33.3% N/A 76.7%
libdl (26.70%) 40.2% N/A N/A 42.9% 31.8% 0.0% 33.3% 50.0% N/A 0.0% N/A N/A 50.0% N/A 41.9%
libcrypt (4.30%) 20.2% N/A N/A 25.0% 20.7% N/A 0.0% 21.4% N/A N/A N/A N/A N/A N/A 23.1%

Nginx
libpthread (47.75%) 50.3% N/A N/A 51.2% 47.9% 62.5% 54.1% 43.8% 100.0% 41.9% 0.0% N/A N/A 46.5% 55.0%
libz (60.91%) 77.2% N/A N/A 68.8% 87.0% 51.9% 64.0% 67.6% 50.0% 81.8% N/A N/A 50.0% N/A 78.1%
libc (40.78%) 73.8% 91.7% 0.0% 71.0% 74.0% 71.8% 70.2% 74.8% 70.9% 62.6% 69.2% 25.0% 62.1% 60.0% 79.2%
libdl (26.70%) 40.2% N/A N/A 42.9% 31.8% 0.0% 33.3% 50.0% N/A 0.0% N/A N/A 50.0% N/A 41.9%
libpcre (10.09%) 17.1% N/A N/A 25.0% 16.9% 10.0% 30.0% 7.7% N/A 33.3% N/A 50.0% 0.0% N/A 21.4%
libcrypt (6.42%) 20.2% N/A N/A 25.0% 20.7% N/A 0.0% 21.4% N/A N/A N/A N/A N/A N/A 23.1%
libcrypto (83.56%) 93.1% N/A 0.0% 92.0% 93.5% 86.7% 91.0% 93.4% 100.0% 96.1% 97.1% 82.4% 72.5% N/A 94.4%

Table 5: Memory overhead (KB) comparison.

Application Set Nibbler Piece-wise [53]
Max. Total Estimate per execution

a) Coreutils 1900 KB 1024 KB
b) SPEC 1148 KB 580 KB
c) Nginx 1668 KB 1292 KB
d) MySQL 2108 KB 1248 KB
a) + b) + c) + d) 3256 KB 1816 KB

library is also in use, then two versions of the same library will be
present in memory (i.e., vanilla and thinned library). Calculating
exactly how much memory overhead the thinned library will im-
pose is not straightforward, as the OS dynamically pages-in code
pages used by applications. We can calculate, however, the addi-
tional memory required when all library code is used (worst case
analysis). This corresponds to all code pages (of the thinned library)
that have at least one byte of code that was not erased.

On the other hand, Piece-wise [53] keeps a single version of each
library on disk, and removes code at load time. As a result, each
memory page that has code erased—but not removed entirely—is
no longer shared with any other executing application that uses
the same library, due to copy-on-write (COW).

Consequently, the overhead increases as more applications exe-
cute concurrently. This includes multiple invocations of the same
application, but not multiple processes resulting from a fork()
system call. As a reference, there are approximately 39 distinct ap-
plications running in a fresh installation of Debian v9. Comparison
of memory overheads are shown in Table 5. We estimate the per-
invocation overhead of Piece-wise using the code-reduction num-
bers of Nibbler (more code removed likely means higher overhead
for Piece-wise). Our approach incurs lower and more predictable
memory overhead.

Load Time. Nibbler does not incur any load-time overhead. In
contrast, previous work [53], which only removes code at load time,
reported a 20x slowdown on average with the small programs in
Coreutils (20ms on average, for a process usually taking under 2ms).

Analysis Time. Processing the 104 programs in Coreutils and
their libraries took ≈2 hours with Nibbler. Timings were collected
on a VM running Debian 9 (using VMware Workstation 12 Pro),
hosted on top of Windows 10 on a mid-range workstation featuring
a 3.5GHz AMD FX-6300 CPU and 16GB RAM. Our experiment
indicated that processing time is primarily influenced by code size;
a secondary factor is the number of relocation entries. While the
speed of the analysis is not critical, Nibbler is a prototype, so we
are confident there is room for improvement.
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6 LIMITATIONS
Exploit Disruption. In App. D we evaluate Nibbler against pre-
compiled, real-world core-reuse exploits. In all cases, Nibbler dis-
rupts the exploits; however, attackers can modify them to use other
gadgets and potentially restore their capabilities. Debloating, even
when combined with CFI, cannot block all code-reuse attacks, but it
does make libraries a less fertile ground for gadget harvesting. Note
that compiler-based approaches [53] performing the same type of
debloating have a similar limitation. Exploits are more likely to be
prevented by combining Nibbler with a system like Shuffler [76].

Attack Surface Reduction. Previous work [53] suggested that
debloating can reduce the attack surface by removing vulnerabilities
contained in the erased library code. Nibbler performs a similar
type of debloating on binary code. However, we did not reach the
same conclusion. By design, both works remove code only when
there is no viable execution path to that code for a given application.
Consequently, any code removed is essentially unreachable code, so
vulnerabilities contained within are not relevant because they can
never be triggered by external input(s). We do agree, however, that
such vulnerabilities can potentially be used by multistage exploits,
where later stage exploit components (ab)use vulnerabilities in
unused code to escape sandboxing or further elevate privileges [15].

7 RELATEDWORK
7.1 Code Reduction
Recent work from Quach et al. [53] proposes a compiler-based
framework for debloating applications when source code is avail-
able, while Nibbler targets binary-only software. Other differences
with Nibbler include the following: (i) their approach is unable to
work with (one of) the most commonly used libraries, GNU libc
(glibc), which requires the GNU C compiler, while Nibbler is
compiler-agnostic, (ii) their approach opts to debloat each applica-
tion individually, which incurs significant memory overhead when
applied to numerous applications, as it breaks the sharing of mem-
ory pages that include erased code per-application instantiation,
(iii) they choose to debloat applications at load time, which incurs a
slowdown of 20x, and, even though the overhead for launching one
application is negligible in absolute terms, it compounds in appli-
cations that spawn others (e.g., shell scripts), and (iv) Nibbler goes
beyond CFI by demonstrating one of the key benefits of debloating
by integrating it with continuous code re-randomization.

CodeFreeze [46] aims to reduce the attack surface of Windows
binaries by removing unused code in shared libraries (DLLs). It
utilizes bounded address tracking [34] to resolve function pointers,
which leads to over-restrictive CFGs. As a result, while it is more
aggressive at removing code, it can erroneously remove needed
functions (e.g., constructors) and it depends on whitelisting to avoid
crashes. Instead, Nibbler’s analysis is conservative and attempts to
err on the safe side by over-approximating. Our evaluation shows
that we can correctly trim libraries without the need for a whitelist.

Perses [65] and C-Reduce [55] are state-of-the-art program re-
duction tools that build upon the concept of (hierarchical) delta
debugging [44, 80]. Specifically, by specifying a program to be min-
imized and an arbitrary property test function, both these tools
return a minimized version of the input program that is also correct

with respect to the given property. Chisel [27] further improves this
approach, by leveraging reinforcement learning. In particular, via
repeated trial and error, Chisel builds (and further rectifies) a model
that determines the likelihood of a candidate (minimal) program to
pass the property test.

In antithesis to tools like the above, Nibbler does not require
any high-level specification regarding the functionality of the in-
put program/library. Our thinned libraries are guaranteed to be
correct under any given input to the set of applications that uses
them. Kurmus et al. [36] focus on reducing the attack surface of
the Linux kernel by removing unnecessary features. Unlike Nibbler,
they develop a tool-assisted approach for identifying and remov-
ing unnecessary features during the kernel’s configuration phase,
hence, omitting code during compilation.

A series of works [31, 32, 72] have focused on reducing bloat
in Java programs and the Java Virtual Machine (JVM). JRed [31]
employs static analysis to extract the FCG of applications and iden-
tify, and remove, the bytecode that corresponds to unused classes
and methods from the Java runtime. Similarly, Wagner et al. [72]
propose “slimming” the JVM by removing code that does not ex-
ecute frequently and dynamically fetching it from a server only
when it is required. The goal is to reduce the amount of code that
needs to be deployed in thin clients, such as embedded systems, by
dynamically deploying what is required.

Jiang et al. [32], instead of targeting the JVM, aim to cut specific
features that are not needed from Java programs. Starting from a
small set of methods responsible for implementing a feature, they
use static analysis and backwards slicing to identify and remove all
the code corresponding to the feature. While these approaches also
utilize static analysis, decompiling and reconstructing the FCG of
Java programs is less challenging than that of binaries [26].

Landsborough et al. [37] also propose removing unused fea-
tures from programs to reduce their attack surface. Their approach
involves manually disabling features in binaries and a genetic al-
gorithm that is applied in toy programs. Malecha et al. propose
software winnowing [41], an approach that uses partial evalua-
tion of function arguments during compilation to “specialize” code,
eliminating some unused code in the process.

In the same vein, TRIMMER [61] specializes program code, and
debloats applications, by leveraging user-defined configurations,
while Shredder [45] further introduces constant propagation analy-
ses to specialize systemAPI functions. Lastly, Koo et al. [35] propose
the concept of configuration-based software debloating: i.e., the
removal of feature-specific code, which is exclusively used only
when certain configuration directives are specified/enabled. These
approaches are orthogonal to Nibbler, looking at software thinning
from a different perspective, while most of them (with the exception
of Shredder) require source code.

Other works approach debloating from a performance angle,
focusing on reducing memory consumption [9, 49, 79]. Despite
the similarity in name, slim binaries [23], proposed by Franz et al.,
refer to programs that are represented in an way that allows their
translation to multiple architectures.
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7.2 FCG Extraction
Sound and complete extraction of the FCG from binaries is an open
problem. Murphy et al. [47] perform an empirical analysis of static
call-graph extractors that operate on source code or at compile time.
Their findings indicate that there is significant variance, based on
the tool, and the potential for false negatives. The latter correspond
to undiscovered but existing call edges, which would be problematic
for our approach, as removal of used code can be catastrophic. As
existing FCG extraction methods are insufficient, we developed our
own method that is complete.

There are also various promising binary analysis and augmen-
tation frameworks [3, 7, 8] that reconstruct the FCG of binaries.
Even though these tools keep improving, errors are still possible
per their authors, as well as other researchers [5]. As such, their
analyses are not appropriate for Nibbler. Instead, the methods de-
scribed in control-flow integrity works for binaries [81, 82] are
more related to our approach. Unlike them though, we introduce a
novel methodology for eliminating AT functions—thereby deleting
extraneous CFG edges—and reconstruct a complete FCG that also
includes directs calls within and across modules.

8 CONCLUSION
In this paper, we presented Nibbler, a system which demonstrates
that debloating binary-only applications is possible and practical.
Nibbler identifies unused code in shared libraries and erases it. We
use a conservative FCG reconstruction algorithm to initially only
remove functions without pointers to them, which we refine by
introducing an optimization for eliminating functions with unused
pointers. We evaluated the debloating capabilities of Nibbler with
real-world binaries and the SPEC CINT2006 suite, where we elim-
inate 56% and 82% of functions and code, respectively, from used
libraries. Nibbler is able to correctly analyze binary software, by
only leveraging symbol and relocation information produced by
existing compilers.

Nibbler, and debloating generally, improves security of software
indirectly, by benefiting defenses. Continuous code re-randomization
systems get a performance boost, which we demonstrated by in-
tegrating Nibbler with Shuffler to lower overhead by 20%. Lower
overheads make such defenses more attractive for deployment on
production systems, or can be used to provide stricter security
guarantees (e.g., by raising re-randomization frequency) in criti-
cal systems. Control-flow integrity defenses also benefit, because
we remove code involved in allowable control-flows. Our evalua-
tion shows that Nibbler reduces the number of gadgets reachable
through returns and indirect calls by 75% and 49% on average.
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A GADGET COLLECTION
Given an x86-64 ELF binary as input, our tool identifies its ex-
ecutable sections, by parsing the respective ELF header(s), and
proceeds as follows. First, it pinpoints all the byte sequences (in
the previously-identified executable sections) that correspond to
RET, indirect JMP and CALL instructions; the location of every such
instruction is marked, as GAD_END, because it indicates the end of a
gadget, while the instruction opcode (RET, JMP, CALL) specifies the
type of the gadget (i.e., ROP, JOP, or COP).

Second, GAD_BEGIN is set to GAD_END - 1, and Capstone is used
to linearly disassemble the region [GAD_BEGIN, GAD_END]; every
resulting code snippet is by definition a gadget (as it ends with an
indirect branch instruction), and the type of the instruction that
starts at GAD_BEGIN is used to further classify the whole gadget
(more about this below). Next, GAD_BEGIN is set to GAD_END - 2,
and step 2 is repeated; the process is executed recursively for GAD_-
BEGIN = GAD_END - 3, . . . , GAD_BEGIN = GAD_END - k, where
k (bytes) is an input parameter, typically set to 10, in accordance
to modern automated gadget finding tools, like ROPgadget [56],
Ropper [57], xrop [10], and rop-tool [66].

https://github.com/JoeDog/siege
https://github.com/JoeDog/siege
http://man7.org/linux/man-pages/man7/rtld-audit.7.html
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ff558825.aspx
https://www.blackhat.com/us-15/briefings.html#breaking-payloads-with-runtime-code-stripping-and-image-freezing
https://www.blackhat.com/us-15/briefings.html#breaking-payloads-with-runtime-code-stripping-and-image-freezing
https://www.nsa.gov/resources/everyone/ghidra/
https://www.nsa.gov/resources/everyone/ghidra/
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
http://shell-storm.org/project/ROPgadget/
http://shell-storm.org/project/ROPgadget/
https://scoding.de/ropper/
https://github.com/t00sh/rop-tool
https://github.com/t00sh/rop-tool
https://www.chromium.org/developers/testing
https://www.chromium.org/developers/testing
http://refspecs.linuxbase.org/elf/elf.pdf
http://refspecs.linuxbase.org/elf/elf.pdf
https://github.com/trailofbits/mcsema
https://msdn.microsoft.com/library/windows/desktop/ms680547(v=vs.85).aspx
https://msdn.microsoft.com/library/windows/desktop/ms680547(v=vs.85).aspx


Nibbler: Debloating Binary Shared Libraries ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

(We had to develop our own analysis framework, as none of
the aforementioned gadget finding tools is intended for quanti-
tative analyses [78].) The above procedure discovers instruction
(sub)sequences, of size 1, 2, . . . , k bytes, which are prefixes of an
indirect branch, thereby constituting gadgets. For example, |mov
(%rdi), %rax; pop r14; pop r15; pop rbp; ret| will be ac-
counted as 4 separate ROP gadgets: (a) |pop rbp; ret|, (b) |pop
r15; pop rbp; ret|, (c) |pop r14; pop r15; pop rbp; ret|,
and (d) |mov (%rdi), %rax ... ret|. Also, gadgets (a) – (c) will be
classified as loading a register with a value from the stack, whereas
(d) will be classified as a memory load. Lastly, gadgets that include
invalid instructions sequences, like privileged instructions (hlt,
in/out, rdmsr/wrmsr, etc.), instructions that access non-general-
purpose, registers (dr#, cr#), and vendor-specific ISA extensions
(MMX, SSE, AVX, TSX), are all filtered out.

B GADGET REDUCTIONWITHOUT CFI
Table 6 summarizes our findings regarding conventional gadgets.
Similar to the previous case, the reduction of gadgets is analogous
to the achieved code reduction. Again, Nibbler seems to be very
effective on certain gadget classes, like Branch, where the achieved
gadget reduction is (on average) a bit higher than the respective
code reduction. Similarly, Stack Pivot and Stack Lift gadgets, in
certain real-world applications, such as Coreutils and MySQL, are
reduced considerably (again on average) or eliminated completely
(e.g., libdl in Coreutils). Our results indicate that although Nibbler
does not entirely protect against code reuse, it raises the bar signifi-
cantly for an attacker that tries to automatically stitch together code
snippets to mount a ROP/JOP/COP attack [16, 56, 57, 59]; and it
achieves this with practically zero run-time performance overhead.

C STATIC LINKING
We argued that shared libraries have numerous advantages over
static ones in real-world deployments. Nevertheless, static linking,
specially with the addition of link-time optimization [40] (LTO), has
the potential to eliminate evenmore code.We compare Nibbler with
static linking to highlight its debloating capabilities, as well as the
large overhead associated with static linking. We statically linked
all applications, and compared the total size of the statically-linked
applications against the dynamically-linked ones, with all their
required libraries, after we have applied Nibbler. Figure 5 shows the
total size of each application set. On average, static linking reduces
the size of the application by 50.32%, while Nibbler by 55.29%, indi-
cating that our code elimination techniques approximate what can
be achieved through recompilation and static linking. If we, how-
ever, look at the total code in the system, the first (statically-linked)
take 78.57 MB, while the latter (nibbled) only 14.34 MB.
Effect of LTO. LTO corresponds to inter-procedural optimizations,
performed during linking, which may eliminate even more code.
To measure its effect, we built Nginx with LLVM/Clang (its LTO im-
plementation is more mature than GCC’s). We found that LTO does
not significantly eliminate code, when compared to static linking
without LTO. Table 7 summarizes the debloating effects on library
code. We notice that LTO does not significantly eliminate code,
as code attributed to libraries is reduced only by 2.1%, compared
to conventional static linking. Interestingly, certain libraries may
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Figure 5: Comparison of total app. size (in KB; binaries +
required libraries), when using Nibbler with dynamically-
linked binaries (shared libraries) vs. statically-linked bina-
ries (library code is duplicated)—top x-axis. The hatched
bars correspond to average code reduction and standard de-
viation of total app. size across a set—bottom x-axis.

require additional functions/code when they are built statically,
allowing Nibbler to achieve better results than static linking with
LTO in such cases (see libc and libcrypt in Table 7). In general,
both types of static linkage result in ≈10% less library code than
Nibbler’s thinned libraries, indicating that our code elimination
techniques approximate the “optimal” reduction rate(s) sufficiently.

D REAL-WORLD EXPLOITS
We evaluated Nibbler against pre-compiled, real-world core-reuse
exploits. Specifically, we replicated: (1) a ROP-based exploit against
Nginx (CVE-2013-20283), (2) a ROP/ret2libc-based exploit against
mcrypt (CVE-2012-44094), and (3) a ret2libc-based exploit against
Tinyproxy/glibc (CVE-2015-75475). Next, we nibbled the libraries
of the applications and re-tested the exploits. In all cases, Nibbler
managed to stop the attack, by removing gadgets, required by the
exploit(s), or whole (libc) functions. Note that the attacker can

3https://github.com/danghvu/nginx-1.4.0
4https://www.exploit-db.com/exploits/22928/
5https://researchcenter.paloaltonetworks.com/2016/05/how-cve-2015-7547-glibc-
getaddrinfo-can-bypass-aslr/

https://github.com/danghvu/nginx-1.4.0
https://www.exploit-db.com/exploits/22928/
https://researchcenter.paloaltonetworks.com/2016/05/how-cve-2015-7547-glibc-getaddrinfo-can-bypass-aslr/
https://researchcenter.paloaltonetworks.com/2016/05/how-cve-2015-7547-glibc-getaddrinfo-can-bypass-aslr/
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Table 6: Gadget reduction results. The percentages correspond to removed gadgets (thinned vs. vanilla). Entries marked with
‘N/A’ indicate absence of certain gadget classes in vanilla.

Suite Total
Gadget Type

Stack Load Reg. Memory Arithmetic Logic Branch Syscall NOP
Pivot Lift Reg. Stack Load Store Reg. Mem. Reg. Mem. jmp call

SPEC
libpthread (92.79%) 96.1% 100.0% 95.9% 97.8% 99.1% 100.0% 90.2% 93.1% 96.1% 93.3% 99.2% 96.2% 80.0% 96.5% 95.8%
libm (39.76%) 48.4% 28.6% 44.3% 53.5% 30.5% 75.6% 39.4% 54.3% 47.3% 72.2% 44.9% 45.9% 55.9% 71.4% 40.8%
libc (42.01%) 51.8% 68.9% 30.2% 63.5% 68.8% 38.3% 39.5% 53.4% 47.1% 59.7% 56.8% 41.0% 57.8% 76.6% 48.9%
libgcc (72.35%) 75.8% 55.4% 84.9% 62.9% 53.7% 32.0% 75.5% 83.9% 74.8% 91.0% 74.0% 86.2% 14.3% 0.0% 77.7%
libstdc++ (48.88%) 63.9% 67.4% 46.2% 60.4% 67.5% 51.1% 69.3% 72.5% 68.5% 68.2% 72.9% 56.5% 52.9% 50.0% 68.2%

Coreutils
libpthread (39.94%) 50.4% 51.5% 46.5% 53.1% 50.1% 44.1% 59.8% 44.6% 49.9% 56.9% 43.2% 48.8% 0.0% 44.2% 55.2%
libdl (75.41%) 85.5% 100.0% 100.0% 92.3% 88.9% 100.0% 90.0% 85.2% 93.3% 91.3% 50.0% 76.9% 80.0% N/A 77.3%
libselinux (53.13%) 67.3% 64.7% 52.9% 62.0% 63.2% 80.7% 84.7% 65.2% 64.2% 84.1% 79.9% 62.2% 91.8% N/A 63.8%
libacl (69.99%) 70.4% 60.0% 74.4% 80.0% 65.9% 69.2% 57.1% 52.7% 86.5% 78.2% 73.5% 73.9% 91.4% N/A 67.6%
librt (71.64%) 70.3% 80.8% 85.2% 70.3% 77.2% 40.0% 79.7% 62.6% 59.7% 66.7% 73.7% 81.0% 50.0% 66.7% 69.3%
libpcre (10.15%) 12.1% 22.6% 10.2% 15.2% 7.9% 16.7% 21.2% 11.5% 11.3% 22.6% 12.9% 8.1% 12.8% 0.0% 16.0%
libc (28.28%) 38.6% 45.0% 21.8% 49.0% 45.9% 33.4% 31.0% 44.5% 35.2% 47.3% 43.7% 28.5% 50.1% 49.1% 36.2%
libattr (38.17%) 32.4% 68.4% 50.0% 10.0% 71.1% 0.0% 22.2% 37.9% 25.7% 18.2% 25.0% 16.7% 0.0% N/A 46.1%
libgmp (46.43%) 57.3% 61.9% 49.2% 65.7% 60.0% 42.6% 48.3% 66.0% 55.6% 55.0% 63.2% 52.2% 48.2% N/A 55.1%
libgcc (92.26%) 98.2% 95.9% 99.6% 99.0% 99.0% 92.8% 98.0% 97.6% 99.3% 99.2% 98.0% 98.7% 85.7% 100.0% 97.5%
libcap (49.97%) 56.8% 62.5% 60.0% 75.9% 54.1% 100.0% 78.6% 50.8% 29.2% 50.0% 50.0% 54.5% 20.0% 100.0% 51.9%

MySQL
libm (44.25%) 49.9% 29.9% 45.4% 54.7% 32.4% 75.6% 41.8% 55.8% 47.9% 71.9% 46.4% 51.6% 55.9% 71.4% 42.4%
libpthread (34.33%) 44.4% 47.0% 37.8% 48.6% 45.6% 44.1% 50.4% 39.9% 41.4% 50.5% 43.9% 38.7% 0.0% 40.7% 46.6%
libz (29.37%) 47.8% 38.9% 22.6% 63.6% 40.7% 79.8% 57.8% 57.3% 43.3% 66.0% 27.3% 39.6% 59.3% N/A 51.6%
libc (34.23%) 42.5% 55.5% 26.1% 53.2% 54.3% 30.4% 30.7% 45.3% 38.0% 48.9% 45.3% 34.3% 44.5% 57.0% 41.0%
libgcc (56.10%) 61.1% 44.6% 59.9% 60.9% 40.1% 22.7% 46.9% 72.1% 53.6% 81.2% 62.0% 73.3% 14.3% 0.0% 63.7%
libstdc++ (45.04%) 59.0% 60.5% 39.1% 54.4% 62.2% 46.9% 64.8% 68.9% 63.4% 64.4% 64.9% 53.2% 49.7% 50.0% 63.6%
libdl (26.70%) 38.6% 0.0% 0.0% 35.9% 27.8% 78.3% 43.3% 37.0% 68.3% 56.5% 0.0% 46.2% 33.3% N/A 33.3%
libcrypt (4.30%) 7.3% 14.3% 5.0% 6.2% 9.5% 25.0% 0.0% 10.9% 4.0% 0.0% 8.7% 0.0% 0.0% 0.0% 5.7%

Nginx
libpthread (47.75%) 49.3% 48.5% 49.4% 47.2% 49.7% 42.6% 54.1% 43.2% 51.5% 55.1% 47.0% 52.5% 0.0% 43.0% 53.5%
libz (60.91%) 69.5% 63.9% 53.8% 80.3% 60.7% 87.9% 67.5% 81.1% 62.2% 78.7% 78.2% 66.7% 70.4% N/A 74.3%
libc (40.78%) 49.2% 64.0% 32.3% 58.2% 64.0% 38.1% 36.1% 51.9% 44.5% 56.5% 58.0% 39.3% 58.0% 59.4% 46.7%
libdl (26.70%) 38.6% 0.0% 0.0% 35.9% 27.8% 78.3% 43.3% 37.0% 68.3% 56.5% 0.0% 46.2% 33.3% N/A 33.3%
libpcre (10.09%) 11.5% 22.6% 10.2% 14.2% 7.9% 16.2% 17.6% 11.1% 10.3% 19.2% 12.2% 7.9% 12.8% 0.0% 15.0%
libcrypt (6.42%) 11.1% 25.0% 7.1% 6.2% 13.9% 25.0% 0.0% 10.9% 6.0% 25.0% 8.7% 0.0% 0.0% 0.0% 10.6%
libcrypto (83.56%) 89.2% 90.8% 80.7% 87.7% 92.3% 87.1% 85.8% 90.5% 79.3% 87.6% 88.3% 90.3% 83.3% 91.7% 89.3%

Table 7: Per-library debloating in Nginx with Nibbler, static
linking, and LTO.

Code in Scope

# of Functions (Size in KB)
Dynamic Nibbler Static Static+LTO

libcrypto 5085 317 33 33
(1155.25) (105.76) (22.14) (22.14)

libc 2889 921 1025 1025
(1172.84) (683.24) (697.08) (697.08)

libpthread 297 142 55 55
(49.43) (25.69) (6.01) (6.01)

libz 140 46 66 41
(84.55) (31.83) (40.01) (28.35)

libpcre 74 45 48 22
(158.82) (115.56) (122.57) (108.49)

libcrypt 39 28 37 37
(20.45) (19.29) (30.38) (30.38)

libdl 24 16 9 9
(2.54) (1.69) (0.06) (0.06)

Total (Lib.) 8548 1581 1270 1222
(2643.89) (990.07) (911.24) (892.51)

easily modify their exploits to use gadgets, or whole functions, from
the residual code. The purpose of this experiment, however, was
to demonstrate that Nibbler can thwart canned exploits with no
additional run-time overhead.
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