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Abstract—Hardening OS kernels against memory errors is
generally addressed by protecting security-critical data against
corruption and disclosure. However, establishing a sound
model for identifying sensitive memory objects in need of
protection is hard, leading to emergent attack vectors that can
be abused by attackers. In this paper, we propose rethinking
how OS kernels are hardened by introducing IUBIK for com-
partmentalizing kernel memory. IUBIK prevents kernel ex-
ploitation by segregating attacker-controlled data—frequently
used to manipulate security-critical data—in shadow memory,
preventing it from interacting with sensitive kernel objects. To
achieve this, IUBIK uses MTE: a recent hardware feature,
available in ARM CPUs, which allows mitigating exploits
based on both spatial and temporal memory-errors, efficiently.
We ensure that segregated objects do not contain sensitive
fields, such as pointers, by rewriting their struct definitions.
Moreover, we develop a profiling framework that explores
the kernel codebase in-depth and records code sites where
attacker-controlled objects are allocated, allowing IUBIK to
isolate them; our profiler recorded 292 privileged and 212

non-privileged allocation sites for a diverse set of workloads.
Finally, we evaluate an implementation of IUBIK for the
Linux kernel, across a suite of micro- and macro-benchmarks,
demonstrating that our prototype incurs no runtime overhead
in most tests and negligible additional memory consumption.

1. Introduction

The past few years have witnessed a surge in publicly-
released exploits that demonstrate how memory errors in
OS-kernel code allow attackers to take complete control
of a system (see Table 7 in Appendix A). These are
also complemented by offensive-security research that im-
proves exploit reliability [1], [2], proposes novel exploitation
techniques [3], [4], and automates identifying exploitation
primitives [5], [6]. In response, researchers have developed
hardware-assisted, memory-isolation frameworks to protect
sensitive kernel memory against corruption, neutralizing ker-
nel exploits [7], [8], [9], [10]. However, identifying data that
is security-sensitive and should be protected in monolithic
OS kernels remains an open problem, with recent work
continuing to uncover new objects that attackers may target
to circumvent existing defenses [11], [12].

In this work, we propose rethinking how to tackle kernel
security by ensuring its integrity without having to identify
individual, sensitive objects. Instead, our approach focuses
on neutralizing the primitives abused in exploits to corrupt
security-critical data. This insight is drawn after our sys-
tematic analysis of kernel exploits published during 2020–
2024, which reveals that most of them abuse a memory
error with limited capabilities —i.e., use-after-free (UAF) or
object-out-of-bounds (OOB)—to manipulate a kernel object
by overlapping it with a user-controlled object containing
data supplied by a malicious program (see Table 7 in Ap-
pendix A). As such, we call these user-controlled objects
usercopy primitives. Notably, usercopy primitives are the
standard way of leaking code pointers to defeat KASLR
and overwriting them to build code-reuse chains in Linux
(usually in that order) [13]. They are also the main method
leveraged by SLUBStick [1] to manipulate page tables and
takeover the OS kernel.

The Linux kernel tries to limit the use of such primitives
by allocating user-controlled objects in dedicated memory
pools, known as object caches, which are separated from
other kernel data that may be targeted by attacks. Neverthe-
less, our exploit analysis reveals that many of them are still
allocated from caches containing kernel objects targeted by
existing attacks, facilitating same-cache attacks [13]. Even
if all user-controlled objects were allocated from dedicated
caches, the lack of strong memory isolation to enforce their
separation from sensitive kernel data still allows attackers
to overlap them and mount cross-cache attacks [1], [14].

To tackle these problems we introduce IUBIK: a novel
solution for compartmentalizing memory within mono-
lithic OS kernels. IUBIK isolates user-controlled objects
in shadow memory and prevents them from ever accessing
security-critical data. In doing so, IUBIK is able to break
existing and future kernel exploits that hinge on abusing
user-controlled objects to corrupt sensitive data, regardless
of their type (e.g., process credentials or page tables) or
targeted vulnerability (i.e., UAF or OOB). Achieving this
level of isolation requires overcoming several challenges.
Challenge #1: Isolating Memory. First, we require a mem-
ory isolation primitive capable of confining user-controlled
objects in both spatial and temporal memory-safety sce-
narios. However, existing solutions focus solely on either
spatial [7], [8], [10] or temporal [15] violations, or provide



only probabilistic integrity [9]. In contrast to existing solu-
tions, IUBIK relies on ARM’s recently introduced Memory
Tagging Extension (MTE) feature [16] that provides both
spatial and temporal safety guarantees with low overhead.
We equip IUBIK with MTE and introduce a novel memory-
isolation framework for OS kernels that breaks exploits by
enforcing strong isolation between user-controlled objects
and the rest of kernel memory. IUBIK only requires two
MTE tags to maintain its two isolation domains: one for
user-controlled objects and the other for everything else.
This way, IUBIK does not inherit the limitations that stem
from the small number of available MTE tags, which have
raised concerns in prior work [17], [18], [19].
Challenge #2: Structure Layout. Second, we identify sev-
eral exploits that abuse flexible arrays stored at the end
of C structs [20] to transfer data to and from user
space and to place a target object closer to a victim object
(à la heap feng shui [21]). Two of the most widely used
object types in kernel exploitation, struct msg_msg and
struct user_key_payload, follow exactly this pat-
tern. Many of these objects mingle sensitive kernel fields
(e.g., function pointers) with user-controlled bytes in a single
C struct, allowing attackers to abuse memory errors to
corrupt them even when they are isolated in an MTE do-
main. To combat this, we rewrite such struct definitions
to extract user-controlled fields into shadow memory where
IUBIK can isolate them securely. In case the extracted
fields need to refer back the host object (e.g., in idioms like
container_of), we maintain a backward pointer in the
extracted field that references the original object. To prevent
user-controlled objects from corrupting this reference, we
encrypt it using ARM’s Pointer Authentication [22] feature.
Challenge #3: Identifying Allocation Sites. Finally, in
order to allocate select heap objects in shadow memory, we
need to instrument their allocation sites (called allocsites
henceforth). To achieve this, we first instrument allocsites
of user-controlled objects derived from public exploits and
prior work. However, we also aim to reveal other potentially
dangerous objects that may be user-controlled and instru-
ment them before they become abused in future exploits. Yet
doing so through manual code analysis would be a herculean
task given the size of an OS kernel. Additionally, existing
tools based on static analysis [5] exhibit a large number
of false positives, making it hard for security analysts to
triage them and identify suitable candidates. Consequently,
to address the third challenge, we develop a memory profil-
ing framework for OS kernels that is able to record objects
accessed from user space and recover their allocsites—we
call this tool the usercopy profiler. We execute a series of
comprehensive payloads to explore the kernel’s codebase
in-depth, which reveals a large number of candidates that
require instrumentation to reduce the kernel’s attack surface.
Evaluation. We first evaluate the effectiveness of the user-
copy profiler, where we record 292 privileged (i.e., they can
be triggered by root) and 212 non-privileged (i.e., they can
be triggered by regular users) allocation sites, respectively,
on a diverse set of workloads. Subsequently, we evaluate
IUBIK’s performance and effectiveness.

For performance, we measure the runtime overhead
IUBIK incurs in micro-benchmarks and real-world applica-
tions. In micro-benchmarks, IUBIK incurs worst-case slow-
downs of 7%–8% in two benchmarks, while the remaining
exhibit negligible (< 5%) slowdown or none at all. In
macro-benchmarks, IUBIK incurs a negligible slowdown of
< 3% in all scenarios. We also measure the memory over-
head of IUBIK at boot time (where a large number of user-
controlled allocsites are exercised) and find IUBIK requires
2.17% more memory than SLUB during boot (≈ 7MB).
Lastly, we evaluate IUBIK’s effectiveness via a suite of
security tests and by demonstrating its ability to mitigate
real-world exploits.
Contributions. We make the following contributions:

• We propose IUBIK: a novel memory-isolation solution
that prevents kernel exploitation by isolating attacker-
controlled objects in shadow memory using ARM MTE.

• We develop a set of patches that contain rewritten C
structs, which allocate their user-controlled fields in
shadow memory and use ARM PA to protect the few
backward references that they need to store.

• We develop a dynamic profiling framework that identi-
fies allocation sites of user-controlled objects requiring
instrumentation, and share a dataset of our findings.

• We evaluate IUBIK on the Linux kernel in terms of
performance and security effectiveness.

2. Background

2.1. Memory Errors

Software written in memory- and/or type-unsafe
languages—e.g., C, C++, and ASM—is susceptible to mem-
ory errors in heap-allocated objects [2]. These errors can
be broadly classified into two categories: spatial memory
errors and temporal memory errors. Spatial memory errors
occur when a pointer in a victim object is made to reference
memory in a target object outside of its intended boundary.
Such out-of-bounds (OOB) errors allow attackers to corrupt
and/or leak data from a target object via a neighboring
(i.e., linear OOB) or arbitrary (i.e., non-linear OOB) victim
object. Attackers typically (ab)use OOB errors to stretch the
bounds of a victim object to corrupt a target object.

In contrast, temporal memory errors occur when (dan-
gling) pointers referencing a freed object are reused and can
be accessed simultaneously in different execution contexts.
Examples of such errors include: (i) use-after-free (UAF),
where a dangling pointer can still be accessed even after its
underlying memory object is freed; (ii) double-free (DF),
where the same pointer is freed multiple times; and (iii) in-
valid free (IF), where an incorrect (potentially attacker-
controlled) pointer is freed. Attackers typically (ab)use such
temporal memory errors to create type confusion conditions,
whereby they overlap a victim and a target object and
leverage the former’s dangling pointer to corrupt the latter.



2.2. Memory Allocation in Linux

Allocator Overview. The Linux kernel primarily uses two
dynamic memory allocators to manage in-kernel memory: a
page allocator and an object allocator. The former, called
Buddy, leverages the buddy system to satisfy memory re-
quests on a page granularity [23], while the latter leverages
the slab approach to facilitate efficient memory allocation
on a sub-page granularity [24]. The slab allocator, called
SLUB, uses the underlying page allocator to reserve one or
more physically-contiguous memory pages to form object
slabs that store objects of the same size (i.e., type). To
save memory space and increase performance, SLUB caches
freed slots and reuses them for subsequent allocations.

In the presence of a temporal memory error, attack-
ers abuse this weakness to create a type confusion condi-
tion by overlapping different objects from the same cache
(i.e., same-cache attacks). Similarly, Buddy reallocates
freed pages across caches, which attackers can abuse to
overlap a victim object and a target object from different
caches (i.e., cross-cache attacks). IUBIK aims to protect
against both attack types by allocating attacker-controlled
objects in isolated caches.
Allocation Profiling. Linux recently introduced a memory
allocation profiling feature [25] that maintains a codetag
for every call to SLUB’s allocation routines, s.a., kmalloc
and kmem_cache_alloc. The codetags are represented
by a metadata object added to the kernel’s data section at
compile-time, storing several fields including an allocation
site’s source file and line number, as well as the function
where it is invoked from. Notably, the framework provides a
mechanism to allow retrieving an allocated object’s codetag
at run-time (i.e., its allocsite) using just its address.

2.3. ARM Hardware Features

Memory Tagging Extension. ARM Memory Tagging Ex-
tension (MTE) [16] is a hardware feature introduced in
the ARMv8.5 instruction set to detect spatial and temporal
memory-safety violations. For that, MTE provides two types
of tags that implement a “lock and key” mechanism to me-
diate memory accesses, namely: address tags and memory
tags. Address tags serve as the “key” and are represented
by four bits in the top byte of every pointer. The Top Byte
Ignore (TBI) feature is used here to instruct the CPU to
ignore the top byte when dereferencing pointers, allowing
software to avoid expensive masking operations. Memory
tags serve as the “lock” and are also represented by four
bits that are associated with every 16-byte (aligned) region
(known as the tag granule) of memory.

MTE extends the ARM instruction set with several new
instructions that allow manipulating memory tags. When
accessing memory, both the address tag and the memory
tag must match, else a fault occurs according to the re-
porting mode: (i) synchronous raises the fault immediately,
(ii) asynchronous records faults and raises them on the next
context switch, and (iii) asymmetric records faults on read
instructions and raises them on writes.

Pointer Authentication. ARM Pointer Authentication
(PA) [22] was introduced in ARMv8.3-A to protect the
integrity of pointers against tampering. At a high level,
PA attaches cryptographic signatures to pointers and later
verifies them before use. The signature is a Message Authen-
tication Code (MAC)—called a Pointer Authentication Code
(PAC) in this context—computed over the original pointer
value and a 64-bit context (e.g., the address of the pointer)
with a 128-bit key stored in a special CPU register. The PAC
is stored in the top unused bits of hardened pointers, and its
length varies between 3 and 31 bits, depending on hardware
configuration. To prevent attackers from brute-forcing PAC
values to guess valid signatures, e.g., via the PACMAN
attack [26], ARM extends PA with the FPAC feature, which
raises a fault on a failed PAC authentication.

3. Threat Model

Adversarial Capabilities. We assume a non-privileged at-
tacker aiming to escalate privileges and control a system by
exploiting memory-safety vulnerabilities in heap-allocated
objects (i.e., managed by SLUB). Specifically, we allow an
attacker to trigger one or more spatial or temporal memory
errors on heap-allocated objects in the kernel—e.g., UAF,
DF, IF, or OOB—at arbitrary times and as frequently as nec-
essary to escalate their privileges. With this, an attacker can
interact with the kernel via buggy interfaces, such as pseudo-
filesystems (e.g., procfs [27] and debugfs [28]), the
system call layer, and virtual device files (i.e., devfs [29])
to trigger an arbitrary sequence of (de-)allocations to trick
SLUB to overlap a user-controlled object onto a kernel-
sensitive one (e.g., one containing function pointers, process
credentials, or page tables) either allocated on the same
or different page via a same-cache or cross-cache attack,
respectively. We consider memory errors on the stack or
on the Buddy allocator out of scope. Regarding adversarial
capabilities, our threat model is realistic and on par with the
current state-of-the-{art, practice} regarding kernel-based
heap exploitation [1], [6], [30].
Hardening Assumptions. We assume an OS that imple-
ments the WˆX memory policy [31], [32], [33] in kernel
space; hence, direct (shell)code injection in kernel mem-
ory is not attainable. Moreover, we presume that the ker-
nel is hardened against ret2usr [34] attacks via PXN
and PAN [35]. Lastly, the kernel may have support for
KASLR [36], XOM [37], stack-smashing protection [38],
proper .rodata sections (e.g., constification of critical
data structures) [33], pointer (symbol) hiding [39], free-
list randomization [40], [41], freelist obfuscation [42], ran-
domized slab caches for kmalloc [43], AUTOSLAB [44],
SLAB_VIRTUAL [45], hardened usercopy [46], (freed)
memory poisoning [47], and CFI [48], [49], [50], [51],
[52]. It may also use memory isolation frameworks that
protect certain sensitive objects, such as process credentials
or page tables [4], [7], [8], [9], [10], [53], and hardware-
based techniques that aim at neutralizing temporal memory
errors in Linux [15]. IUBIK does not require nor preclude
any of the above, as they are orthogonal to its design. We
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Figure 1: Scenarios for abusing usercopy primitives.

only require that ARM MTE and PA are supported and
cannot be disabled. Finally, we consider side-channel [54],
micro-architectural [55], [56], [57], fault-injection [58], [59],
[60], and EPF [61] attacks out of scope.

4. Motivating Examples

User-controlled objects are crucial instruments that at-
tackers abuse to build exploitation primitives. We identified
28 public exploits (in Linux) and a recent study on im-
proving exploit reliability [1] that fall under this category.
After closely examining them, we noticed that usercopy
primitives are leveraged to exploit temporal- and spatial-
memory errors, and they are abused to leak and corrupt
both code and data pointers. We analyze three of them in the
following section, outlining existing exploitation scenarios
where user-controlled objects are abused.
Same-Cache Attacks. The exploit that abuses CVE-2023-
0461 [62] leverages a UAF in a Linux instance hardened
with KMALLOC_SPLIT_VARSIZE: a feature proposed to
make heap exploitation harder by maintaining heap alloca-
tions with fixed sizes, known at compile-time, in a separate
set of kmalloc caches than those with variable sizes
(i.e., elastic), known at runtime [45]. The latter are generally
more valuable to attackers, as their dynamic nature allows
them to massage the heap and target objects in arbitrary
caches, regardless of the targeted size. Nevertheless, this
segregation is incomplete and can be circumvented.

Specifically, the attack first abuses the UAF on a
vulnerable struct tls_context to overlap it with a
struct fqdir in kmalloc-512, which is used for
objects with a static size of 512 bytes. Then, the ex-
ploit pivots the UAF from fqdir to a UAF on its in-
ner field of type struct bucket_table, that is al-
located in kmalloc-dyn-1k, which is used for elastic
objects that are 1024 bytes. There, the exploit turns to
user_key_payload to make use of its flexible array
field, whose size and contents are entirely controllable from
user space; this allows targeting any kernel object with
a variable size, regardless which kmalloc-dyn cache
it is allocated in. The exploit transfers the UAF from
bucket_table to user_key_payload, and crafts its
size to overlap a struct Qdisc object, leading to a
successful same-cache attack. Finally, the exploit calls

copy_{to,from}_user on user_key_payload to
first leak Qdisc’s function pointers to bypass KASLR
before corrupting them to build a ROP chain for privilege
escalation. This scenario is depicted in Figure 1a.

This exploit highlights several key issues. (1) User-
controlled objects with a variable size (i.e., struct
user_key_payload) facilitate exploiting temporal mem-
ory errors by allowing attackers to control their size and
overlap them onto targeted kernel objects with sensitive
fields (i.e., struct Qdisc and its function pointers). In
fact, our systematic analysis on existing kernel exploits
revealed that most attacks adopt this strategy. (2) Allocating
elastic objects that mingle user-controlled flexible arrays,
s.a., user_key_payload, in the same caches as kernel
objects that store sensitive fields, s.a., Qdisc’s function and
data pointers, enables attackers to leverage the former to
corrupt the latter. This also applies to the Linux caches
meant to segregate objects known to be user-controlled,
called kmalloc-cg-*, as well as to a similar mitiga-
tion proposed by an existing study on exploitable elastic
objects in the kernel [5]. The exploit that abuses CVE-
2023-3390 [63] demonstrates how attackers can circumvent
these by mounting a same-cache attack solely using objects
segregated in the kmalloc-cg-* caches. (3) Although
objects known to be user-controlled should be allocated in
the kmalloc-cg-* caches, user_key_payload (and
many other kernel objects) are still allocated in the regular
kmalloc-* or kmalloc-dyn-*, making them a valu-
able resource for manipulating sensitive memory, as demon-
strated by existing exploits. Finally, (4) simply segregating
objects with a fixed size from those with a variable size is
insufficient, as attackers may still manipulate pointers stored
by the former to pivot temporal errors onto the latter.
Cross-Cache Attacks. SLUBStick [1] and several other
public exploits [14], [64], [65] demonstrate that kernel at-
tackers can inflict type confusion with user-controlled ob-
jects even when they are allocated in a different cache (or on
a different page) than the targeted objects. They achieve this
by mounting cross-cache attacks (§2.1). For example, one of
the PoCs published by SLUBStick first obtains a dangling
pointer to a struct signalfd_ctx by inducing a UAF
on it. Then, it massages Buddy to reclaim the affected
page as a page used for page tables—a boilerplate cross-
cache attack. Then, the exploit calls copy_from_user
on the dangling pointer, allowing the attacker to manipulate
the overlapping PTE in the targeted page table. We depict
this scenario in Figure 1b. In fact, all of the code patterns
that SLUBStick relies upon (to corrupt page tables) lever-
age user-controlled objects whose pages were reclaimed
as page tables after a cross-cache attack. Having access
to dangling pointers on such objects, attackers are able
to manipulate the contents of the underlying page tables
through copy_from_user. Note that simply allocating
the objects used by SLUBStick in a segregated cache, such
as the kmalloc-cg-* caches, is insufficient to mitigate
the attack, since attackers may also mount cross-cache at-
tacks against them—there is currently no mechanism that
addresses cross-cache attacks in Linux.



Additionally, several object types identified by SLUB-
Stick as candidates for building memory write primitives,
such as struct joydev, or struct mmc_ioc_cmd,
are not elastic (i.e., they have a fixed size). Prior work
on identifying user-controlled objects that could potentially
be useful for exploitation focused primarily on identifying
elastic objects [5], thus missing out those that are static,
even though they can also be used for exploitation.
Out-of-Bound Attacks. The exploit that abuses CVE-2022-
0185 [66] leverages an OOB vulnerability on the execution
path of the fsconfig system call, depicted in Figure 1c.
Concretely, the vulnerability consists of an invalid bounds
check in the function legacy_parse_param that leads
to an integer underflow on the length of a string buffer
sent from user-space, which then gets copied in struct
legacy_fs_context->legacy_data via memcpy.
This grants the exploit a large OOB on the heap. The
exploit then leverages msg_msg’s flexible array to mas-
sage the heap and place it right after the victim object in
memory. Then, the attack abuses the OOB to corrupt the
m_ts field of the targeted msg_msg, which induces an
OOB in a msg_msgseg object placed in kmalloc-32.
There, the exploit sprays several seq_operations ob-
jects and calls copy_to_user and copy_from_user
on the user-controlled msg_msgseg, bypassing KASLR
and inflicting corruption on the modprobe_path global
variable to achieve privilege escalation.

This scenario demonstrates that attackers can
also abuse user-controlled objects to exploit OOB
vulnerabilities. Precisely, the victim object itself,
i.e., legacy_fs_context->legacy_data, had
a user-controlled buffer overflow, which the attack pivoted
to a stronger memory-write primitive by inducing a buffer
overflow into the target object, i.e., msg_msg, which is
also user-controlled. Sadly, this is a recurring pattern in
exploits targeting OOB vulnerabilities on the heap [66],
[67], [68], [69]. Moreover, segregating such objects in
separate caches, as done by the kmalloc-cg-* caches
would not block the attack as the exploit may massage the
allocator to place the target page right next to the victim
page, allowing the overflow to reach it.

5. IUBIK

IUBIK’s objective is to break kernel exploits by pre-
venting them from accessing kernel-sensitive data through
user-controlled objects. Such exploits can take advantage of
temporal and spatial memory errors. IUBIK mitigates both
scenarios, and it does so in a pragmatic manner, without
introducing unrealistic performance or memory overheads.
In realizing IUBIK, we overcome several challenges.
Challenge #1: Isolating Memory. There exists no mecha-
nism currently in the kernel to enforce the strong separation
between user- and kernel-controlled objects—or memory
in general. Prior studies leverage hardware primitives to
isolate sensitive memory [7], [8], [9], [10], [15], [70], but
they either suffer from high performance and/or memory

overhead, or are tailored to mitigating either spatial or tem-
poral isolation (not both). To address these shortcomings,
IUBIK leverages MTE to provide both spatial and temporal
isolation at low performance and memory cost. Armed with
MTE, we develop a novel in-kernel memory compartmen-
talization framework, which we describe in Section 5.1.
Challenge #2: Structure Layout. Several kernel objects
(e.g., msg_msg or user_key_payload) mingle user-
controlled buffers and sensitive fields, such as function and
data pointers, within the same struct definition. This
gives attackers an opportunity to abuse the former to corrupt
the latter if placed in the same compartment. We thwart
this risk by rewriting the objects containing user-controlled
fields, effectively pulling them out, and isolating them in a
separate compartment than the rest of the original object.
We describe this process in Section 5.2.
Challenge #3: Identifying Allocation Sites. In order to
isolate user-controlled objects, IUBIK must instrument their
allocation sites and instruct the underlying allocators to
confine them in protected regions. However, there is cur-
rently no automated way for identifying such allocation
sites in the Linux kernel. Although allocation flags ex-
ist that instruct the allocator to use separate allocation
caches for certain objects (e.g., msg_msg), they are only
used sparingly, and miss objects used by existing exploits
(e.g., user_key_payload [13]). To overcome this limi-
tation, we develop a novel memory profiling framework for
Linux that hooks several execution points in the codebase
and records when user-supplied data is stored in kernel
objects. We detail our approach in Section 5.3.

5.1. Isolating Memory with MTE

IUBIK groups all of heap memory in two domains,
DomU and DomK, by tagging each physical page used
by the heap allocator with one of the two corresponding,
predefined MTE tags: TagU and TagK. Specifically, IUBIK
modifies the kernel’s heap allocator, SLUB, to tag newly
allocated memory with either TagU or TagK using MTE’s
STG and DC GVA instructions, which tag a memory granule
(16B) and a block of granules (on our platform this is
64B), respectively. With a few exceptions (addressed in
Section 5.2), in IUBIK all objects allocated on a memory
page belong to the same domain and they have the same tag.
IUBIK uses MTE in synchronous mode, which provides the
strongest guarantees, as it yields a fault as soon as a tag
mismatch occurs during unauthorized memory accesses.

MTE’s flexibility allows us to design DomU and DomK
on top of the existing virtual memory layout of the kernel
without modifying it, which has been a challenge in prior
isolation techniques in the kernel. For example, hardware
isolation primitives that are configured by bits stored in page
table entries (such as MPK or SMAP) may require breaking
huge pages (i.e., 2MB) into smaller ones (i.e., 4KB) to en-
force fine-grained, page-level isolation [7], [8], [15], which
may add performance overhead [71]. IUBIK configures
SLUB to place new memory in DomK by default, unless
otherwise instructed by the calling allocation site.
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IUBIK facilitates this by introducing a new memory al-
location flag, GFP_IUBIK_USER, which kernel developers
can use to request memory in DomU by passing the flag as
an argument to memory allocation routines. Upon receiving
this flag, IUBIK serves the allocation request from a new
set of caches, called kmalloc-iubik-*, which resemble
the original kmalloc-* caches in terms of functionality,
except that they tag the underlying physical pages with TagU
when configuring a new slab.

Accessing pages from either DomU or DomK can only
go through pointers that have the matching tag, which
is mandated by ARM MTE (§2.3). As such, we extend
the allocator to mask the corresponding tag into a newly
allocated address before returning it to a caller during an
allocation request. This involves executing a small number
of pointer arithmetic instructions that only take a couple of
cycles. Upon receiving a tagged address, the caller can use
it to access memory from its corresponding domain without
having to mask-out the tag from the pointer, thanks to ARM
TBI. Figure 2 illustrates a simplified view of the kernel’s
memory layout with IUBIK in place—we detail it below.

Armed with these primitives, IUBIK places user-
controlled objects—i.e., objects used by copy_{from,
to}_user, etc.—in DomU, while leaving the rest of kernel
memory in DomK. Hence, both user-controlled objects and
the pointers that reference them get tagged with TagU,
which forbids access to memory tagged with TagK—in
cases of spatial and temporal memory errors. Specifically, if
attackers manage to corrupt the bounds of a DomU object,
e.g., the user buffer of ObjU1 in Figure 2, they are unable to
reach DomK objects (e.g., ObjK1); and vice versa. Similarly,
if attackers gain control of a dangling pointer in DomK,
e.g., ptr1 in ObjK1, they are unable to access it once its
underlying memory page, i.e., PgU1 gets reallocated for an
object in DomK (e.g., ObjK2); and vice versa.

This enforcement is capable of breaking a large class
of kernel exploits that rely on user-controlled objects as
primitives to corrupt sensitive data. For example, attackers
are not able to abuse same-cache attacks through UAF er-
rors to, say, overlap struct user_key_payload onto
struct Qdisc, as shown in Section 4, because IUBIK
allocates the former in DomU and the latter in DomK with
TagU and TagK, respectively. Moreover, IUBIK mitigates

the OOB attack described in Section 4, as it allocates
struct msg_msg and msg_msgseg in DomU where it
cannot reach modprobe_path, which stays in in DomK.
Finally, IUBIK also breaks cross-cache attacks, such as
those described in Section 4, as accessing a dangling pointer
tagged with TagU after its underlying pages are tagged with
TagK will be detected by MTE. This represents a shift in
how we address kernel security compared to prior work,
as IUBIK essentially assumes that the entirety of kernel
memory is sensitive by default, and focuses on making it
inaccessible to attacker-controlled data.

5.2. Rewriting C structs

The MTE-based memory protection primitives described
in Section 5.1 allow IUBIK to isolate user-controlled ob-
jects in DomU. However, in their original form, many of
them still expose sensitive kernel fields, such as function or
data pointers, which may be targeted by attackers through
memory errors in DomU—this is permitted by our threat
model (§3). As the same-cache attack described in Section 4
demonstrates, blending sensitive fields with user-controlled
buffers in DomU allows attackers to violate IUBIK’s secu-
rity policy and circumvent it. Unfortunately, such a struct
layout is prevalent in the Linux kernel, as shown by our
profiling data (§7.1). Moreover, our data set also reveals
several kernel objects that have embedded buffers (or fields)
that store user-controlled data, e.g., the name of a resource—
SLUBStick (§4) uses such structs to manipulate page
tables. Other popular exploits also abuse embedded user-
controlled buffers for exploitation [69].

To overcome this issue, we rewrite these structs,
splitting them into two objects: one that contains its user-
controlled field(s) (e.g., the flexible array), and another that
keeps the remaining fields stored in the original object.
We allocate the former using the GFP_IUBIK_USER flag,
instructing the allocator to store the segregated buffer on
a DomU page and tag its address with TagU. Upon re-
ceiving a tagged address, we store it in the original object
in a newly added field. The resulting layout is shown in
Figure 2—we tag objects allocated in DomU with TagU
since they only contain user-supplied data and no sensitive
kernel data (i.e., function or data pointers). These objects are
referenced by objects allocated in DomK, which are tagged
with TagK, and contain everything else that the original
kernel object did. Thus, a potential dangling pointer or OOB
on objects tagged with TagU, e.g., ptr1 in ObjK1, can
only access other objects in DomU, such as ObjU2, which
do not contain any useful fields for exploitation. This way,
IUBIK breaks the OOB exploit in Section 4, as we pull out
the user-controlled fields of msg_msg and msg_msgseg,
and allocate them in DomU, while their sensitive fields
(s.a., m_ts) stay with the original objects in DomK, where
the overflow in legacy_fs_context->legacy_data
cannot tamper with them since it is also allocated in DomU.
Also, attackers cannot abuse the variable size of the original
objects to place them in arbitrary caches, since IUBIK
makes them static and allocates them from a single cache.



We rewrote the struct types stemming from the al-
location sites recorded by our profiler during benchmarking
(§7.1). Additionally, we collected popular struct types
used in existing kernel exploits and rewrote them. This led
us to rewrite a total of 29 structs, during which we
encountered several challenges. First, we introduce a new
allocation site for the separated user-controlled struct
right after the allocation site of the original object and
instrument it with the GFP_IUBIK_USER flag—we do not
instrument the original allocation site, as it will allocate
memory from DomK by default (§5.1). Then, for every
rewritten object, we must also free its user-controlled field
before freeing the original struct to avoid memory leaks.
Similarly, we must also copy the user-controlled struct
when the original object is copied (e.g., via memcpy or
memmove). To assist us and future developers in identifying
these seamlessly, we equip our dynamic tracing framework
(§5.3) with the ability to record the call sites where the
original object is freed and (mem-)copied.

Moreover, some subsystems rely on being able to ob-
tain the base of an object from an inner field, e.g., by
applying the container_of macro on its address. As
we may pull out such embedded fields from their original
struct, we need a mechanism to preserve this relationship
at runtime. In IUBIK, we overcome this by maintaining
a backward reference to the original object in the user-
controlled object. To prevent attackers from corrupting the
backward reference in DomU, we rely on ARM PA (§2.3)
to preserve its integrity. Specifically, after allocating a given
object in DomK and its extracted user-controlled buffer(s)
in DomU, we use the PACDA instruction to sign the former
and store the result in the latter. Additionally, we prevent
replay attacks by using the address where we store the
backward reference as context in the sign operation. Then,
we replace all occurrences of container_of on the user-
controlled field with a routine that authenticates and returns
the backward reference using the AUTDA instruction. In case
attackers tamper with the reference’s PAC, the authentication
will fail resulting in program termination, thanks to PA’s
FPAC feature. For example, the PAC stored in ObjU1 in
Figure 2 can not be overwritten to point to ObjK2 unless
the kernel re-signs it with the new value.

IUBIK uses the APDA key register for storing the
secret authentication key, which is currently unused in
the ARM kernel. Moreover, we save the key in struct
task_struct on a context switch to user space and
restore it upon reentering the kernel, thus avoiding mali-
cious programs to manipulate it. Note that IUBIK allocates
task_struct in DomK, thus preventing attackers from
abusing user-controlled objects to manipulate it in the pres-
ence of a memory error. Our hardware (i.e., the Pixel 8)
uses bits [0 : 38] of a pointer to store the virtual addresses,
while MTE uses bits [56 : 59] for storing the tag, and bit
55 is used to distinguish between kernel and user addresses.
IUBIK therefore stores the PAC in bits [39 : 54] (16 bits).
The FPAC feature prevents attackers from brute-forcing PAC
values to guess valid signatures.

Although pulling out the flexible array field of elastic
objects does not lead to major code modifications, doing
so for embedded struct buffers requires adjusting some
usage scenarios. Specifically, we replace all sizeof macro
invocations in the redefined struct field with a modified
macro that returns the size of the extracted buffer (instead
of the size of a pointer; i.e., 8 bytes). We also adjust all
code locations where the address of the original field is
taken (i.e., &struct->field) to simply use the field
(i.e., struct->field) since it is now a pointer—this
frequently occurs when the embedded field is a struct.
Finally, when pulling out fields that have a struct type,
we replace all locations where they are dereferenced as a
static struct (i.e., struct.field) with a pointer deref-
erence (i.e., struct->field). Nevertheless, as rewriting
some structs might require substantial adjustments across
kernel subsystems, we also propose alternative solutions.

Indeed, our data set revealed one such instance, namely
the struct skb_shared_info object, which is em-
bedded in the user-data buffer referenced by socket buffers
(i.e., struct sk_buff->data). Pulling it out of the
data buffer would require significant adjustments across
several networking subsystems in Linux, as many assume it
is contained within. Leaving such metadata objects unpro-
tected in DomU would pose a risk for IUBIK, especially
since they usually contain several data pointers, function
pointers, and other sensitive fields that could be targeted via
memory errors in DomU (similar to the container_of
backwards reference described above). We mitigate this risk
by using MTE to tag such embedded objects with TagK,
even though they are stored in DomU objects. This prevents
any memory corruption on a DomU object from accessing
it. ObjU2 in Figure 2 depicts this scenario. For that, we first
ensure that the embedded object lies at a 16-byte aligned
offset and has a size that is multiple of 16 (both required by
MTE), then we tag it with TagK after the hosting object
is allocated in DomU; note that ObjU2 is partly tagged
with TagU and partly with TagK in Figure 2. Finally, before
freeing the hosting object, we re-tag its embedded isolated
segment with TagU (enabling it to be reused in DomU).

This way, IUBIK provides two alternative methods for
protecting the remaining sensitive data stored in DomU
when rewriting is not possible. First, developers may want
to use MTE to protect chunks that are larger than 8 bytes
(s.a., skb_shared_info), are longer-lived, and contain
a multitude of pointers, since frequently (re-)tagging on
(de)allocation might add performance overhead for short-
lived objects. Second, developers may want to use PAC for
smaller, short-lived objects (s.a., the 8-byte backward refer-
ence in container_of) since the performance penalty is
spent at access time instead of (de)allocation time.

5.3. Usercopy Profiling

IUBIK serves objects isolated in DomU to allocation
sites instrumented with the GFP_IUBIK_USER flag. To
systematically identify such sites at scale in the kernel,
IUBIK includes a dynamic profiling framework, dubbed the



1 SYSCALL_DEFINE5(add_key, ..., const void __user *,
2 _payload, size_t, plen, ...) {
3 void *payload;
4 payload = kvmalloc(plen, GFP_KERNEL);

5 copy_from_user(payload, _payload, plen);
6 key_create_or_update(..., payload, plen, ...);
7 }
8

9 int user_preparse(
10 struct key_preparsed_payload *prep) {
11 struct user_key_payload *upayload;
12 size_t datalen = prep->datalen;
13 upayload = kmalloc(sizeof(*upayload) + datalen,

14 GFP_KERNEL);

15 memcpy(upayload->data, prep->data, datalen);
16 }
17

18 void user_destroy(struct key *key) {
19 struct user_key_payload *upayload =
20 key->payload.data[0];
21 kfree_sensitive(upayload);
22 }
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Figure 3: High-level overview of the usercopy profiler.

usercopy profiler, which is able to track memory objects
beginning from where the kernel copies data from user
space. The usercopy profiler is built atop Linux’s recently
introduced memory allocation profiling feature (§2.2) to
mark the allocation sites of objects that are accessed from
user space. An overview of how the usercopy profiler is able
to record complex allocation patterns is shown in Figure 3.

Initially, at compile-time, metadata tag structures—
called codetags and associated with allocation sites, user
copying sites, memcpy sites, and free sites—are added
to the kernel’s .data section (hatched boxes in Figure 3).
These tags contain the file, function, and line number of
the associated allocation site as well as other information
populated at run-time when certain events occur; e.g., an
object is allocated or data is copied from one object to
another. Given the listing in Figure 3—which highlights
the routines from Linux’s key retention service [72] that
facilitate using struct user_key_payload as an ex-
ploitation primitive (§4)—the usercopy profiler will create a
codetag for the allocsite on ln. 4 and ln. 12 (i.e., alloctags),
the usercopy site on ln. 5 (i.e., a copyuser tag), the memcpy
site on ln. 14 (i.e., a memcpy tag), and the free site on
ln. 20 (i.e., a free tag). Retrieving a given codetag is
possible using the address of an allocated object, shown
by the link marked with 1 and 3 connecting an object
and its corresponding codetag. After a given workload has

completed running, the usercopy profiler can be queried
via /proc/allocinfo for the information collected. To
mark object sites, the usercopy profiler hooks the routines
used by kernel developers to transfer data to and from
user space and adds functionality to retrieve and mark their
respective codetags (ln. 5; 2 ).

Linux facilitates these routines via the usercopy
subsystem, which exposes an API that other subsystems
can use to interact with user programs. At its core lies
copy_{from,to}_user, which are by far the most
widely used routines that the API provides. The usercopy
profiler hooks the calls to these routines, as well as to their
derivatives, and marks the codetag of the kernel object
that is given as an argument during their invocation—for
copy_from_user this is the destination object where
user data is copied to, while for copy_to_user this
is the source object where kernel data is copied from.
Specifically, we instrument the following usercopy routines:
do_{get,put}_user_call, raw_copy_{from,
to}_user, and strncpy_from_user. (All the other
usercopy derivatives will eventually call one of these.)

Importantly, there are cases where user data
escapes the original object it was copied into,
propagating to other objects allocated on the heap.
For example, in our listing from Figure 3, the contents
of struct user_key_payload are first stored
in struct key_preparsed_payload->data
via copy_from_user, and then copied in
user_key_payload via memcpy (ln. 14). The usercopy
profiler handles such cases by hooking the functions
that perform buffered data copies across heap objects:
i.e., memcpy, memmove, strcpy, and strncpy. When
these execute during profiling, we mark the destination
pointer’s codetag if the source’s codetag is already marked
as copied from user, and the source pointer’s codetag if the
destination’s codetag was copied to user ( 4 ). The usercopy
profiler also keeps track of the offsets where user data gets
copied in kernel objects, and only marks the memcpy’ed
objects if the respective addresses and sizes fall within
these offsets. (This avoids introducing false positives.)

The usercopy profiler also maintains an alloctag similar
to SLUB’s allocation routines for several alloc wrappers that
we identified throughout the kernel codebase. This reduces
the number of false positives in our dataset since we can
apply finer-grained instrumentation to wrappers’ call sites
that allocate user-controlled objects, instead of allocation
sites within the wrappers, which would serve isolated mem-
ory for all invocations. (For a list of hooked alloc wrappers
refer to Table 4 in Appendix A.) We also design the profiling
framework to assist developers with rewriting structs that
contain fixed-size buffers (indirectly) accessible from user
space and isolating them with IUBIK. For that, we extend
the usercopy profiler to maintain a list of free sites ( 5 ) and
memcpy sites ( 4 ) for each allocsite, allowing developers
to efficiently discover locations where calls to free and
memcpy are needed when rewriting C structs (§5.2).



In summary, the usercopy profiler records the following
information for every allocsite:
• Flags: Whether the allocsite is instrumented with a

kernel flag that signals a user allocation—i.e., GFP_-
KERNEL_ACCOUNT. This flag could be used to identify
other sites that may be touched by user data. However,
we find that many sites recorded by our profiler were
not instrumented with this flag.

• Cache Type: Whether the allocsite uses a generic
or dedicated cache; i.e., kmalloc or kmem_cache.
kmalloc sites should have a higher instrumentation
priority as they facilitate type confusion—generally more
useful to attackers (§4).

• Privilege: Whether the usercopy was performed dur-
ing the execution of a privileged or non-privileged
task. Instrumenting non-privileged tasks should have a
higher priority; however, there is no guarantee that non-
privileged attackers cannot execute the others.

• Offset: The offsets within the object where user data
was copied. This hints if the struct type needs to be
rewritten and which field should be extracted.

• Copy Information: Whether data was copied to or from
user space and the allocsites of objects where data was
memcpy’ed to and from (if applicable).

• Object Size Type: Whether the allocsite used a constant
object size or a variable object size.

• Syscalls: The system calls that executed the allocsite.
• Usercopies: The usercopy call sites where this allocsite

was accessed; the full list of usercopy routines that we
track is available in Table 5 of Appendix A.

6. Implementation

We implemented IUBIK’s usercopy profiler atop Linux
kernel v6.10, which supports the recent memory allocation
profiling feature (§2.2) required by our framework. Then,
we ran a wide range of workloads that gave us a base
dataset with allocation sites that IUBIK must instrument
to harden the OS (§7.1). Our profiler prototype consists
of ≈1350 added and ≈250 removed lines of C and ASM
code. Next, we implemented IUBIK’s hardening atop Linux
v5.15, the latest kernel supported by Android for Pixel 8.
Note that most allocsites recorded on v6.10 also exist on
v5.15. Our IUBIK prototype consists of ≈1050 added and
≈520 removed lines of C and ASM code.

For the case study presented in this paper, we instru-
mented the allocsites recorded by our profiler during boot
as well as during the tests from LMbench [73] and the
Phoronix Test Suite [74], which we use to evaluate IUBIK’s
performance overhead (§7.2). In total we instrumented 79
allocsites. Out of these, 23 involved rewriting the respective
struct types that they allocate and pulling out the user-
controlled buffer in a new struct definition, which we
isolate from the rest of the object. Among the 23 rewritten
types, we encountered 1 whose extracted field was being
used in container_of calls. Therefore, we had to add
a backward reference in its new struct and preserve its
integrity with ARM PA.

Additionally, we instrumented allocation sites and
rewrote the structs that were previously abused in ker-
nel exploitation—some of them quite frequently—but were
not triggered by our performance benchmarks. Specifi-
cally, we hardened msg_msg, msg_msgseg, nft_set,
nft_userdata, tipc_aead_key, and sixpack. The
whole rewriting changeset consisted of ≈750 added and
≈360 deleted lines of C code. We list all of the struct
types rewritten, along with additional details (e.g., whether
they include flexible arrays), in Table 6 of Appendix A.
Finally, to avoid producing a large changeset, we tagged
sk_buff->data->skb_shared_info with TagK in-
stead of pulling it out in DomK (§5.2).

7. Evaluation

We first obtained a base dataset with allocsites that
IUBIK must instrument by profiling a wide array of work-
loads on Linux kernel v6.10, which supports the memory
allocation profiling changeset required by our framework
(§2.2). We carried out our experiments on a host equipped
with a 128-core AMD EPYC 7551 CPU (2 sockets, 32
cores/socket), 8 NUMA nodes, and 128GB DDR4 RAM.
We fixed the CPU frequency to 2.0GHz, disabled dynamic
voltage and frequency scaling, and minimized background
tasks to allow for reproducible performance results that can
be compared with an uninstrumented kernel to determine
the overhead that profiling adds to a workload.

Then, we evaluated IUBIK’s runtime and memory over-
head while hardening SLUB on Linux kernel v5.15, the
latest kernel supported by Android 14 for Pixel 8 [75].
Fortunately, the allocsites recorded during our profiling on
v6.10 also exist on v5.15. We conducted our experiments on
bare metal in a Debian-like chroot environment (configured
with debootstrap [76]) on a rooted Pixel 8. Our device
ships with Google’s Tensor G3 SoC, and is equipped with
8GB LPDDR5X RAM, 9 CPU cores (1x 2.91GHz Cortex-
X3, 4x 2.37GHz Cortex-A715, 4x 1.70GHz Cortex-A510),
and 128GB storage. To reduce noise across measurements,
we configured the CPUs on a fixed frequency, and pinned
our benchmarks on a subset of the CPUs—we describe our
configuration in more detail for each particular benchmark.

We also assess IUBIK’s effectiveness by testing its
hardening primitives against a suite of synthetic test cases,
and by deploying 1 and surveying 31 real-world kernel
exploits against IUBIK.

7.1. Usercopy Profiling

We conducted several experiments with IUBIK’s user-
copy profiler to dynamically identify heap allocsites that
may be user-controlled. We drove our dynamic analysis via
a rich set of programs that trigger user–kernel interactions,
allowing us to reveal such locations. We included tests
from LMbench [73], the Phoronix Test Suite (PTS) [74],
the nftables framework [77], Kselftests [78], and the Linux
Test Project (LTP) [79]. We describe our results in Table 1.



Table 1: Memory allocation profiling results. ‘S’ and ‘U’ stand for privileged and non-privileged, respectively.

Benchmark Allocsites Usercopies
Qty. kmem_cache kmalloc Flagged Fixed Flexible From User To User memcpy Qty. Heap Stack

LTP S 130 5 (4%) 125 (96%) 8 (6%) 41 (32%) 27 (21%) 66 (51%) 90 (69%) 99 (76%) 266 49 (18%) 221 (83%)
U 105 17 (16%) 88 (84%) 39 (37%) 35 (33%) 18 (17%) 73 (70%) 81 (77%) 88 (84%) 198 40 (20%) 167 (84%)

Kselftests S 170 9 (5%) 161 (95%) 9 (5%) 37 (22%) 24 (14%) 114 (67%) 86 (51%) 144 (85%) 146 34 (23%) 112 (77%)
U 95 18 (19%) 77 (81%) 24 (25%) 47 (49%) 15 (16%) 53 (56%) 77 (81%) 79 (83%) 265 39 (15%) 234 (88%)

LMbench S 53 3 (6%) 50 (94%) 5 (9%) 19 (36%) 8 (15%) 21 (40%) 39 (74%) 38 (72%) 73 20 (27%) 53 (73%)
U 42 9 (21%) 33 (79%) 18 (43%) 21 (50%) 8 (19%) 20 (48%) 36 (86%) 30 (71%) 136 24 (18%) 114 (84%)

PTS S 52 4 (8%) 48 (92%) 5 (10%) 20 (38%) 8 (15%) 20 (38%) 39 (75%) 39 (75%) 69 18 (26%) 51 (74%)
U 47 10 (21%) 37 (79%) 18 (38%) 22 (47%) 8 (17%) 21 (45%) 40 (85%) 33 (70%) 147 26 (18%) 123 (84%)

nftables S 47 4 (9%) 43 (91%) 4 (9%) 19 (40%) 8 (17%) 17 (36%) 35 (74%) 35 (74%) 66 16 (24%) 50 (76%)
U 87 14 (16%) 73 (84%) 36 (41%) 30 (34%) 15 (17%) 57 (66%) 66 (76%) 72 (83%) 154 30 (19%) 127 (82%)

Total S 292 12 (4%) 280 (96%) 16 (5%) 68 (23%) 50 (17%) 183 (63%) 163 (56%) 237 (81%) 351 79 (22%) 276 (79%)
U 212 30 (14%) 182 (86%) 64 (30%) 82 (39%) 31 (15%) 131 (62%) 167 (79%) 168 (79%) 341 82 (24%) 273 (80%)

Notably, the dataset for each collection of tests was
recorded independently of the others—i.e., the test ma-
chine was rebooted after running each test set, resetting
/proc/{alloc,copy}info. ‘Total’ is the union of the
results for each individual test suite. On an uninstrumented,
baseline kernel, the full set of tests took 12h35m to run,
while on a kernel instrumented via the usercopy profiler,
the tests took 12h59m to run—the overall overhead of
the usercopy profiler is 3.12%. Future users may disable
individual workloads used in our experiments, or add new
ones (e.g., via syzkaller), depending on their time budget.

Allocsites. The usercopy profiler recorded a total of 292
privileged allocsites and 212 non-privileged allocsites dur-
ing the executed test sets, out of a total of 6902 instru-
mented allocsites, with LTP and Kselftests contributing
most significantly. Out of the total privileged allocsites
recorded, 129 (44%) and 109 (37%) were accessed during
a copy_{from,to}_user operation (or a derivative),
while 54 (18%) were accessed by both. For non-privileged
allocsites, 45 (21%) and 81 (38%) were accessed during
a copy_{from,to}_user operation (or a derivative),
while 86 (41%) were accessed by both. 95% of privileged
and 86% of non-privileged allocsites were not instrumented
by the original kernel codebase with a usercopy flag (col-
umn: ‘Flagged’)—i.e., GFP_KERNEL_ACCOUNT—, thus
making them available for exploitation. Additionally, 77%
of privileged and 61% of non-privileged allocsites generated
heap objects that were accessed by a usercopy routine at an
offset larger than 0 (column: ‘Flexible’), hinting that these
likely contain an embedded or flexible array. Moreover,
81% of privileged and 79% of non-privileged allocsites
propagated usercopy data through memcpy or its derivatives
(column: ‘memcpy’), highlighting the importance of track-
ing such cases. Finally, 23% of privileged allocsites were
part of out-of-tree kernel modules, while the other 77% were
part of the core kernel. Non-privileged allocsites followed
a similar pattern, with 20% being part of out-of-tree kernel
modules, while 80% were part of the core kernel.

Usercopies. The usercopy profiler recorded a total of 351
privileged usercopy sites and 341 non-privileged usercopy
sites in the analyzed codebases—these numbers represent
the number of instrumented usercopy sites that used either
the heap or the stack at runtime out of 3394 total usercopy
sites we instrumented. Out of these, 79 (22%) privileged

sites and 82 (24%) non-privileged sites accessed heap ob-
jects during our profiling. After examining the respective
code, we noticed that many usercopy sites are part of generic
copy wrappers, s.a., memdup_user, which are widely used
throughout kernel subsystems; thus, many usercopy sites get
reused across the kernel’s subsystems. Our experiments also
revealed that 79% of recorded, privileged copysites and 80%
of recorded, non-privileged copysites transferred data to and
from user-space on the stack. However, as per our threat
model (§3), we only focus on heap allocsites in this paper, as
they are typically used in existing exploits (§4)—we plan on
further investigating this finding in the future. Finally, out of
a total of 351 recorded privileged sites, 116 (33%) were part
of out-of-tree kernel modules, while the other 235 (67%)
were part of the core kernel. In contrast, out of a total of
341 recorded non-privileged sites, the majority (96%) were
part of the core kernel, with only 14 (4%) being part of
out-of-tree kernel modules.
Result Validity. We ensured the validity of our results via a
combination of manual analysis and functional testing. We
first confirmed that the profiler did not record any false-
positive call sites (i.e., alloc, user copy, memcpy, free)
during our performance benchmarks (§7.2) by manually
vetting the recorded data set against the kernel codebase;
manually vetting the entire profiling data set could be done
with additional effort, but is outside this paper’s scope.
Second, to prevent false negatives (i.e., missing call sites of
interest) we wrote functional tests that capture the complex
allocation and user-copy patterns described in Section 5.3,
and confirmed that the profiler records them. We elaborate
on how to improve the precision of our profiler in Section 8.

7.2. Runtime Overhead

To evaluate the runtime overhead of our prototype, we
deploy a set of micro- and macro-benchmarks that execute a
wide array of single-threaded and multi-threaded workloads.

7.2.1. LMbench. We deployed the LMbench [73] micro-
benchmark to evaluate IUBIK on tests that stress individ-
ual components of the underlying kernel, such as socket
and file operations, which also trigger extensive usercopy
interactions. To reduce noise, we pinned the tests on CPUs
4–7 and set their frequency to their max value of 2.37GHz.



Table 2: Performance results of IUBIK vs. vanilla SLUB.

Overhead Benchmark
L

M
be

nc
h

≈0%

syscall, read, write, select (500 fds),
select (10 fds), select (500 tcp fds),
select (10 tcp fds), sigaction, sig deliver,
pipe, unix socket, tcp socket, udp socket

2% fork+”/bin/sh”
3% prot fault, fork+execve
4% stat, fork+exit
7% open/close
8% fstat

PT
S ≈0%

unpack-linux, compile-linux, ffmpeg,
openssl (sign), openssl (verify),
nginx, sqlite, redis

2% hackbench

We also pinned the server programs for lat_udp and
lat_tcp on CPUs 0–3 and ran them at 1.70GHz. Figure 2
shows that IUBIK incurs worst-case slowdowns of 8% on
fstat and 7% on open/close. However, IUBIK incurs
either negligible (< 5%) or no slowdown in all the other
tests. We investigated the root cause of the higher over-
head on fstat and stat, and determined it is the result
of struct filename->iname, which we hardened in
IUBIK. Specifically, we pulled out its 4KB iname buffer
and isolated it in DomU while keeping the rest of struct
filename in DomK. This causes interference in the data
and TLB caches which translates to more cycles, especially
since the affected tests mainly involve allocating, accessing,
and de-allocating this struct in the kernel.

7.2.2. Phoronix Test Suite. LMbench is composed of syn-
thetic stress tests that may not fully capture the perfor-
mance of IUBIK on real-world, end-to-end workloads. For
example, LMbench only uses a fraction of available CPU
cores on scheduler stress tests. Thus, we ran further ex-
periments using macro-benchmarks from the Phoronix Test
Suite (PTS) [74] that also trigger usercopy interactions in
IUBIK. We pinned the tests on CPUs 0–3 and set their
frequency to a lower value of 1.43GHz, to prevent the CPU’s
temperature sensors lowering it while benchmarking. We
also pinned the server program for hackbench, nginx,
apache, and redis on CPUs 4–7 and set their frequency
to 1.42GHz. Table 2 shows the results of IUBIK versus
the baseline, unmodified SLUB. IUBIK incurs negligible
slowdown (< 3%) in all tests.

7.2.3. System V Message Queues. System V Message
Queues are an inter-process communication mechanism
available in the Linux kernel and implemented via the
struct msg_msg and struct msg_msgseg objects.
In IUBIK, we extracted their flexible array fields and iso-
lated them in DomU. Hence, we wrote a custom benchmark
to measure the performance impact for doing so. We mea-
sured the latency of the kernel’s load_msg function (by
subtracting the values returned by ktime_get at the end
and at the start), which is responsible for allocating memory
for the IPC message and copying it from user space.

In unmodified Linux, msg_msg stores the first
part of the message up to the size of a page
(i.e., 4KB−sizeof(msg_msg)), while the rest of the
message is stored in msg_msgseg objects. In IUBIK, we
pull out the user data from msg_msg and msg_msgseg
and isolate it in DomU. This has the advantage of using
fewer msg_msgseg objects for messages that cross a page
boundary. For example, a 4KB message would normally
use one msg_msg and one msg_msgseg to fit the whole
user data, while IUBIK requires only the msg_msg and
the separated page for storing the user data. However, the
number of accessed pages is the same in both cases, i.e., 2.

To test the performance impact of these, we spawned a
client and a server and configured them to send 50 messages
of 2048, 4096, and 8192 bytes when IUBIK was active and
not active. We pinned the client on CPUs 0–3 @ 1.43GHz
and the server on CPUs 4–7 @ 1.42GHz. No significant
difference in the latency of load_msg was observed.

7.3. Memory Overhead

IUBIK configures a new set of kmalloc caches to
store the isolated, user-controlled objects allocated from in-
strumented allocsites. For this prototype we also configured
a new dedicated cache (i.e., kmem_cache) to allocate the
user-controlled 4KB-wide field, iname, which we extracted
from struct filename. These caches slightly increase
memory consumption with added metadata structures. Also,
for objects that store a user-controlled part immediately
after their body, such as struct msg_msg and struct
msg_msgseg, we add a new pointer that references the
now-isolated, user-controlled buffer, increasing the size of
such objects only by 8 bytes. We found that such occur-
rences are rare in the kernel. Finally, we require 8 bytes
to store the PAC-protected backwards reference in the iso-
lated, user-controlled object, which IUBIK needs for re-
placing container_of instances that reference the parent
object—again, such occurrences were rare in our prototype.

To evaluate the impact of these on the system’s memory
consumption we measured the maximum resident size set
(RSS) incurred by IUBIK during boot and compare it with
the unmodified SLUB’s. This experiment should be conclu-
sive enough, as the kernel exercises a large number (87)
of user-controlled allocsites during boot. IUBIK reached a
maximum of 2.17% more in-use memory than SLUB during
boot, amounting to ≈ 7MB.

7.4. Security Evaluation

We demonstrate IUBIK’s security effectiveness by:
(1) subjecting it to a suite of test cases that validate its
security guarantees, (2) deploying it against one real-world
exploit, and (3) surveying several other exploits that leverage
user-controlled primitives for exploitation.

7.4.1. Security Testing. We wrote a kernel module that
includes a suite of test-cases that validate IUBIK’s security
claims (§5.1) and deployed it against IUBIK and SLUB.



Specifically, we defined an elastic struct that contains a
user-controlled flexible array field and its length, as well
as a 64-byte struct that contains an embedded secret
buffer and a function pointer—we call these structs the
primitive and target structs. We then used them to craft
attack scenarios (below) that imitate real-world exploits.
Same-cache attacks. First, we simulated same-cache at-
tacks, by requesting a 64-byte chunk from SLUB via
kmalloc to store the primitive struct, which we freed
while keeping a dangling pointer to it. Note that the flexible
array field could have allowed us to request memory for
any other size. We then called kmalloc again to get mem-
ory for the target struct. This returned the same chunk
pointed to by our dangling pointer, which allowed us to leak
the secret buffer and overwrite the function pointer. Under
IUBIK, we first rewrote the elastic struct and extracted
its flexible array field. Therefore, by using the GFP_IUBIK
flag when requesting memory from kmalloc, the user-
controlled chunk was allocated from the DomU caches,
while the header struct stayed in DomK. After freeing
the primitive object and allocating the target, the dangling
pointer to the (freed) primitive object could no longer leak
or corrupt the target object’s contents anymore.
Cross-cache attacks. Next, we simulated cross-cache at-
tacks by allocating the primitive object and the target object
from two different dedicated kmem_cache caches. After
allocating the primitive, we kept a dangling pointer to it,
and freed all objects in the slab until the Buddy allocator
reclaimed the affected page. Then, we immediately allocated
the target object, which used the freshly freed page from
Buddy—the same page that our dangling pointer refers
to. Under SLUB, we were able to access the target and
manipulate its contents. Under IUBIK, the user-controlled
field of the primitive gets allocated from DomU and the
dangling pointer is tagged with TagU, while the target is
allocated from DomK and its underlying memory is tagged
with TagK. When we tried to access the target through the
primitive’s dangling pointer the CPU generated a fault, as
the MTE tags of the dangling pointer (TagU) and the target’s
memory (TagK) did not match.
OOB attacks. We also crafted an OOB scenario by allo-
cating the primitive and the target from two different, but
consecutive, pages in memory. We then induced an overflow
on the primitive object that spanned the neighboring target
object, allowing us to access and manipulate the target object
under SLUB. After applying IUBIK, this attack was no
longer possible as we allocated the primitive object from
DomU and the target object from DomK; therefore, our
attempt to access the target was intercepted by the CPU
due to the mismatched MTE tags. Notably, we also gener-
ated a backward reference in the extracted, user-controlled
struct to its primitive object and signed it with ARM
PA. Then, to test the effectiveness of this signing, we used
the OOB scenario to corrupt the backwards reference and
overwrite it with an arbitrary pointer. Authenticating the
tampered pointer resulted in a crash because we could not
guess the PAC; in contrast, we were able to authenticate the
untampered pointer successfully.

7.4.2. Real-World Exploits. We ported an exploit that
targets CVE-2022-32250 [13] on Linux kernel v5.15 with
Ubuntu 22.04 to the Android kernel running on the Pixel 8
and deployed it against IUBIK. The attack abuses the Net-
filter subsystem, which introduces a UAF on an nft_expr
object with nft_lookup subtype, by omitting to cleanup
its pointer from the binding linked-list of expressions
stored in an nft_set object. This allows attackers to insert
new nft_expr objects in the binding list and corrupt
the freed slot of the victim nft_expr. The exploit abuses
this by first allocating a user_key_payload object onto
the freed nft_expr, and inserting a new nft_expr in the
binding list, which overwrites the next field of the freed
nft_expr with the address of the inserted one. However,
as this falls exactly over the data buffer of the overlapping
user_key_payload, attackers can exfiltrate it by reading
it from user-space via copy_to_user, which reveals the
address location of the heap.

Next, the exploit aims to bypass KASLR, and for
that it first overlaps the freed nft_expr with a
posix_msg_tree_node, which stores the head of a list
of msg_msg objects. Then it adds a new nft_expr, which
overwrites the next pointer of the msg_msg list with the
address of the new nft_expr, thus interpreting it as an
msg_msg. It then sprays several user_key_payload
objects, where it builds fake msg_msg objects with custom
input supplied via copy_from_user, aiming to overlap
their rcu_head->callback function pointer onto the
user data portion from the msg_msg. This allows the exploit
to leak the callback function pointer to user-space via
copy_to_user, effectively defeating KASLR. Next, the
exploit computes the address of modprobe_path and
overwrites its contents by unlinking a fake msg_msg object,
which inserts it into the list and overwrites its string.

While the exploit was successful against the unmodified
SLUB, IUBIK swiftly broke it in its first stage. Specifically,
as user_key_payload is rewritten to allocate its user-
controlled part in DomU, attackers can no longer use its
variable size to target arbitrary objects (such as nft_expr),
neither can they overlap with sensitive fields to read or
write them via copy_{from,to}_user. IUBIK also
breaks the subsequent stages too, as msg_msg is similarly
rewritten to allocate its user-controlled portion in DomU.

7.4.3. Effectiveness Survey. We systematically analyzed
31 known exploits published in the past 5 years against
temporal or spatial memory corruption CVEs in Linux and
identified 28 (90.3%) that IUBIK is able to mitigate (see
Table 7 in Appendix A). They all leverage user-controlled
objects to leak and manipulate critical fields from kernel ob-
jects, which IUBIK isolates in two distinct MTE domains,
i.e., DomU and DomK, where MTE’s hardware tags prevents
them from accessing each-other. Out of the collected sam-
ples, 21 of them abuse a temporal memory error (i.e., UAF
or DF), while 7 target spatial memory errors (i.e., OOB).
In addition, IUBIK is able to neutralize the memory write
primitives used by SLUBStick [1] in their published exploits
(see Table 7). They all rely on reclaiming memory pages



with a dangling reference to a user-controlled object as
pages for page tables (to manipulate them). Under IUBIK,
the former is tagged with TagU, while its underlying page
is tagged with TagK when it gets reclaimed as a page table,
making it inaccessible upon accessing the dangling pointer.

Moreover, most of the surveyed exploits leveraged the
flexible array field of an elastic object to massage the
heap into allocating a target object in a cache of their
choosing, next to or on top of a victim object they control,
aiming to corrupt its header (i.e., the fields in front of the
flexible array). IUBIK renders this ineffective as it pulls
the flexible array field out of such elastic kernel objects,
naturally transforming them into fixed objects with a static
length, prompting them to be allocated from the same cache
every time. Furthermore, one exploit [69] abused an OOB
in an embedded array, which becomes ineffective in IUBIK
as we also pull out embedded arrays from such structs.

We encountered three exploits in our survey that IUBIK
could not mitigate currently. First, one exploit targets CVE-
2022-20409 [80] using the DirtyCred technique [4], which
does not rely on user-controlled memory to build exploita-
tion primitives. To thwart DirtyCred-like attacks, the defense
proposed by the DirtyCred authors—i.e., splitting privi-
leged and non-privileged allocations in different caches—
could seamlessly be integrated into IUBIK’s architecture.
Second, one exploit targets CVE-2021-4154 [81] using the
DirtyPage technique [3], which currently bypasses IUBIK
by reclaiming freed slab pages (similarly to cross-cache
attacks) as user-controlled pages allocated via Buddy. To
circumvent DirtyPage-like attacks, a future IUBIK proto-
type would simply have to instrument the alloc sites that
request user-controlled memory from Buddy, such as the
alloc_one_pg_vec_page call in alloc_pg_vec,
with the GFP_IUBIK_USER flag (§5.1). This results in
isolating the page in DomU and preventing potentially dan-
gling DomK objects from ever accessing it. Moreover, our
usercopy profiler could be easily extended to track Buddy
alloc sites that allocate pages accessed from user space.
Finally, CVE-2022-38181 [82] abuses a DF vulnerability
in SLUB to obtain a UAF on pages allocated by Buddy,
which is outside the scope of our threat model (§3). IUBIK
can be extended to harden Buddy similarly to SLUB.

8. Discussion and Future Work

Porting IUBIK in User Space. IUBIK’s mechanism
may also be adopted by user programs (e.g., web servers,
browsers, cryptographic libraries) to shift efforts from pro-
tecting sensitive data—the current standard practice [10],
[83], [84]—toward disrupting exploitation by isolating
attacker-controlled input. For example, the OpenSSL object
ssl3_record_st [85] suffered from an OOB on the
heap, which led to the Heartbleed vulnerability [86]. It al-
lowed attackers to exfiltrate sensitive user data (e.g., crypto-
graphic material), as it was allocated from the same memory
pools as the sensitive data, and later memcpy’ed into the
response buffer sent back to the requester [87].

Conceptually, IUBIK could have prevented Heart-
bleed, since it would have isolated ssl3_record_st in
DomU, where it could not overflow into sensitive objects
from DomK. Moreover, several other attacks against web
browsers and servers rely on attacker-controlled memory—
e.g., read from or written to sockets—to corrupt or exfiltrate
sensitive data [88], [89].
Alternative Hardware Extensions. Although in this pro-
totype we use MTE to enforce strong temporal and spatial
isolation between DomU and DomK, IUBIK is generally
compatible with other hardware extensions that can isolate
memory within the kernel’s address space. For example,
IUBIK may adopt the techniques we proposed recently [15]
to assign a different aliasing domain to DomU and DomK,
isolating them both spatially and temporally via Intel Mem-
ory Protection Keys (MPK) [90]. This could also be achieved
via the hardware extensions used in prior memory isolation
works, shown in Table 3, or via virtual address pinning,
a technique proposed in SLAB_VIRTUAL that relies on
page tables to combat cross-cache attacks. Nevertheless,
any hardware primitive based on explicitly switching iso-
lation domains, such as Intel MPK (via WRPKRU), requires
instrumenting code that legitimately needs to access user-
controlled objects in DomU and switching the domain’s
permissions—something that may incur additional overhead.
Identifying Additional Alloc Sites. Our profiler may in-
crease its code coverage and identify more user-controlled
alloc sites by integrating kernel fuzzers in its workload, such
as Syzkaller [91]. Furthermore, in this prototype our profiler
does not track user-controlled bytes that are first copied
on the stack and then moved to heap objects, however it
may be extended to do so. Besides automated approaches,
identifying additional allocsites could also be done manu-
ally by verifying those that are already instrumented with
the GFP_KERNEL_ACCOUNT, as the presence of this flag
already indicates that they may allocate user-controlled ob-
jects. Another key advantage of IUBIK is that as soon as
a kernel object is spotted in an exploit, its alloc site can be
seamlessly instrumented, thus isolating the object in DomU
and disrupting any further attempt to abuse it.
Limitations and Weaknesses. We identify the following
weaknesses that could be used to subvert IUBIK, although
we have not encountered them in any exploit in our survey.
As demonstrated in previous research [92], attackers could
reclaim victim slab pages in user-space, allowing them to
bypass IUBIK and manipulate their contents. Nevertheless,
such attacks are currently deemed impractical [3] due to the
kernel/user zone separation in Buddy, which prevents ker-
nel pages from being reallocated in user-space (except under
memory pressure). Additionally, existing mitigations that
prevent kernel memory from being accessible while allo-
cated in user-space, such as XPFO [47], could be integrated
into IUBIK. Attackers may also leverage temporal memory
errors to overlap DomU pointers with DomK pointers, or
spatial errors to corrupt them. Moreover, as IUBIK does
not provide any further separation in DomU user data, based
on privilege or ownership, attackers could corrupt privileged
objects with non-privileged data.



Table 3: Comparison between IUBIK and prior hardware-
based isolation techniques, sorted chronologically.

Name Hardware Isolation Kernel/User
Primitives Policy Space

IUBIK MTE+PAC User-Controlled Data Kernel
PeTAL MTE+PAC Security-Critical Data Kernel
Safeslab MPK Freed Heap Pages Kernel
ISLAB SMAP Security-Critical Metadata Kernel

Untrusted Program ComponentsPANIC PAN Security-Critical Data User

DOPE MPK Security-Critical Data Kernel
HACK MTE+PAC Kernel Device Drivers Kernel
Cerberus MPK Untrusted Program Components User
Jenny MPK Untrusted Program Components User

CETIS CET Untrusted Program Components UserSecurity-Critical Data
KernelxMP VT-x Security-Critical Data User

A future IUBIK prototype could address this issue by
maintaining them in privileged DomU domains and pro-
tecting them with different MTE tags. Finally, if attackers
obtain a write primitive on sensitive objects (e.g., struct
cred) then IUBIK falls short. Nevertheless, we believe
that obtaining such a primitive without the use of usercopy
primitives will be challenging.

9. Related Work

Table 3 provides a high-level comparison between
IUBIK and other hardware-based memory isolation tech-
niques in user and kernel space. Notably, IUBIK is the first
to propose mitigating exploits by isolating user-controlled
data in shadow memory. We provide a more details below.
Protecting Memory with MTE and PA. PeTAL [9] isolates
sensitive kernel objects, such as process credentials, with
MTE and protects the pointers that reference them with
PAC, as it assume attackers can target them with arbitrary
read/write primitives. However, in order prevent pointers
to non-sensitive objects from referencing sensitive ones,
PeTAL must instrument all non-sensitive memory accesses
and enforce tag 0 on the accessed pointer, which impacts
the system’s performance. Moreover, PeTAL uses PA to sign
and authenticate all references to sensitive objects, which
also impacts performance. HACK [70] leverages MTE and
PAC to compartmentalize potentially-compromised kernel
drivers into their own sandbox, which also requires in-
strumenting all memory accesses within the sandbox to
authenticate the accessed pointers, thus slowing down the
driver’s execution. In contrast, as we focus on isolating
user-controlled objects, which are the standard primitives to
corrupt sensitive objects and their references, we can relax
the attacker model in IUBIK, and only protect with PAC
the few backward pointers that we keep in DomU, while
leaving all the other memory accesses uninstrumented. This
leads to a low performance impact.
Other Hardware Extensions for Memory Isolation. Intel
MPK (PKS or PKU) was used by Safeslab [15] to mitigate
temporal errors in OS kernel heap allocators, by DOPE [8]
to isolate security-sensitive kernel data, including process

credentials and page tables, and by Cerberus [93] and
Jenny [94] to sandbox untrusted components in user pro-
grams. ISLAB [7] and PANIC [95] repurposed SMAP and
PAN, two equivalent technologies on x86 and ARM CPUs
for preventing ret2usr attacks [34], to isolate security-
critical memory in kernel and user space, respectively.
CETIS [96] repurposed Intel CET, an extension meant to
assist implementing efficient CFI, to isolate sensitive user
data. xMP [10] repurposed Intel’s hardware virtualization
technology VT-x to isolate sensitive data both in kernel and
user space. While these techniques significantly raise the
bar for kernel and user attackers, it is currently uncertain
what other data/objects could be targeted by exploits. In
contrast, IUBIK targets user-controlled data to mitigate
exploits, which is easier to identify at scale. Moreover, such
extensions require instrumenting code to enable/disable ac-
cess to the isolated domain, which causes high performance
overhead in some techniques. In contrast, thanks to ARM
MTE and PAC, IUBIK’s domain metadata is carried along
with pointers as they are moved around, sparing us from
having to add domain-switching instrumentation.
Investigating User-Controlled Objects. ELOISE [5] also
studied the importance of user-controlled data in facilitating
kernel exploits. However, there are several key differences
between IUBIK and ELOISE. First, ELOISE focuses on
kernel objects that can be leveraged to leak kernel data
(via copy_to_user), whereas we also focus on objects
that attackers may use to corrupt kernel-sensitive data (via
copy_from_user), which is far more crucial to building
exploit primitives (§4). Second, the proposed defence of
ELOISE is similar to the GFP_KERNEL_ACCOUNT flag in
Linux, which existing exploits can bypass, e.g., via cross-
cache attacks (§4). In IUBIK, we not only allocate such
objects in different caches, but we also protect them with
MTE, which provides strong isolation from the rest of the
kernel against both spatial and temporal errors. Finally,
ELOISE employs static analysis to identify allocsites that
are potentially user-controlled. This however produces a
large number of false positives, which the authors had to
manually separate from the true positives with great effort.
Instead, in IUBIK, we leverage dynamic analysis to identify
allocsites of interest, which only provides true positives and
no false positives.

10. Conclusion

In this paper we presented IUBIK, a novel mechanism
for compartmentalizing memory in OS kernels to mitigate
memory corruption exploits. IUBIK leverages the MTE
hardware feature from recent ARM processors to isolate data
that is user-controlled in kernel space, preventing attackers
from using it to manipulate kernel-sensitive objects. For
that, we rewrote a wide range of objects, and isolated their
user-controlled part, preventing attackers from tampering
with sensitive fields, such as pointers. We also developed
a profiling framework that explored the kernel codebase
in depth to reveal code sites that allocate objects with
user-controlled input, which we further isolated in IUBIK.



Finally, we implemented and evaluated IUBIK in the Linux
kernel, achieving low performance overhead and memory
consumption, and revealing 292 and 212 privileged and non-
privileged allocation sites, respectively, via profiling.
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Table 4: Hooked alloc
wrappers.

Alloc Wrapper

kasprintf
kvasprintf
kvasprintf_const
kstrdup
kstrdup_const
kstrndup
kmemdup_nul
nla_strdup

Table 5: Hooked usercopy routines.

Usercopy Routine

get_user
put_user
copy_to_user
copy_from_user
copy_to_iter
copy_from_iter
copy_to_iter_full
copy_from_iter_full
copy_from_iter_nocache
copy_from_iter_full_nocache

Table 6: List of struct types rewritten in IUBIK. ‘Flex.’ stands for flexible
and ‘CO’ stands for container_of.

Struct Name→Field Field Type Flex. CO LoC
(+) (-)

external_name->name unsigned char[] ✓ ✓ 53 12
simple_xattr->value char[] ✓ ✗ 22 9
inotify_event_info->name char[] ✓ ✗ 12 6
file_handle->f_handle unsigned char[] ✓ ✗ 20 4
user_key_payload->data char[] ✓ ✗ 15 5
tty_buffer->data unsigned long[] ✓ ✗ 17 6
neighbour->primary_key unsigned char[] ✓ ✗ 18 3
unix_address->name struct sockaddr_un[] ✓ ✗ 19 4
fib6_info->fib6_nh struct fib6_nh[] ✓ ✗ 20 8
Node char* (after struct) ✓ ✗ 16 6
net_device->name char[] ✗ ✗ 32 23
linux_binprm->buf char[] ✗ ✗ 11 4
devkmsg_user->buf char[] ✗ ✗ 11 3
mm_struct->saved_aux unsigned long[] ✗ ✗ 20 8
filename->iname char[] ✗ ✗ 38 63
netdev_hw_addr->addr unsigned char[] ✗ ✗ 18 4
in_ifaddr->ifa_label char[] ✗ ✗ 12 2
inet6_ifaddr->addr struct in6_addr ✗ ✗ 104 89
inet6_dev->token struct in6_addr ✗ ✗ 14 6
kobj_uevent_env->buf char[] ✗ ✗ 52 15
ext4_inode_info->i_data __le32[] ✗ ✗ 17 11
key->keyring_index_key.desc char[] ✗ ✗ 11 23
input_dev->*bit unsigned long[] ✗ ✗ 61 13
msg_msg char* (after struct) ✓ ✗ 12 5
msg_msgseg char* (after struct) ✓ ✗ 12 5
nft_set->data char[] ✓ ✗ 10 2
nft_userdata->data char[] ✓ ✗ 39 4
tipc_aead_key->alg_name,key char[], char[] ✓ ✗ 53 8
sixpack->cooked_buf char[] ✓ ✗ 12 4

Table 7: Public kernel exploits mitigated by IUBIK. In the “Tactic” column, SC stands for same cache, XC for cross cache, and PO for page overflow.

CVE Kind Tactic Allocsite (User-Controlled Type) PoC

CVE-2023-4004 DF SC
nf_tables_newtable

(nft_table->udata: char *) [97]

CVE-2023-20938 UAF
SC
XC

alloc_msg (msg_msg)
alloc_msg (msg_msgseg) [64]

CVE-2024-26925 DF SC

nf_tables_newtable
(nft_table->udata: char *)

nf_tables_newobj
(nft_object->udata: char *)

[98]

CVE-2022-32250 UAF SC

user_preparse (user_key_payload)
setxattr_copy

(xattr_ctx->kvalue: void *)
nf_tables_newset (nft_set)

[99]

CVE-2022-29582 UAF XC alloc_msg (msg_msgseg) [65]

CVE-2024-1085 DF SC
nf_tables_newtable

(nft_table->udata: void *) [100]

CVE-2022-27666 OOB PO
alloc_msg (msg_msg)
alloc_msg (msg_msgseg)
user_preparse (user_key_payload)

[101]

CVE-2020-27786 UAF SC

snd_rawmidi_runtime_create
(snd_rawmidi_runtime->buffer: uchar *)

resize_runtime_buffer
(snd_rawmidi_runtime->buffer: uchar *)

alloc_msg (msg_msg)
alloc_msg (msg_msgseg)

[102]

CVE-2021-22555 OOB SC

alloc_msg (msg_msg)
alloc_msg (msg_msgseg)
kmalloc_reserve

(sk_buff->data: void *)

[103]

CVE-2023-32233 UAF SC
nft_set_elem_init (nft_set_ext)
nft_log_init (nft_log->prefix: char *)
nft_obj_init (nft_object)

[104]

CVE-2023-3390 UAF SC

nf_tables_newset (nft_set)
alloc_msg (msg_msg)
alloc_msg (msg_msgseg)
user_preparse (user_key_payload)

[63]

CVE-2023-0461 UAF SC user_preparse (user_key_payload) [62]

CVE-2023-3269 UAF XC
msg_alloc (msg_msg)
msg_alloc (msg_msgseg) [14]

...
...

...
...

...

CVE Kind Tactic Allocsite (User-Controlled Type) PoC

...
...

...
...

...

CVE-2023-1829 UAF SC
nf_tables_newtable (nft_table->udata: uchar *)
nf_tables_newobj (nft_object->udata: uchar *) [105]

CVE-2020-27786 UAF SC

snd_rawmidi_runtime_create
(snd_rawmidi_runtime->buffer: uchar *)

resize_runtime_buffer
(snd_rawmidi_runtime->buffer: uchar *)

[106]

CVE-2022-1786 IF SC
msg_alloc (msg_msg)
msg_alloc (msg_msgseg) [107]

CVE-2022-20421 UAF SC do_tty_write (tty_struct->write_buf: uchar *) [108]

CVE-2022-32250 UAF SC
user_preparse (user_key_payload)
msg_alloc (msg_msg)
msg_alloc (msg_msgseg)

[13]

CVE-2021-25370 UAF SC kbase_api_mem_profile_add (char *) [109]

CVE-2022-34918 OOB SC
user_preparse (user_key_payload)
simple_xattr_alloc (simple_xattr->value: char *) [67]

CVE-2022-2586 UAF SC
nf_tables_newobj (nft_object->key.name: char *)
nf_tables_newtable (nft_table->udata: char *) [110]

CVE-2021-41073 IF SC simple_xattr_alloc (simple_xattr->value: char *) [111]

CVE-2022-22057 UAF SC
msg_alloc (msg_msg)
msg_alloc (msg_msgseg) [112]

CVE-2022-0185 OOB SC

legacy_parse_param
(legacy_fs_context->legacy_data: char *)

msg_alloc (msg_msg)
msg_alloc (msg_msgseg)

[66]

CVE-2022-25636 OOB SC msg_alloc (msg_msg) [113]

CVE-2021-43267 OOB SC

tipc_aead_init, _crypto_key_rcv, _crypto_work_tx
(tipc_aead_key->alg_name: char[32],
tipc_aead_key->key: char[])

msg_alloc (msg_msg)

[68]

CVE-2021-42008 OOB SC sixpack_open (sixpack->cooked_buf: char[400]) [69]

CVE-2021-3492 DF SC
shiftfs_btrfs_ioctl_fd_replace

(btrfs_ioctl_vol_args) [114]

SLUBStick-signal DF XC
do_signalfd4 (signalfd_ctx)
do_add_key (char *) [1]

SLUBStick-key DF XC
keyctl_pkey_verify (void *)
do_add_key (char *) [1]

SLUBStick-snd DF XC
replace_user_tlv (unsigned int *)
do_add_key (char *) [1]



Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper introduces IUBIK, which isolates user-
controlled objects using ARM’s Memory Tagging Extension
(MTE). By separating user-controlled and kernel objects into
distinct memory domains, IUBIK aims to prevent memory
corruption attacks. IUBIK develops a profiling tool to iden-
tify allocation sites that allocate user-controlled objects and
evaluate IUBIK’s effectiveness, showing low overhead and
protection against many known kernel exploits.

B.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

• Creates a New Tool to Enable Future Science
• Addresses a Long-Known Issue

B.3. Reasons for Acceptance

1) IUBIK provides a structured and hardware-assisted
method to isolate user-controlled objects while main-
taining compatibility with existing kernel structures.

2) The runtime memory profiling tool provides insights
into memory allocation patterns in the Linux kernel,
which may enable further research in memory safety
and exploit mitigation.

3) By leveraging ARM Memory Tagging Extension
(MTE) and Pointer Authentication (PA), IUBIK
presents a novel, hardware-supported approach to mit-
igating memory corruption attacks.

B.4. Noteworthy Concerns

1) While IUBIK would thwart a large portion of exploita-
tion attempts, it may have potential security limitations
and weaknesses that could, in theory, allow attackers
to bypass its mitigation, although such bypasses have
not yet been demonstrated.

2) The accuracy of the usercopy profiler can be an issue.
While the empirical and manual evaluation report nei-
ther false negatives nor false positives, its design does
not guarantee zero false negatives and false positives.
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