
ISLAB: Immutable Memory Management Metadata for
Commodity Operating System Kernels

Marius Momeu∗
TU Munich

Munich, Germany
marius.momeu@tum.de

Fabian Kilger
TU Munich

Munich, Germany
f.kilger@tum.de

Christopher Roemheld
TU Munich

Munich, Germany
chris.roemheld@tum.de

Simon Schnückel
TU Munich

Munich, Germany
simon.schnueckel@tum.de

Sergej Proskurin
BedRock Systems
Munich, Germany

sergej@bedrocksystems.com

Michalis Polychronakis
Stony Brook University
Stony Brook, NY, USA

mikepo@cs.stonybrook.edu

Vasileios P. Kemerlis
Brown University
Providence, RI, USA
vpk@cs.brown.edu

ABSTRACT
Kernel memory allocators maintain several metadata structures op-
timized for efficiently managing system memory. However, existing
implementations adopt either weak or no protection at all to ensure
the integrity of said metadata in the presence of memory errors. In
this paper, we first demonstrate how existing memory hardening
schemes fall short against several in-kernel memory corruption
scenarios. We then present ISLAB: a set of novel (slab-based) heap
hardening techniques that aim to ensure the integrity of the mem-
ory managed by the kernel, and minimize the incurred runtime, and
memory, overhead. ISLAB prevents memory corruption exploits by
segregating metadata from within corruptible memory objects into
shadow memory. It also relies on a novel SMAP-assisted memory
isolation framework, called kSMAP, to protect allocator metadata
against adversaries with stronger memory access capabilities. We
implemented and evaluated ISLAB atop SLUB, the default slab allo-
cator in Linux, and equipped it with kSMAP to protect process cre-
dentials, a popular target in kernel exploitation. Our experiments
show that ISLAB incurs no runtime overhead in realistic bench-
marks, and moderate overhead in stress tests. Lastly, we show how
ISLAB’s approach can be generalized to protect the integrity of
other kernel subsystems that use corruptible metadata for memory
management, such as linked lists.

CCS CONCEPTS
• Security and privacy → Operating systems security; Soft-
ware security engineering.

KEYWORDS
kernel hardening, heap protection, memory-metadata isolation

∗Also with Brown University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’24, July 1–5, 2024, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Marius Momeu, Fabian Kilger, Christopher Roemheld, Simon Schnückel,
Sergej Proskurin, Michalis Polychronakis, and Vasileios P. Kemerlis. 2024. IS-
LAB: Immutable Memory Management Metadata for Commodity Operating
System Kernels. In ACM ASIA Conference on Computer and Communications
Security (ASIA CCS ’24), July 1–5, 2024, Singapore. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Leveraging the way dynamic-memory allocators manage memory
objects has become an increasingly useful attack vector in develop-
ing exploits based on memory safety vulnerabilities. Specifically,
in the presence of a memory error, attackers can take control of
an object’s metadata, and use the allocator to acquire arbitrary
read and write primitives within the respective address space [80].
In response, a plethora of works have been proposed to mitigate
the issue above, but they have been primarily focusing on hard-
ening the dynamic-memory allocators used by user-space applica-
tions [2, 3, 11, 27, 28, 30, 65, 71, 89, 90, 92, 102, 112]. Surprisingly,
their kernel-space counterparts have received less attention, and
remain popular targets for adversaries [4, 5, 32, 34, 37, 39, 68, 70, 84]
and offensive research [15, 16, 20, 86, 87]. Thus, addressing the se-
curity weaknesses of dynamic-memory allocators in kernel space
remains a key challenge, and is the focus of this work.

SLUB, the default heap allocator in the Linux kernel, maintains
a list of pointers to freed (i.e., unallocated) objects, known as a
freelist, which allows for constant-time (de-)allocations. However,
to leverage the speedup benefits of hardware caching and TLBs,
and to reduce memory consumption, each SLUB object stores its
own freelist pointer. This design/weakness has been leveraged
by the aforementioned exploits to successfully compromise the
kernel in the presence of memory errors. Sadly, this is a recurring
optimization pattern adopted by several Linux subsystems. For
example, linked lists, a ubiquitous structure used by the kernel,
are designed such that an object’s list neighboring pointers are
maintained within the object itself, a design weakness that has
been abused by several exploits [25, 31, 32, 97, 106].

These shortcomings, however, are not entirely overlooked by
the kernel community. For instance, SLUB’s freelist pointers are
XOR-encrypted before being stored in potentially compromised
objects. Unfortunately, per our analysis (see Section 4.1), SLUB uses
an XOR-based cipher-block encryption algorithm in ECB mode to

https://orcid.org/0009-0009-3389-9837
https://orcid.org/0009-0004-7233-4250
https://orcid.org/0009-0008-9143-3202
https://orcid.org/0009-0002-0740-6495
https://orcid.org/0000-0002-0524-2493
https://orcid.org/0000-0002-3106-0343
https://orcid.org/0000-0002-6528-437X
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ASIA CCS ’24, July 1–5, 2024, Singapore M. Momeu, F. Kilger, C. Roemheld, S. Schnückel, S. Proskurin, M. Polychronakis, and V. P. Kemerlis

protect freelist pointers, which cannot provide strong guarantees
about the integrity of the encrypted data [64]. As we demonstrate in
Section 4.3, this pointer protection scheme can still be circumvented
under the adversarial capabilities presumed by existing exploits.
Additionally, although linked lists benefit from list integrity checks,
they can only detect trivial memory errors, falling short against
more advanced ones (we discuss this limitation in Section 4.1).

Considering the lack of robust hardening in the kernel’s heap
allocator, we present ISLAB: a novel hardening scheme that en-
sures the integrity of metadata used by kernel-space slab allocators.
ISLAB enhances SLUB by leveraging a simple, yet effective tech-
nique: it places allocator metadata into segregated memory, outside
the attackers’ reach. We carefully design ISLAB to use CPU data
caches and TLBs efficiently, avoiding any increase in (system-wide)
performance and memory overheads. Additionally, we demonstrate
how this technique can be adopted by other kernel subsystems that
manage memory via in-object metadata, such as linked lists. To that
end, we introduce ILIST, a kernel extension that borrows ideas
from ISLAB and segregates list pointers into shadow memory.

Segregating sensitive pointers from corruptible objects protects
against certain vulnerabilities, such as localized overflows/under-
flows and use-after-frees. However, kernel objects expose several
other pointers that could be abused by adversaries to obtain read/-
write access to sensitive data. Previous works [36, 53, 61, 73, 80, 81,
83, 96, 100, 105] demonstrated that such threats can be countered by
shielding memory contents via hardware extensions (e.g., Intel VT-
x, MPK, CET, SMAP [38]). However, existing intra-kernel memory
isolation solutions exhibit suboptimal performance overhead [33,
80], or require major kernel modifications, potentially introducing
additional attack vectors [33]. In a departure from such approaches,
we build a novel kernel memory isolation framework based on
SMAP [38], which allows for lightweight data isolation [100, 104], is
supported by virtually every contemporary x86 CPU (as opposed
to extensions like Intel MPK), and even has an ARM counterpart
(i.e., PAN [67]). As such, we introduce kSMAP: a set of novel memory
protection primitives based on SMAP.

Moreover, we identified that existing memory isolation solutions
still leave several attack vectors open in the face of strong attackers
armed with arbitrary memory access primitives. First, although ex-
isting schemes protect slabs that store sensitive data [80], they still
manage sensitive objects via unprotected metadata that lie outside
the slab—and this can be abused for circumventing the isolation
boundary. Second, existing isolation-based solutions omit protect-
ing sensitive data, stored in CPU registers, which may temporarily
get spilled in unprotected memory on task preemption—a coercing
task, running in parallel on a different CPU thread can corrupt
them. We highlight all of the above, in more depth, in Section 4.2.
On the contrary, kSMAP can be used by many kernel subsystems
(SLUB, struct cred, and more) to isolate both sensitive data and
metadata, not only when tasks are scheduled on the CPU but also
when they are preempted, with low overhead.

In summary, our work makes the following contributions:
• We present a security analysis of SLUB and linked lists, as
well as of existing kernel isolation schemes, against basic
and advanced memory errors, along with proof-of-concept
exploits that demonstrate how they can be circumvented.

• Wedesign two innovativememory protection schemes, called
ISLAB and ILIST, for hardening kernel slab-based memory
allocators, and list managers, againstmemory errors, without
performance slowdowns and high memory consumption.

• Wedesign a novel kernelmemory isolation framework, called
kSMAP, which relies on SMAP to protect arbitrary kernel mem-
ory, and an enhanced variant of ISLAB that uses it to protect
data and metadata of select sensitive objects against attack-
ers with arbitrary memory read/write primitives; kSMAP also
protects sensitive state during interrupt handling.

• We implement and evaluate ISLAB atop SLUB, the default
Linux kernel allocator, and ILIST atop the Linux kernel lists
manager and kSMAP, while protecting process credentials.

2 BACKGROUND
2.1 Slab-based Allocation in Linux
The Linux kernel uses primarily two dynamic-memory allocators to
manage in-kernel memory: a page allocator and an object allocator.
The former leverages the buddy system to satisfy memory requests
on a page granularity [49]; the latter leverages the slab approach to
facilitate efficient memory allocation on a sub-page granularity [9].
Linux implements three different variants of the slab allocator:
SLOB, SLAB, and SLUB, with the latter being the default [56]. The
slab allocator uses the underlying page allocator to reserve one
or more physically-contiguous memory pages to form object slabs
that maintain consecutive objects of the same size (i.e., type). This
way, object slabs avoid internal fragmentation and efficiently serve
(de-)allocation requests for the respective object type.

SLUB uses the data structure kmem_cache to manage multiple
object slabs (some per-CPU, others per-NUMA node) for a spe-
cific object type [12]. The per-CPU slabs are maintained by the
kmem_cache_cpu structure, which is (de-)allocated via the kernel’s
percpu allocator [94]. The per-NUMA node slabs are managed via
the kmem_cache_node objects, which are (de-)allocated from their
own dedicated slabs cache. At the same time, the kernel stores
slab-specific information in the data structure struct page [12],
representing the physical pages that make up the slab [42]; these
are kept in the vmemmap [45] area of the kernel address space.

To keep track of free objects inside a slab, SLUB organizes them
in linked lists called freelists [9], which are stored within the slabs
themselves. That is, every unallocated object inside the slab holds
a pointer to the next free object, allowing SLUB to reduce memory
consumption and the working set of the cache. Furthermore, the
kmem_cache_cpu and kmem_cache_node structures store the per-
{CPU, NUMA node} freelist head pointers, while the associated
struct page of a slab maintains another freelist head pointer,
which allows for parallel de-allocations with the per-CPU slab. As
we highlight later in Section 4.1, in-slab freelist pointers and out-of-
slab metadata are security-critical, and ISLAB focuses on protecting
both. Many kernel subsystems that manage (collections of) objects
also adopt the same idiom for storing security-critical metadata.
For instance, the doubly-linked list API of the Linux kernel places
two pointers—one to the previous and another one to the next list
element—directly into an object. As we highlight later in Section 4.1,
(doubly-)linked list pointers present critical metadata, and hence
ILIST focuses on protecting them.

ISLAB, ILIST, kSMAP ASIA CCS ’24, July 1–5, 2024, Singapore

2.2 Supervisor Mode Access Prevention
In response to return-to-user attacks [43], both Intel and AMD
introduced SMAP: a processor extension that mitigates rogue user-
space memory accesses during kernel execution [38]. SMAP triggers
an exception if the CPU accesses a virtual address that is mapped
as user-mode memory (i.e., by having the U/S bit set in the respec-
tive page tables), while running in Ring 0. Nevertheless, as the
kernel frequently accesses user-space memory legitimately, e.g., for
fetching user data during a syscall, disabling and enabling SMAP is
facilitated by the low-latency stac and clac instructions, which
operate on the AC flag of the RFLAGS register. Specifically, SMAP is
disabled when the AC flag is set, and enabled otherwise. RFLAGS is a
per-CPU register, architecturally spilled/filled on interrupt requests
to/from the interrupted task’s stack (or the IST [93], if configured),
which may facilitate concurrent tasks to access different security
domains, without the kernel’s intervention. However, as RFLAGS
is stored on unprotected (kernel) stacks, the saved AC bit may be
set by attackers to force the interrupted task to return with SMAP
disabled, thereby allowing access to otherwise inaccessible memory.
kSMAP addresses this issue, as we describe in Section 5.2.

Previous works repurposed SMAP to isolate sensitive memory
in user processes [100, 104]. Although their solution suffers from
notable limitations, which we discuss in Section 8, it proved the ef-
fectiveness of SMAP for intra-process memory isolation. Specifically,
switching isolation domains via stac/clac exhibits lower latency
(≈18 cycles) compared to other alternatives, such as VT-x (2∗vmfunc,
≈292 cycles) and PKU (2∗wrpkru,≈56 cycles), which have been used
by previous works to isolate sensitive data [36, 61, 73, 80, 81, 96].
Thus, kSMAP extends the use of SMAP in kernel-space by isolating
sensitive kernel memory, in addition to blocking rogue kernel ac-
cesses on user-space memory.

2.3 Memory Errors
Software written in memory- and type-unsafe lagnuages may gen-
erally encounter out-of-bounds (OOB), use-after-free (UAF), double
free (DF), or invalid free (IF) errors on heap-allocated objects [110].
Attackers can exploit such vulnerabilities to corrupt or leak the data
stored in allocated objects, or themetadata of unallocated ones. His-
torically, attackers opted for the latter, as corruptiblemetadata repre-
sents a straightforward way to gain arbitrary read/write capabilities
in both user applications [76, 88] and kernel code [34, 54, 70, 101].

For example, by modifying the next pointer in a free object on a
freelist, SLUB (and other freelist-based allocators) can be tricked into
giving attackers access to targeted addresses. These can be crafted
to overlap with sensitive data of other objects, such as function
pointers or process credentials, which attackers can further corrupt
to obtain code execution or escalate their privileges [42, 43, 75, 91].
Such primitives can also be obtained by corrupting the metadata in
linked list entries. In Section 4.1, we discuss in how SLUB fails to
mitigate many real-world exploitation scenarios, and highlight the
security improvements brought by ISLAB.

3 THREAT MODEL
We assume attackers that have complete control over an unprivi-
leged user, seeking to exploit memory errors in kernel code [110].

Attackers may trigger vulnerabilities (e.g., OOB, UAF, DF, IF)
through the interaction with the OS via buggy kernel interfaces,
such as pseudo-filesystems (procfs, debugfs [18, 48]), the system
call layer, and virtual device files (devfs [51]). In all such scenarios,
ISLAB prevents the slab freelist pointers from being tampered with,
as they are stored in shadow memory. ISLAB can also detect and
prevent exploits that abuse (some) DF and (all) IF vulnerabilities to
directly manipulate data stored in allocated objects, such as function
pointers or process credentials, which can lead to code-reuse [78] or
data-oriented [80] attacks. Although ISLAB alone does not mitigate
attacks that abuse OOB or UAF bugs to tamper with (generic) object
data, ILIST can prevent those that target the metadata of doubly-
linked lists [25, 31, 32, 97, 106]. ILIST, however, does not guard
general-purpose (data, code) pointers stored in memory objects.

We assume an attacker armed with arbitrary R/W capabilities
who tries to mount data-oriented attacks by corrupting sensitive
in-slab objects, s.a., process credentials, and their out-of-slab man-
agement metadata, like the fields of a struct page, or of the
kmem_cache_{node, cpu} structures, which manage the sensitive
slabs. ISLAB defends against such attacks by protecting both in-slab
data and out-of-slab metadata via kSMAP. We assume pointers to
the objects isolated by kSMAP are protected against replay attacks
via existing bidirectional referencing schemes [14]. In addition, to
prevent attackers from clearing the U/S bit of isolated pages, we
assume that page tables are protected via orthogonal techniques,
such as PTRand [22] or HLAT [85].

Moreover, we assume that attackers can mount code reuse at-
tacks to circumvent kSMAP’s isolation domain, bymanipulating code
pointers stored on the stack or in memory objects, respectively. We
prevent this by scanning the kernel code (including loadable mod-
ules) via existing techniques [96] and by instrumenting stray stac
instructions with a matching clac. Note that legitimate stac/clac
sequences do not require additional security checks to uphold isola-
tion, such as the call gates proposed in prior domain-based isolation
work [36, 96, 98], since clac always enables isolation.

Furthermore, kSMAP enables in-kernel memory isolation bymark-
ing kernel memory as U/S = 1, making it accessible in user space.
To prevent user processes from accessing it, kSMAP requires separate
page tables for user processes and the kernel, which is currently
provided by Kernel Page Table Isolation (KPTI) [35, 44]. Moreover,
we assume the attacker can synchronize coercing tasks on different
CPU threads, and corrupt the preemption state of one of themwhile
it processes sensitive data. ISLAB with kSMAP is able to prevent this
scenario by also isolating the preempted state, rendering such data-
oriented attacks ineffective. Finally, we assume that adversaries
cannot load kernel-level rootkits [52, 99], while attacks exploiting
micro-architectural flaws [13, 50, 59, 107] are out of scope.

4 PROBLEM STATEMENT
4.1 Linux SLUB and Lists Manager
SLUB stores slab freelists within the object slabs themselves, making
them prone to corruption via memory errors in kernel code [15, 16,
110]. On one hand, equipped with UAFs, DFs, IFs, or OOBs within
a victim slab, or arbitrary memory corruption primitives, attackers
may choose to tamper with security-critical fields of allocated vic-
tim objects [80]. On the other hand, they can target freelist pointers

ASIA CCS ’24, July 1–5, 2024, Singapore M. Momeu, F. Kilger, C. Roemheld, S. Schnückel, S. Proskurin, M. Polychronakis, and V. P. Kemerlis

in freed chunks, which grants them strong exploitation primitives
onto security-critical objects [34, 54, 62, 70, 101]. Although SLUB
does not prevent attacks that target the former, it currently imple-
ments hardening techniques that hinder the latter. In particular,
before storing a freepointer in a freed slab object, SLUB encrypts
it using a trivial block cipher algorithm in ECB mode [41]. The
algorithm uses the eight-byte freepointer as plaintext, an eight-
byte random value generated per-object cache as the secret key,
the XOR operation as the block cipher encryption method, and the
freepointer address as an eight-byte salt to prevent replay attacks.

Block cipher encryption in ECB mode only guarantees the confi-
dentiality of the encrypted blocks, but not their integrity [64]. In
the case of SLUB, encrypted ciphertexts can still be corrupted and
go unnoticed as long as the decrypted freepointer yields a valid
slab address. For example, corrupting the first 12 bits of a freep-
ointer ciphertext is guaranteed to decrypt to a valid address within
the slab’s page, making UAF-based or DF-based exploits possible.
Consequently, it is clear that ECB-mode encryption is not suitable
for ensuring pointer integrity. Moreover, the current encryption
implementation XORs the most-significant bits of the freepointer
with the least-significant bits of the salt, which are equal for every
slab object, thus failing to provide sufficient uniqueness against
replay attacks on the least significant bits of the ciphertext.

Furthermore, SLUB also adopts a trivial protection against DFs
by only making sure that the object at the top of a freelist is not
the victim of the DF. While this could suffice against some exploits,
such as CVE-2017-2636 [79], it cannot detect DF cases where the
victim object lies at arbitrary locations within the freelist. As far as
IFs go, SLUB prevents IF attempts by checking if the freed address
lies within its dedicated slab, which can be easily computed from
the freed virtual address (see Section 2.1). Moreover, as it does not
incorporate any form of intra-kernel memory isolation mechanism
on its slabs, or the out-of-slab metadata that lies in its control
structures kmem_cache{_node|_cpu}, and struct page, SLUB is
susceptible to exploits that leverage arbitrary read/write primitives.

Similarly, the kernel maintains an object’s linked list pointers
(i.e., next and prev) within the object itself, where they lie exposed
to attacker-controlled data. Although the kernel binds a list object to
its neighbors (by checking whether their next and prev point back
to the object), it only performs these checks on a subset of all list
operations. Additionally, this hardening scheme can be bypassed by
attackers who can craft forged list objects with a valid backward/-
forward pointer to the victim object [42, 58].

4.2 Selective Memory Protection
Several hardware-based in-kernel memory isolation frameworks ex-
ist [14, 33, 80] that aim to protect sensitive kernel data, s.a., struct
cred and page tables. However, their focus is on isolating the slabs
where the sensitive data are stored, while leaving unprotected the
out-of-slab metadata that manages it. For example, both xMP [80]
and PrivWatcher [14] omit protecting the freelist pointer stored in
the struct page objects of slabs that store struct cred objects.
Moreover, to avoid introducing performance overhead via frequent
domain switches, PrivWatcher manages the isolated struct cred
objects via freelists that are stored in regular, unprotected, memory.

Attackers with omnipotent read/write capabilities may target
such sensitive metadata and craft a sequence of operations that lead
to corrupting the critical data, effectively bypassing the isolation
domain. We demonstrate how this weakness can be abused via a
concrete exploitation scenario described in Section 4.3.

Additionally, in order to facilitate execution preemption, isolation-
based techniques must save a preempted tasks’ isolation state
(i.e., trusted vs. untrusted) and restore it when the task gets re-
scheduled. Specifically, xMP must manage the EPT index, while
IskiOS [33] must manage the value of the PKRU register. This opens
a window of opportunity for attackers as they can now target the
saved isolation state and restore a malicious task with isolation
disabled. xMP addresses this by protecting the saved EPT index
via hash-based message authentication codes (HMACs) implemented
in software, which are, however, susceptible to replay attacks (in
certain scenarios) as demonstrated by similar work on pointer hard-
ening [109]. As far as IskiOS and PrivWatcher goes, they do state
how they handle this scenario.

Moreover, none of these isolation frameworks prevent interrupts
from being triggered while tasks process sensitive data with isola-
tion disabled. This leads to the CPU registers that potentially store
sensitive fields to be temporarily stored on the task’s unprotected
interrupt stack, where attackers may corrupt them. For example,
attackers may corrupt the stack-saved state of a task that got in-
terrupted while the kernel is checking the uid field of a struct
cred object before opening a privileged file (s.a., /etc/shadow) for
writing. Upon resuming the execution, the restored register state
contains data fetched from corrupted memory, effectively allowing
the malicious task to circumvent the isolation domain.

4.3 Proof-of-Concept Exploits
For conducting our security evaluation (see Section 6.4), we sur-
veyed several known exploits against CVEs found in the Linux
kernel. We discovered two of them [47, 54] that target SLUB’s free-
list obfuscation hardening. However, they first need to leak the
obfuscated freepointer, and they require XOR’ing with NULL as
operand (typically done on its last object to mark the end of a
freelist). We complement their approach by demonstrating that
attackers can target obfuscated freepointers arbitrarily, without
requiring leaking them first. For that, we adapt an existing exploit
(𝐸1) that originally leveraged SLUB’s freelists without obfuscation
enabled, and demonstrate how it is still effective even with freelist
obfuscation in place. Additionally, we adapt another exploit (𝐸2)
and demonstrate how the complex hierarchy of memory manage-
ment structures adopted by SLUB can be abused to corrupt sensitive
data even when said data is isolated with existing schemes [33, 80].

4.3.1 𝐸1: CVE-2021-27365 [34]. The exploit abuses CVE-2021-27365,
which reveals that iscsi_host_get_param() does not check the
length of a previously set attribute—this can be abused by attackers
to overwrite the contents of an adjacent slab. The exploit also uses
CVE-2021-27363 and an additional information leak to circumvent
KASLR, and get the base address of the kernel and the modules. It
then uses these addresses to corrupt the freelist pointer of a freed
object from the adjacent slab, making it point to a security-critical
object in the .data section of a module.

ISLAB, ILIST, kSMAP ASIA CCS ’24, July 1–5, 2024, Singapore

Subsequent allocations will return the security-critical object
onto a memory chunk that is attacker-controlled, thus allowing
the attacker to tamper with its contents and gain local privilege
escalation. As also noted by the authors, the exploit is unsuccessful
on Linux distributions that enable freepointer encryption in object
slabs. To demonstrate the contrary, we adapted the exploit, using
the techniques discussed in Section 4.1, and successfully bypassed
SLUB’s freelist hardening to compromise the kernel.

First, we performed heap spraying to polute the target slab until
all but a single object were under our control. We then leveraged
the overflow in the allocated objects and overwrote the slab index
bits of the remaining object’s encrypted freelist pointer (i.e., bits
[12:14], since the vulnerable object’s size is 4K), with an arbitrary
value, which is guaranteed to point onto one of our allocated slab
objects upon decryption. We then triggered two more allocations in
SLUB, at the end of which we had one extra object under our control
than the slab normally allows. Next, we drained the slab by freeing
all but the extra object, triggering SLUB to free the slab page back
to the buddy allocator. While still holding an active reference to the
freed slab, we requested the allocation of a security-critical object
from an empty slab, for which SLUB had to allocate a fresh page
from the buddy allocator. The returned page was the one we still
had a dangling pointer on, allowing us to manipulate the contents
of the security-critical object and compromise the kernel.

4.3.2 𝐸2: CVE-2021-41073 [97]. The exploit abuses CVE-2021-41073
found in the io-uring subsystem, which allows an attacker to in-
voke kfree onto an allocated object from the kmalloc-32 cache,
leading to a UAF on the victim object. The attacker uses this to
build a stronger primitive, which it first uses to leak both KASLR
and the address of its own task’s struct cred object, and then to
inject a fake eBPF program that elevates the attacker’s privileges
by overwriting the uid field of its leaked credential. (ISLAB renders
the attack unsuccessful, since eBPF programs lie outside the SMAP
domain, where they cannot access struct cred objects.)

Nevertheless, instead of tampering-with struct cred objects
directly, we adapted the exploit and aimed to elevate our privileges
by manipulating the metadata used to manage struct cred slabs.
Specifically, we obtained the address of the struct page object
corresponding to our struct cred—this is trivial to achieve since
struct page objects lie at a fixed offset from their slabs in memory.
Then, we overwrote the freelist pointer stored in the victim struct
pagewith the address of our task’s struct cred. Next, we spawned
an SUID-set program, e.g., passwd, which triggered the allocation
of a new struct cred with elevated privileges. The allocator re-
turned the freelist head from struct page, which points to our
unprivileged struct cred, and overlapped it with the privileged
credential, thereby resulting in (local) privilege escalation.

5 DESIGN AND IMPLEMENTATION
ISLAB and ILIST achieve metadata integrity by segregating them
fromwithin memory objects, in accordance to our threat model (see
Section 3). Specifically, they “pull out” the slab freelist and object
list-pointers, and store them into separate, shadow memory regions.
However, in addition to ensuring the integrity of memory man-
agement metadata, our schemes aim to inflict no slowdown on the
system’s runtime performance andminimizememory consumption.

idxO2 NIL NIL NIL idxO2 NIL NIL

Object Slab #1

idxO2

O1 O2 O3 O4 O5 O6 O7 O8 O1 O2 O3 O4

Exact-Fit Page for Freelists Managed as Maps

Object Slab #2

...idxO4 idxO5 idxO6 idxO8 idxO4 NIL

map #1 map #2 map #3

Figure 1: ISLABmanages slab freelists asmaps allocated via an
exact-fit allocator. Colored objects in slabs are unallocated;
white objects are allocated. Each slab object has the same
index in the freelist map.

As such, we explored several designs and determined that lever-
aging idioms of SLUB and linked lists to craft custom metadata seg-
regation techniques leads to more efficient behavior than adopting
a universal approach. Furthermore, ISLAB leverages kSMAP, a novel
framework for intra-kernel memory isolation, to protect sensitive
slabs and their associated out-of-slab metadata against attackers
with arbitrary R/W primitives.

5.1 Metadata Segregation
There are several ways to design a secure allocator, which is demon-
strated by the plethora of works applied to user-space allocators [2,
3, 11, 27, 28, 30, 65, 71, 89, 90, 92, 102, 112]. However, considering
that SLUB has been extensively optimized to fit the needs of today’s
demanding compute landscape, we set out to secure it via a con-
servative strategy, aiming to keep the modifications introduced by
ISLAB to a minimum. As such, ISLAB is also designed to manage
free objects via freelists, mainly because they provide constant time
(de-)allocations—however, and most importantly, ISLAB segregates
freelists in shadow memory. We rejected equipping ISLAB with
bitmaps [26], since they require linear time (in the worst case) for
searching the next free slot in the slab—this may have a significant
impact on performance for slabs with a large number of objects
(e.g., 512 objects in 8-byte slabs).

Having decided to use segregated freelists in ISLAB, we explored
several mechanisms and structures for managing them in shadow
memory. A simple solution entails constantly (de-)allocating shadow
memory slots to store/release freepointers of slab objects every time
they are (de-)allocated by SLUB. However, we argue that such an ap-
proach poses two downsides for performance: (1) the shadow mem-
ory slots need to be (de-)allocated too frequently and (2) the freelist
of a slab ends up scattered over multiple cache lines and over mul-
tiple pages, leading to misses in the CPU caches and TLBs, on sub-
sequent slab accesses. To avoid both (1) and (2), we design ISLAB’s
freelists using an approach that requires fewer (de-)allocations,
packing multiple slots onto the same cache line and memory page.
As such, we introduce freelists that are managed as segregated maps.
A freelist map mirrors the characteristics of the original in-slab
freelists, except that it uses smaller-length indices to represent free-
pointers and its slots lie adjacent in the shadow memory. In the
following section we describe the details of how freelist maps work.

ASIA CCS ’24, July 1–5, 2024, Singapore M. Momeu, F. Kilger, C. Roemheld, S. Schnückel, S. Proskurin, M. Polychronakis, and V. P. Kemerlis

5.1.1 Segregated Freelists as Maps. We design a customized freelist
segregation mechanism that packs all metadata entries of a freelist
onto a minimum number of cache lines, and onto a single virtual
page. With this technique ISLAB allocates a chunk of memory that
can fit the entire freelist of a slab, and uses it as a map to manage
object (de-)allocations. The object index in the freelist map is the
same as the object index in the slab, granting each slab object a
fixed entry in the map. Additionally, since slab objects have a fixed
slot in the freelists maintained by ISLAB, we use it to keep the
object’s allocation status. This helps ISLAB in detecting certain
double-free (DF) attempts. Specifically, when an object is allocated,
we mark its freelist entry in the map with a magic allocation value.
On deallocations, if the magic value is not set, ISLAB detects the DF.
ISLAB only needs 2 bytes per entry to store the index of the next
free object in the slab, which is large enough to represent all object
indices of a slab. Figure 1 displays ISLAB-map’s memory layout.
Exact-fit Allocator. ISLAB is faced with the challenge of efficiently
(de-)allocating the shadow memory that stores the freelist maps.
A straightforward solution for this would be to use SLUB as the
memory allocator. However, as freelist maps do not have fixed sizes,
a slab allocator is not optimal for ISLAB. For example, after ana-
lyzing all possible object sizes in SLUB, we noticed that there is
only one object cache with 85 freelist entries (for 48-byte objects).
Thus, a slab allocator would reserve an entire slab cache just to
manage 48-byte freelist maps. In addition, we found that the possi-
ble object sizes can lead to 39 distinct freelist lengths; a slab-like
allocator would thus have to maintain 39 different slab caches for
these freelist lengths—this hurts performance and wastes memory.

Inspired by the allocator of glibc (ptmalloc [103]), we design a
nimble, exact-fit memory allocation strategy that configures mem-
ory chunks for requested sizes on demand. As such, contrary to slab
allocators, the exact-fit allocator may keep objects of different sizes
on the same memory page. At first, the exact-fit allocator reserves
one large chunk of 8 memory pages (configurable option), which
we dub topchunk. On allocation requests, the exact-fit allocator
splits topchunk into two smaller chunks: one that exactly fits the
requested size, and one which becomes the new topchunk (with
the remaining size). When exact-fit chunks are released back to the
freelist allocator, they are cached in a linked list for the respective
size, which we dub fastbin. Then, subsequent freelist allocations
of a size are served first from the fastbin of the requested size,
without having to chop topchunk. Consequently, memory pages
used for hosting freelists incur small fragmentation, thus reducing
memory consumption. Freelists of different lengths lie on the same
memory page, effectively reducing TLB pressure.

5.1.2 Segregated Linked Lists as Magazines. Following the same
philosophy behind ISLAB, we leverage idioms of linked lists to de-
sign ILIST, aiming to pack the metadata of an object list onto a
minimum number of cache lines, and thus, a single virtual page.
However, ILIST must support object insertion/deletion at/from
arbitrary positions within a list. As such, ILIST cannot use a boil-
erplate map structure to store metadata efficiently; rather, we intro-
duce linked list magazines, which can grow in both directions, and
where entries can be relocated while in use. ILIST first allocates a
chunk of memory, the size of a cache line, where the initial head of
a list is inserted on initialization.

&O1 &O2

Doubly-Linked List of Objects

O1

Slab Page for Linked-Lists Managed as Magazines

....

O2 O3 O4 O5

&O3 &O5

magazine #1 magazine #2 magazine #3

page #1 page #2 page #3

&O4PM
NM

PM
NM

PM
NM

Figure 2: ILISTmanages linked lists metadata in magazines
allocated by SLUB. Colored boxes within upper pages are ob-
jects on a doubly-linked list, and each object maintains a
bidirectional reference with its list metadata. NM and PM stand
for next magazine and prev magazine and link the magazines
belonging to the same linked list. Unlabeled boxes represent
empty metadata slots, where objects can be inserted between
their neighbors.

On subsequent object insertions, ILIST iterates all free slots
either at the right (head insertions) or left (tail insertions) of the
object given as list head, and places the inserted object’s metadata
on the last one found. If no free neighboring slot is available, ILIST
shifts all of its occupied neighbors one position to the right or left,
and places the metadata of the inserted object on the freed slot.

Neighboring chunks that are occupied in the magazine repre-
sent neighboring objects in the doubly-linked list. If the maga-
zine runs out of free slots, or, due to shifting, the last metadata
chunk is pushed out, ILIST allocates a new magazine and links
it to the previous one—using each cache line to keep 2 pointers
for linking neighboring magazines, and 6 pointers for representing
back-references to list-objects. However, note that the magazines
belonging to the same object list may end up on different pages,
potentially increasing TLB pressure. Deleting an object from the
list simply results in wiping its pointer from its associated maga-
zine. When a magazine becomes empty, it is released back to the
metadata allocator, and the links between magazines get adjusted.
ILIST implements list traversals by walking all linked magazines
of a list, collecting non-empty slots within each magazine.

Figure 2 illustrates the layout of ILIST. Contrary to ISLAB, ILIST
requires maintaining an individual mapping between each list ob-
ject and its metadata. Our solution to achieving this is to store
within a list object a forward pointer to its associated metadata,
which lies outside the object in segregated memory. Furthermore,
the metadata entry stores a backward pointer to the associated
object, which allows ILIST to detect corruptions on the forward
reference. This way, ILIST can quickly and securely access an ob-
ject’s metadata by simply referencing its forward pointer [14].

5.2 Data and Metadata Isolation
ISLAB leverages kSMAP to protect both the data and metadata that
belong to sensitive objects against memory errors. kSMAP partitions
the kernel’s virtual memory in two protection domains: a safe and
an unsafe region. The memory that forms the safe region is mapped
with the U/S bit enabled in page tables, while the rest of the memory
is mapped with said bit disabled.

ISLAB, ILIST, kSMAP ASIA CCS ’24, July 1–5, 2024, Singapore

"struct cred" Slab Page

O1 O2 O3 O4 O5 O6 O8

kmem_cache

kmem_cache_cpu

kmem_cache_node

struct page
freelist freelist

Exact-Fit Page

Percpu Page Vmemmap Page

U/S = 1

U/S = 1

U/S = 1

U/S = 1O7

Figure 3: ISLAB-ksmap-cred integrates kSMAP into ISLAB and
the struct cred subsystem. The isolated pages are marked
as user-mode pages (U/S = 1) in the kernel page table. Access
to the isolated struct cred objects is only possible with SMAP
disabled. All associated metadata of struct cred objects are
isolated likewise.

Relaxing/restricting access to the safe region requires disabling/-
enabling AC (i.e., SMAP) in RFLAGS, which is done via the fast (privi-
leged) stac and clac instructions. Note that kSMAP currently lever-
ages KPTI [44] to prevent userland from accessing the SMAP-isolated
kernel memory (when executing in user mode; see Section 2.2).

kSMAP’s design is intended for serving isolated pages to the slab
allocator, which works well with kernel address spaces that map the
entire physical memory (i.e., the so-called direct-mapped/physmap
area [42]). On CPU models that support huge pages, the direct-
mapped area uses 2MB/1GB pages, which speeds-up address trans-
lation. To retain this speedup, kSMAP also isolates direct-mapped
addresses in their page table(s) at 2MB granularity. However, we
designed kSMAP as a nimble buddy allocator that can serve isolated
pages of any page order. kSMAP first allocates a 2MB memory block
from the page allocator, which it then marks as a user page in its
page table entry. (Note that because of KPTI—or, in general, sepa-
rate user/kernel page tables—memory pages in kernel page tables
that are marked as user-mode pages are not accessible in userland.)
As the slab or exact-fit allocators request isolated pages, kSMAP
seeks the smallest available buddy capable to fit the invoiced page
order. If a matching order is found, the isolated memory is simply
returned; else, the next available buddy is halved repeatedly until
the inquired page order is obtained. On deallocating an isolated
page, kSMAP coalesces it with its buddy (if the latter is also freed),
and keeps coalescing the resulting buddies until all freed buddies
are merged together (hence minimizing memory waste).

To demonstrate its effectiveness, we harden ISLAB with kSMAP
and configure it to serve SMAP-protected memory pages for man-
aging struct cred slabs and their associated metadata, as shown
in Figure 3, thus guarding them against bogus memory read/-
write operations [80]—we dub this variant ISLAB-ksmap-cred. We
choose struct cred as a case study for kSMAP since they are one of
the main targets (leveraged by kernel exploits) to achieve privilege
escalation and take over a system [14].

In what follows, we describe how ISLAB-ksmap-credworks and
provide insights about the kernel adjustments introduced by kSMAP.
In-slab Data and Out-of-slab Metadata.We introduce several
new flags (s.a., SLAB_KSMAP) that allow configuring slab caches
that are protected by kSMAP (ISLAB-ksmap-cred leverages these
when creating the cred_jar, thus hosting struct cred objects
on protected pages). However, kSMAP never relies on such flags to
disable the isolation domain in the various allocators it extends,
since kSMAP must maintain them for unprotected slab caches too,
where they may get corrupted by attackers. Rather, these are merely
used to determine on the execution paths of the slab allocator
when kSMAP should be invoked instead of the original allocators
(s.a., the page and the percpu allocators). Note that all allocator
invocations for kSMAP-protected slabs, as well as for kSMAP itself,
must be done with SMAP disabled, otherwise the CPU triggers a
#PF exception, intercepted by the kernel, which kills the offending
task—this prevents attackers from abusing such flags.

Furthermore, ISLAB-ksmap-cred places the kmem_cache and
kmem_cache_node structures on isolated pages, allocated by the
exact-fit allocator (see Section 5.1.1). Next, it configures the percpu
allocator to serve the kmem_cache_cpu structures from pages pro-
tected via kSMAP, and isolates the struct page objects associated
with the struct cred slabs. Note that percpu places virtual ad-
dresses to isolated/protected pages both in the direct-map and
the vmalloc region—for kSMAP-enabled slabs the percpu allocator
serves SMAP-protected pages from both regions. Lastly, once initial-
ized, it marks the global pointer to kmem_cache of struct cred
objects as read-only. These are all the metadata used by SLUB to
manage struct cred object allocations, and thanks to the SMAP-
based isolation they cannot be tampered with at runtime.

To allow freeing isolated struct cred objects via RCU [46],
without switching isolation domains, we create temporary, non-
isolated RCU objects, which store a forward reference to the struct
cred that needs to be freed. Attackers may corrupt this reference
to either replay struct cred objects or forge instances stored in
unprotected memory that they control. ISLAB-ksmap-cred stores
in struct cred a backward reference to its RCU object, and checks
it for validity before freeing in RCU context, which prevents against
replaying struct cred objects. ISLAB-ksmap-cred also checks
that the freed virtual address is part of the ranges maintained by
kSMAP, which ensures that forged struct cred instances are not
freed by RCU. To facilitate that, kSMAP stores the PFN (page frame
number) [42] of each of its 2MB page in an array, which is traversed
by ISLAB-ksmap-cred (and other kSMAP-protected subsystems) to
prevent accessing forged memory.

To facilitate legitimate accesses to struct cred objects, we man-
ually instrument all necessary kernel subsystems to temporarily dis-
able the SMAP domain before accessing struct cred, and re-enable
it once the access is completed. Our policy is to instrument do-
main switches at the caller side—that is, kernel functions invoking
routines from the struct cred subsystem execute the stac/clac
instructions to disable/enable isolation. This allows kSMAP to reduce
the number of domain switches by clustering multiple routines that
access struct cred objects under a single disable/enable isolation
window. For the prototype presented in this paper we instrumented
85 kernel functions, which represents a small fraction of the total
number in the codebase (≈524918).

ASIA CCS ’24, July 1–5, 2024, Singapore M. Momeu, F. Kilger, C. Roemheld, S. Schnückel, S. Proskurin, M. Polychronakis, and V. P. Kemerlis

Interrupt State. kSMAP can withstand adversaries who aim to
bypass its isolation by corrupting the domain state of an inter-
rupted task. To prevent that, kSMAP must protect two additional
components: (1) the saved RFLAGS, which holds the SMAP isolation
state (enabled/disabled); and (2) the saved general purpose registers,
which may process sensitive data that got fetched by the CPU from
SMAP-isolated memory. As we highlighted in Section 2.2, both of
these are typically stored on the interrupted task’s stack, where
attackers with (arbitrary) read/write capabilities can get access
to. (Since kSMAP does not target user-mode processes, we do not
protect the interrupt state for user tasks.)

First, kSMAP protects the RFLAGS register for every interrupt pro-
cessed by a kernel task, regardless whether SMAP is enabled or not.
This is to prevent the attacker from manipulating the saved RFLAGS
of an interrupted task, whose SMAP protection is enabled, and trick-
ing the kernel into resuming with SMAP disabled, thereby getting
access to the entire isolated memory part. However, RFLAGS is auto-
matically saved on the stack once an interrupt is processed, which
happens architecturally without software intervention. Similarly,
RFLAGS is restored, along with the other IRQ-saved registers, auto-
matically via the iret instruction upon returning from an interrupt.
The kernel has limited control over these architectural operations,
thus posing several challenges for kSMAP. Second, kSMAP protects
all general purpose registers when an interrupt is triggered, while
SMAP is disabled in RFLAGS, which is an indicator that the CPU is
processing sensitive data. Otherwise, attackers may corrupt these
saved registers, and e.g., overwrite the uid field that was fetched
from a struct cred, undermining our isolation goals. Similarly,
upon returning from an interrupt request, general purpose regis-
ters are restored from the interrupt stack. However, these are not
automatic operations performed by the CPU, and hence remain the
responsibility of the kernel.

kSMAP handles both cases by introducing an isolated interrupt
stack for each task, protected by kSMAP itself, and using it to store
sensitive items. Specifically, on each interrupt entry, kSMAP tem-
porarily switches to the isolated stack, and pushes all necessary
items depending on the runtime context: if SMAP is enabled, kSMAP
pushes only the RFLAGS register; otherwise, it pushes the RFLAGS
register (via pushf) and all general purpose registers. Upon return-
ing from an interrupt, it switches to the isolated stack, temporarily,
and restores the saved items depending on the saved RFLAGS.

Nevertheless, to prevent the CPU from popping RFLAGS from
the unsafe stack, which is architecturally performed by the iret
instruction, we return instead via a snippet of instructions that re-
store the interrupted state manually (i.e., RIP, CS, RSP, and SS) from
the normal stack, and RFLAGS from the isolated stack via the popf
instruction. This way, attackers cannot tamper with an interrupted
task’s isolation domain. Note that using a stack structure for storing
interrupt state facilitates the system’s ability to process multiple
(potentially pending and/or recursive) interrupts from a single task,
in the same fashion as its regular stack does. Additionally, in order
to prevent attackers from corrupting the pointer to the isolated
stack, stored in the task_struct of each task, kSMAP ensures its
integrity via the dual-referencing technique, which it also used to
protect struct cred pointers in RCU context. We set the size of
the isolated interrupt stack to 1KB (configurable option).

5.3 Implementation Details
Our prototype implementation uses Linux kernel v5.11 (commit:
59450bbc). ISLAB, ILIST, and kSMAP collectively consist of ≈13.3
KLOC in C, primarily added (or edited) in 293 source code files under
the following subsystems: kernel, fs, mm, net, and arch. (A signifi-
cant part of our patchset touches include/, as well as drivers/, in
order to support our benchmarking testbed.) ISLAB-ksmap-cred
consists of ≈2.3 KLOC in C, primarily added (or edited) in 74 files
under the following subsystems: arch, security, mm, kernel, fs.

6 EVALUATION
We evaluated ISLAB and ILIST, when used as replacements to
Linux’s default memory allocator (i.e., SLUB) and lists manager. First,
we analyzed their performance and memory overhead, as these are
crucial for in-kernel memorymanagers. Next, we described how our
extensions eliminate a significant class of vulnerabilities that SLUB
and kernel lists exhibit, and we highlighted attack vectors that still
remain open.We conducted separate experiments for evaluating the
metadata segregation mechanisms (i.e., ISLAB and ILIST, enabled
in turn), and the isolation approach (i.e., ISLAB-ksmap-cred) indi-
vidually. Our tests were carried out on a host armed with a 64-core
AMD EPYC CPU (2 sockets, 32 cores/socket), 8 NUMA nodes, and
128GB RAM. Our research prototype is available as open-source
software, and can be used by the community for adopting and/or
extending our work.

6.1 Runtime Overhead
In order to evaluate the runtime overhead of our extensions, we
deployed a set of micro- and macro-benchmarks that make ex-
tensive use of SLUB (for testing ISLAB), kernel lists (for testing
ILIST), and struct cred objects (for testing ISLAB-ksmap-cred).
Additionally, we collected the results on equivalent benchamrks
from the xMP paper [80], which protects struct cred objects via
virtualization extensions, and compared them with the results on
ISLAB-ksmap-cred, highlighting our superior runtime efficiency.

6.1.1 LMbench. We employed the LMbench [63] micro-benchmark
to examine our extensions on tests that stress individual compo-
nents of the underlying kernel. Figure 4 shows that the worst-case
slowdown incurred by ISLAB is 7% for open/close and fork+exit.
In all other tests, ISLAB incurs negligible (< 5%) or no slowdown
at all. Figure 4 also shows that ILIST exhibits moderate slowdown
in less than ≈ 1

3 of the tests, which operate on lists of network/IPC
packets; a maximum slowdown of 20% is observed on UDP socket.
However, in all the other tests, ILIST exhibits negligible or no slow-
down at all. ISLAB-ksmap-cred enables extra protection for both
struct cred slabs and their out-of-slab metadata, hence exhibiting
considerable slowdown on tests that stress the filesystem: i.e., up
to 1.42x overhead on stat and 1.40x on open/close. However, ≈ 2

3
of the tests exhibit negligible or no slowdown at all. Figure 4 also
shows that we significantly outperform xMP in almost all tests,
and are only slightly slower in sig deliver. While xMP incurs
2.5x slowdown on read and write, ISLAB-ksmap-cred only in-
curs 1.22x and 1.29x. On stat, fstat, and open/close xMP incurs
1.52x, 2.07x, and 1.76x, respectively.

ISLAB, ILIST, kSMAP ASIA CCS ’24, July 1–5, 2024, Singapore

sys
cal
l

rea
d

wr
ite sta

t
fst
at

op
en
/cl
ose

sel
ect
(50
0 f
ds)

sel
ect
(10

fds
)

sel
ect
(50
0 t
cp
fds
)

sel
ect
(10

tcp
fds
)

sig
act
ion

sig
de
liv
er

pip
e

un
ix
soc
ke
t

tcp
soc
ke
t

ud
p s
oc
ke
t

pro
t fa
ult

for
k+
ex
it

for
k+
ex
ecv
e

for
k+
"/b
in/
sh
"

0.8
0.9
1

1.1
1.2
1.3

Ex
ec
ut
io
n
Ti
m
e
(n
or
m
al
iz
ed
) ISLAB ILIST ISLAB-ksmap-cred xMP-cred

Figure 4: LMbench results on ISLAB, ILIST, and ISLAB-ksmap-cred, averaged over 10 runs and normalized to the unmodified
SLUB and lists manager, respectively.

6.1.2 Phoronix Test Suite. LMbench is a collection of stress-tests
that do not necessarily capture the performance of ISLAB and ILIST
on real-world, end-to-end workloads. Moreover, LMbench does not
utilize the available CPU cores to their full potential, as only a few
of them are active on tests that stress the scheduler. We therefore
conducted additional experiments via several macro-benchmarks
from the Phoronix Test Suite (PTS) [77]. Figure 5 shows the results
when our extensions are used vs. the baseline (i.e., unmodified
SLUB and lists manager). While ISLAB encounters no overhead
in all tests, ISLAB-ksmap-cred exhibits merely 1% slowdown on
{unpack, compile}-linux. ILIST encounters worst-case overhead
of 5% on hackbench and 2% on unpack-linux, while exhibiting no
slowdown in all the rest. Figure 5 also shows that we outperform
xMP in five tests, are even in two, and slightly slower on gnupg.
While on apache xMP incurs 1.09x slowdown, we incur none.

ISLAB-ksmap-cred’s source of overhead is mainly attributed to
kSMAP’s domain switches when accessing isolated objects (struct
cred and their associated out-of-slab metadata), and when (re-)-
storing the interrupt state on the isolated stack during interrupt han-
dling. However, since our segregationmechanismsmostly introduce
additional memory accesses on the code paths of SLUB and linked
lists, we conducted measurements at the micro-architectural level
to better understand the origins of ISLAB’s and ILIST’s occasional
slowdown. Specifically, we profiled the execution of hackbench
using perf [1], which collects additional runtime information via
the CPU’s performance monitoring counters (PMCs). The PMCs
track hardware events (e.g., memory access patterns) relevant for
our investigation since they influence runtime performance. We
configured perf to collect the number of misses encountered when
the CPU accessed the L1 and L2 data caches, the L3 cache, and the
L1 and L2 data TLB. Any miss in these units incurs latency penalties
as the CPU must access components that require additional cycles.
Note that perf itself also introduces inference, and, therefore, the
execution time is expected to differ from the previous runs.

Figure 6 and Figure 7 summarize the cache and TLB accesses
collected via PMCs for ISLAB and ILIST, respectively, but plotted
separately for clarity. Surprisingly, in Figure 6, ISLAB inflicts a sim-
ilar number of L1-, L2-, and L3-cache misses compared to SLUB.
Additionally, Figure 6 shows that ISLAB also exhibits superior L2
DTLB access, as the measured number of misses is significantly
smaller than SLUB’s, while the number of misses in the L1 DTLB
is similar. These measurements indicate that ISLAB-map’s strat-
egy of keeping freelists belonging to multiple slabs on the same

un
pa
ck
-lin

ux

co
mp
ile
-lin

ux

ffm
pe
g

ha
ck
be
nc
h

op
en
ssl
(si
gn
)

op
en
ssl
(ve
rif
y)

po
stg
res
ql

ap
ach

e
gn
up
g

0.94
0.96
0.98

1
1.02
1.04
1.06

Re
su
lts

(n
or
m
al
iz
ed
)

ISLAB ILIST ISLAB-ksmap-cred xMP-cred

Figure 5: Performance overhead of macro-benchmarks from
PTS, deployed in turn on ISLAB, ILIST, and ISLAB-ksmap-cred.
The default parameters were used for each benchmark, ex-
cept for hackbench (16 proc. groups), pgbench (100 scaling
factor, 100 clients), and apache (100 concurrent requests) to
saturate (i.e., increase the utilization of) the CPU.

cache line and memory page leads to fewer data cache and TLB
misses than SLUB (on hackbench), despite the additional memory
(de-)allocations and protection against DF attempts.

Figure 7 shows that ILIST inflicts a slightly higher number of L1-,
L2-, and L3-cache misses compared to the unmodified lists manager.
These measurements correlate with the system’s execution time,
which exhibits slowdowns as soon as the number of cache misses
increases. Furthermore, Figure 7 shows that ILIST exhibits a higher
number of misses in the L1 and L2 DTLB than the lists manager.

6.2 Memory Overhead
ISLAB and ILIST require additional memory for storing the segre-
gated metadata for the hardened slab allocator and lists manager,
respectively. To evaluate their memory consumption, we counted
the number of physical pages used by ISLAB and ILIST after the OS
has finished booting. This measurement demonstrates sufficiently
enough the performance of ISLAB and ILIST, as far as memory
consumption goes, because Linux allocates a large number of object
slabs (≈15K) and list metadata objects (≈346K) during bootstrap.

ISLAB required 320 physical pages to store its freelist entries. It
maintains 2 bytes per freelist entry and uses the exact-fit alloca-
tor, which stores chunks (freelists) of arbitrary sizes on the same
physical page(s), and caches them in fastbins once they are freed.
Based on our analysis on possible slab object sizes supported by
SLUB, we noticed that they can lead to 39 distinct freelist lengths.

ASIA CCS ’24, July 1–5, 2024, Singapore M. Momeu, F. Kilger, C. Roemheld, S. Schnückel, S. Proskurin, M. Polychronakis, and V. P. Kemerlis

Ex
ecu
tio
n T
im
e

Al
l D
C A

cce
sse
s

L1
DC

Mi
sse
s

L2
DC

Mi
sse
s

L3
Mi
sse
s

L1
DT
LB
Mi
sse
s

L2
DT
LB
Mi
sse
s

0.2
0.4
0.6
0.8
1

Re
su
lts

(n
or
m
al
iz
ed
)

ISLAB

Figure 6: Execution time vs. data-cache and TLB misses on
hackbench for ISLAB. The loops parameter of hackbench was
set to 50000 and num groups to 16. Results are averaged over
three runs and normalized to vanilla SLUB.

While some are unique for a single object-size, others recur
across different object-sizes, which increases the likelihood that
cached freelists can be reused by subsequent slabs. This empowers
ISLAB to keep its internal fragmentation, and consequently, its
memory consumption, low. ILIST required 1127 memory pages to
store the list metadata stacks, and 80 pages to store the metadata
entries that must be freed in RCU context. It maintains 8 bytes per
list entry (backward references) and needs 2 additional pointers per
magazine to link them (i.e., 16 bytes). Also, magazines may have
empty “holes” in between list objects, to maintain the list order,
thus exhibiting some internal fragmentation.

kSMAP increases memory consumption in the hosting kernel with
each 2MB chunk allocated from the page allocator. However, once
it reserves and isolates the 2MB chunks, kSMAP further allocates
buddies of arbitrary page orders to other kernel subsystems, such as
ISLAB, just like the page allocator. Additionally, kSMAP reserves one
page per task to configure an isolated interrupt stack, used to store
the task’s sensitive state (RFLAGS and general purpose registers) dur-
ing interrupt handling. Nevertheless, the isolated stack is freed back
to kSMAP once the task is terminated. During the aforementioned
experiment, kSMAP held 121 pages in use for the isolated stacks.
In addition, ISLAB-ksmap-cred further allocates one additional
temporary object for every struct cred object freed with the
RCU mechanism. However, these temporary objects are returned
to the system once the struct cred objects are freed (i.e., after the
RCU grace period). In our experiment, kSMAP held 51 pages in use
for cred-RCU objects. Moreover, kSMAP uses additional memory
for the two object caches: (1) for isolated stacks and (2) for cred-
RCU objects. Specifically, these require 320B for the kmem_cache
itself, 64B per NUMA-node for the kmem_cache_node objects, and
32B per active CPU for the kmem_cache_cpu objects. Furthermore,
ISLAB-ksmap-cred does not require additional shadow memory
for segregating freelist pointers of struct cred objects, as it keeps
them within the slab, where they lie isolated. Overall, after bootup
kSMAP held 4MB in use—negligible for today’s RAM sizes.

6.3 Security Analysis
6.3.1 ISLAB. ISLAB (§5.1.1) protects corruptible freelist pointers
by storing them outside of the slab objects themselves. This guar-
antees both their integrity and confidentiality in the presence of
UAFs, DFs, IFs, and OOBs, which target heap allocator metadata, as
attackers cannot reach the segregated freelist pointers—unless they

Ex
ecu
tio
n T
im
e

Al
l D
C A

cce
sse
s

L1
DC

Mi
sse
s

L2
DC

Mi
sse
s

L3
Mi
sse
s

L1
DT
LB
Mi
sse
s

L2
DT
LB
Mi
sse
s

0.8
1

1.2
1.4
1.6
1.8

Re
su
lts

(n
or
m
al
iz
ed
)

ILIST

Figure 7: Execution time vs. data-cache and TLB misses on
hackbench for ILIST. The loops parameter of hackbench was
set to 50000 and num groups to 16. Results are averaged over
three runs and normalized to vanilla lists manager.

possess arbitrary read/write primitives. Nevertheless, similarly to
SLUB, ISLAB alone cannot prevent the corruption of security-critical
fields in allocated objects. Additionally, ISLAB’s approach of keep-
ing a direct mapping between slab objects and their freelist entries
in segregating memory allows it to maintain their allocation status,
which empowers ISLAB to prevent DF scenarios where the victim
object lies at any location in the freelist (s.a., CVE-2017-2636 [79]).
Providing this feature in SLUB would require keeping allocation
status within objects, where attackers can corrupt and circumvent
it. Yet, ISLAB cannot prevent the DF case where a victim object is
first allocated and then freed by a second free. Moreover, ISLAB
adopts the same IF hardening as SLUB, by checking that freed ad-
dresses belong to valid slabs. Finally, ISLAB alone does not isolate
the segregated freelists, nor its slabs, leaving them exposed in the
face of arbitrary read/write primitives.

6.3.2 ILIST. Similarly, ILIST (§5.1.2) protects linked list pointers,
against memory corruption/disclosure, by storing them outside list
objects. Although it still keeps a forward pointer to its list metadata
entry within every list object, ILIST detects corruption by ensuring
on every object access that the backward pointer, stored within
the metadata entry, matches the accessed object. Additionally, to
prevent attackers from crafting malicious metadata entries with
valid bidirectional references (which is possible with the existing
list integrity checks in Linux; see Section 4.1), ILIST ensures that
each entry belongs to the dedicated list-metadata slab.

6.3.3 ISLAB-ksmap-cred. The previous variants cannot guaran-
tee the integrity of an object’s data, or that of memory management
metadata, in the presence of stronger attackers that poses arbitrary
read/write primitives. Existing solutions [80] can only partly miti-
gate such scenarios, since they merely protect the slabs that store
senstive objects (s.a., page tables, process credentials, or keyring
data). While this prevents directly tampering-with target objects,
attackers can still abuse a slab’s associated metadata. For exam-
ple, as we demonstrate in Section 4.3, an attacker can corrupt the
freelist pointer in the struct page of a slab for struct cred ob-
jects, and make it point to the privileged struct cred that is used
by privileged (i.e., root) tasks [58]. Then, a subsequent struct
cred allocation request will return the privileged (i.e., bogus) one,
effectively allowing a (local) attacker to escalate their privileges.

ISLAB, ILIST, kSMAP ASIA CCS ’24, July 1–5, 2024, Singapore

This could also be achieved by applying the same technique
against the other slab control structures, like kmem_cache_node
and kmem_cache_cpu, all of which store freelist pointers to struct
cred slabs. ISLAB-ksmap-cred (§5.2), which relies on our SMAP-
based (selective) memory isolation framework (see Section 5.2), iso-
lates both the physical pages of selected sensitive objects and their
associated metadata. Additionally, since kSMAP stores interrupted
task state on a per-task kSMAP-isolated stack, attackers cannot cor-
rupt it from coercing tasks running in parallel on different CPU
threads. Specifically, the SMAP state of a task is protected, preventing
attackers from returning from an interrupt with SMAP illegitimately
disabled, and general purpose registers are protected, preventing at-
tackers from corrupting sensitive fields of protected objects (s.a., the
uid field of a struct cred object).

Moreover, we protect the pointers to the isolated stack and
to cred objects themselves, s.a., the ones stored in non-isolated
task_struct and RCU objects, via bidirectional referencing, which
prevents attackers from tampering with them. Similarly, critical
pointers to the isolated struct cred objects are protected via
bidirectional referencing. We also prevent attackers from using
pointers to fake struct cred objects by checking that they be-
long to struct pages that are maintained by kSMAP. Thus, kSMAP
effectively prevents all options for an attacker with arbitrary R/W
primitives that target sensitive objects.

6.4 Real-world Exploits
In order to demonstrate the effectiveness of our defenses, we de-
ployed three existing exploits against CVEs found in the Linux ker-
nel [32, 34, 97], which target SLUB, the lists manager, and struct
cred objects, respectively, and confirmed that ISLABmitigates [34],
ILIST mitigates [32], and ISLAB-ksmap-cred mitigates [97].

Additionally, we surveyed several other known exploits target-
ing the said subsystems in Linux kernel, and determined that five
can be mitigated by ISLAB [54, 62, 70, 79, 101], five by ILIST [25,
31, 55, 66, 106], and five by ISLAB-ksmap-cred [7, 8, 21, 23, 74].
Moreover, ISLAB and ISLAB-ksmap-cred can also withstand our
proof-of-concept exploits described in Section 4.3. First, attack-
ers cannot corrupt ISLAB’s freelist pointers or ILIST’s linked-list
pointers via vulnerable objects, since they lie segregated in shadow
memory. Second, even if attackers gain arbitrary read/write primi-
tives, ISLAB equipped with kSMAP prevents them from corrupting
sensitive struct cred objects, including their associated out-of-
slab metadata stored in struct page, effectively preventing their
abuse for privilege escalation.

7 DISCUSSION AND FUTUREWORK
Similarly to ISLAB and ILIST, our techniques can be extended to
harden other memory manipulation APIs that maintain corrupt-
ible in-object metadata, like the next pointer stored by struct
msg_msg objects (i.e., a popular target for constructing an arbitrary
read/write primitive) [6, 69, 95], red-black trees, hash tables, or
reference counters, which are security-critical [60]. Linked-lists
stored on the stack are currently handled in a crude manner, and
are simply discarded by the kernel after use—ILIST has no way of
knowing whether they are still in use or can be freed.

To lower the memory overhead of ILIST in this case, we propose
patching the kernel code, either manually or automatically (e.g., via
Coccinelle [57]), to cleanup temporary lists precisely. Additionally,
in rare cases, legacy kernel subsystems do not use the standardized
list-manipulation API and access list pointers directly, which could
potentially lead to system crashes as they are segregated under
ILIST. They have to either be adjusted manually or automatically
(i.e., via means of compiler-assisted or source-code rewriting).

In this iteration we configured kSMAP to protect struct cred
slabs and their metadata, however, it could also be leveraged to iso-
late other sensitive kernel data (s.a., page tables or modprobe_path).
Moreover, although we currently instrument the kernel manually
with domain switching routines to allow legitmate access to iso-
lated data, kSMAP can be extended with automated selective data
protection frameworks, s.a., DynPTA [72], to avoid manual labor.
The length of kSMAP’s non-isolated execution windows, which may
include potentially unsafe references, could be shrunk down by the
kernel compiler by clustering all accesses to isolated objects into
an optimal number of unsafe-access windows (for performance),
without including other types of references (for security). Moreover,
instructions capable of manipulating the AC bit in RFLAGS should
be further hardened via call gates in order to prevent attackers with
code-execution primitives from abusing them to disable kSMAP. Ad-
ditionally, since the pushf/popf instructions do not transfer the
value of the resume flag (RF) into RFLAGS, and setting this flag man-
ually is not facilitated by Intel, debugging the kernel with hardware
breakpoints is incompatible with kSMAP; however, kernel debuggers
can use software breakpoints (i.e., INT3) instead.

ISLAB equipped with kSMAP is generally compatible with other
hardware extensions that have been proven effective in earlier
memory isolation studies, s.a., VT-x [80], MPK/PKU [17, 73, 96], and
CET [105]. Nevertheless, kernel support for MPK (namely PKS [19])
and CET shadow stacks are not yet rolled out. Additionally, ARM
processors ship with PAN [67], whose functionality is equivalent
to SMAP’s, making kSMAP portable to ARM architectures. To be
supported on architectures that use 57 bits for virtual addresses,
ISLAB can use the remaining top 7 bits plus the 3 least significant
bits to store indices for slab objects.

8 RELATEDWORK
FreeGuard [89], GUARDER [90], and Shadow-Heap [11] protect
object freelists by storing them in shadowmemory, outside of the at-
tackers’ reach. They are able to detect DFs and IFs by keeping status
information for each object. ISLAB employs similar techniques (in a
broad sense). However, when considering designing the segregated
freelists, none of these designs explicitly address the performance
slowdowns induced by cache- and TLB-misses, inflicted by manag-
ing the segregated freelists in shadowmemory. Shadow-Heap keeps
the original metadata within objects, and checks their integrity by
comparing them with the protected shadow copies on every object
(de-)allocation. This severely impacts an application’s performance,
as also noted by its authors. Moreover, none of the aforementioned
solutions protect the metadata of sensitive objects against stronger
threat models, which involve arbitrary read/write primitives, and
are not directly compatible with SLUB, which maintains a complex
hierarchy of memory management structures (see Section 2.1).

ASIA CCS ’24, July 1–5, 2024, Singapore M. Momeu, F. Kilger, C. Roemheld, S. Schnückel, S. Proskurin, M. Polychronakis, and V. P. Kemerlis

In contrast, ISLAB leverages freelist maps for optimal system per-
formance, and can guarantee the integrity of sensitive objects and
their associated metadata via kSMAP. While older slab implemen-
tations came with segregated metadata [9, 10], they also incurred
performance downsides. In the seminal work of Bonwick [9], ob-
ject metadata are managed by bufctl data structures that contain
mappings to the slab and the freelists. While for objects smaller
than 512 bytes these are stored inside the objects themselves, for
larger objects they are segregated and mapped with a hashtable.
Nevertheless, ISLAB: (1) does not require a mapping from the object
to metadata and (2) includes optimizations to reduce memory over-
head.Magazines, as introduced by Bonwick andAdams [10], employ
a stack data structure for freelists to facilitate faster (de-)allocations
as well as per-cpu caches. In comparison, ISLAB employs a map
structure and retains all scaling benefits of SLUB, including assign-
ing dedicated slabs to CPUs, as well as a specific lock-free imple-
mentation and further memory consumption optimizations. We
are not aware of any prior work that leverages the magazines as
implemented by ILIST to design segregated linked lists.

PAL [109], PATTER [108], and Camouflage [24] protect code
pointers in kernel objects via the Pointer Authentication (PA) ex-
tension of ARM CPUs, thus aiming to mitigate code-reuse attacks
in the kernel setting [29, 40]. Using dedicated instructions, they
keep a message authentication code (MAC) in the unused segment
of a function pointer, by cryptographically signing the pointer with
a secret key stored in a set of CPU-specific registers and a context
that ensures integrity against rogue overwrites and replay attacks.
However, the relatively small value space of the MAC (ranging from
11 to 31 bits) allows it to be feasibly bruteforced by attackers, which
is a limitation acknowledged by the authors, and even demonstrated
by the recent PACMAN [82] attack. In addition, to this date PA is
only available on very few ARM processors, and x86 vendors have
not expressed their intention to introduce similar extensions in
Intel or AMD chips. In contrast, the pointer segregation techniques
employed by ISLAB and ILIST do not depend on custom hardware
extesions, while SMAP, leveraged by ISLAB-ksmap-cred, is present
in both Intel and AMD chips, and it has an equivalent on ARM pro-
cessors, called PAN. Moreover, there are currently no known flaws
in the implementation of SMAP or PAN. Finally, all aforementioned
solutions only protect function pointers in kernel objects, while
leaving other pointer types, such as linked lists, exposed.

Several in-process hardware-based memory isolation techniques
have also been proposed in the past years. xMP [80] proposed a se-
lective memory isolation framework, for both kernel and user space,
which leverages Intel VT-x to protect sensitive data, such as struct
cred objects in the kernel or cryptographic material in userland.
Nevertheless, xMP induces non-negligible performance overhead,
and relies on the presence of hyper-privileged code. In contrast,
kSMAP leverages lightweight hardware extensions employed by all
modern architectures, and does not depend on any super-privileged
mode. Moreover, as we highlighted in Section 4.2, xMP exhibits un-
tackled security flaws that would allow attackers to undermine its
isolation domains, especially in interrupt context. SEIMI [100, 104]
isolates sensitive memory in user-mode applications via SMAP, em-
phasizing the extension’s superior execution latency compared to
VT-x and MPK.

Nevertheless, as SMAP is a privileged instruction, designed to be
executed in Ring 0, SEIMI has to redesign the widely-accepted priv-
ileged execution hierarchy, moving userland in kernel-space and
the kernel at the hypervisor level. This results in poor compatibility
and portability, which, in turn, leads to high runtime overhead. In
contrast, kSMAP is a novel memory isolation framework, built for
isolating intra-kernel memory, which does not require significant
kernel changes. Zhong et al. [111] have also studied using SMAP to
isolate sensitive kernel data.

9 CONCLUSION
We introduced several kernel hardening extensions that alleviate
the weaknesses of kernel memory managers in the presence of
memory errors: (1) ISLAB enhances the security of kernel slab
allocators; (2) ILIST hardens kernel linked lists; and (3) kSMAP
provides a framework for selectively isolating kernel memory via
SMAP. ISLAB and ILIST segregate memory management metadata
of freelists and linked lists into dedicated memory regions, where
they lie protected in the presence of memory safety vulnerabilities.
Moreover, we equipped ISLABwith kSMAP and protected the struct
cred subsystem against attackers that have arbitrary in-kernel
memory read/write access, both when tasks are running and when
they are preempted. Finally, we evaluated and analyzed how our
hardening extensions reduce the attack surface of the Linux kernel
over existing techniques.

AVAILABILITY
Our ISLAB prototype is available at: https://git.sec.in.tum.de/islab

ACKNOWLEDGMENTS
We thank our shepherd, Juanru Li, and the anonymous review-
ers for their valuable feedback. This work was funded in part by
the Bavarian Ministry of Science and Arts (STMWK), under the
project “Security in everyday use of digital technologies (ForDay-
Sec),” and the National Science Foundation (NSF) through awards
CNS-2238467, CNS-2104148, and CNS-1749895. Any opinions, find-
ings, and conclusions or recommendations expressed herein are
those of the authors and do not necessarily reflect the views of the
US government, NSF, or STMWK.

REFERENCES
[1] 2021. perf(1) – Performance analysis tools for Linux. https://man7.org/linux

/man-pages/man1/perf.1.html.
[2] Sam Ainsworth and Timothy M Jones. 2020. MarkUs: Drop-in Use-After-Free

Prevention for Low-Level Languages. In IEEE Symposium on Security and Privacy
(S&P). 578–591.

[3] Periklis Akritidis. 2010. Cling: A Memory Allocator to Mitigate Dangling
Pointers. In USENIX Security Symposium (SEC). 177–192.

[4] Alex Plaskett. 2021. CVE-2021-31956 Exploiting the Windows Kernel (NTFS
with WNF) – Part 1. https://research.nccgroup.com/2021/07/15/cve-2021-31956-
exploiting-the-windows-kernel-ntfs-with-wnf-part-1/.

[5] Alexander Popov. 2021. Four Bytes of Power: Exploiting CVE-2021-26708 in the
Linux kernel. https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html.

[6] Awarau and pql. 2022. CVE-2022-29582 An io_uring vulnerability. https://ruia-
ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/.

[7] Maher Azzouzi. 2021. CVE-2017-11176. https://github.com/MaherAzzouzi/Linu
xKernelStudy/tree/main/CVE-2017-11176.

[8] David’s Blog. 2022. How The Tables Have Turned: An analysis of two new
Linux vulnerabilities in nf_tables. http://blog.dbouman.nl/2022/04/02/How-
The-Tables-Have-Turned-CVE-2022-1015-1016/.

[9] Jeff Bonwick. 1994. The Slab Allocator: An Object-Caching Kernel Memory
Allocator. In USENIX Summer Technical Conference. 87–98.

https://git.sec.in.tum.de/islab
https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man1/perf.1.html
https://research.nccgroup.com/2021/07/15/cve-2021-31956-exploiting-the-windows-kernel-ntfs-with-wnf-part-1/
https://research.nccgroup.com/2021/07/15/cve-2021-31956-exploiting-the-windows-kernel-ntfs-with-wnf-part-1/
https://a13xp0p0v.github.io/2021/02/09/CVE-2021-26708.html
https://ruia-ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/
https://ruia-ruia.github.io/2022/08/05/CVE-2022-29582-io-uring/
https://github.com/MaherAzzouzi/LinuxKernelStudy/tree/main/CVE-2017-11176
https://github.com/MaherAzzouzi/LinuxKernelStudy/tree/main/CVE-2017-11176
http://blog.dbouman.nl/2022/04/02/How-The-Tables-Have-Turned-CVE-2022-1015-1016/
http://blog.dbouman.nl/2022/04/02/How-The-Tables-Have-Turned-CVE-2022-1015-1016/

ISLAB, ILIST, kSMAP ASIA CCS ’24, July 1–5, 2024, Singapore

[10] Jeff Bonwick and Jonathan Adams. 2001. Magazines and Vmem: Extending
the Slab Allocator to Many CPUs and Arbitrary Resources. In USENIX Annual
Technical Conference (ATC). 15–33.

[11] Johannes Bouché, Lukas Atkinson, and Martin Kappes. 2020. Shadow-Heap: Pre-
venting Heap-based Memory Corruptions by Metadata Validation. In European
Interdisciplinary Cybersecurity Conference (EICC). 1–6.

[12] Daniel P. Bovet and Marco Cesati. 2005. Understanding the Linux Kernel. 294–
350.

[13] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin
Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss.
2019. A Systematic Evaluation of Transient Execution Attacks and Defenses. In
USENIX Security Symposium (SEC). 249–266.

[14] Quan Chen, Ahmed M Azab, Guruprasad Ganesh, and Peng Ning. 2017.
PrivWatcher: Non-bypassable Monitoring and Protection of Process Credentials
from Memory Corruption Attacks. In ACM ASIA Conference on Computer and
Communications Security (ASIA CCS). 167–178.

[15] Yueqi Chen, Zhenpeng Lin, and Xinyu Xing. 2020. A Systematic Study of
Elastic Objects in Kernel Exploitation. In ACM Conference on Computer and
Communications Security (CCS). 1165–1184.

[16] Yueqi Chen and Xinyu Xing. 2019. SLAKE: Facilitating Slab Manipulation for
Exploiting Vulnerabilities in the Linux Kernel. In ACM Conference on Computer
and Communications Security (CCS). 1707–1722.

[17] George Christou, Grigoris Ntousakis, Eric Lahtinen, Sotiris Ioannidis, Vasileios P
Kemerlis, and Nikos Vasilakis. 2023. BinWrap: Hybrid Protection against Native
Node. js Add-ons. In Proceedings of the ACM ASIA Conference on Computer and
Communications Security (ASIA CCS). 429–442.

[18] Jonathan Corbet. 2009. An updated guide to debugfs. https://lwn.net/Articles
/334546/.

[19] Jonathan Corbet. 2020. Memory protection keys for the kernel. https://lwn.net/
Articles/826554/.

[20] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.
2018. Understanding Linux Malware. In IEEE Symposium on Security and Privacy
(S&P). 161–175.

[21] cutesmilee’s blog. 2022. Exploiting CVE-2019-2215. https://cutesmilee.github.io
/kernel/linux/android/2022/02/17/cve-2019-2215_writeup.html.

[22] Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi. 2017.
PT-Rand: Practical Mitigation of Data-only Attacks against Page Tables.. In
Network and Distributed System Security Symposium (NDSS).

[23] Vincent Dehors. 2021. Exploitation of a double free vulnerability in Ubuntu
shiftfs driver (CVE-2021-3492). https://www.synacktiv.com/publications/exp
loitation-of-a-double-free-vulnerability-in-ubuntu-shiftfs-driver-cve-2021-
3492.html.

[24] Rémi Denis-Courmont, Hans Liljestrand, Carlos Chinea, and Jan-Erik Ek-
berg. 2020. Camouflage: Hardware-assisted CFI for the ARM Linux kernel.
In ACM/IEEE Design Automation Conference (DAC). 1–6.

[25] Di Shen. 2017. The Art of Exploiting Unconventional Use-after-free Bugs in
Android Kernel. https://pacsec.jp/psj17/PSJ2017_DiShen_Pacsec_FINAL.pdf.

[26] Apple Security Engineering and Architecture (SEAR). 2022. Towards the next
generation of XNU memory safety: kalloc_type. https://security.apple.com/b
log/towards-the-next-generation-of-xnu-memory-safety/.

[27] Jason Evans. 2011. Scalable Memory Allocation Using jemalloc. https://en
gineering.fb.com/2011/01/03/core-infra/scalable-memory-allocation-using-
jemalloc/.

[28] Yi Feng and Emery D Berger. 2005. A Locality-Improving Dynamic Memory
Allocator. In Workshop on Memory System Performance (MSPC). 68–77.

[29] Alexander J. Gaidis, Joao Moreira, Ke Sun, Alyssa Milburn, Vaggelis Atlidakis,
and Vasileios P. Kemerlis. 2023. FineIBT: Fine-grain Control-flow Enforce-
ment with Indirect Branch Tracking. In International Symposium on Research in
Attacks, Intrusions and Defenses (RAID).

[30] Sanjay Ghemawat and Paul Menage. 2007. TCMalloc: Thread-Caching Malloc.
http://goog-perftools.sourceforge.net/doc/tcmalloc.html.

[31] Google Project Zero. 2019. Bad Binder: Android In-The-Wild Exploit. https:
//googleprojectzero.blogspot.com/2019/11/bad-binder-android- in-wild-
exploit.html.

[32] Google Project Zero. 2021. CVE-2021-22555: Turning \x00\x00 into 10000$.
https://github.com/google/security-research/blob/master/pocs/linux/cve-
2021-22555/writeup.md.

[33] Spyridoula Gravani, Mohammad Hedayati, John Criswell, and Michael L Scott.
2021. IskiOS: Intra-kernel Isolation and Security using Memory Protection
Keys. In International Symposium on Research in Attacks, Intrusions and Defenses
(RAID).

[34] GRIMM. 2021. New Old Bugs in the Linux Kernel. https://blog.grimm-
co.com/2021/03/new-old-bugs-in-linux-kernel.html.

[35] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Mau-
rice, and StefanMangard. 2017. KASLR is Dead: Long Live KASLR. In Engineering
Secure Software and Systems (ESSoS). 161–176.

[36] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L Scott, Kai Shen, and Mike Marty. 2019. Hodor: Intra-Process Isola-
tion for High-Throughput Data Plane Libraries. In USENIX Annual Technical

Conference (ATC). 489–504.
[37] Ian Beer. 2019. In-the-wild iOS Exploit Chain 1. https://googleprojectzero.blog

spot.com/2019/08/in-wild-ios-exploit-chain-1.html.
[38] Intel. 2023. Intel® 64 and IA-32 Architectures Software Developer’s Manuals.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-
sdm.html.

[39] Jann Horn. 2021. How a simple Linux kernel memory corruption bug can lead
to complete system compromise. https://googleprojectzero.blogspot.com/2021/
10/how-simple-linux-kernel-memory.html.

[40] Di Jin, Vaggelis Atlidakis, and Vasileios P Kemerlis. 2023. EPF: Evil Packet Filter.
In USENIX Annual Technical Conference (ATC). 735–751.

[41] Kees Cook. 2017. mm: Add SLUB free list pointer obfuscation. https://patchwor
k.kernel.org/patch/9864165/.

[42] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D Keromytis. 2014.
ret2dir: Rethinking Kernel Isolation. In USENIX Security Symposium (SEC). 957–
972.

[43] Vasileios P. Kemerlis, Georgios Portokalidis, and Angelos D. Keromytis. 2012.
kGuard: Lightweight Kernel Protection against Return-to-User Attacks. In
USENIX Security Symposium (SEC). 459–474.

[44] The Linux Kernel. 2023. Page Table Isolation (PTI). https://www.kernel.org/doc
/html/next/x86/pti.html.

[45] The Linux Kernel. 2023. Physical Memory Model.
[46] The Linux Kernel. 2023. What is RCU? – “Read, Copy, Update”. https://www.ke

rnel.org/doc/html/next/RCU/whatisRCU.html.
[47] kileak. 2021. VULNCON CTF 2021 – IPS. https://kileak.github.io/ctf/2021/vuln

con-ips/.
[48] Thomas J Killian. 1984. Processes as Files. In USENIX Summer Technical Confer-

ence. 203–207.
[49] Kenneth C Knowlton. 1965. A Fast Storage Allocator. Commun. ACM 8, 10

(1965), 623–624.
[50] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner

Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Exe-
cution. In IEEE Symposium on Security and Privacy (S&P). 1–19.

[51] Greg Kroah-Hartman. 2003. udev – A Userspace Implementation of devfs. In
Ottawa Linux Symposium (OLS). 263–271.

[52] Christopher Kruegel, William Robertson, and Giovanni Vigna. 2004. Detecting
Kernel-level Rootkits through Binary Analysis. In Annual Computer Security
Applications Conference (ACSAC). 91–100.

[53] Volodymyr Kuznetzov, László Szekeres, Mathias Payer, George Candea, R Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. In USENIX Symposium on
Operating System Design and Implementation (OSDI). 147–163.

[54] kylebot’s Blog. 2022. [CVE-2022-1786] A Journey To The Dawn. https://blog.k
ylebot.net/2022/10/16/CVE-2022-1786/.

[55] Lam Jun Rong. 2022. io_uring – new code, new bugs, and a new exploit
technique. https://www.starlabs.sg/blog/2022/06-io_uring-new-code-new-
bugs-and-a-new-exploit-technique/.

[56] Christoph Lameter. 2014. Slab Allocators in the Linux Kernel: SLAB, SLOB, SLUB.
In Open Source Summit (LinuxCon).

[57] Julia Lawall and Gilles Muller. 2018. Coccinelle: 10 Years of Automated Evolution
in the Linux Kernel. In USENIX Annual Technical Conference (ATC). 601–614.

[58] Zhenpeng Lin, Yuhang Wu, and Xinyu Xing. 2022. DirtyCred: Escalating Priv-
ilege in Linux Kernel. In ACM Conference on Computer and Communications
Security (CCS). 1963–1976.

[59] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In Proceedings of the 27th USENIX Security Symposium (SEC). 973–990.

[60] Jian Liu, Lin Yi, Weiteng Chen, Chengyu Song, Zhiyun Qian, and Qiuping Yi.
2022. LinKRID: Vetting Imbalance Reference Counting in Linux kernel with
Symbolic Execution. In USENIX Security Symposium (SEC). 125–142.

[61] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwart-
ing Memory Disclosure with Efficient Hypervisor-enforced Intra-domain Iso-
lation. In ACM Conference on Computer and Communications Security (CCS).
1607–1619.

[62] Maxime Peterlin, Philip Pettersson, Alexandre Adamski, and Alex Radocea. 2020.
Exploiting a Single Instruction Race Condition in Binder. https://www.longte
rm.io/cve-2020-0423.html.

[63] LarryWMcVoy and Carl Staelin. 1996. lmbench: Portable Tools for Performance
Analysis. In USENIX Annual Technical Conference (ATC). 279–294.

[64] Alfred J Menezes, Paul C van Oorschot, and Scott A Vanstone. 2018. Handbook
of Applied Cryptography. CRC press.

[65] Otto Moerbeek. 2009. A new malloc(3) for OpenBSD. https://www.openbsd.
org/papers/eurobsdcon2009/otto-malloc.pdf. In EuroBSDCon.

[66] Arthur Mongodin. 2022. [CVE-2022-34918] A crack in the Linux firewall. https:
//www.randorisec.fr/crack-linux-firewall/.

https://lwn.net/Articles/334546/
https://lwn.net/Articles/334546/
https://lwn.net/Articles/826554/
https://lwn.net/Articles/826554/
https://cutesmilee.github.io/kernel/linux/android/2022/02/17/cve-2019-2215_writeup.html
https://cutesmilee.github.io/kernel/linux/android/2022/02/17/cve-2019-2215_writeup.html
https://www.synacktiv.com/publications/exploitation-of-a-double-free-vulnerability-in-ubuntu-shiftfs-driver-cve-2021-3492.html
https://www.synacktiv.com/publications/exploitation-of-a-double-free-vulnerability-in-ubuntu-shiftfs-driver-cve-2021-3492.html
https://www.synacktiv.com/publications/exploitation-of-a-double-free-vulnerability-in-ubuntu-shiftfs-driver-cve-2021-3492.html
https://pacsec.jp/psj17/PSJ2017_DiShen_Pacsec_FINAL.pdf
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://engineering.fb.com/2011/01/03/core-infra/scalable-memory-allocation-using-jemalloc/
https://engineering.fb.com/2011/01/03/core-infra/scalable-memory-allocation-using-jemalloc/
https://engineering.fb.com/2011/01/03/core-infra/scalable-memory-allocation-using-jemalloc/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://googleprojectzero.blogspot.com/2019/11/bad-binder-android-in-wild-exploit.html
https://github.com/google/security-research/blob/master/pocs/linux/cve-2021-22555/writeup.md
https://github.com/google/security-research/blob/master/pocs/linux/cve-2021-22555/writeup.md
https://blog.grimm-co.com/2021/03/new-old-bugs-in-linux-kernel.html
https://blog.grimm-co.com/2021/03/new-old-bugs-in-linux-kernel.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-1.html
https://googleprojectzero.blogspot.com/2019/08/in-wild-ios-exploit-chain-1.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html
https://patchwork.kernel.org/patch/9864165/
https://patchwork.kernel.org/patch/9864165/
https://www.kernel.org/doc/html/next/x86/pti.html
https://www.kernel.org/doc/html/next/x86/pti.html
https://www.kernel.org/doc/html/next/RCU/whatisRCU.html
https://www.kernel.org/doc/html/next/RCU/whatisRCU.html
https://kileak.github.io/ctf/2021/vulncon-ips/
https://kileak.github.io/ctf/2021/vulncon-ips/
https://blog.kylebot.net/2022/10/16/CVE-2022-1786/
https://blog.kylebot.net/2022/10/16/CVE-2022-1786/
https://www.starlabs.sg/blog/2022/06-io_uring-new-code-new-bugs-and-a-new-exploit-technique/
https://www.starlabs.sg/blog/2022/06-io_uring-new-code-new-bugs-and-a-new-exploit-technique/
https://www.longterm.io/cve-2020-0423.html
https://www.longterm.io/cve-2020-0423.html
https://www.openbsd.org/papers/eurobsdcon2009/otto-malloc.pdf
https://www.openbsd.org/papers/eurobsdcon2009/otto-malloc.pdf
https://www.randorisec.fr/crack-linux-firewall/
https://www.randorisec.fr/crack-linux-firewall/

ASIA CCS ’24, July 1–5, 2024, Singapore M. Momeu, F. Kilger, C. Roemheld, S. Schnückel, S. Proskurin, M. Polychronakis, and V. P. Kemerlis

[67] James Morse. 2015. arm64: kernel: Add support for Privileged Access Never.
https://lwn.net/Articles/651614/.

[68] Andy Nguyen. 2020. BleedingTooth: Linux Bluetooth Zero-Click Remote Code
Execution. https://google.github.io/security-research/pocs/linux/bleedingtoot
h/writeup.html.

[69] Nick Gregory. 2022. The Discovery and Exploitation of CVE-2022-25636. https:
//nickgregory.me/post/2022/03/12/cve-2022-25636/.

[70] Vitaly Nikolenko. 2016. CVE-2016-6187: Exploiting Linux kernel heap off-by-
one. https://duasynt.com/blog/cve-2016-6187-heap-off-by-one-exploit.

[71] Gene Novark and Emery Berger. 2010. DieHarder: Securing the Heap. In ACM
Conference on Computer and Communications Security (CCS). 573–584.

[72] Tapti Palit, Jarin Firose Moon, Fabian Monrose, and Michalis Polychronakis.
2021. DynPTA: Combining Static and Dynamic Analysis for Practical Selective
Data Protection. In IEEE Symposium on Security and Privacy (S&P). 1919–1937.

[73] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK). In
USENIX Annual Technical Conference (ATC). 241–254.

[74] Manfred Paul. 2020. CVE-2020-8835: Linux Kernel Privilege Escalation via
Improper eBPF Program Verification. https://www.zerodayinitiative.com/bl
og/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-
ebpf-program-verification.

[75] Enrico Perla and Massimiliano Oldani. 2010. A Guide To Kernel Exploitation:
Attacking the Core. 47–99.

[76] Phantasmal Phantasmagoria. 2005. The Malloc Maleficarum. https://seclists.o
rg/bugtraq/2005/Oct/118.

[77] Phoronix Test Suite. [n. d.]. Open-Source Automated Benchmarking. https:
//www.phoronix-test-suite.com.

[78] Marios Pomonis, Theofilos Petsios, Angelos D Keromytis, Michalis Polychron-
akis, and Vasileios P Kemerlis. 2017. kRˆ X: Comprehensive Kernel Protection
against Just-In-Time Code Reuse. In European Conference on Computer Systems
(EuroSys). 420–436.

[79] Alexander Popov. 2017. Race for Root: The Analysis of the Linux Kernel Race
Condition Exploit. https://media.ccc.de/v/SHA2017-295-race_for_root_the_an
alysis_of_the_linux_kernel_race_condition_exploit.

[80] Sergej Proskurin,MariusMomeu, SeyedhamedGhavamnia, Vasileios P. Kemerlis,
and Michalis Polychronakis. 2020. xMP: Selective Memory Protection for Kernel
and User Space. In IEEE Symposium on Security and Privacy (S&P). 563–577.

[81] Weizhong Qiang, Yong Cao, Weiqi Dai, Deqing Zou, Hai Jin, and Benxi Liu.
2017. Libsec: A Hardware Virtualization-based Isolation for Shared Library. In
IEEE International Conference on High Performance Computing and Communi-
cations (HPCC); IEEE International Conference on Smart City (SmartCity); IEEE
International Conference on Data Science and Systems (DSS). 34–41.

[82] Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan. 2022. PAC-
MAN: Attacking ARM Pointer Authentication with Speculative Execution. In
International Symposium on Computer Architecture (ISCA). 685–698.

[83] Nick Roessler, Lucas Atayde, Imani Palmer, Derrick McKee, Jai Pandey,
Vasileios P Kemerlis, Mathias Payer, Adam Bates, Jonathan M Smith, Andre
DeHon, et al. 2021. 𝜇SCOPE: A Methodology for Analyzing Least-Privilege
Compartmentalization in Large Software Artifacts. In International Symposium
on Research in Attacks, Intrusions and Defenses (RAID). 296–311.

[84] Dan Rosenberg. 2011. A Heap of Trouble: Exploiting the Linux Kernel SLOB
Allocator. http://vulnfactory.org/research/slob.pdf.

[85] Satoshi’s notes. 2023. Intel VT-rp – Part 1. remapping attack and HLAT. https:
//tandasat.github.io/blog/2023/07/05/intel-vt-rp-part-1.html.

[86] SecWiki. 2023. Linux Kernel Exploits. https://github.com/SecWiki/linux-kernel-
exploits.

[87] SecWiki. 2023. Windows Kernel Exploits. https://github.com/SecWiki/windows-
kernel-exploits.

[88] Shellphish. 2023. Educational Heap Exploitation. https://github.com/shellphis
h/how2heap.

[89] Sam Silvestro, Hongyu Liu, Corey Crosser, Zhiqiang Lin, and Tongping Liu. 2017.
FreeGuard: A Faster Secure Heap Allocator. In ACM Conference on Computer
and Communications Security (CCS). 2389–2403.

[90] Sam Silvestro, Hongyu Liu, Tianyi Liu, Zhiqiang Lin, and Tongping Liu. 2018.
Guarder: A Tunable Secure Allocator. In USENIX Security Symposium (SEC).
117–133.

[91] sqrkkyu and twzi. 2007. Attacking the Core: Kernel Exploiting Notes. Phrack
(2007).

[92] jemalloc. 2023. memory allocator. https://jemalloc.net.
[93] The Linux Kernel. [n. d.]. Kernel stacks on x86-64 bit. https://www.kernel.org/d

oc/Documentation/x86/kernel-stacks.
[94] The Linux Kernel. 2023. percpu memory allocator.
[95] Theori BLOG. [n. d.]. Linux Kernel Exploit (CVE-2022-32250) with mqueue.

https://blog.theori.io/linux-kernel-exploit-cve-2022-32250-with-mqueue-
a8468f32aab5.

[96] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. ERIM: Secure, Efficient In-process
Isolation with Protection Keys (MPK). In USENIX Security Symposium (SEC).
1221–1238.

[97] Valentina Palmiotti. 2022. Put an io_uring on it: Exploiting the Linux Kernel.
https://chompie.rip/Blog+Posts/Put+an+io_uring+on+it+-+Exploiting+the+Li
nux+Kernel.

[98] Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. 2022.
You Shall Not (by)Pass! Practical, Secure, and Fast PKU-based Sandboxing. In
European Conference on Computer Systems (EuroSys). 266–282.

[99] Zhi Wang, Xuxian Jiang, Weidong Cui, and Peng Ning. 2009. Countering Kernel
Rootkits with Lightweight Hook Protection. In ACM Conference on Computer
and Communications Security (CCS). 545–554.

[100] Zhe Wang, Chenggang Wu, Mengyao Xie, Yinqian Zhang, Kangjie Lu, Xiaofeng
Zhang, Yuanming Lai, Yan Kang, and Min Yang. 2020. SEIMI: Efficient and
Secure SMAP-Enabled Intra-process Memory Isolation. In IEEE Symposium on
Security and Privacy (S&P). 592–607.

[101] Wang, Yong. 2019. From Zero to Root: Building Universal Android Rooting with
a Type Confusion Vulnerability. In Zer0Con.

[102] Brian Wickman, Hong Hu, Insu Yun, Daehee Jang, JungWon Lim, Sanidhya
Kashyap, and Taesoo Kim. 2021. Preventing Use-After-Free Attacks with Fast
Forward Allocation. In USENIX Security Symposium (SEC). 2453–2470.

[103] Wolfram Gloger. 2006. ptmalloc. http://www.malloc.de/en/.
[104] Chenggang Wu, Mengyao Xie, Zhe Wang, Yinqian Zhang, Kangjie Lu, Xiaofeng

Zhang, Yuanming Lai, Yan Kang, Min Yang, and Tao Li. 2023. Dancing With
Wolves: An Intra-Process Isolation Technique With Privileged Hardware. IEEE
Transactions on Dependable and Secure Computing (TDSC) 20, 3 (2023), 1959–
1978.

[105] Mengyao Xie, ChenggangWu, Yinqian Zhang, Jiali Xu, Yuanming Lai, Yan Kang,
Wei Wang, and Zhe Wang. 2022. CETIS: Retrofitting Intel CET for Generic and
Efficient Intra-process Memory Isolation. In ACM Conference on Computer and
Communications Security (CCS). 2989–3002.

[106] Xingyu Jin and Richard Neal. 2021. The Art of Exploiting UAF by Ret2bpf in
Android Kernel. In Black Hat Europe (BHEU).

[107] Wenjie Xiong and Jakub Szefer. 2021. Survey of Transient Execution Attacks
and their Mitigations. ACM Computing Surveys (CSUR) 54, 3 (2021), 1–36.

[108] Yutian Yang, Songbo Zhu, Wenbo Shen, Yajin Zhou, Jiadong Sun, and Kui Ren.
2019. ARM Pointer Authentication based Forward-Edge and Backward-Edge
Control Flow Integrity for Kernels. arXiv preprint arXiv:1912.10666 (2019).

[109] Sungbae Yoo, Jinbum Park, Seolheui Kim, Yeji Kim, and Taesoo Kim. 2022.
In-Kernel Control-Flow Integrity on Commodity OSes using ARM Pointer Au-
thentication. In USENIX Security Symposium (SEC). 89–106.

[110] Kyle Zeng, Yueqi Chen, Haehyun Cho, Xinyu Xing, Adam Doupé, Yan Shoshi-
taishvili, and Tiffany Bao. 2022. Playing for K(H)eaps: Understanding and
Improving Linux Kernel Exploit Reliability. In USENIX Security Symposium
(SEC). 71–88.

[111] Bingnan Zhong and Qingkai Zeng. 2021. SecPT: Providing Efficient Page Table
Protection based on SMAP Feature in an Untrusted Commodity Kernel. In
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom). 215–223.

[112] Saman Zonouz, Mingbo Zhang, Pengfei Sun, Luis Garcia, and Xiruo Liu. 2018.
Dynamic Memory Protection via Intel SGX-Supported Heap Allocation. In
IEEE International Symposium on Dependable, Autonomic and Secure Computing
(DASC); IEEE International Conference on Pervasive Intelligence and Computing
(PICom); IEEE International Conference on Big Data Intelligence and Comput-
ing (DataCom); IEEE International Conference on Cyber Science and Technology
Congress (CyberSciTech). 608–617.

https://lwn.net/Articles/651614/
https://google.github.io/security-research/pocs/linux/bleedingtooth/writeup.html
https://google.github.io/security-research/pocs/linux/bleedingtooth/writeup.html
https://nickgregory.me/post/2022/03/12/cve-2022-25636/
https://nickgregory.me/post/2022/03/12/cve-2022-25636/
https://duasynt.com/blog/cve-2016-6187-heap-off-by-one-exploit
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-privilege-escalation-via-improper-ebpf-program-verification
https://seclists.org/bugtraq/2005/Oct/118
https://seclists.org/bugtraq/2005/Oct/118
https://www.phoronix-test-suite.com
https://www.phoronix-test-suite.com
https://media.ccc.de/v/SHA2017-295-race_for_root_the_analysis_of_the_linux_kernel_race_condition_exploit
https://media.ccc.de/v/SHA2017-295-race_for_root_the_analysis_of_the_linux_kernel_race_condition_exploit
http://vulnfactory.org/research/slob.pdf
https://tandasat.github.io/blog/2023/07/05/intel-vt-rp-part-1.html
https://tandasat.github.io/blog/2023/07/05/intel-vt-rp-part-1.html
https://github.com/SecWiki/linux-kernel-exploits
https://github.com/SecWiki/linux-kernel-exploits
https://github.com/SecWiki/windows-kernel-exploits
https://github.com/SecWiki/windows-kernel-exploits
https://github.com/shellphish/how2heap
https://github.com/shellphish/how2heap
https://jemalloc.net
https://www.kernel.org/doc/Documentation/x86/kernel-stacks
https://www.kernel.org/doc/Documentation/x86/kernel-stacks
https://blog.theori.io/linux-kernel-exploit-cve-2022-32250-with-mqueue-a8468f32aab5
https://blog.theori.io/linux-kernel-exploit-cve-2022-32250-with-mqueue-a8468f32aab5
https://chompie.rip/Blog+Posts/Put+an+io_uring+on+it+-+Exploiting+the+Linux+Kernel
https://chompie.rip/Blog+Posts/Put+an+io_uring+on+it+-+Exploiting+the+Linux+Kernel
http://www.malloc.de/en/

	Abstract
	1 Introduction
	2 Background
	2.1 Slab-based Allocation in Linux
	2.2 Supervisor Mode Access Prevention
	2.3 Memory Errors

	3 Threat Model
	4 Problem Statement
	4.1 Linux SLUB and Lists Manager
	4.2 Selective Memory Protection
	4.3 Proof-of-Concept Exploits

	5 Design and Implementation
	5.1 Metadata Segregation
	5.2 Data and Metadata Isolation
	5.3 Implementation Details

	6 Evaluation
	6.1 Runtime Overhead
	6.2 Memory Overhead
	6.3 Security Analysis
	6.4 Real-world Exploits

	7 Discussion and Future Work
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

