
The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07) 

1-4244-1144-0/07/$25.00 ©2007 IEEE. 

FUELING GAME DEVELOPMENT IN MOBILE P2P ENVIRONMENTS 

Aris Kosmopoulos, Ifigeneia Karamichali, Vasileios P. Kemerlis, George C. Polyzos 
Mobile Multimedia Laboratory, Department of Computer Science 

Athens University of Economics and Business 
GR-113 62, Athens, Greece 

 
ABSTRACT 

Nowadays wireless networks are becoming increasingly 
popular in urban areas, university campuses and corporate 
environments. This, along with the widespread deployment of 
mobile devices with advanced computational capabilities, 
creates more opportunities for developing collaborative/social 
applications. The development of such applications often 
raises a number of challenges for the developer mostly due to 
synchronization issues, increased network failures of the 
wireless environment and limited resource availability. In this 
paper we present a novel framework that tackles the above 
problems and releases the developer from the burden of 
dealing with cross-domain problems. We focus on the 
development of a certain type of applications, inside the 
context of ubiquitous gaming, in a small scale peer-to-peer 
manner. 

I. INTRODUCTION 

The IEEE 802.11 standard for Wireless LANs (WLANs), also 
known as WiFi, is becoming increasingly popular worldwide 
in university campuses, corporate environments and many 
other public places.  

Mobile, or nomadic, computing [1] is a new computing 
paradigm, recently established due to the latest advances in 
wireless communications, highly coupled with popular 
WLAN/WPAN standards such as IEEE 802.11. WiFi enabled 
devices (WLAN network interface cards or WNICs) are now 
becoming standard equipment for autonomous, inexpensive, 
and portable devices such as laptops, PDAs and advanced cell 
phones. Moreover, WiFi infrastructure devices (Access Points 
or APs) are increasingly used in households, public transport 
stations and other urban areas, providing seamless wireless 
coverage for small scale networks. This popularity, along 
with its easy and cheap deployment, indicates that WiFi 
technology is an integral part of any ubiquitous system [2] 
with aspirations to appeal to the masses.  

The advanced computational capabilities of such devices 
make them suitable for supporting upcoming social 
applications such as ubiquitous gaming [3]. Our vision is that 
in the near future wireless access will be available seamlessly 
to the public through wireless ISPs, service aggregators or by 
using the contributions of individual AP owners [4], thus 
bringing the ubiquitous gaming concept one step closer to 
reality. For example, people waiting in a bus station or 
shopping in a mall centre, can easily discover others, by 
exploiting the wireless access capabilities offered in modern 
mobile devices, who are interested to play a game and could 
rapidly establish one in a peer-to-peer (P2P) manner. 

 
  
 

This type of wireless applications faces important limitations 
mostly due to the dynamics of the wireless access medium, 
the resource implications imposed by the usage of mobile 
devices and the synchronization challenges between the game 
participants. The developer of a mobile P2P game, apart from 
facing the game’s implementation puzzle, is also forced to 
deal with the above challenges. Thus, the development of 
small-scale mobile P2P games is impeded by the need for 
dealing with cross domain problems which in most cases are 
faced partially. 

A. Overview 
In this work we present a novel framework that tackles the 
synchronization issues, the increased network failures due to 
the dynamic wireless environment, and the limited resource 
availability of the mobile devices in order to release the 
developer from the burden of facing these challenges by 
himself. The benefits of this approach, separating the game 
development specific problems from the “networking” 
implications, are twofold: a) Different domain experts (e.g., 
networking experts and game developers) are free to provide 
solutions or optimize specific problems without considering 
the general context. b) This decompositional approach is 
expected to intrigue the interest of the networking community 
to standardize the network dynamicity challenges and give an 
aggregated solution for small-scale P2P social applications, 
thus fuelling the development of mobile P2P games. 

The proposed solution is comprised of a layered approach 
of seven entities, named Game API, Framework Interface, 
Peer Discovery and State Maintenance Engine, Message 
Dispatcher, Synchronizer, Game Engine and Out of Band 
Communication Channel respectively, which are analysed 
thoroughly in Section III. Each entity accommodates the 
solution to a certain problem and provides its services to the 
other entities wherever necessary.  

This hierarchical structure thus, demarcates the solution to 
each challenge so as to be studied and optimised solely by 
different research communities, without affecting the 
operation of the rest entities. 

B.  Paper Organization 
The remainder of this paper is organized as follows. Section 
II reviews related work and compares it with our solution. 
Section III specifies the framework’s architecture and 
presents the entities involved. Section IV presents the 
reference implementation of our proposal on top of the .NET 
compact framework 2.0 using QTEK 9100 mobile devices, 
along with two special P2P games that we developed as proof 
of concept and for evaluation purposes. Finally we present 
and analyse a full operation example in Section V and we 
discuss our findings and future plans in Section VI. 



The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07) 

II. RELATED WORK 

Recent studies [5, 6] have demonstrated the suitability of 
coupling physical world objects with web resources. Klopfer 
et al. presented a system [3] that incorporates live world data 
for educational purposes. Our work does not involve any 
innovative sensing technologies; we focus on the game 
development procedure and how to uncouple this process 
from different domain challenges. Wolf and Wang presented 
a framework [7] for mobile P2P game development in the 
same context we consider, but their work is mostly focused 
on the design of the “peer fostering mechanism”. Finally, 
Mohamudally [8]  compared some existing collaborative 
frameworks for their behaviour in a particular game scenario. 
Although the context of this game scenario is similar to ours, 
the author is interested in studying the learning interactions of 
the players. Our main goal is to create a facilitating 
intermediate, in contrast with the former ones which were 
focused on researching certain mechanisms. Furthermore, this 
intermediate is designed to be a standard, something that 
demands a more sophisticated and global approach. 

III. FRAMEWORK ARCHITECTURE 

In this section we describe thoroughly the proposed 
framework’s architectural design. Our framework 
accommodates the development of P2P software, multiplayer 
games and mobile applications. Its goal is to hide all 
networking-related challenges from the developer and let him 
focus on his application puzzles following a “game-centric” 
development approach. Furthermore, it orchestrates the 
synchronization of different games, a need that rises naturally 
in the P2P environments, where each player (gamer or 
opponent) can join or leave other games easily. Mobile 
devices have limited memory capacity, so it is harder for 
them to share a common application. Thus, the framework 
handles the exchange and deployment of mobile applications 
easily, in a P2P manner, among multiple opponents.  

Each mobile game (i.e., the game application) needs to be 
“hooked-up” with the framework in order to establish a small-
scale P2P multiplayer game and communicate with the other 
“peer games”. Fig. 1 illustrates the proposed architecture. It is 
comprised of three primary and four secondary entities. The 
primary entities (i.e., Synchronizer, Game Engine and Peer 
Discovery and State Maintenance Engine) confront 
synchronization issues between games and framework 
instances, mobile devices' memory limitations and network 
instability issues respectively. The four secondary entities 
(i.e., Game API, Framework Interface, Out of Band 
Communication Channel and Message Dispatcher) arose from 
the game developer's subjective view (i.e., the needed-entities 
that arose while we ware developing our P2P games, see 
Section IV.B). All interactions between these entities are 
modelled as message transactions. Thus, many special 
message types exist and are analyzed in the following 
sections. 

 
 

A. Game API 
The Game API is one proposed framework’s four 
supplemental entities. It implements the up-call “game-to-
framework” interface that is visible by the developer and 
hides the environment’s complexity (i.e., the dynamicity of 
wireless environment, synchronization issues and the 
constraints imposed by the mobile devices). Its main purpose 
is to forward messages from a game to the framework’s 
Message Dispatcher entity, in order to further be routed to 
their destination, and vice versa. Each game must be 
“hooked-up” with this entity, seen as a software library by the 
developer, to use the framework. This way we standardize the 
game development and release the developer from the burden 
of facing problems outside the game’s scope. The Game API 
is able to communicate with many games simultaneously, 
meaning that more than one application may use the same 
framework instance at once. This feature enables a gamer to 
communicate with multiple opponents and to play different 
games with each one of them at the same time. 

By following this hierarchical - decompositional approach, 
the developer interacts only with the framework (through 
dedicated “method calls”) and focuses only on the game’s 
challenges. The synchronization, resource and network issues 
are handled by the rest entities. 

B. Framework Interface 
The interaction between different frameworks is done through 
the Framework Interface entity. This component is 
responsible for granting multiple and simultaneous 
connections with other frameworks, in order to support 
multiplayer gaming, by handling the message transportations. 
It resides in the lower class in the framework’s hierarchy and 
tackles all possible transfer failures due to the wireless 
medium. Thus, a guaranteed transfer mechanism is provided 
to the rest framework entities.  

Framework Interface is connected with the Message 
Dispatcher, in order to transfer messages between framework 
instances and with Peer Discovery and State Maintenance 
Engine, in order to initially discover, and following have 
estimate knowledge, of the available peers needed to 
communicate with. 

C. Peer Discovery and State Maintenance Engine 
When a peer gets connected to a wireless network or each 
time a small rapid P2P gaming network needs to be 
established, in order to support a multiplayer game, the 
framework has to be informed about its neighbour peers. Peer 
Discovery provides this information along with the “name-to-
network address” resolution to the Framework Interface. 
During a game session some peers may lose connectivity, due 
to the dynamic nature of the wireless environment, or leave 
and others may join. Inside this “soft-state” environment State 
Maintenance tackles peers’ churn events, either caused by the 
user or by an external and possible faulty cause and properly 
notifies the game application by utilizing a lightweight 
monitoring procedure. 



The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07) 

D. Message Dispatcher 
Message Dispatcher is the responsible entity for receiving 
messages from other framework entities and deciding where 
each message should be delivered. It can be considered that 
resembles the functionality of a message switching centre 
inside the framework that arbitrates all entities 
communications. Each entity generates and consumes 
messages asynchronously and consequently affects the 
operation of other entities. Thus, the message dispatcher 
centralized approach ensures the optimal operation of all 
entities inside the framework by eliminating starvation 
problems or aggressive entity behaviours, in terms of 
generated/consumed messages that reflect in consumed 
resources or bandwidth, using effective scheduling.  

Before forwarding each received message, Message 
Dispatcher transforms it appropriately (by doing the 
appropriate encapsulations/decapsulations), in order to be 
acceptable by the receiving component. To be more specific, 
Message Dispatcher is involved in the following receiving 
and forwarding situations: 

 
• Messages received from the Out of Band Communication 

Channel entity and needed to be forwarded to the 
Framework Interface, so as to be delivered to the 
opponents’ framework instances. 

• Messages generated from the Synchronizer entity and 
needed to be forwarded to the Game API or the 
Framework Interface entities, (depending on their 
context). 

• Messages sent from the Game API and needed to be 
forwarded to the Synchronizer, in order to inform it about 
synchronization issues, or messages from the Game API 
indented for the Game State component. 

• Messages sent by the Game Transfer Engine or the Game 
List Discovery component to be dispatched to the 
Framework Interface, so as be to delivered in the 
opponents’ framework instances. 

• Messages received from the Framework Interface and 
destined to current framework, following the inversed 
path of all situations described above. 

E. Synchronizer 
Game applications are by nature interactive. That is why 
synchronization is necessary not only between applications 
and their managing framework, but also between different 
framework instances. For example in the tic-tac-toe game, 
once a player has his move completed, his must be blocked 
until his opponent replies with a move. The Synchronizer 
entity, which is highly coupled with Message Dispatcher, 
ensures synchronization consistency by orchestrating the 
Game API and the Framework Interface entities (i.e., the two 
main points of generating or consuming messages). 

The synchronization between the framework and the active 
game set (i.e., all games interacting with the framework 
simultaneously) is accomplished by sending special 
orchestration messages to the Game API. Among others these 
can be: 

 

• Messages that request a player to initiate or terminate a 
game. 

• Messages for the handshaking process, which ensures 
that the initial options of a game have been adjusted in 
order to start gaming. 

• Messages for resetting or blocking a game. 
 
The synchronization between different framework instances 

is accomplished by sending dedicated messages to the 
Framework Interface entity such as: 

 
• Messages indented to notify the opponents’ framework 

instances for synchronization issues. 
• Messages that request the game list of the opponents’ 

framework instances. 
• Messages that synchronize a game transfer.  
• Signalling messages informing about the termination of a 

framework instance. 

F. Game Engine 
This core entity is responsible for the conduct of the game 
and is mostly used to provide a “game-centric” development 
approach to the game architect. It is comprised by three 
distinct sub-entities, named Game State, Game List Discovery 
and Game Transfer Engine respectively. 

1) Game State 
The Game State entity traces each game’s state by handling 

the appropriate game state messages, thus supporting the 
synchronization process. These messages are used for 
informing other games and their respective framework 
instances about the state of opponents. For example if all 
players have reached a landmark point, then previously 
forbidden actions can be available. Additionally, this entity 
keeps and provides accounting information for each game 
(e.g., the number of wins and loses). 

2) Game List Discovery 
The purpose of the Game List Discovery entity is to obtain 

the game lists of all other peers and to provide the local game 
list to others upon request. This way, game applications can 
be easily disseminated in a P2P manner to all peers, thus 
facing the limited resource availability on the mobile devices. 

3) Game Transfer Engine   
The Game Transfer Engine entity is responsible for 

exchanging games between peers. It is a compound entity to 
the Game List Discovery entity presented before, and used for 
monitoring and carrying out the game application transfer. 

G. Out of Band Communication Channel 
This entity ensures that a peer is able to communicate with 

other peers at any time, regardless of the frameworks’ state. 
For example special signalling messages, real-time or urgent 
data should use this channel to communicate with other 
frameworks, instead of following the standard message 
dispatching stream, which can randomly delay the delivery. 



The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07) 

IV. IMPLEMENTATION 

We have partially implemented the proposed framework 
along with two game applications for evaluating and further 
studying our proposal. The referenced implementation was 
developed with Pocket PC Emulator, Microsoft Visual Studio 
.NET 2005 SP1 [9]. The executable code was packaged using 
the CAB file format [10] and the installation was done in two 
mobile, QTEK devices [11] (QTEK 9100). Table 1 illustrates 
the devices’ capabilities. The reference implementation is 
public available at: http://mm.aueb.gr/archive.html#Software  

 
Figure 1: Framework Architecture 

Table 1: QTEK 9100 technical specifications 

CPU 200MHz 
Memory 128KB ROM, 64KB RAM 
Cellular GSM/EDGE Quad-Band 
WPAN 
WLAN 

Bluetooth 1.2-IEEE 802.11 b/g 

OS Microsoft Windows Mobile v5.0 

A. Framework 
As far as the framework’s implementation is concerned, we 
have implemented most parts of the proposed architecture 
described in Section III. We focused mostly on the interaction 
between two players only, although multiplayer games can 
still be supported with minor changes.  The Peer Discovery 
and State Maintenance Engine is not implemented in this first 
implementation. Efficient ways of discovering peers inside 
our referenced environment and keeping a track of them is a 
future task, which should be studied independently in order to 
come out with optimal solutions. Thus, the “peer name-to-
network address” mapping is statically defined from each 
game application1, by using the respective method call. 

                                                           
1 The application can still use dynamic discovery techniques implemented 
solely outside from the framework and provide the valid mappings to it. 

Game API entity currently supports interactions with one 
game only in real-time. The implementation’s environment 
(QTEK 9100 – Windows Mobile v5.0) is highly resource 
restrictive for enabling us to support multitasking game 
applications, which from their nature drain the device’s 
resources. Thus, for the reasons analysed before and for 
simplifying the development procedure and the Synchronizer 
entity, the Game API is implemented as a singleton object 
coupled with “1-1” relationship with the game application. 

The implementation of the Framework Interface entity uses 
TCP/IP for communicating with other peers. Although the 
TCP/IP stack is more resource demanding rather than the 
UDP lightweight alternative, the additional cost of 
implementing a reliable transfer solution on top of UDP 
datagrams imposes additional implementation cost, which 
was unnecessary to our testbed. Future work should definitely 
tackle this limitation. 

Message Dispatcher, Synchronizer, Game State, Game List 
Discovery and Game Transfer Engine entities are fully 
implemented as described in the architecture section. 
Although the Game State component does not support the 
statistic information collecting mechanism, it gets informed 
about the actions of a game. We implemented the Game 
Transfer Engine, which exchanges games between 
frameworks as follows: every time that someone wants to get 
a new game from another peer, the executable file and the 
accompanied GINFO file of the game (described in IV.B) are 
transferred and stored in the framework’s installation folder.  

Finally considering the Out of Band Communication 
Channel, we used it to provide a chat mechanism, which 
enables the peers to communicate with each other even during 
a gaming session. 

B. Game Application 
As it is said before, we also implemented two special game 
applications in order to demonstrate the framework’s usage 
and for further evaluating it. We considered each game 
application as a separate executable file, not installed in the 
mobile device, accessed and controlled only by the 
framework. Games supported by our framework are not 
standalone applications and need the framework (i.e., they 
need to be “hooked-up” with it) in order to operate. This way, 
a user is prevented from running the application without using 
the framework and tackling many problems by himself. 

Each game intended for this framework should follow 
certain constraints, in order to be compatible with it. Firstly, it 
can never exchange information directly with another game; 
only by using the framework. This way, the framework 
manages the gaming synchronization. Secondly, it should use 
the types of messages described before, thus using already 
efficient ways to deal with the environment problems instead 
of “hacking” partially the raised challenges. Lastly, it should 
be accompanied by a GINFO file with the main 
characteristics of the game. Every GINFO file contains the 
following information: 
• The name of the game. 
• The identification number of the game.  
• The name of the executable file. 



The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07) 

• The network port for the incoming messages sent by the 
framework. 

• The network port for the outgoing messages sent to the 
framework.  

• The game description. 
 

Following the above constraints, we developed two games. 
The first one is the well known tic-tac-toe game. The second 
one is called “Skirmish” and is a turn-based strategy game. 
Although Skirmish is more complex than tic-tac-toe, it 
operates smoothly with the framework and we did not 
observed any degradation in the framework’s performance. 

V. OPERATION EXAMPLE 

In this section we will demonstrate briefly the messages 
exchanged during a gaming session between two peers, in a 
simple scenario. We assume there are two persons in a cruise, 
namely Player A and B respectively, who use their mobile 
devices to rapidly establish a wireless P2P network in order to 
play a game. Player A has only the tic-tac-toe game, while 
player B has both the tic-tac-toe and Skirmish games. Fig. 2 
illustrates the exchanged message sequence before and during 
the game. After the frameworks’ initialization and having a 
short chat, both players agree in playing a game. The 
frameworks exchange their game lists and player A decides to 
play the Skirmish game. Due to the fact that he/she doesn’t 
have this game, he/she requests it from the opponent’s 
framework. His/Hers framework receives that game and they 
start playing it. When one of the players decides to leave the 
game the respective “clean-up” messages/actions take place. 

 

 
Figure 2: Exchanged messages sequence 

VI. CONCLUSION AND FUTURE WORK  

In this paper we presented a novel framework that tackles the 
synchronization issues, the increased network failures due to 
the dynamic wireless environment, and the limited resource 
availability of the mobile devices in order to release the 
developer from the burden of facing these challenges.  

Different domain experts are free to provide solutions or 
optimize specific problems without considering the general 
context. Moreover the decompositional approach followed in 
the design of the architecture is expected to attract the interest 
of the networking community to standardize this framework 
and thus provide a common skeleton for the development of 
small scale P2P social applications, such as mobile P2P 
games. Currently we are extending our proposed framework 
in order to face the security issues that were raised. 

Finally, apart from facing all other minor limitations 
presented in the previous section, we plan to evaluate and 
benchmark the framework and its efficiency under many 
different dimensions. Our contribution is not to provide a 
solution to each of the important problems referred inside this 
paper, instead we try to create a standard scheme in order to 
support the “game-centric” development, and intrigue the 
research community and the developers to further assist each 
other so as to come up with optimal and robust solutions. 
 

REFERENCES 
[1] T. Imielinski and B.R. Badrinath, “Querying in Highly Mobile 

Distributed Environments,” in Proceedings of the 18th VLDB 
Conference, Vancouver, Canada, 1992. 

[2] M. Weiser, “The Computer for the 21st Century,” ACM SIGMOBILE 
Mobile Computing and Communications Review, vol. 3, no. 3, pp. 3-11, 
July 1999. 

[3] E. Klopfer, K. Squire, and H. Jenkins, “Environmental Detectives: 
PDAs as a Window into a Virtual Simulated World,” in Proceedings of 
the IEEE International Workshop on Wireless and Mobile Technologies 
in Education, Växjö, Sweden, 2002. 

[4] E. C. Efstathiou, P. A. Frangoudis, and G. C. Polyzos, “Stimulating 
Participation in Wireless Community Networks“, in Proceedings of the 
IEEE INFOCOM, Barcelona, Spain, 2006. 

[5] F. Bellotti, R. Berta, A. De Gloria, and M. Marganore, “User Testing a 
Hypermedia Tour Guide,” IEEE Pervasive Computing, vol. 1, no. 3, pp. 
33-41, April-June 2002. 

[6] S. Pradhan, C. Brignone, J. H. Cui, A. McReynolds, and M. T. Smith, 
“Websigns: Hyperlinking Physical Locations to the Web,” IEEE 
Computer, vol. 34, no. 8, pp. 42-48, August 2001. 

[7] H. Wolf and M.Wang, “A Framework with a Peer Fostering Mechanism 
for Mobile P2P Game Development,” in Proceedings of IEEE 
International Conference on Mobile Business, Sydney, Australia, 2005. 

[8] N. Mohamudally, “A Massive Multiplayer Game Framework for 
Mobile Learning,” in Proceedings of  IEEE International Workshop on 
Wireless, Mobile and Ubiquitous Technology in Education, Cheju 
Island, Korea, 2006. 

[9] “Visual Studio 2005 Developer Center”, Microsoft MSDN, 
http://msdn.microsoft.com/vstudio/ 

[10] “Microsoft Cabinet SDK”, Microsoft MSDN, 
http://msdn2.microsoft.com/en-us/library/ms974336.aspx 

[11] “QTEK 9100 Pocket PC Phone Edition”, WLAN-enabled, 
http://www.qtek.nu/europe/products/9100.aspx 


