
EPF: Evil Packet Filter

Di Jin
Brown University

Vaggelis Atlidakis
Brown University

Vasileios P. Kemerlis
Brown University

Abstract
The OS kernel is at the forefront of a system’s security. There-
fore, its own security is crucial for the correctness and in-
tegrity of user applications. With a plethora of bugs contin-
uously discovered in OS kernel code, defenses and mitiga-
tions are essential for practical kernel security. One important
defense strategy is to isolate user-controlled memory from
kernel-accessible memory, in order to mitigate attacks like
ret2usr and ret2dir. We present EPF (Evil Packet Filter): a new
method for bypassing various (both deployed and proposed)
kernel isolation techniques by abusing the BPF infrastructure
of the Linux kernel: i.e., by leveraging BPF code, provided by
unprivileged users/programs, as attack payloads. We demon-
strate two different EPF instances, namely BPF-Reuse and
BPF-ROP, which utilize malicious BPF payloads to mount
privilege escalation attacks in both 32- and 64-bit x86 plat-
forms. We also present the design, implementation, and evalu-
ation of a set of defenses to enforce the isolation between BPF
instructions and benign kernel data, and the integrity of BPF
program execution, effectively providing protection against
EPF-based attacks. Our implemented defenses show minimal
overhead (< 3%) in BPF-heavy tasks.

1 Introduction

The security of a computer system can only be as good as
that of the underlying OS kernel. The kernel provides a rel-
atively simplistic abstraction for programs to build on top
of, and mediates their access to system resources. Hence, the
confidentiality and integrity of user programs rely solely on
the security of the OS kernel itself. Yet, the kernel is hard
to defend, due to its unique execution model, and the sheer
size and complexity of its code. With the development of
automated kernel-code testing tools, such as syzkaller [13],
thousands of bugs have been found across different OSes [12].
It is even pointed out that bugs are discovered faster than they
are fixed [113]. The abundance of errors and vulnerabilities
in OSes amplifies the importance of protection mechanisms
that reduce the exploitation potential of kernel vulnerabilities.

Standard defenses, such as W^X [6] and ASLR [6], are
also adopted by the Linux kernel, aiming to stop and miti-
gate code-injection- [64] and code-reuse-based [40] attacks.
More specifically, these defenses aim to limit the attacker’s
ability to successfully mount an attack. However, attacks such
as ret2usr [68], which completely encode their payloads in
userspace, indicate that kernel exploitation is made signifi-
cantly easier by the relatively weak separation between the
kernel and userspace (as opposed to a user application, such
as web server, where the interface between it and the clients
is much more well-defined and limited). Similarly, protection
mechanisms like SMEP [112] try to stop kernel attacks by
limiting the attacker’s ability to encode attack payloads in a
kernel-accessible manner (more attacks and defenses in this
direction are discussed in Section 2.1).

In this paper, we explore the possibility of abusing the
BPF infrastructure in the Linux kernel—more specifically,
by leveraging BPF programs as attack payloads. We have
identified three properties that make BPF programs a promis-
ing candidate for such a task. First, BPF programs can be
created by unprivileged users, and contain memory contents
chosen by the user (such that they can be used to encode ma-
licious contents). Second, BPF programs can be created in
large amounts, such that during exploitation valid references
to them can be constructed (e.g., by just guessing) with good
probability. Third, BPF programs are created by users, but
“consumed” by the OS kernel. Access to such payloads cannot
be prevented by existing, strong kernel-user isolation mecha-
nisms (e.g., XPFO [67]), because they cannot be differentiated
from regular data that the kernel operates upon.

Yet, unlike previous techniques where the payload con-
tent is encoded inside regions acting effectively as “byte
buffers”, a BPF programs’s in-memory representation has
a non-trivial structure. To address this problem, we develop
special code-reuse strategies, dubbed as EPF, to utilize pay-
loads with the constraints introduced by the corresponding
BPF structure. BPF programs can aid exploitation because
they are not strongly-isolated from normal kernel data.

And to defend against such EPF-style attacks, we develop
a set of defenses that enforce strong BPF-to-kernel isolation.
Recognizing the fact that BPF is essentially a “virtual architec-
ture”, we follow a roadmap similar to that of isolating native
code from pure data: (1) BPF code should not be read or
written as regular, kernel data; (2) regular kernel data should
not be executed as BPF code; and (3) BPF code should not
be reused as semantically different BPF code.

To summarize, we make the following contributions:

• We introduce a novel, high-volume, undefended method
to inject payloads in kernel space for aiding the exploita-
tion of memory errors in kernel code, and we create
systematic techniques to utilize them in different archi-
tectures. Our methods enable attacks that bypass state-
of-the-art defenses that focus on enhancing kernel-user
isolation.

• We develop defenses against exploitation that (ab)uses
the BPF infrastructure by enforcing strong isolation be-
tween BPF code and regular kernel data, and the integrity
of BPF execution under attack.

• We evaluate both our attacks and defenses. We create
exploits using our techniques on four different real-world
vulnerabilities. We integrate our defenses into Linux
kernel and demonstrate low overhead (< 3%) on BPF-
heavy tasks.

2 Background

2.1 Kernel Exploitation and Defense
Exploitation is the process of tampering with a victim system/-
software codebase by abusing vulnerabilities in it [95].
In the case of operating systems (OSes), because OS ker-
nels are typically written in memory- and type-unsafe lan-
guages, like C, C++, and ASM, the most common approach
to their exploitation entails abusing memory errors in kernel
code [73,74,88,96]. In general, two are the dominant exploita-
tion strategies (re: memory errors): code-injection [64] and
code-reuse [40]. Code-injection leverages memory corrup-
tion vulnerabilities to place malicious code (i.e., shellcode)
in the victim’s address space before corrupting control data
(e.g., return address, function pointers, dispatch tables) to
steer execution to it. In contrast, code-reuse stitches together
existing (i.e., benign) code snippets, in an out-of-context man-
ner, to perform the respective (malicious) computation.

In addition to the above, there exist kernel-specific exploita-
tion techniques that address unique challenges of the OS ker-
nel setting. Throughout the evolution of kernel attacks and de-
fenses, regarding memory errors, the ability to create attacker-
controlled, exploit-time-accessible payloads has been at the
forefront of the subject matter. For example, in ret2usr [68]
attacks, the adversary first corrupts a code pointer, and then
diverts the control flow to userspace code, tricking the kernel

into executing malicious (shell)code with elevated privileges.
Alternatively, a different flavor of such an attack employs
code-reuse techniques (e.g., ROP [100]) with payloads placed
in userspace [74, 77]. An essential property of ret2usr-like
attacks is the placement of their payload (e.g., shellcode or
code-reuse payload) in userspace.

To provide protection against exploits that follow the
ret2usr approach, various defenses focus on stopping the re-
spective payloads from being accessible. CPU features such
as SMEP [112], SMAP [49], PXN [2], PAN [7], as well as soft-
ware solutions such as kGuard [68], PaX’s KERNEXEC [89]
and UDEREF [90, 91], were introduced to prevent userland
code/data from being executed/accessed freely by the OS
kernel. Seeking new ways to provide payloads for exploiting
kernel vulnerabilities, without accessing userspace, in the past
we proposed to (ab)use the implicit memory sharing between
userspace and the kernel: i.e., the physmap region [67].

For performance reasons, modern OS kernels keep a con-
tinuous mapping of the physical memory (or part of it) in
kernel space, which naturally contains user-controlled con-
tent. In such attacks, dubbed ret2dir, the adversary tries to
allocate enough physical pages containing the respective pay-
load, and through the implicit sharing of physmap, the payload
will be utilized/accessed in a later stage via code injection
or reuse. To defend against ret2dir-based attacks, we intro-
duced the concept of XPFO (eXclusive Page Frame Own-
ership) [67]. XPFO prevents the kernel from accessing any
memory page that houses userland content, using a kernel
(physmap-resident) address. Again, the defense impedes the
attackers’ ability to access their payload.

In this work, we show that unintended access and implicit
sharing are not the only reliable sources of payload injection.
As it turns out, the ability to “push” BPF programs [83] in
kernel space provides the attacker with enough control over
the contents of kernel memory, to the extent that BPF can
be used as an arbitrary payload-encoding mechanism. As
BPF programs are designed to live in, and used by, the OS
kernel, such payloads bypass all defenses that rely on the
strong isolation of kernel- from user-space [66].

2.2 BSD Packet Filter
Design and Usage The BSD Packet Filter (BPF) [83] was
originally designed for filtering packets during network moni-
toring: by providing the kernel with “instructions” regarding
how to filter packets, before delivering them to a monitor-
ing process in userspace, BPF eliminates unnecessary data
copying and context switching. The design and implementa-
tion of the Linux Socket Filter (LSF; i.e., our main subject
of study) [60] was inspired heavily by BPF. However, it has
recently evolved into a generic utility, acting as a universal
in-kernel virtual machine [46]: its execution is strictly sand-
boxed, and no unintended side-effects escape confinement.

A wide range of kernel components, and applications,
make use of the expressiveness and security provided
by BPF. Docker [10], Firefox [9], and Chromium [1], as
well as automated system call (syscall) filtering schemes,
like sysfilter [52], Confine [55], and Chestnut [42], use
seccomp-BPF [80] to specify syscall filtering policies. In
addition, BPF programs can be attached to Kprobes (kernel
probes) [105], giving rise to powerful kernel tracing tools [38],
while BPF-based networking frameworks are developed to
enable agile packet processing [15,78]. Lastly, BPF programs
have also been proposed to be used in FUSE (Filesystem in
USErspace) [34] to reduce context switching overheads.
Features Two different flavors of BPF exist in Linux: classic
BPF (cBPF); and extended BPF (eBPF). Internally, cBPF
is converted to eBPF, and therefore only a single execution
engine (for eBPF) exists nowadays [70]. cBPF programs are
used for socket filtering (setsockopt), and syscall filtering
(prctl, seccomp), while eBPF programs are managed with
the bpf syscall, allowing kernel subsystems to implement
different methods for attaching/invoking eBPF code.

cBPF is similar to the original BPF, with two general-
purpose registers and 16 (addressable) scratch memory slots,
all of which are 32-bit wide. In contrast, eBPF has 10 general-
purpose, 64-bit registers, and is equipped with a set of helper
functions to access either eBPF maps (i.e., a family of key/-
value store data structures) or other, internal functionality
(like getting the current process-ID or generating random
numbers) [3]. eBPF maps can be made accessible from multi-
ple eBPF programs or user processes [4].

Both cBPF and eBPF specify a RISC-like instruction set,
allowing: (a) loading and storing operations (re: immediate
values or scratch memory slots); (b) moving values between
registers; (c) performing arithmetic and logical operations;
and (d) branching. To guarantee termination, there is no in-
direct branching, and the branch instructions can only jump
forward. In addition, eBPF provides specific instructions for
invoking helper functions and other eBPF programs. JIT (Just-
In-Time) compiling for eBPF [45] instructions, down to ma-
chine code, allows for performance gains [99], compared to
using the eBPF interpreter. Lastly, popular tools have also
added support for eBPF. LLVM supports BPF as a backend
since v3.7 [81], so that developers can choose to write BPF
programs using a syntax similar to C. Similarly, BCC [61] and
libbpf [8] are frameworks that allow developers to easily
create and interact with loaded BPF programs.
Security The isolation between the BPF runtime and OS
kernel is crucial for the security of the latter. For perfor-
mance reasons, BPF favors static, ahead-of-time checking
(over dynamic, runtime checking), when enforcing such iso-
lation. The static checker for cBPF ensures the following
properties: (1) jumps (i.e., branches) do not go backwards;
and (2) scratch space accesses target initialized locations only.
Any program that cannot be statically verified by the checker
is rejected. In case of packet filtering, the validity of access to

a packet cannot be determined statically, as packet sizes may
differ at runtime. Hence, such accesses will be translated to
calling helper functions, and bounds are enforced at runtime.

The checker for eBPF is more complex [84]. Same as the
cBPF checker, it needs to make sure that control flow does not
go backwards. It also validates, and replaces, eBPF map and
helper function references, and analyzes register value types,
such that the corresponding operations lead to predictable
memory accesses to safe locations. The verifier is known to be
prone to errors, such as incorrect value range analysis [16, 17,
21] and insufficient protection against speculative execution-
related vulnerabilities [19, 22]. Hence, the unprivileged bpf
syscall is disabled by default [48] (defconfig in x86 Linux),
while distributions are adopting a “on/off” choice [51, 106].

BPF has also been used as aid in the exploitation of tran-
sient execution vulnerabilities [72], as well as in settings that
involve limited memory corruption capabilities (wrt spatial
ranges and/or value choices) [63, 107]. Concerns regarding
the former have led to removing the interpreter entirely, and
always using JIT-compiled BPF, in certain settings, in order
to reduce the risk of Spectre-like attacks (i.e., via CONFIG_-
BPF_JIT_ALWAYS_ON [103]). However, BPF JIT comes with
its own set of security concerns.

First, because BPF JIT provides fine-grain control of na-
tive code (i.e., instructions) in kernel space, it is favored by
specific transient-execution attacks [32, 71] (against the OS
kernel). Second, it has been shown that the JIT engine can
be used to facilitate code injection [82, 98], and hardening
techniques such as constant blinding [36] and code-offset ran-
domization [53] are added to counter these attacks. Lastly,
the JIT compiler itself also suffers from errors. Nelson et
al. [86] proposed the use of formal methods to ensure the
correctness of JIT compilation, in which they report 82 bugs,
demonstrating the difficulty of developing a correct (BPF) JIT
compiler. The above issues have made the choice between
the BPF interpreter and JIT compiler a difficult one, because
both sides come with different security trade-offs. Notably,
defconfig in x86 Linux, as well as popular distributions,
like Debian, choose to keep the BPF interpreter compiled-in,
which is what we assume in this work.

3 Threat Model

3.1 Adversarial Capabilities
We consider an attacker who is a local, unprivileged Linux
user, aiming at escalating their privileges. More specifically:
Unprivileged Access The attacker is able to perform anything
an unprivileged user can, like executing arbitrary code in
userspace, invoking syscalls, accessing the filesystem, and
interacting with OS interfaces (procfs [14], sysfs [11]).
BPF Functionality The attacker has the ability to push cBPF
programs in kernel space. First, BPF should be enabled in
the kernel. This is true for any Linux kernel compiled with

network support, because the BPF subsystem is turned on by
CONFIG_BPF, which is selected by CONFIG_NET [104]. Sec-
ond, the attacker should have access to the BPF infrastructure,
which is always the case because the setsockopt, seccomp,
and prctl syscalls are not privileged. Third, the interpreter
needs to exist in kernel code, which means that CONFIG_-
BPF_JIT_ALWAYS_ON should be off (§2.2). We do not require
the bpf syscall being available to the attacker, which can be
used to create eBPF programs. Actually, the unprivileged bpf
syscall is disabled in all major distributions [51, 106].

Memory Errors We also assume that the attacker has ac-
cess to a (at least one) memory corruption vulnerability in
kernel code, and that by abusing this vulnerability they are
able to overwrite code and data pointers, either in a temporal
(e.g., use-after-free [23, 24]) or spatial (e.g., out-of-bound
access [27, 28]) manner. We do not assume any error, or bug,
in the BPF interpreter, verifier, or JIT compiler. Although the
correctness of these components is challenging [25, 26, 86],
this is something orthogonal to our attack(s)/EPF.

3.2 Hardening Assumptions

On the kernel side, we assume that W^X [6] is enforced,
such that code injection is not possible. In addition, we con-
sider that the kernel is hardened against ret2usr attacks, using
SMEP [112]/PXN [2] and SMAP [49]/PAN [7]. Furthermore,
we assume that no implicit memory sharing can take place be-
tween userland processes and the OS kernel, and hence ret2dir
attacks are not attainable. Note that this is a strong assump-
tion, as currently Linux does not employ a comprehensive
defense against ret2dir, like XPFO [67]. We also assume that
the page tables are protected against tampering with page ta-
ble integrity mechanisms, such as PT-Rand [50] or xMP [94].
Lastly, kernel ASLR [54] is orthogonal to our attack(s); if
deployed, EPF leverages known techniques to bypass it (§7).

4 Evil Packet Filter

We use the term EPF (Evil Packet Filter) to refer to a set of
attacks that (ab)use the BPF infrastructure for injecting mali-
cious payloads in kernel space. EPF allows bypassing existing
isolation mechanisms [7, 49], which prevent user-controlled
content from aiding kernel exploitation (§3.2). Due to the
nature of the in-memory representation of BPF programs,
making use of them as an attack vector is quite challenging.
First, we describe certain design/implementation details of
BPF, how BPF programs are created, what malicious con-
tent can be “hidden” in them, and how an attacker can locate
them. Then, we describe two EPF-based attacks: BPF-Reuse
(EPF v1—variant 1) and BPF-ROP (EPF v2—variant 2).

code jt jf k

0 16 24 32 64

code dstsrc imm

0 16128 32 64

off

Figure 1: Fields and their sizes (in bits) in cBPF (top) and
eBPF (bottom) instructions. Green regions are the parts of the
instruction that can be controlled by an attacker.

4.1 Linux BPF Internals
BPF-code Management cBPF programs are primarily cre-
ated via setsockopt, prctl, and seccomp, which can be
used to “push” (cBPF) filtering code in kernel space; eBPF
code can be copied in kernel space using the bpf syscall.

Both cBPF and eBPF programs are represented using the
same data structure: that is, struct bpf_prog. We refer to
this data structure as the “BPF program”; BPF programs
pushed by setsockopt, prctl, and seccomp are considered
‘cBPF’, while those copied in kernel space by bpf are ‘eBPF’.
struct bpf_prog is always page-aligned when allocated.
After a cBPF program is loaded into kernel space, the cBPF
instruction array is duplicated, and stored separately—we
call this instruction array as the original cBPF code. This
code is referenced from struct bpf_prog by a member
pointer orig_prog, allowing the corresponding process to
retrieve the original cBPF code later (if needed). Then, the
cBPF code is statically verified for safety, and translated in-
place, becoming a verified BPF program (§2.2). Notably, the
verification of cBPF programs is different from the one of
eBPF programs, and after the cBPF instructions are translated
to eBPF instructions, they are not verified again.

Lastly, a verified BPF program goes (optionally) through
the process of being JIT-compiled (when /proc/sys/net/-
core/bpf_jit_enable = 1), while the memory permis-
sions of pages that host the BPF program become read-only.
Data Structures The BPF program data structure (in the case
of cBPF) consists of a header, which includes a pointer to
the interpreter function, and a pointer to the original cBPF
code, and an array of instructions. After verification, the array
of instructions contains only eBPF code, due to the in-place
cBPF⇝eBPF translation. (We refer to this array as the eBPF
code. Notice that, internally, both cBPF and eBPF programs
are represented with eBPF code.) BPF programs are allocated
from the vmalloc region, whereas the original cBPF code is
duplicated using kmalloc and lives in physmap [67].

In cBPF instructions (Figure 1, top), the code field is the
opcode, defining the respective operation; jt and jf are two
fields used for specifying where to jump if a predicate is true
or false; and k is used for encoding immediates. Similarly,
in eBPF instructions (Figure 1, bottom), both src and dst
encode a number between 0–10, corresponding to one of the

Corrupted Code Pointer

Corrupted Data Pointer

BPF Interpreter

BPF Program

...
...

...

eBPF Code

BPF Program

eBPF Code

BPF Program

eBPF Code

Original cBPF Code

Original cBPF Code

Original cBPF Code

Figure 2: Memory layout during an EPF v1 (BPF-Reuse) at-
tack. The corrupted code pointer points to the BPF interpreter
function, and, at the time of its invocation, its argument points
to one of the malicious BPF programs.

10 general-purpose registers or the frame pointer; the off
field is used by memory load/store instructions, and jump
instructions, to specify the offset of such operations; and imm
stores the value of instructions that require an immediate.
Payload-encoding Challenges Ideally, the attacker would
like the memory region they control to be of arbitrary size and
content. However, this is not the case for BPF. Both cBPF and
eBPF instructions correspond to 8 bytes, and not all bytes can
take arbitrary values, because some of them have restrictions
due to verification or translation. Only imm and k can be
used in an unconstrained manner, and therefore we will only
use these fields for EPF purposes—this corresponds to every
other 4 bytes in the {c, e}BPF instruction array. Other fields
can be partially-controlled or are only controllable iff the
BPF program is constructed in a specific way. Hence, more
fine-grain control is also possible (see Figure 1), but this is
something that we do not explore for mounting an EPF attack.
BPF-code Spraying Although an attacker can control parts
of a BPF program’s content (both in the case of translated
eBPF code and the original cBPF code), they still need to
create reliable references to such BPF instructions. This can
be achieved by spraying: i.e., saturating kernel space with
BPF programs, and, as a result, a randomly-chosen location
will likely contain (malicious) BPF code [67]. Both cBPF
and eBPF code are page-aligned, and hence no additional
care is needed to locate memory offsets within a page. In
the Linux kernel, all allocated objects can be found in the
physmap region, which maps the whole RAM.

b4 07 00 00 79 11 00 00 b4 07 00 00 bf 17 00 00 b4 07 00 00 0f 27 00 00 b4 07 00 00
code regs off imm

R7 = 0x1179
code regs off imm

R7 = 0x11bf
code regs off imm

R7 = 0x270f

code regs off imm

R1 = *(u64*)R1
code regs off imm

R7 = R1
code regs off imm

R7 += R2

Figure 3: A snippet of the same eBPF code interpreted from
different offsets (above vs. below).

During our experimental evaluation (§6.2), we discovered
that setsockopt is the most effective spraying apparatus: it
can be used to saturate ≈80% of all RAM, if the attack can
utilize both the translated eBPF code and the original cBPF
code, or ≈40% when only one of the two can be used.
BPF Interpreter The interpreter function receives two argu-
ments: a context pointer and an (eBPF) instruction pointer.
Context is the input to the BPF program—for example, in
packet filtering, context points to the respective network
packet. The value of the context pointer is loaded onto eBPF
register R1. (The interpreter will not use this value unless it
is used by the BPF program.) The second argument points
to the eBPF code that is assumed to be verified. Hence, the
interpreter does not validate any (eBPF) operation during
execution. Because of its expressiveness, and relatively few
side-effects, the interpreter is useful, as a code-reuse target as
we will demonstrate in our EPF v1 (BPF-Reuse) attack.

4.2 EPF v1 (BPF-Reuse)

As we explained earlier (§4.1), an attacker can reliably control
a large portion of kernel space, by (ab)using the BPF infra-
structure, but they can only inject arbitrary values on every
other 4-byte word—and thus cannot encode traditional code-
reuse (e.g., ROP) payloads, which would require controlling
8 consecutive bytes in 64-bit platforms, like x86-64. However,
the Linux kernel contains a powerful subsystem that can be
leveraged to perform malicious computations with relatively
sparse memory control: i.e., the BPF interpreter.

Figure 2 depicts the memory layout during an EPF v1 (BPF-
Reuse) attack. First, the attacker encodes their payload in valid
BPF programs, and sprays them in kernel space. Then, us-
ing a memory corruption vulnerability, they overwrite a code
pointer and redirect the control flow to the BPF interpreter.
By carefully choosing the respective code-pointer value, the
attacker can control the context in which the (overwritten)
code pointer will be invoked, thereby allowing them to spec-
ify an arbitrary eBPF instruction to start the interpretation
from (i.e., by selecting/controlling the second argument of
the invoked function), when the control flow is redirected to
the BPF interpreter. Finally, since the attacker has sprayed
BPF programs in kernel memory, they can easily find their
payload in the direct mapping (i.e., physmap) region, with
high probability (see Section 6.2).

Eventually, the problem becomes: Can the attacker embed
malicious eBPF code inside a benign BPF program, which
escalates their privilege upon execution?

R0 = R0 ^ R0 /* R0 = {0} */
R1 = R1 / R1 /* R1 = {1} */
R0 += R1 /* R0 = {1} */
R0 += R0 /* R0 = {10} */
R0 += R0 /* R0 = {100} */
R0 += R1 /* R0 = {101} */
R0 += R0 /* R0 = {1010} */
R0 += R1 /* R0 = {1011} */

Listing 1: Register-only BPF instructions that load the value
11 (1011 in binary) onto register R0. (Values in comments are
shown in binary.)

The answer is positive. The attacker can offset the eBPF
instruction pointer by, say, 4 bytes during the attack, so that the
imm fields will be in the original locations of code, dst, src,
and off. A snippet of our eBPF payload is shown in Figure 3.
When executed normally, it is an array of instructions that load
immediates. However, when executed from a +4b offset, the
semantics of that instruction stream are completely different.
In what follows, we explain how one can perform different
computations under the aforementioned model.
Arithmetics and Register Manipulation All instructions
that do not use immediates, such as those moving values, or
doing arithmetic, between registers, can be embedded into the
imm field, as unused immediates are ignored by the interpreter.
All unaligned instructions shown in Figure 3 do not use any
immediates. If the attacker wishes to use constant values, they
first need to load the constant into a register, and then perform
the respective operation(s) with registers. Loading arbitrary
constants into a register, without using the imm field, can be
done solely with arithmetic operations.

Despite not being able to encode arbitrary numbers into
imm, the attacker can load a non-zero value into a register.
Then, say, div a register by itself, which leaves the value 0x1
in the register, or xor a register with itself, resulting in a 0x0
value. Similar to Listing 1, starting from R0 = 0x0 and R1 =
0x1, any constant can be obtained by repeatedly adding R0 to
itself, and (optionally) adding R1 to R0.
Control Flow Register-based comparisons and jumps can be
encoded as usual because they do not use immediates—so
conditionals can be done easily. Looping is also possible in
malicious eBPF code. off field is a signed 16-bit value: it is
signed because the ld and st instructions can use negative
offsets for memory accesses. The eBPF verifier statically
checks for non-negative offsets in jumps, but at runtime the
interpreter does not check for this property (§2.2).
Memory Access ld and st instructions can directly access
the whole kernel memory. Normally this does not create a se-
curity issue because of the (register) range analysis performed
by the static checker, which ensures that no such instruction
will be performed on a register that (potentially) points outside
of the desired bounds. However, similar to branching offsets,
this property not enforced at runtime by the interpreter.

By combining the three aforementioned techniques, the
attacker can embed malicious eBPF code inside a benign BPF
program. With a piece of unverified eBPF code operating
in kernel memory space, there are different ways to escalate
privilege. In our exploits, we chose to locate init_task, a
global symbol that is placed in the same linked list with all
task_structs. Then, we iterate over all processes until we
find the attacking process. Lastly, we overwrite the credentials
of the attacking process with those of init_task, giving the
attacking process the highest privilege.
Combining eBPF and cBPF When spraying BPF programs,
the RAM can be filled close to full, but not with only the
translated eBPF code. The original cBPF code, the user pro-
cess, the sockets created to attach the BPF programs to, and
the JITed eBPF (if enabled), also reside in physical memory
and compete for space. It is possible to encode payloads in
both eBPF code and in the original cBPF code, and greatly
increase the effectiveness of spraying, which translates to a
higher probability of successful exploitation.

The problem is that although the allocations are always
page-aligned, eBPF code and cBPF code do not start from
the same offset within their respective pages. For example, in
Linux v5.10, the eBPF code starts at a 0x38b offset, within
its page, while cBPF code starts at the beginning of the page.
This can be mitigated by using a technique similar to a NOP-
sled [30]: the attacker encodes malicious eBPF instructions
inside benign instructions by offsetting the starting point by
4 bytes. Hence, in the example above, the attacker can start
the malicious eBPF code with 7 (=0x38/8) instructions that
are xor R9, R9; these instructions have no effect on the
malicious functionality. However, if the attacker now aims
at byte 0x3c within a random page, they will be hitting a
memory location that contains either eBPF or cBPF code.

4.3 EPF v2 (BPF-ROP)

Although the memory layout of eBPF code forbids the at-
tacker from embedding 64-bit pointers, it is still possible to
do so on 32-bit platforms. This facilitates ROP [100] (or, in
general, code-reuse [35, 40, 57]) attacks. We will demonstrate
this on x86 by introducing EPF v2 (BPF-ROP). To initiate,
say, a ROP attack, the attacker usually needs to overwrite a
code pointer with a stack-pivoting gadget [93], moving the
stack pointer to the payload, which is an array of code point-
ers pointing to other gadgets. An immediate strategy would
be to use the eBPF code as the payload. Doing so would
encounter two challenges: (a) not every 4 bytes can encode
return addresses, and (b) such a stack would be read-only.

Since the attacker has control only over every 4 other bytes,
some gadgets would make %esp point to the gaps in between.
If the execution hits a ret instruction in this case, it will crash
the kernel and terminate the attack. More specifically, if a
gadget does not move the stack pointer by +4X bytes, where
X is an odd number, then the attack will fail.

Access Type Regular Data
BPF Programs

Aligned Unaligned

Normal Access Allowed BPF-ISR BPF-ISR
BPF Execution BPF-NX Allowed BPF-CFI

Table 1: How regular memory accesses and BPF-code fetches
are hardened by our defenses.

To overcome this, EPF v2 filters gadgets based on how they
move the stack pointer. Namely, the attacker can use gadgets
that have the form: ...; pop %reg; ret, where the pop
instruction offsets the return address to a correct location.

EPF v2 divides a ROP (or code-reuse) attack into two
stages. The first stage uses stack lifting gadgets only, and boot-
straps a new ROP payload for the second stage, at a writable
memory area (preferably in the original stack). This strategy
requires simpler semantics for the more restricted first stage
ROP, which makes gadget-finding much easier. For example,
the following is a set of gadgets that can be used to boot-
strap a new ROP payload: (1) pop %edx; pop %ecx; pop
%ebx; ret, (2) dec %eax; pop %ebp; ret, and (3) mov
%ecx, (%eax); pop %ebx; ret. Assuming %eax points to
a writable region, gadget (1) can load a constant in the BPF
filter into register %ecx, and gadget (2) can move that value to
the future stack; then gadget (3) moves the future stack pointer
further down for the next value. In the second stage, the at-
tacker can use arbitrary gadgets. There are a lot of options
once the attacker reaches this point. A common practice is
to invoke commit_creds(prepare_kernel_cred(0)) [88].
The ROP representation of the above, in x86 Linux, is
just three addresses on the stack: a gadget to clear %eax,
the address of prepare_kernel_cred, and the address of
commit_creds. (This would not be able to execute during
the first stage, as it would require a writable stack.)

5 Hardening BPF against EPF-style Attacks

5.1 Goals and Objectives

Our attacks (EPF v1 and v2) have demonstrated design weak-
nesses in the BPF infrastructure on Linux. Specifically, they
reveal the weak separation between BPF programs and reg-
ular kernel memory: arbitrary kernel objects can be used in
lieu of eBPF instructions in BPF-Reuse (EPF v1); and BPF
code is used as native code pointers in BPF-ROP (EPF v2).
More importantly, the problem is exacerbated by the weak
runtime checks performed by the eBPF interpreter.

Taking inspiration from hardening native code, we propose
to enforce the following properties (shown in Table 1):

➀ Prevent regular kernel data from being used as eBPF
instructions. From the perspective of the BPF exe-
cution engine, this is analogous to data being non-

1 u64 bpf_interpreter(struct bpf_prog *prog)
2 {
3 ...
4 enter_bpf_mode();

5 check_bpf_cfi(prog);
6 initialize_context();
7 mask = prog->mask;
8 ...
9 insn = prog->insns;

10 select_insn:
11 tmp_insn = *insn;
12 check_bpf_nx(insn);

13 check_bpf_mode();

14 tmp_insn = unmask(tmp_insn, mask);
15 execute_bpf_insn(tmp_insn);
16 if (finished) {
17 goto done;
18 }
19 else {
20 insn++;
21 goto select_insn;
22 }
23 done:
24 leave_bpf_mode();
25 return result;
26 }

Listing 2: Pseudocode of the BPF interpreter, instrumented
with our defenses against EPF.

executable [6]. Without this guarantee, we cannot realis-
tically enforce any property on BPF programs, since they
can be counterfeited using regular data. This property
stops BPF-Reuse that utilizes the original cBPF code.

➁ Ensure that BPF execution starts from benign ad-
dresses. This is similar to control-flow integrity (CFI) on
native code [29]. Since all BPF jumps have hard-coded
offsets, no indirect branching is possible. The only way
to divert the intended BPF control flow is to start from
an unintended/unaligned address. This property stops
BPF-Reuse that utilizes eBPF code.

➂ Prevent eBPF instructions from being used as regular
(control) data. By isolating BPF programs from regular
kernel data, regardless of the amount of BPF programs
created, the kernel cannot be misled to access malicious
payloads that are embedded inside BPF programs. This
property stops BPF-ROP attacks.

Besides the above security goals, we also want the respec-
tive code changes to incur negligible runtime overhead.

5.2 Design
Shown in Listing 2 is a pseudocode implementation of the
BPF interpreter; colored lines correspond to our defenses.
BPF-NX To achieve objective ➀, we reserve a region in the
kernel’s address space that is used exclusively for allocating
BPF programs (not cBPF code, as it is not interpreted).

The interpreter can tell the difference between eBPF code
and normal data by just checking an address range (ln. 121).
The check is performed for every eBPF instruction load,
which is analogous to how a CPU enforces that the instruc-
tions are fetched from an executable page. Such frequent
checking is required because in a code-reuse attack, the at-
tacker might branch to the middle of the interpreter and bypass
any one-time check outside of the main execution loop. In
such scenarios, we still need the interpreter to reject instruc-
tions from invalid memory ranges.
BPF-CFI Objective ➁ is essentially defending against code-
reuse attacks in BPF programs. BPF-CFI is challenging since
we cannot simply check the alignment of the eBPF instruc-
tions. Although our attack uses unaligned eBPF instructions
for simplicity, it can still be dangerous to even start executing
aligned eBPF instructions from the middle of the eBPF code,
because the static verifier’s security guarantees only hold for
executions starting from the beginning of the eBPF code. So
the interpreter needs to make sure that the instruction array
begins from the correct position in the eBPF code. We add
such a check at the beginning of the interpreter (ln. 5).

However, this is not enough. The integrity of the control-
flow [29] of the whole interpreter (function) is also necessary.
Otherwise, the security check can just be skipped by lever-
aging a code-reuse attack that starts the execution from the
“middle” of the interpreter. Kernel-level CFI [47, 85] incurs
some non-negligible overhead, because it protects all code,
and cannot be scaled down to protect selected parts of the
kernel. Instead, we introduce a sentinel variable that is not
corruptible by normal execution. The sentinel is used to en-
sure the control-flow integrity of the interpreter. The sentinel
is set at the start (ln. 4), indicating that the interpreter is prop-
erly executed; at the end (of the interpretation) the sentinel is
cleared (ln. 24). The interpreter checks the sentinel on each
eBPF instruction fetch (ln. 13) to ensure control-flow integrity.
If the control flow enters the interpreter without going through
the correct entry point (i.e., the beginning of the function), it
will be caught before any eBPF instruction is executed.
BPF-ISR To achieve objective ➂, an obvious solution is
to make use of the separation we have done in BPF-NX:
whenever the rest of the kernel wants to access normal data,
check whether the data lives in a BPF region.

However, it would be inefficient to instrument every mem-
ory access the kernel makes. Instead, we adopt the idea of
ISR (Instruction Set Randomization), a defense originally de-
signed to counter code injection [33, 65, 101]. ISR is suitable
in this case as it is very easy to implement in a software-based
interpreter. Every time the attacker tries to allocate a BPF
program, the in-memory representation is chosen randomly
from one of 232 possibilities. Under normal BPF execution,
the mask is extracted at the beginning (ln. 7), then used to
unmask every instruction during interpretation (ln. 14).

1All line numbers in this section refer to Listing 2.

The attacker can no longer benefit from tricking kernel code
into accessing BPF programs as normal memory because the
content is randomized and unpredictable.

5.3 Implementation

We implemented our defenses in x86-64 Linux.
BPF-NX In 64-bit Linux, there exist gaps in the kernel’s ad-
dress space that are not used. We reserve a 512GB unused
region exclusively for BPF programs (struct bpf_prog).
Originally, the BPF programs are allocated using vmalloc,
which is a wrapper function around __vmalloc_node_range,
whose parameters indicate the target range in which the mem-
ory is allocated from. vmalloc uses a fixed range, specified
by VMALLOC_START and VMALLOC_END. To allocate in our re-
served eBPF region, we add our own wrapper bpf_vmalloc
that calls __vmalloc_node_range with the proper range. A
small change to the page fault handler is also needed, be-
cause of the lazy propagation of changes in kernel page tables.
The BPF program region needs to be handled similarly to
vmalloc, where its page table entries are populated on-fault.
BPF-CFI We implement the sentinel variable using the AC
flag in RFLAGS. This flag is the switch for SMAP: turning
off the flag allows the CPU in supervisor mode to access
user data. We assume that the interpreter itself is benign and
does not need the protection against unintended user-space
memory accesses. The sentinel variable is set by “turning off”
SMAP, and cleared by turning it on. This way, the sentinel
variable can easily be checked by an access to a user memory
page. During kernel initialization, a dedicated memory page
is marked as a user-mode page, and reserved for the access
check. At the beginning of the interpreter, we execute the
instruction clac to disable SMAP. Whenever the interpreter
fetches an eBPF instruction, it also reads from the user-mode
page, verifying that SMAP is indeed disabled. And at the end,
the interpreter executes stac to re-enable SMAP.

For the check re: the starting point of the eBPF instruc-
tion array, we added 8 0xff bytes in struct bpf_prog as
a magic number, which eBPF instructions cannot forge. By
checking that this exists at the correct position inside the BPF
program header, we assert that it is the right starting point.
BPF-ISR To implement ISR in the eBPF interpreter, we add a
new field mask in struct bpf_prog to store the mask value
for each BPF program. After a BPF program is initialized, all
the pages are changed to read-only. Right before the permis-
sion change, we choose a random 4-byte value as mask, and
xor the imm field in every eBPF instruction with our mask.
This ensures that the memory content can not be arbitrarily
chosen by the attacker. Since original cBPF code is also stored
inside kernel memory, naturally it needs to be masked too.
We do not mask the rest of the eBPF instructions because the
attacker does not have much control over them. Lastly, the
interpreter unmasks each instruction in the stack during the
execution of the eBPF instructions.

CVE Vulnerability Type Context Method

CVE-2021-43267 Heap overflow Process EPF v1
CVE-2017-7308 Heap overflow Process EPF v1
CVE-2016-8655 Use-after-free Interrupt EPF v1
CVE-2017-7308 Heap overflow Process EPF v2
CVE-2017-6074 Use-after-free Process EPF v2
CVE-2016-8655 Use-after-free Interrupt EPF v2
CVE-2013-2094 Arbitrary write Process EPF v2

Table 2: List of vulnerabilities exploited with EPF.

6 Evaluation

To evaluate EPF (§4), and the set of defenses we developed
against it (§5), we used a host armed with a 16-core 3.7GHz
Intel Xeon W-2145 CPU and 64GB RAM, running Ubuntu
18.04 LTS (64-bit).

In our evaluation we focused on the following questions:

• RQ1: Are EPF attacks realistic?

• RQ2: How effective is EPF-based payload injection?
How does it compare to other methods?

• RQ3: How much overhead does our set of defenses
against EPF introduce?

6.1 Effectiveness of EPF (RQ1)

To demonstrate the feasibility of EPF-style attacks, we applied
BPF-Reuse and BPF-ROP on existing Linux vulnerabilities
with publicly-available exploits (see Table 2).

For BPF-Reuse (EPF v1) we chose 3 vulnerabilities. CVE-
2021-43267 and CVE-2017-7308 are heap overflow bugs; our
exploit dereferences an overwritten code-pointer in process
context. CVE-2016-8655 is a use-after-free bug; a controlled
function-pointer is dereferenced in interrupt context. Our pay-
load loops through the linked list of all task_structs and
changes the credentials on the one with the proper pid, using
the interpreter (§4.2)—as a result, our strategy works in both
contexts. This shows the expressiveness and versatility of
EPF-based exploitation.

For BPF-ROP (EPF v2) we chose 4 vulnerabilities that
also cover interrupt and process contexts with different
types of vulnerabilities; 3 vulnerabilities happen in pro-
cess context, and the respective payloads are setup to
invoke commit_creds(prepare_kernel_cred(0)) (§4.3),
whereas for the interrupt context scenario, the ROP payload
marks the memory page(s) that host the BPF program itself
as executable, and transfers control to (x86) shellcode that in
encoded as valid BPF instructions. With native shellcode em-
bedding, we also employ the same strategy of looping through
active processes and performing privilege escalation.

0 5 10 15 20 25 30
RAM size (in GB)

0

5

10

15

20

25

30

Sp
ra

ye
d

m
em

or
y

siz
e

(in
 G

B)

setsockopt
pipe
seccomp
socket (tcp)
socket (udp)
semget
msgsnd
mq
add_key
readv

Figure 4: Effectiveness of spraying using different syscalls.

6.2 Spraying Effectiveness (RQ2)
We measured the effectiveness of EPF-based spraying and
compared it to other methods. We found reasonable candi-
dates for our comparison. Namely, we chose syscalls as spray-
ing aids using the following three criteria:

• Syscalls with variable-sized arguments: In this case, we
aim to find syscalls that copy variable-sized data into the
kernel. This is done by filtering out syscalls that have a const
pointer as argument, accompanied by a size_t or integer
argument specifying the array size. This set includes add_key
and readv (representing all vectorized I/O syscalls).

• Syscalls returning writable file descriptors: In this case,
we aim to find syscalls that create file descriptors, which
can later be used together with syscalls such as write to
inject data into the kernel. As a result this set includes pipe,
bpf, socket, and landlock_create_ruleset. The latter is
not available in latest Debian (v11), and bpf is disabled for
unprivileged users by default, so we exclude them.

• Multiplexed syscalls: In this case, we manually inves-
tigated syscalls with multiplexed arguments (e.g., ioctl,
fcntl) and tried to find semantically similar syscalls for
spraying. This set includes setsockopt and seccomp.

All our experiments took place on a Debian v11 (bullseye)
VM, running on the benchmarking host, with its RAM size
set at 1, 2, 4, 8, 16, and 32GB, respectively. Specifically, we
first start a monitor process, which then forks a sprayer pro-
cess and communicates with it via a set of Unix pipes. When
the latter stops consuming additional memory, the monitor
will spawn a new sprayer. For each method, the probabil-
ity that the attacker can locate one of the sprayed objects
is denoted as success rate. Lastly, the respective spraying
method can bypass strong kernel-user isolation mechanisms
(like XPFO [67]), unless we mention otherwise. As shown in
Figure 4, creating cBPF (using setsockopt or seccomp) is
among the most efficient methods.

setsockopt and seccomp We are using setsockopt
with SO_ATTACH_FILTER to attach cBPF programs to sock-
ets, and SECCOMP_MODE_FILTER to attach cBPF programs to
processes. These two methods do not have quotas/limits set
from the underlying kernel. In fact, if we keep allocating
cBPF programs, the system will invoke the OOM-killer and
try to reclaim memory at some point. If both the translated
eBPF programs and the original cBPF copies are utilized (as
described in Section 4.2), setsockopt can take up to 70%
of all physical memory, while seccomp can take up to 34%;
otherwise, the ratios reduce to 35% and 17%, respectively. In
conclusion, spraying cBPF programs has a 70% or 35% suc-
cess rate depending on the mode used, and the data structure
allows controlling every 4 other bytes.
msgsnd The msgget syscall creates message queues for
SysV-based IPC, and msgsnd adds messages to such queues.
The maximum memory occupied by the messages is 500MB,
regardless of the RAM size. The probability of locating
sprayed content is 3%–24% (depending on the total RAM
size) with continuous control over the sprayed region.
semget The semget syscall creates (SysV) semaphores. By
generating 32K sets, each with 32K semaphores, the total
limit will be reached. Each semaphore takes up 64 bytes of
kernel memory, so the semaphores can consume ≈60GB of
memory. But, a significant drawback of this approach is that
of the 64-byte data structure only the semaphore variable can
be controlled by the attacker, which is only 4 bytes. Therefore
semget is not realistically useful.
pipe We create 20K Unix pipes for each sprayer process,
and write exactly one page of content into each. This method
can fill up to 60% of the total physical memory. Since the
memory used to store pipes is page-aligned, this translates to
60% success rate, with complete attacker control. However,
the sprayed content can be easily isolated using strong kernel-
user separation mechanisms (e.g., XPFO).
mq By default, an unprivileged user can have 800KB of data
stored in-kernel using POSIX message queues. The attacker
will have less than 1% chance of locating the sprayed ob-
jects. Additionally, the sprayed content can also be isolated
by strong kernel-user separation mechanisms, like XPFO.
socket We use the following strategy to spray with TCP
sockets: for each process, create one TCP socket, send mes-
sages until it blocks, and then spawn as many processes as
possible until socket creation fails. UDP sockets are differ-
ent; they do not block with failed sending. Hence, we send
until the occupied memory in /proc/net/sockstat does
not change. In both cases, we are able to spray about 10% of
the physical memory. This method has 10% success rate and
allows for complete control over the sprayed region.
readv and add_key readv gives the attacker less than 2%
success rate, controlling 6 out of every 8 bytes, while the total
amount of memory that can be allocated by add_key is 20K
bytes. So the success rate of the latter is less than 1%.

6.3 Hardening Overhead (RQ3)

We mainly evaluate our defenses on syscall filtering [80],
socket filtering, and XDP [78] skb mode.
Syscall Filtering sysfilter [52] is an automated syscall
filtering tool. It analyzes an application, creates the set of
syscalls that the application needs, and then enforces it us-
ing seccomp-bpf. We evaluate the overhead our defenses
incur on Nginx and Redis, when hardened by sysfilter,
with no BPF-JIT, and the SSB mitigation disabled (by setting
SECCOMP_FILTER_FLAG_SPEC_ALLOW [80]). The network re-
quests in each test are sent over the loopback (lo) device.
Both packages are installed from Ubuntu’s repository.

To benchmark Nginx, we used wrk [56] with 2 running
threads, each performing 128 connections, for 1 minute con-
tinuously. Nginx is configured to have 2 working processes.
To maximize the time spent on BPF execution, we picked
the smallest size of requested file from sysfilter, which is
1KB. Additionally, we manually inspected the CPU utiliza-
tion, ensuring it was close to 100%. To benchmark Redis, we
used memtier [97], spawning 2 worker threads, each with
128 clients, running for 1 minute continously. The ratio be-
tween GET and SET operations was set to 10:1, and each data
object was 32 bytes. Again, we also made sure that the CPU
utilization was close to 100%. Our results are shown in Fig-
ure 5. Our defenses introduce an additional 1.8% throughput
decrease on Nginx, and 1.5% on Redis.
Socket Filtering We focus on the usage of socket filtering,
similar to a traffic monitoring scenario. A simple traffic gen-
erator will send UDP packets in a tight loop, with a body size
of 64 bytes to the DUT (device under test); and on the DUT
there is a server that receives them. Both machines have 1GbE
NICs, and the sending speed is tuned to be slightly higher than
the processing capability of the DUT. We use small packets
because large packet sizes will mask the BPF processing time.

To simulate a traffic monitor, we attach a raw socket to
the ethernet interface and call setsockopt to attach a cBPF
filter on the raw socket. We use a set of 6 different filter rules,
similar to previous network monitoring studies [111], with
some changes: (1) the rules are slightly modified to make
sure our packets go through the maximum possible execution
paths; and (2) we also modify the return instruction to always
reject packets and not spend any time reading them, resulting
in all overhead showing up on the receiving end.

The cBPF filters are described in the following (PCAP):
1. "" (empty expression that allows everything)

2. "ip"

3. "ip src net 10.116.70.0/24 and dst net
10.0.0.0/8"

4. "ip src or dst net 192.168.2.0/24"

5. "ip and udp port (10 or 11 or 12 or 13 or 14)"

6. "ip and (not udp port (80 or 25 or 143)) and not
ip host ..." (32 IPv4 addresses)

nginx redis
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

No
rm

al
ize

d
th

ro
ug

hp
ut

100.0% 100.0%

81.3%

90.2%

79.5%

88.7%

Unfiltered
Filtered, vanilla kernel
Filtered, hardened kernel

Figure 5: Normalized throughput
between vanilla Linux and EPF-
hardened Linux when running
seccomp-protected Nginx and Redis.

bpf1 bpf2 bpf3 bpf4 bpf5 bpf6
Raw Socket Filter

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Th
ro

ug
hp

ut
 (M

illi
on

 P
ac

ke
ts

 p
er

 S
ec

on
d)

0.625

0.580

0.528 0.520

0.439

0.330

0.611

0.568

0.517 0.509

0.425

0.326

Vanilla Kernel
Hardened Kernel

Figure 6: Traffic monitoring perfor-
mance using different socket filters.

xdp1 xdp2 rxq_drop rxq_tx adjust_tail
XDP Programs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Th
ro

ug
hp

ut
 (M

illi
on

 P
ac

ke
ts

 p
er

 S
ec

on
d)

0.930
0.955 0.961

0.700

0.534

0.931 0.931
0.959

0.680

0.519

Vanilla Kernel
Hardened Kernel

Figure 7: Throughput of XDP pro-
grams when run on vanilla kernel vs.
an EPF-hardened kernel.

The results are shown in Figure 6; there is a 0.5%–3%
reduction in the respective throughput.
XDP Since all cBPF programs are executed as eBPF pro-
grams, our defense affects interpreted eBPF programs too.
XDP uses eBPF programs to passthrough, drop, re-transmit,
or re-route incoming packets. In our experiment, we run XDP
in skb mode, which executes eBPF programs when packet
handling enters the device-agnostic part of the kernel, as the
other modes require specific hardware. The experiment setup
is the same as for socket filtering. To demonstrate the per-
formance impact on eBPF programs, we run XDP programs
(shown below) from the Linux source tree, similar to previous
works [39, 59]. The XDP programs will intercept and run on
every incoming packet generated by the UDP client.

• xdp1: Parse the IP header, count incoming packets and
update a counter in a BPF map, then drop the packets.

• xdp2: Same as xdp1, but re-transmit the packets.

• xdp_adjust_tail: Change incoming packets into
ICMP packets and send them back, keeping a total count
in a BPF map.

• rxq_info(drop): Count incoming packets for each re-
ceive queue and drop them.

• rxq_info(tx): Count incoming packets for each re-
ceive queue and re-transmit them.

We tuned the traffic generator to send at a higher rate than
the maximum throughput. Additionally, we pinned the NIC
interrupts to one CPU core and manually verified that CPU uti-
lization was close to 100%. The results are shown in Figure 7:
we observed 0%–3% throughput degradation.

7 Discussion

BPF-CFI Considerations To implement BPF-CFI we uti-
lize the AC flag, and, as we mentioned in Section 5.3, this flag
also controls SMAP. We chose this approach because SMAP
was designed to accommodate low-overhead switching.

However, this also means that during the execution of the
BPF interpreter SMAP cannot prevent the interpreter from in-
correctly accessing userspace data. At first glance this might
be a security loss, but in fact the impact is very minimal.
Firstly, this is a confined attack surface that is relatively easy
to maintain, instead of a complicated invariance to be re-
spected across the whole kernel codebase. Secondly, SMAP
is designed to stop the kernel from incorrectly accessing user-
controlled data during an attack, but the semantics of BPF pro-
grams already grant the interpreter access to user-controlled
content such as BPF maps [5], context metadata, and more. In
conclusion, SMAP does not provide notable security gains in
the BPF interpreter context, while our defense provides better
overall security by re-purposing this extension.

KASLR Bypass Although KASLR [54] is sometimes by-
passed by arbitrary memory disclosure vulnerabilities, much
weaker primitives exist that circumvent KASLR, including
bounded memory disclosure vulnerabilities [18, 20, 44] and
side-channel attacks [41, 58, 62, 76]. By spraying, our attacks
can locate attacker-controlled objects within the heap. If the
attacker deploys one of the methods to de-randomize KASLR,
then they can find where the heap is located at. Combining
these two capabilities, our attacks can work exactly the same
as they would without KASLR.

8 Related Work

BPF JIT Spraying BPF JIT spraying [82, 98] is an ex-
ploitation technique that takes advantage of the BPF’s JIT
engine generating predictable code. By carefully crafting and
spraying the JITed code, the attacker can control a piece of
code in kernel context, which effectively nullifies defenses
against ret2usr such as SMEP and PXN, and re-enables at-
tacks that redirect control flow to user-controlled code—JITed
BPF code. BPF-Reuse and BPF-ROP utilize the BPF pro-
gram data structure itself and aim to control memory content.

Thereby turning BPF programs into a mechanism for inject-
ing payloads for code-reuse attacks. Importantly, the targeted
features and the goals of BPF JIT- vs. EPF-based spraying
are completely different. Moreover, BPF JIT spraying is al-
ready defended against in recent Linux kernel [79], whereas
BPF-Reuse and BPF-ROP bypass all existing isolation mech-
anisms, including XPFO [67], which is not yet deployed in
mainline Linux.

eBPF-based Speculative Type Confusion Kirzner et
al. [71] pointed out that the eBPF verifier performs exten-
sive analyses, and safety checks, to ensure the execution of
eBPF programs is sandboxed, but they did not take into ac-
count speculative execution paths. As a result, some eBPF
programs deemed safe by the verifier can be vulnerable to
transient execution attacks and leak confidential kernel data.
The root cause is addressed by adding analyses that account
for possible speculation [37]. Our attacks are possible due to
a different underlying reason: BPF programs are a type of
user-controlled memory object that cannot be easily isolated
from the rest of kernel data, and they can be created in bulk.

Other Popular Kernel Exploitation Techniques In the
post-ret2usr era, where defenses such as SMEP, SMAP, PXN,
and PAN are present, kernel exploitation has evolved to allow
for creating addressable payloads at exploitation time. Apart
from ret2dir [67], which is discussed in Section 2.1, there are
also two other popular strategies to bypass ret2usr defenses.
The first strategy is careful heap manipulation that combines
heap fengshui [102, 108] with elastic objects (systemized and
termed by Chen et al. [43]), which results in disclosing the
address of the user-controlled memory object that will become
the attack payload. The strategy is used by some real-world
exploits [87, 92], and takes advantage of the predictability
of the heap layout, whereas EPF abuses the design of BPF
functionality. The second strategy is calling functions inside
the kernel, which can disable protection mechanisms. It is
used by real-world exploits [75], as well as automated exploit
generation frameworks [110]. The drawback is that it relies
on how defense features are implemented.

After the payload is placed in kernel space, there are sev-
eral ways to actually realize privilege escalation. One pop-
ular method is to overwrite the modprobe_path global vari-
able [69], substituting an attacker-controlled binary to be exe-
cuted with root privilege (instead of /sbin/modprobe). This
is used by exploit authors and the CTF community [109,114].
Another method is ret2bpf (termed by Jin et al. [63]), which
is popular in ARM kernel exploits [31] because it does code-
reuse using the BPF interpreter, significantly simplifying the
search for code gadgets. It tricks the kernel to use attacker-
controlled memory as BPF instructions, essentially doing
“BPF-code injection”, which notably can be defended against
by BPF-NX. ret2bpf has similarities to BPF-Reuse, but,
most importantly, it differs in the method of supplying the

attack payload: ret2bpf requires the attacker to have the abil-
ity to create a payload in kernel space, whereas BPF-Reuse
solves exactly this problem (i.e., payload injection).

9 Conclusion

In this paper, we have shown that BPF, a kernel subsystem
that allows unprivileged users to push data structures, freely,
onto the kernel address space, is inherently susceptible to
attack-payload injection. We developed two attacks, BPF-
Reuse (EPF v1) and BPF-ROP (EPF v2), and demonstrated
how to inject certain payloads. Further, we showed the prac-
ticality, and effectiveness, of our attacks by combining them
with real-world vulnerabilities to exploit the Linux kernel.
We also developed comprehensive defenses that enforce the
stronger isolation between BPF code and normal kernel data,
and the integrity of BPF program execution, thwarting the
abuse of the BPF infrastructure. Our defenses were evaluated
on tasks that result in heavy BPF usage, and were shown to
have negligible overhead.

Availability

Our prototype implementation of BPF-{NX, CFI, ISR} and
the exploits we ported to EPF are available at:
https://gitlab.com/brown-ssl/epf

Acknowledgments

We thank our shepherd, Michael Le, and the anonymous re-
viewers for their valuable feedback. We also thank Alexander
Gaidis for providing comments on earlier drafts of our paper.
This work was supported in part by the CIFellows 2020 pro-
gram, through award CIF2020-BU-04, and the National Sci-
ence Foundation (NSF), through award CNS-2238467. Any
opinions, findings, and conclusions or recommendations ex-
pressed herein are those of the authors and do not necessarily
reflect the views of the US government, NSF, or CRA.

References

[1] A safer playground for your Linux and Chrome OS
renderers. https://blog.chromium.org/2012/1
1/a-safer-playground-for-your-linux-and.h
tml.

[2] ARM Cortex-A Series Programmer’s Guide for
ARMv8-A. https://developer.arm.com/docu
mentation/den0024/a/BABCEADG.

[3] bpf-helpers(7) – Linux manual page. https://man7
.org/linux/man-pages/man7/bpf-helpers.7.h
tml.

https://gitlab.com/brown-ssl/epf
https://blog.chromium.org/2012/11/a-safer-playground-for-your-linux-and.html
https://blog.chromium.org/2012/11/a-safer-playground-for-your-linux-and.html
https://blog.chromium.org/2012/11/a-safer-playground-for-your-linux-and.html
https://developer.arm.com/documentation/den0024/a/BABCEADG
https://developer.arm.com/documentation/den0024/a/BABCEADG
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

[4] bpf(2) – Linux manual page. https://man7.org/l
inux/man-pages/man2/bpf.2.html.

[5] eBPF maps. https://www.kernel.org/doc/html/
latest/bpf/maps.html.

[6] Kernel Self-Protection. https://www.kernel.org
/doc/html/latest/security/self-protection.
html#executable-code-and-read-only-data-m
ust-not-be-writable.

[7] Learn the architecture – AArch64 memory model. ht
tps://developer.arm.com/documentation/1023
76/0100/Permissions-attributes.

[8] libbpf. https://github.com/libbpf/libbpf.

[9] Mozilla wiki – Security/Sandbox/Seccomp. https:
//wiki.mozilla.org/Security/Sandbox/Seccom
p#Use_in_Gecko.

[10] Seccomp security profiles for Docker. https://docs
.docker.com/engine/security/seccomp/.

[11] sysfs – The filesystem for exporting kernel objects.
https://www.kernel.org/doc/html/latest/fil
esystems/sysfs.html.

[12] syzbot. https://syzkaller.appspot.com/open
bsd.

[13] syzkaller – kernel fuzzer. https://github.com/goo
gle/syzkaller.

[14] The /proc Filesystem. https://www.kernel.org/d
oc/html/latest/filesystems/proc.html.

[15] XDP – eXpress Data Path. https://prototype-ker
nel.readthedocs.io/en/latest/networking/XD
P/index.html.

[16] CVE-2017-16996. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2017-16996, Novem-
ber 2017.

[17] CVE-2017-17853. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2017-17853, Decem-
ber 2017.

[18] CVE-2017-17864. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2017-17864, Decem-
ber 2017.

[19] CVE-2019-7308. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2019-7308, February
2019.

[20] CVE-2020-25662. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2020-25662, Septem-
ber 2020.

[21] CVE-2021-45402. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2021-45402, Decem-
ber 2020.

[22] CVE-2021-31829. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2021-31829, April
2021.

[23] CVE-2021-32606. https://cve.mitre.org/cg
i-bin/cvename.cgi?name=CVE-2021-32606, May
2021.

[24] CVE-2021-33034. https://cve.mitre.org/cg
i-bin/cvename.cgi?name=CVE-2021-33034, May
2021.

[25] CVE-2021-3444. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2021-3444, March
2021.

[26] CVE-2021-3490. https://cve.mitre.org/cg
i-bin/cvename.cgi?name=CVE-2021-3490, April
2021.

[27] CVE-2021-3612. https://cve.mitre.org/cg
i-bin/cvename.cgi?name=CVE-2021-3612, June
2021.

[28] CVE-2021-42008. https://cve.mitre.org/cgi-b
in/cvename.cgi?name=CVE-2021-42008, October
2021.

[29] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-Flow Integrity. In ACM Conference on
Computer and Communications Security (CCS), pages
340–353, 2005.

[30] Periklis Akritidis, Evangelos P Markatos, Michalis
Polychronakis, and Kostas Anagnostakis. Stride: Poly-
morphic Sled Detection through Instruction Sequence
Analysis. In IFIP International Information Security
Conference (SEC), pages 375–391, 2005.

[31] Brandon Azad. An iOS hacker tries Android. https:
//googleprojectzero.blogspot.com/2020/12/a
n-ios-hacker-tries-android.html.

[32] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert
Bos, and Cristiano Giuffrida. Branch History Injection:
On the Effectiveness of Hardware Mitigations Against
Cross-Privilege Spectre-v2 Attacks. In USENIX Secu-
rity Symposium (SEC), pages 971–988, 2022.

[33] Elena Gabriela Barrantes, David H Ackley, Stephanie
Forrest, Trek S Palmer, Darko Stefanovic, and Dino Dai
Zovi. Randomized Instruction Set Emulation to Dis-
rupt Binary Code Injection Attacks. In ACM Con-
ference on Computer and Communications Security
(CCS), pages 281–289, 2003.

https://man7.org/linux/man-pages/man2/bpf.2.html
https://man7.org/linux/man-pages/man2/bpf.2.html
https://www.kernel.org/doc/html/latest/bpf/maps.html
https://www.kernel.org/doc/html/latest/bpf/maps.html
https://www.kernel.org/doc/html/latest/security/self-protection.html#executable-code-and-read-only-data-must-not-be-writable
https://www.kernel.org/doc/html/latest/security/self-protection.html#executable-code-and-read-only-data-must-not-be-writable
https://www.kernel.org/doc/html/latest/security/self-protection.html#executable-code-and-read-only-data-must-not-be-writable
https://www.kernel.org/doc/html/latest/security/self-protection.html#executable-code-and-read-only-data-must-not-be-writable
https://developer.arm.com/documentation/102376/0100/Permissions-attributes
https://developer.arm.com/documentation/102376/0100/Permissions-attributes
https://developer.arm.com/documentation/102376/0100/Permissions-attributes
https://github.com/libbpf/libbpf
https://wiki.mozilla.org/Security/Sandbox/Seccomp#Use_in_Gecko
https://wiki.mozilla.org/Security/Sandbox/Seccomp#Use_in_Gecko
https://wiki.mozilla.org/Security/Sandbox/Seccomp#Use_in_Gecko
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/seccomp/
https://www.kernel.org/doc/html/latest/filesystems/sysfs.html
https://www.kernel.org/doc/html/latest/filesystems/sysfs.html
https://syzkaller.appspot.com/openbsd
https://syzkaller.appspot.com/openbsd
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://www.kernel.org/doc/html/latest/filesystems/proc.html
https://www.kernel.org/doc/html/latest/filesystems/proc.html
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/index.html
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/index.html
https://prototype-kernel.readthedocs.io/en/latest/networking/XDP/index.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16996
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16996
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17853
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17853
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17864
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17864
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-7308
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-7308
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25662
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25662
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45402
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-45402
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31829
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31829
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-32606
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-32606
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33034
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33034
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3444
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3444
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3490
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3490
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3612
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3612
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42008
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-42008
https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html
https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html

[34] Ashish Bijlani and Umakishore Ramachandran. Ex-
tension Framework for File Systems in User Space. In
USENIX Annual Technical Conference (ATC), pages
121–134, 2019.

[35] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and
Zhenkai Liang. Jump-Oriented Programming: A New
Class of Code-Reuse Attack. In ACM Asia Sympo-
sium on Information, Computer and Communications
Security (ASIA CCS), pages 30–40, 2011.

[36] Daniel Borkmann. bpf: add generic constant blinding
for use in jits. https://git.kernel.org/pub/scm
/linux/kernel/git/torvalds/linux.git/commi
t/?id=4f3446b.

[37] Daniel Borkmann. BPF and Spectre: Mitigating tran-
sient execution attacks. https://github.com/goj
ue/ebpf-slide/blob/master/eBPF_advanced/e
BPF-Summit-2021-BPF-and-Spectre-Daniel-B
orkmann-Final.pdf.

[38] Brendan Gregg. Linux Extended BPF (eBPF) Tracing
Tools. https://www.brendangregg.com/ebpf.ht
ml.

[39] Marco Spaziani Brunella, Giacomo Belocchi, Marco
Bonola, Salvatore Pontarelli, Giuseppe Siracusano,
Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. hXDP:
Efficient Software Packet Processing on FPGA NICs.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 973–990, 2020.

[40] Bugtraq. Getting around non-executable stack (and fix).
https://seclists.org/bugtraq/1997/Aug/63.

[41] Claudio Canella, Michael Schwarz, Martin Hauben-
wallner, Martin Schwarzl, and Daniel Gruss. KASLR:
Break it, Fix it, Repeat. In ACM Asia Symposium on
Information, Computer and Communications Security
(ASIA CCS), pages 481–493, 2020.

[42] Claudio Canella, Mario Werner, Daniel Gruss, and
Michael Schwarz. Automating Seccomp Filter Genera-
tion for Linux Applications. In ACM Cloud Computing
Security Workshop (CCSW), pages 139–151, 2021.

[43] Yueqi Chen, Zhenpeng Lin, and Xinyu Xing. A Sys-
tematic Study of Elastic Objects in Kernel Exploitation.
In ACM Conference on Computer and Communica-
tions Security (CCS), pages 1165–1184, 2020.

[44] Haehyun Cho, Jinbum Park, Joonwon Kang, Tiffany
Bao, Ruoyu Wang, Yan Shoshitaishvili, Adam Doupé,
and Gail-Joon Ahn. Exploiting Uses of Uninitialized
Stack Variables in Linux Kernels to Leak Kernel Point-
ers. In USENIX Workshop on Offensive Technologies
(WOOT), 2020.

[45] Jonathan Corbet. A JIT for packet filters. https:
//lwn.net/Articles/437981/.

[46] Jonathan Corbet. BPF: the universal in-kernel virtual
machine. https://lwn.net/Articles/599755/.

[47] Jonathan Corbet. Control-flow integrity in 5.13. http
s://lwn.net/Articles/856514/.

[48] Jonathan Corbet. Reconsidering unprivileged BPF.
https://lwn.net/Articles/796328/.

[49] Jonathan Corbet. Supervisor mode access prevention.
https://lwn.net/Articles/517475/.

[50] Lucas Davi, David Gens, Christopher Liebchen, and
Ahmad-Reza Sadeghi. PT-Rand: Practical Mitigation
of Data-only Attacks against Page Tables. In Network
and Distributed System Security Symposium (NDSS),
2017.

[51] Debian Documentation Project. Linux disables unpriv-
ileged calls to bpf() by default. https://www.debi
an.org/releases/stable/amd64/release-not
es/ch-information.en.html#linux-unprivile
ged-bpf.

[52] Nicholas DeMarinis, Kent Williams-King, Di Jin, Ro-
drigo Fonseca, and Vasileios P Kemerlis. sysfilter:
Automated System Call Filtering for Commodity Soft-
ware. In International Symposium on Research in At-
tacks, Intrusions and Defenses (RAID), pages 459–474,
2020.

[53] Eric Dumazet. x86: bpf_jit_comp: secure bpf jit
against spraying attacks. https://git.kernel.org
/pub/scm/linux/kernel/git/torvalds/linux.g
it/commit/?id=314beb9.

[54] Jake Edge. Kernel address space layout randomization.
https://lwn.net/Articles/569635/.

[55] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Be-
nameur, and Michalis Polychronakis. Confine: Au-
tomated System Call Policy Generation for Container
Attack Surface Reduction. In International Sympo-
sium on Research in Attacks, Intrusions and Defenses
(RAID), pages 443–458, 2020.

[56] Will Glozer. wrk – a HTTP benchmarking tool. https:
//github.com/wg/wrk.

[57] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and
Georgios Portokalidis. Out Of Control: Overcoming
Control-Flow Integrity. In IEEE Symposium on Secu-
rity and Privacy (S&P), pages 575–589, 2014.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4f3446b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4f3446b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4f3446b
https://github.com/gojue/ebpf-slide/blob/master/eBPF_advanced/eBPF-Summit-2021-BPF-and-Spectre-Daniel-Borkmann-Final.pdf
https://github.com/gojue/ebpf-slide/blob/master/eBPF_advanced/eBPF-Summit-2021-BPF-and-Spectre-Daniel-Borkmann-Final.pdf
https://github.com/gojue/ebpf-slide/blob/master/eBPF_advanced/eBPF-Summit-2021-BPF-and-Spectre-Daniel-Borkmann-Final.pdf
https://github.com/gojue/ebpf-slide/blob/master/eBPF_advanced/eBPF-Summit-2021-BPF-and-Spectre-Daniel-Borkmann-Final.pdf
https://www.brendangregg.com/ebpf.html
https://www.brendangregg.com/ebpf.html
https://seclists.org/bugtraq/1997/Aug/63
https://lwn.net/Articles/437981/
https://lwn.net/Articles/437981/
https://lwn.net/Articles/599755/
https://lwn.net/Articles/856514/
https://lwn.net/Articles/856514/
https://lwn.net/Articles/796328/
https://lwn.net/Articles/517475/
https://www.debian.org/releases/stable/amd64/release-notes/ch-information.en.html#linux-unprivileged-bpf
https://www.debian.org/releases/stable/amd64/release-notes/ch-information.en.html#linux-unprivileged-bpf
https://www.debian.org/releases/stable/amd64/release-notes/ch-information.en.html#linux-unprivileged-bpf
https://www.debian.org/releases/stable/amd64/release-notes/ch-information.en.html#linux-unprivileged-bpf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=314beb9
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=314beb9
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=314beb9
https://lwn.net/Articles/569635/
https://github.com/wg/wrk
https://github.com/wg/wrk

[58] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. Prefetch Side-
Channel Attacks: Bypassing SMAP and Kernel ASLR.
In ACM Conference on Computer and Communica-
tions Security (CCS), pages 368–379, 2016.

[59] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert,
David Ahern, and David Miller. The eXpress Data
Path: Fast Programmable Packet Processing in the Op-
erating System Kernel. In Conference on emerging
Networking EXperiments and Technologies (CoNEXT),
pages 54–66, 2018.

[60] Gianluca Insolvibile. The Linux Socket Filter: Sniffing
Bytes over the Network. Linux Journal, 86:53, 2001.

[61] IO Visor Project. BPF Compiler Collection (BCC).
https://github.com/iovisor/bcc.

[62] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Break-
ing Kernel Address Space Layout Randomization with
Intel TSX. In ACM Conference on Computer and Com-
munications Security (CCS), pages 380–392, 2016.

[63] Xingyu Jin and Richard Neal. The Art of Exploiting
UAF by Ret2bpf in Android Kernel. https://i.bl
ackhat.com/EU-21/Wednesday/EU-21-Jin-The
-Art-of-Exploiting-UAF-by-Ret2bpf-in-And
roid-Kernel-wp.pdf.

[64] Gaurav S Kc, Angelos D Keromytis, and Vassilis Pre-
velakis. Countering Code-Injection Attacks With
Instruction-Set Randomization. In ACM Conference on
Computer and Communications Security (CCS), pages
272–280, 2003.

[65] Gaurav S Kc, Angelos D Keromytis, and Vassilis
Prevelakis. Countering Code-injection Attacks with
Instruction-set Randomization. In ACM Conference on
Computer and Communications Security (CCS), pages
272–280, 2003.

[66] Vasileios P Kemerlis. Protecting Commodity Oper-
ating Systems through Strong Kernel Isolation. PhD
thesis, Columbia University, 2015.

[67] Vasileios P Kemerlis, Michalis Polychronakis, and An-
gelos D Keromytis. ret2dir: Rethinking Kernel Isola-
tion. In USENIX Security Symposium (SEC), pages
957–972, 2014.

[68] Vasileios P Kemerlis, Georgios Portokalidis, and An-
gelos D Keromytis. kGuard: Lightweight Kernel Pro-
tection against Return-to-user Attacks. In USENIX
Security Symposium (SEC), pages 459–474, 2012.

[69] Linux Kernel. Documentation for /proc/sys/kernel/.
https://www.kernel.org/doc/html/latest/adm
in-guide/sysctl/kernel.html#modprobe.

[70] Linux Kernel. Linux Socket Filtering aka Berkeley
Packet Filter (BPF). https://www.kernel.org/doc
/Documentation/networking/filter.txt.

[71] Ofek Kirzner and Adam Morrison. An Analysis of
Speculative Type Confusion Vulnerabilities in the Wild.
In USENIX Security Symposium (SEC), pages 2399–
2416, 2021.

[72] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploit-
ing Speculative Execution. In IEEE Symposium on
Security and Privacy (S&P), 2019.

[73] Karsten König. Exploit for CVE-2019-5596. https:
//www.exploit-db.com/exploits/47829.

[74] Andrey Konovalov. Exploit for CVE-2017-1000112.
https://www.exploit-db.com/exploits/47169.

[75] Andrey Konovalov. Exploit for CVE-2017-7308. http
s://googleprojectzero.blogspot.com/2017/05
/exploiting-linux-kernel-via-packet.html.

[76] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. TagBleed: Breaking KASLR on the
Isolated Kernel Address Space using Tagged TLBs. In
IEEE European Symposium on Security and Privacy
(EuroS&P), pages 309–321, 2020.

[77] LEXFO. Exploit for CVE-2017-11176. https://ww
w.exploit-db.com/exploits/45553.

[78] Linux Kernel. AF_XDP. https://www.kernel.org
/doc/html/latest/networking/af_xdp.html.

[79] Linux Kernel. Documentation for /proc/sys/net/. ht
tps://www.kernel.org/doc/html/latest/admin
-guide/sysctl/net.html#bpf-jit-harden.

[80] Linux Kernel. Seccomp BPF (SECure COMPuting
with filters). https://www.kernel.org/doc/html/
latest/userspace-api/seccomp_filter.html.

[81] LLVM Project. LLVM 3.7 Release Notes. https:
//releases.llvm.org/3.7.0/docs/ReleaseNote
s.html#non-comprehensive-list-of-changes
-in-this-release.

[82] Keegan McAllister. Attacking hardened Linux systems
with kernel JIT spraying. https://mainisusuallya
function.blogspot.com/2012/11/attacking-h
ardened-linux-systems-with.html.

https://github.com/iovisor/bcc
https://i.blackhat.com/EU-21/Wednesday/EU-21-Jin-The-Art-of-Exploiting-UAF-by-Ret2bpf-in-Android-Kernel-wp.pdf
https://i.blackhat.com/EU-21/Wednesday/EU-21-Jin-The-Art-of-Exploiting-UAF-by-Ret2bpf-in-Android-Kernel-wp.pdf
https://i.blackhat.com/EU-21/Wednesday/EU-21-Jin-The-Art-of-Exploiting-UAF-by-Ret2bpf-in-Android-Kernel-wp.pdf
https://i.blackhat.com/EU-21/Wednesday/EU-21-Jin-The-Art-of-Exploiting-UAF-by-Ret2bpf-in-Android-Kernel-wp.pdf
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#modprobe
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#modprobe
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.exploit-db.com/exploits/47829
https://www.exploit-db.com/exploits/47829
https://www.exploit-db.com/exploits/47169
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html
https://www.exploit-db.com/exploits/45553
https://www.exploit-db.com/exploits/45553
https://www.kernel.org/doc/html/latest/networking/af_xdp.html
https://www.kernel.org/doc/html/latest/networking/af_xdp.html
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/net.html#bpf-jit-harden
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/net.html#bpf-jit-harden
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/net.html#bpf-jit-harden
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://releases.llvm.org/3.7.0/docs/ReleaseNotes.html#non-comprehensive-list-of-changes-in-this-release
https://releases.llvm.org/3.7.0/docs/ReleaseNotes.html#non-comprehensive-list-of-changes-in-this-release
https://releases.llvm.org/3.7.0/docs/ReleaseNotes.html#non-comprehensive-list-of-changes-in-this-release
https://releases.llvm.org/3.7.0/docs/ReleaseNotes.html#non-comprehensive-list-of-changes-in-this-release
https://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html
https://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html
https://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html

[83] Steven McCanne and Van Jacobson. The BSD Packet
Filter: A New Architecture for User-level Packet Cap-
ture. In USENIX Winter Conference, 1993.

[84] David Miller. BPF Verifier Overview. https://www.
spinics.net/lists/xdp-newbies/msg00185.ht
ml.

[85] João Moreira, Sandro Rigo, Michalis Polychronakis,
and Vasileios P Kemerlis. DROP THE ROP: Fine-
grained Control-flow Integrity for the Linux Kernel.
Black Hat Asia, 2017.

[86] Luke Nelson, Jacob Van Geffen, Emina Torlak, and
Xi Wang. Specification and Verification in the Field:
Applying Formal Methods to BPF Just-In-Time Com-
pilers in the Linux Kernel. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
pages 41–61, 2020.

[87] Andy Nguyen. CVE-2021-22555: Turning \x00\x00
into 10000$. https://google.github.io/secur
ity-research/pocs/linux/cve-2021-22555/w
riteup.html.

[88] Andy Nguyen. Exploit for CVE-2021-22555. https:
//www.exploit-db.com/exploits/50135.

[89] PaX Team. Better kernels with GCC plugins. https:
//lwn.net/Articles/461811/.

[90] PaX Team. UDEREF/amd64. http://grsecurity
.net/pipermail/grsecurity/2010-April/001
024.html.

[91] PaX Team. UDEREF/i386. http://grsecurity.n
et/~spender/uderef.txt.

[92] peter@haxx.in. Exploit for CVE-2021-43267. https:
//haxx.in/posts/pwning-tipc/.

[93] Aravind Prakash and Heng Yin. Defeating ROP
through Denial of Stack Pivot. In Annual Computer
Security Applications Conference (ACSAC), pages 111–
120, 2015.

[94] Sergej Proskurin, Marius Momeu, Seyedhamed
Ghavamnia, Vasileios P Kemerlis, and Michalis
Polychronakis. xMP: Selective Memory Protection
for Kernel and User Space. In IEEE Symposium on
Security and Privacy (S&P), pages 563–577, 2020.

[95] Tim Rains, Matt Miller, and David Weston. Exploita-
tion Trends: From Potential Risk to Actual Risk. In
RSA Conference, 2015.

[96] rebel. Exploit for CVE-2016-8655. https://www.ex
ploit-db.com/exploits/47170.

[97] Redis Labs. NoSQL Redis and Memcache traffic gen-
eration and benchmarking tool. https://github.c
om/RedisLabs/memtier_benchmark.

[98] Elena Reshetova, Filippo Bonazzi, and N Asokan. Ran-
domization Can’t Stop BPF JIT Spray. In International
Conference on Network and System Security (NSS),
pages 233–247, 2017.

[99] Dominik Scholz, Daniel Raumer, Paul Emmerich,
Alexander Kurtz, Krzysztof Lesiak, and Georg Carle.
Performance Implications of Packet Filtering with
Linux eBPF. In International Teletraffic Congress
(ITC), pages 209–217, 2018.

[100] Hovav Shacham. The Geometry of Innocent Flesh on
the Bone: Return-into-libc without Function Calls (on
the x86). In ACM Conference on Computer and Com-
munications Security (CCS), pages 552–561, 2007.

[101] Kanad Sinha, Vasileios P Kemerlis, and Simha Sethu-
madhavan. Reviving Instruction Set Randomization.
In IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST), pages 21–28. IEEE,
2017.

[102] Alexander Sotirov. Heap Feng Shui in JavaScript.
Black Hat Europe, 2007.

[103] Alexei Starovoitov. bpf: introduce
BPF_JIT_ALWAYS_ON config. h t t p s :
//git.kernel.org/pub/scm/linux/kernel/git/
stable/linux.git/commit/?id=290af86629.

[104] Alexei Starovoitov. bpf: split eBPF out of NET. https:
//git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/commit/?id=f89b7755f517
cdbb755d7543eef986ee9d54e654.

[105] Alexei Starovoitov. tracing, perf: Implement BPF pro-
grams attached to kprobes. https://git.kernel.o
rg/pub/scm/linux/kernel/git/torvalds/linux
.git/commit/?id=2541517c32be2531e0da59dfd7
efc1ce844644f5.

[106] SUSE Support. Security Hardening: Use of eBPF
by unprivileged users has been disabled by default.
https://www.suse.com/support/kb/doc/?id=00
0020545.

[107] Qualys Research Team. Sequoia: A deep root in
Linux’s filesystem layer (CVE-2021-33909). https:
//www.qualys.com/2021/07/20/cve-2021-339
09/sequoia-local-privilege-escalation-lin
ux.txt.

https://www.spinics.net/lists/xdp-newbies/msg00185.html
https://www.spinics.net/lists/xdp-newbies/msg00185.html
https://www.spinics.net/lists/xdp-newbies/msg00185.html
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://google.github.io/security-research/pocs/linux/cve-2021-22555/writeup.html
https://www.exploit-db.com/exploits/50135
https://www.exploit-db.com/exploits/50135
https://lwn.net/Articles/461811/
https://lwn.net/Articles/461811/
http://grsecurity.net/pipermail/grsecurity/2010-April/001024.html
http://grsecurity.net/pipermail/grsecurity/2010-April/001024.html
http://grsecurity.net/pipermail/grsecurity/2010-April/001024.html
http://grsecurity.net/~spender/uderef.txt
http://grsecurity.net/~spender/uderef.txt
https://haxx.in/posts/pwning-tipc/
https://haxx.in/posts/pwning-tipc/
https://www.exploit-db.com/exploits/47170
https://www.exploit-db.com/exploits/47170
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=290af86629
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=290af86629
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=290af86629
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f89b7755f517cdbb755d7543eef986ee9d54e654
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f89b7755f517cdbb755d7543eef986ee9d54e654
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f89b7755f517cdbb755d7543eef986ee9d54e654
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f89b7755f517cdbb755d7543eef986ee9d54e654
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2541517c32be2531e0da59dfd7efc1ce844644f5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2541517c32be2531e0da59dfd7efc1ce844644f5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2541517c32be2531e0da59dfd7efc1ce844644f5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2541517c32be2531e0da59dfd7efc1ce844644f5
https://www.suse.com/support/kb/doc/?id=000020545
https://www.suse.com/support/kb/doc/?id=000020545
https://www.qualys.com/2021/07/20/cve-2021-33909/sequoia-local-privilege-escalation-linux.txt
https://www.qualys.com/2021/07/20/cve-2021-33909/sequoia-local-privilege-escalation-linux.txt
https://www.qualys.com/2021/07/20/cve-2021-33909/sequoia-local-privilege-escalation-linux.txt
https://www.qualys.com/2021/07/20/cve-2021-33909/sequoia-local-privilege-escalation-linux.txt

[108] Yan Wang, Chao Zhang, Zixuan Zhao, Bolun Zhang,
Xiaorui Gong, and Wei Zou. MAZE: Towards Auto-
mated Heap Feng Shui. In USENIX Security Sympo-
sium (SEC), pages 1647–1664, 2021.

[109] willsroot. CVE-2022-0185 - Winning a $31337 Bounty
after Pwning Ubuntu and Escaping Google’s KCTF
Containers. https://www.willsroot.io/2022/01
/cve-2022-0185.html.

[110] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui
Gong, and Wei Zou. FUZE: Towards Facilitating Ex-
ploit Generation for Kernel Use-after-free Vulnerabil-
ities. In USENIX Security Symposium (SEC), pages
781–797, 2018.

[111] Zhenyu Wu, Mengjun Xie, and Haining Wang. Swift:
A Fast Dynamic Packet Filter. In USENIX Symposium
on Networked Systems Design and Implementation
(NSDI), pages 279–292, 2008.

[112] Fenghua Yu. Enable SMEP CPU Feature. https:
//lore.kernel.org/lkml/1305581685-5144-1
-git-send-email-fenghua.yu@intel.com/.

[113] Xiaochen Zou, Guoren Li, Weiteng Chen, Hang Zhang,
and Zhiyun Qian. SyzScope: Revealing High-Risk
Security Impacts of Fuzzer-Exposed Bugs in Linux
Kernel. In USENIX Security Symposium (SEC), pages
3201–3217, 2022.

[114] Xiaochen Zou and Zhiyun Qian. CVE-2022-27666:
Exploit esp6 modules in linux kernel.

https://www.willsroot.io/2022/01/cve-2022-0185.html
https://www.willsroot.io/2022/01/cve-2022-0185.html
https://lore.kernel.org/lkml/1305581685-5144-1-git-send-email-fenghua.yu@intel.com/
https://lore.kernel.org/lkml/1305581685-5144-1-git-send-email-fenghua.yu@intel.com/
https://lore.kernel.org/lkml/1305581685-5144-1-git-send-email-fenghua.yu@intel.com/

	Introduction
	Background
	Kernel Exploitation and Defense
	BSD Packet Filter

	Threat Model
	Adversarial Capabilities
	Hardening Assumptions

	Evil Packet Filter
	Linux BPF Internals
	EPF v1 (BPF-Reuse)
	EPF v2 (BPF-ROP)

	Hardening BPF against EPF-style Attacks
	Goals and Objectives
	Design
	Implementation

	Evaluation
	Effectiveness of EPF (RQ1)
	Spraying Effectiveness (RQ2)
	Hardening Overhead (RQ3)

	Discussion
	Related Work
	Conclusion

