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Abstract

For comprehensive analysis of all executable code, and fast
turn-around time for transformations, it is essential to oper-
ate directly on binaries to enable profiling, security harden-
ing, and architectural adaptation. Disassembling binaries is
difficult, and prior work relies on a process virtual machine
to translate references on the fly or inefficient binary code
patching. Our Egalito recompiler leverages metadata present
in current stripped x86_64 and ARM64 binaries to generate
a complete disassembly, and allows arbitrary modifications
that may affect program layout without any constraints from
the original binary. We utilize our own layout-agnostic inter-
mediate representation, which is low-level enough to make
the regeneration of output code predictable, yet supports a
dual high-level representation for sophisticated analysis. We
demonstrate nine binary tools including a novel continuous
code randomization technique where Egalito transforms it-
self, and software emulation of the control-flow integrity in
upcoming hardware. We evaluated Egalito on a large set of
Debian packages, completely analyzing 99.9% of a selection
of 867 executables and libraries; a majority of 149 applicable
Debian packages pass all tests under Egalito. On SPEC CPU
2006, thanks to our binary optimizations, Egalito actually
observes a 1.7% performance speedup.
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1 Introduction

Software written in compiled languages ultimately runs in
binary form, and the majority of software distributors pro-
vide binaries directly to their end-users. Since binaries are
so widespread, it is desirable for many DevOps activities,
including profiling, security hardening, and architectural
adaptation, to apply directly to binaries. Applying changes to
source code or compiler infrastructure has high turn-around
time, requires the cooperation of many parties, and may not
be possible in the case of commercial or third-party libraries
and applications. Furthermore, security hardening and ar-
chitectural adaptations must be applied comprehensively to
all library dependencies, or risk compromise through an un-
transformed component; only at the binary level is it possible
to transform all code that will actually run.

However, manipulating binaries directly is difficult. The
developer who examines binaries feels more like an archae-
ologist than an engineer—dealing with artefacts of an un-
known buildsystem, no blueprints, and many details lost to
time. Automated binary rewriting tools must treat binary
code as a black box that can be emulated but whose structure
is unknown. The main difficulty of binary rewriting is in
handling unidentified code and code references (pointers).
Existing binary rewriting frameworks use either: 1) a pro-
cess virtual machine to translate references on the fly; or
2) binary code patching, leaving code at original locations.
Common frameworks like DynamoRIO [10] and Pin [38]
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use virtualization. Binary patching, on the other hand, often
requires significant expertise with reverse-engineering tools
like IDA Pro [20]. Both mechanisms incur performance over-
head that is likely unacceptable for production environments.
Generated outputs also do not behave like ordinary binaries,
impeding debugging and compatibility with other tools.

In this work, we aim to create a binary rewriting frame-
work that manipulates and outputs ordinary-looking and
highly performant binaries. Specifically, we aim to allow pro-
gram code (and layout) to change arbitrarily without any
constraints from the original binary—i.e., the framework
is layout agnostic. This requires complete disassembly: we
must have confidence that every pointer has been found
and updated to allow the code to run bare-metal within a
new address-space layout. Our observation is that while mal-
ware analysis is and will always be a herculean task [41], for
binaries the user depends on, it is important simply to be
able to handle the actual output of compilers. Furthermore,
today’s binaries have recently started to include more meta-
data, which can assist with analysis. Most importantly, ma-
jor Linux distributions have shifted to position-independent
binaries over the past few years [18, 21, 39, 53]. Note that
position-independent is a much weaker property than layout-
agnostic: the former allows a single linear shift through the
selection of a base address, while the latter allows piecewise
permutation or relocation of each instruction. Nevertheless,
this additional (position-independent) metadata allows more
powerful binary analyses than in the past.

We present Egalito: a binary transformation framework
that performs complete and precise binary analysis, and can
generate output binaries that do not use patching or virtual-
ization. Egalito lifts (stripped) modern Linux binaries into
a standalone, layout-agnostic intermediate representation
(IR) that allows arbitrary modifications to program layout.
Essentially, Egalito is a compiler backend in reverse, followed
by transformations and then normal code generation. Hence,
we call Egalito a binary recompiler. Tools written with Egalito
are structured as modular recompiler passes that manipulate
IR. Egalito is fully functional on x86_64 and ARM64 archi-
tectures, with RISC-V support underway.

Our IR is not a high-level representation like LLVM IR [37]
that a compiler (i.e., LLVM) uses for optimization [35]; rather,
it is lower-level, like LLVM’s MachineInstr or GCC’s Reg-
ister Transfer Language (RTL) [29]. Lifting to a higher-level
intermediate language would abstract each instruction into
multiple operations, not tied together semantically, which
might be modified, reordered, and optimized independently.
Code generation would become difficult, and likely diverge
significantly from the input assembly. However, for low-level
binary instrumentation or hardening, producing a differently-
optimized version of the code is counterproductive. Instruc-
tions might have been carefully chosen to work around low-
level architectural issues (e.g., Spectre [32]), or to perform
additional security checks; an optimizing framework could
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undermine the defense. Hence, we deliberately use a lower-
level IR, in order to make output code generation more pre-
dictable and more in-line with the original input.

As a result of our layout-agnostic design, binaries trans-
formed by Egalito have excellent performance. On SPEC CPU
2006, Egalito incurs 0.46% overhead, which becomes a 1.7%
performance speedup when we enable some simple binary-
level optimizations. Sometimes, even when security harden-
ing is applied, the transformed program may run faster than
the original, e.g., we see a 1.4% performance speedup with
lightweight control flow integrity. With our profile-guided
optimization tool, performance can potentially become even
better (the best SPEC CPU case observes 11.8% speedup). Our
AFL fuzzing backend is 18-61x faster than other binary-level
fuzzing. Hence, Egalito provides a realistic way to introduce
binary modifications with production-level performance.

A binary rewriter that relies on completely accurate dis-
assembly must have high confidence in its analyses. Thus,
we tested Egalito thoroughly across multiple Linux distri-
butions during its development, including Debian, Ubuntu,
openSUSE, Fedora, and Gentoo. Our evaluation of 172 Debian
packages containing 867 executables and libraries showed
that in 866 cases (99.9%) Egalito correctly recovered all cross-
references and jump table metadata (the most challenging
aspect), including table bases, invocations, and bounds. After
transformation, 90 of 149 Debian packages pass all tests—
and fully 40 of the failures are due to a detectable binary-
generation issue that can be addressed with additional engi-
neering. As further evidence of completeness, Egalito is able
to analyze and transform itself, analogous to a bootstrapping
compiler. Our system is currently in use by researchers and
instructors at several other institutions, and we hope that a
wider userbase will give it even better robustness over time.

Our end goal is to have a full Linux distribution where
every program can be readily transformed at the binary
level to adapt to new attacks or architectural quirks [33]. A
security-conscious user may be willing to trade off perfor-
mance for security, enabling a suite of defenses on particular
applications. We implemented nine binary tools atop Egalito,
most of which increase security—including a JIT-Shuffling de-
fense [61] which relocates functions periodically to random
addresses, in a fully self-hosted environment with no untrans-
formed code. A hardware designer creating new hardware
might wish to remove—or add—certain sequences of instruc-
tions, without having to modify a compiler and recompile
userspace. Two of our Egalito tools perform such binary-level
architectural adaptation. One is a retpoline defense against
Spectre [32], which replaces problematic instructions with
new sequences. Another is a software implementation of
Intel’s Control-flow Enforcement Technology (CET) [28],
which augments hardware and compiler deployment by han-
dling partially-present instrumentation. All of our tools run
on stripped binaries, built with typical flags: i.e., those used
to build distribution-standard . deb or . rpm files.
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Egalito has been released [59] under an open source li-
cense (GPL v3) and may be found at https://egalito.org/ [60].
Our main contributions are as follows:

e We define a framework to be layout agnostic if it can
individually relocate or resize each binary element,
without reliance on patching or address virtualization.
We present the Egalito recompiler, a binary transfor-
mation framework built around a layout-agnostic IR
called EIR. Egalito-transformed binaries achieve excel-
lent performance: SPEC CPU has a 1.7% speedup.

We demonstrate the usefulness of binary-level archi-
tectural adaptation with a retpoline defense against
Spectre [32] and a software implementation of Intel’s
CET [28] to augment hardware/compiler deployment.
We demonstrate Egalito with a total of nine transfor-
mation tools, including a continuous code random-
ization defense (JIT-Shuffling [61]), which operates
from a fully self-hosted environment where tool code
is itself defended recursively.

We present a large-scale study of 867 Linux executa-
bles/libraries, and show that Egalito can fully analyze
and recover all cross-references 99.9% of the time. Fur-
thermore, 90 of 149 Debian packages pass all tests after
binary rewriting (40 straightforward known failures).

2 Background and Related Work

Rewriting via Code Patching Statically rewriting a binary
by installing hooks or trampolines in the original code (bi-
nary patching) is simple and efficient. Examples of patching-
based rewriters include PEBIL [36], REINS [57], and Re-
vARM [30]. Patching can also be deferred until runtime as
in Dyninst [12]. These systems do not attempt to find and
transform all pointers in a binary, and overhead increases
with more modifications, limiting the scale of the approach.

Process Virtualization In dynamic binary translation (DBT),
a process virtual machine transforms each basic block, just-
in-time, before it is executed. Existing DBT systems include
DynamoRIO [10], Pin [38], Valgrind [42], and (on ARM64)
Mambo [25]. These systems are not designed for security: for
instance, a DynamoRIO tool that protects code pointers has
no way to defend the code pointers in DynamoRIO’s code
cache or translation tables (and proof-of-concept exploits
already exist [24]). Furthermore, DBT incurs substantial run-
time overhead: 887% (DynamoRIO) and 3421% (Pin) on a
large set of real-world x86_64 programs, and 28%-34% aver-
age (Mambo) on SPEC CPU. Valgrind, with its higher-level
IR called VEX, has 330% overhead on SPEC CPU.

The PSI [64] platform is designed like a DBT system, imple-
menting a process virtual machine and preventing control
flow from escaping the instrumented version of the code.
However, PSI operates through binary rewriting, statically
inserting all the code necessary into an executable. It reuses a
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disassembler from prior work [56, 65]. PSI has a flexible archi-
tecture, and is designed for security, but does incur nontrivial
virtualization overhead (53% on a large set of programs).
Multiverse [6] conservatively disassembles a binary start-
ing from every offset within the . text section. This guar-
antees a complete but imprecise disassembly. Hence, they
cannot easily identify all valid code pointers. Accordingly,
Multiverse virtualizes addresses and preserves input pro-
gram layout, incurring 60.42% average overhead on SPEC
CPU, with 288% overhead in the worst SPEC CPU case.

Recompilation/Reassembly Binary analysis suites [11, 19,
49, 51] often include sophisticated analyses to lift binaries
without metadata into a high-level IR (such as VEX or BIR).
Most frameworks are not designed to regenerate code after
analysis. However, the SecondWrite [3] binary rewriter lifts
binaries to LLVM intermediate language and regenerates
a new executable using LLVM’s standard backend. Second-
Write operates on arbitrary binaries with no metadata and
speculatively disassembles and lifts all parts of an executable
that could be code. Because it does not necessarily find all
pointers, SecondWrite includes a full copy of the original bi-
nary mapped at the original address to service read requests.
The complexity of lifting to LLVM is why SecondWrite was
only able to correctly transform a subset of SPEC CPU.
Two recent works, Uroboros [55] and Ramblr [54], im-
plement binary reassembly. Their aim is to fully solve the
disassembly problem, and lift a binary into a . s file which
can be processed by a standard assembler. These are the first
works to recognize the potential of layout-agnostic binary
rewriting. However, since they are targeting arbitrary bina-
ries, these systems must use complex and expensive specu-
lative disassembly techniques, with no guarantee of success.
They also provide no IR beyond flat generated assembly.

Relevant Binary Defenses We built several binary defense
tools inspired by existing literature. One common late-stage
attack vector is to re-enable code injection [43] (normally
defended by OS protections), and we defend against this
with our WX Sandbox. Current code-reuse attacks repurpose
instructions already present in a process’s address space.
For example, in Return-Oriented Programming (ROP) [48],
the attacker builds exploit code piecewise using small se-
quences of code (gadgets) that end in return instructions.
Randomization-based defenses try to foil such attacks by
making the code layout unpredictable. We implemented in-
place randomization [44], and a JIT-Shuffling continuous ran-
domization technique (based on Shuffler [61] and TASR [8]).
We also implemented debloating [2, 14], where unneeded
code is removed from the program to improve security. Fi-
nally, control-flow integrity (CFI) is another code-reuse de-
fense, where the target of every indirect control flow is vali-
dated [1, 31, 48]. Intel has described a new hardware exten-
sion called Control-flow Enforcement Technology [27, 28];
we implemented this CFI scheme in software.
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3 Design
We designed Egalito according to the following goals:

e Performance: The framework should introduce near
zero overhead, and therefore avoid using binary patch-
ing or address virtualization machinery.

o Flexibility: The framework should enable arbitrary
code insertions and deletions without concern for ad-
dress space layout (i.e., it should be layout-agnostic).

e Deployability: The framework should operate on or-
dinary (stripped) binaries, e.g., .deb/.rpm archives,
without requiring special metadata or compiler flags.

¢ Bootstrapping: The framework should provide run-
time support through (egalitarian) self-transformation.

The Binary Landscape Binary rewriting has historically
been considered fragile: rewriting might work in some cases
and fail in others. Traditional executables are stripped and
position-dependent, and are very difficult to analyze. Re-
cently, however, executables have begun to include more
metadata by default. Most importantly, Linux distributions
have migrated to using position-independent binaries over
the past few years [18, 21, 39, 53]. Position-independent code
(PIC) may be loaded at any base address, a feature used to
implement shared libraries for decades, but enabled now for
executables to strengthen Address-Space Layout Random-
ization (ASLR) defense [47]. Position-independent binaries
contain more metadata, though not enough to make anal-
yses straightforward—e.g., jump tables have no associated
metadata. Yet, this shift to PIC is what enables our analyses.
Our analyses are sufficient to handle our target binaries,
the types of ELF binaries that appear in current . deb or . rpm
archives: position-independent, optimized, and stripped. How-
ever, our analyses are relatively straightforward and could
become simpler over time. It is always possible for compil-
ers to provide disassembly ground truth with extra meta-
data [33]. We hope Egalito will widen the demand for binary
transformation and help compiler writers judge what meta-
data is helpful to include for binary analysis. Since we use
some heuristics for jump table analysis, Egalito gives up on
completeness (see Section 8). In exchange, we obtain a much
more powerful and complete binary intermediate represen-
tation that represents the internals of a binary program.
Some binary rewriting techniques over-approximate the
code (e.g., by disassembling from every offset in . text [6]).
Others wait and discover the true extent of code at runtime
(an under-approximation). We aim to statically uncover the
precise set of code and control-flow in a program, so that we
can generate standalone code without virtualization machin-
ery. We also insist on avoiding binary patching, which means
that we must find all references within a program; we can-
not leave trampolines behind at original function addresses
to catch errant calls through untransformed pointer values.
Any virtual address in the input binary can be repurposed
in the output. This recompiler output should look rather
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Figure 1. Egalito IR (EIR) design. Egalito reverses a compiler
backend to obtain an IR similar to a machine-specific IR, and
augments it with higher-level data structures.

closer to the output of a real compiler than that of a binary
rewriter. There is no copy of the original . text to service
reads and potentially provide security vulnerabilities; it is
not overwritten with hlt instructions, but rather simply not
included in our new ELF. Analysis details are in Section 5.

Egalitarian Capabilities In the tradition of bootstrapping
compilers, we designed Egalito to be able to analyze and
transform itself. This is possible in part because Egalito is
written in a compiled language (C++). We provide a cus-
tom loader which analyzes itself, the executable, shared li-
braries, and Egalito, at load-time; it then bootstraps into a
fully self-hosted environment where the only code present
in the address space is code that Egalito has generated (and
the vDSO kernel interface). This enables transformations that
need dynamic analyses or runtime code-generation. As an
example of this, we provide JIT-Shuffling (based on an ear-
lier egalitarian defense, Shuffler [61]), which continuously
generates its own code at new random addresses, with no
undefended (fixed-address) code. For details, see Section 6.
From a security perspective, egalitarian transformation can
often enforce security isolation without requiring additional
levels of privilege (e.g., kernel assistance).

Intermediate Representation The defining design deci-
sion of Egalito is its choice of intermediate representation
(IR). There are many possible types of IR, which can be
roughly categorized as follows, from front- to back-end in
the compilation process: 1) abstract syntax trees, closely tied
to the original source language; 2) intermediate languages
such as three-address code or LLVM IR, used for optimiza-
tion [35]; and 3) low-level machine-specific intermediate
representation for code generation and peephole optimiza-
tion (LLVM’s MachineInstr, GCC’s RTL). Figure 1 shows
the basic structure of a compiler’s intermediate representa-
tions. A recompiler consists of two pieces: first, the inverse
of a compiler backend, to turn binary code into an IR; second,
a forward mechanism to turn the IR back into binary code.
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Intuitively, lifting machine code to the lowest-level IR is
simplest, while higher-level IR provides more expressive anal-
ysis and transformative power. With Egalito, we reverse the
compilation process only to the machine-specific IR level (see
Figure 1), instead of all the way to an intermediate language
like VEX or LLVM IR. Lifting to a higher-level intermediate
language would typically turn each assembly instruction
into multiple operations in SSA (single static assignment)
form. The set of operations created for an instruction would
not be tied together semantically, and might be modified,
reordered, and optimized by existing infrastructure. Code
generation would then become difficult, and likely diverge
significantly from the input assembly. Hence, we deliberately
chose a lower-level IR to make the output code generation
more predictable and more in-line with the original input.

We do give up on reusing the substantial existing code
that operates on established IRs. One of the main benefits of
LLVM IR is its suite of existing analyses, optimizations, and
backends. However, for low-level binary instrumentation
or hardening, producing a differently-optimized version of
the code is counterproductive. The transformations may be
working around low-level issues (e.g., Spectre [32]) that are
invisible to the optimizing framework; or transformations
might add checks that the framework would rather optimize
away, undermining a defense. Furthermore, intermediate
languages are simply not designed for code modification
and regeneration. For example, VEX (used by Valgrind [42]
and angr [49]) uses a single representation for both relative
and absolute references, making code regeneration difficult;
inserting code in VEX also requires modifying the addresses
of all subsequent instructions manually. Hence, we designed
a custom IR with precisely the properties we need for layout-
agnostic binary recompilation. Details follow in Section 4.

4 Intermediate Representation (EIR)

Our Egalito IR (EIR) is a C++ class hierarchy that can be
viewed as a complete abstract syntax tree of the ELF input
binary. It stores instruction encodings placed in architecture-
independent categories (e.g., ControlFlowInstruction). It
also stores semantic information that we recover about an
ELF, such as jump tables and control flow. EIR has two major
innovations compared to typical binary rewriters.

First, in a departure from normal parse trees, we abstract
addresses into links, and then store both addresses and links.
The addresses in each tree node allow EIR to represent an
original ELF precisely, and enables minimal changes when
performing ELF-to-ELF recompilation. Meanwhile, links are
key to supporting layout-agnostic user modifications, since
targets may be resolved even if addresses are reassigned
or if new code is inserted. In the latter case, assigned ad-
dresses may overlap until they are recomputed during a
“linking” step that moves nodes such as basic blocks to new
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non-overlapping addresses. Egalito tools can rearrange ad-
dresses directly, or rely on the framework to generate non-
overlapping addresses after modifications.

Second, we extend EIR with high-level use-definition/def-
use data structures. These data structures are read-only and
ephemeral, meaning they are only valid for a specific EIR
state but can be recreated at any point from EIR. They provide
access for analyses possible only on higher-level IRs, such as
our own jump table analyses, while EIR remains low-level
to enable efficient code regeneration. EIR is the canonical
representation on which all modifications must take place.

4.1 Shadow Stack Transformation Example

In Figure 2, we show an example transformation tool that
adds a shadow stack to ordinary x86_64 binaries. This shadow
stack is located at a constant offset (-0xb@0000) from the real
stack [13, 16]. The majority of the code is written in one re-
compiler pass, shown in Figure 2b. The code is simplified for
brevity. Our full implementation creates __shadow_stack_-
fail with a single h1t instruction, and allocates the shadow
stack memory region by adding a call at program start.

A recompiler pass is a Visitor as in the Visitor design
pattern [22], able to access EIR nodes at any level of gran-
ularity by implementing visit functions. In this case, we
visit each Function and add code in its prologue to save
the return address to the shadow stack. We recurse on all
(Block) children of the Function, and the default Block vis-
itor recurses on all of its (Instruction) children. We visit
each Instruction and look for ones that leave the function:
returns, external (tail) jumps, or indirect jumps/calls. At each
exit point, we insert code to verify the return address against
the saved shadow stack value. The inserted code modifies
the flags register (%rflags), so we ask Egalito to save it if
necessary—stackAdded indicates how many bytes Egalito
pushed to the stack, and we emit code appropriately.

In the main function, we parse an input ELF file, run two
passes, and then generate an output ELF. The first pass is the
one in this example, while ReassignAddresses chooses non-
overlapping addresses for all code—necessary since we insert
instructions and increase the size of blocks and functions.

Figure 2a shows an example EIR tree structure, and the
code transformations that ShadowStackPass performs. Its
seemingly simple code insertions trigger operations of sig-
nificant complexity. First, notice the forceSameBlock flag
in the code. This controls whether instructions inserted at
the very beginning of a block should be part of the same
block (i.e., whether incoming jumps will run the new code).
The initial shadow stack save uses forceSameBlock=false;
it should execute only once when the function is first in-
voked. If any jumps target the first instruction in the block,
Egalito creates a new earlier basic block for inserted instruc-
tions (as happens with the jmp in the last Block in Figure 2a).
Conversely, incoming jumps to a block containing an exit
jump should run the new code to check the return address
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mov (%rsp), S%ril
mov %rill,-0xb00000 (%rsp)

Module "exename"

Function "exampleFunc"
addr=0x1000, size=127

Block # (106 bytes of code) R
ox1000 [ 2| * o :

lea someptr(s%rip), %rax
cmp $0x0, S%rbx
je otherFunc

2) Transform with
ShadowStackPass

# (106 bytes of code) r\
# ... H

|

lea someptr(%rip), %rax
cmp $0x0, %rbx

pushfq

mov 0x8(%rsp), %rll

cmp %rll, -0xaffff8(%srsp)
jne __shadow_stack_fail

Block 3
0x106a [—3

[popfq | i
| je otherFunc |

=

jmp exampleFunc+0x0 l | jmp[4] <Link dest>

1) Parse into EIR

3) Generate
[eenme ] =

(a) EIR transformation example of adding a shadow stack. Input
code is 1) disassembled, 2) transformed, and 3) regenerated.

class ShadowStackPass :
public:
virtual void visit(Function *function) {
Instruction *instr1 = function->getChild(@)->getChild(0);
Mutator::insertBefore(instr1, /*forceSameBlock=*/ false,
std: :vector<Instruction *>{
ASM("mov (%rsp), %ri1"),
ASM("mov %ri11, -0xb0oeoe(%rsp)") 1);
recurse(function); // RecompilerPass::recurse

public RecompilerPass {

3

virtual void visit(Instruction *ins) {
if(ins->isType<Return>()
|| (ins->isType<ControlFlow>() && ins->isExternalJump())
|| (ins->isType<IndirectJump>() && !ins->forJumpTable())) {

// We clobber the RFLAGS register; Egalito saves it if
// necessary, pushing stackAdded bytes onto the stack.
auto addCheckLambda = [] (int stackAdded) {
auto failFunc = Find::function("__shadow_stack_fail");
return std::vector<Instruction *>{
ASM("mov " << stackAdded << "(%rsp), %rii1"),
ASM("cmp %r11, " << -0xb00000+stackAdded << "(%rsp)"),
ASM("jne " << new RelativelLink(failFunc)) };
b
Mutator::insertBefore(ins, /*forceSameBlock=*/ true,
AddRegisterSaving ({X86_REG_RFLAGS}, addCheckLambda));
}
}
b

int main(int argc, char *argv[]) {
assert(argc == 3); // usage: ./shadowstackify input output
EgalitoInterface egalito;
egalito.parse(argv[1]);
egalito.getRoot()->accept(ShadowStackPass());
egalito.getRoot()->accept(ReassignAddresses());
return egalito.generate(argv[2]);

(b) C++11 code for shadow stack transformation.

Figure 2. Adding a constant-offset x86_64 shadow stack.

before exiting. With forceSameBlock=true, Egalito reuses
the same basic block for insertions. Links that originally
targeted the first instruction in the block are automatically
updated in constant time to point to the new first instruction.

The original jmp instruction had a one-byte displacement,
since its offset was -127 (the size of exampleFunc); the as-
sembler uses the shortest possible encoding. However, after
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inserting some intervening code, a (signed) one-byte dis-
placement no longer reaches the target. Egalito automati-
cally re-encodes one-byte jumps that no longer reach their
target to use 4-byte displacements in the PromoteJumps pass.
Since one jump promotion can cascade and cause others to
need promotion, this pass runs iteratively until a fixed point.

Next, consider the registers used by this example. We use
%r11 as a temporary register, but do not ask Egalito to save
this register, because %r11 is callee-saved and may be over-
written by a function call. We do ask Egalito to save the flags
register %rflags which is overwritten by our cmp instruc-
tion. %rflags is not expected to be preserved across function
calls, but it must be preserved across conditional tail recur-
sion (Figure 2a shows such an example with je). Egalito finds
all jumps that perform tail recursion. Often, transformations
will need to handle these cases specially, e.g., to prevent tail
recursion from causing two shadow-stack pushes in a row
without an intervening pop. In this simple shadow stack,
however, pushing (a memory write) is idempotent.

Egalito saves registers with push/pop instructions, and can
analyze a function to see if register saves are really necessary
(i.e., the value is used by some successor instruction). Egalito
will also identify whether a function uses the red zone instead
of a stack frame: leaf functions on x86_64 may access 128
bytes beyond the top of the stack in lieu of moving %rsp,
which is slightly more efficient, but means that an inserted
push will overwrite actual program data. Hence, Egalito may
automatically add up to 128 to the stack pointer before saving
registers. In our example, we save %rflags which involves
adding 8 bytes to the stack pointer, and this information is
passed to the code-generation lambda so it can adjust its
offsets. Egalito, and user tools, can also inject additional
global data, thread local storage, or %gs variables.

5 Binary Analysis

We use several analyses to recover static control-flow graphs
and obtain complete and precise disassembly. We focus on
modern Linux binaries, which are position-independent [18,
21, 39, 53], optimized, and stripped. See Section 8 for lim-
itations. Our focus on PIC binaries is unlike most related
works: most focus on position-dependent binaries, and con-
versely, some rely on additional compiler flags (e.g., -W1,-q
and -ffunction-sections) for extra metadata [46, 61].

5.1 Disassembling Code, Not Data

Binary analysis in general is undecidable [58]—e.g., classi-
fying bytes as code or data after a loop is equivalent to the
halting problem. The standard technique for binary rewriting
is recursive disassembly, which gives sound but incomplete
results. Many tools conservatively overapproximate—in this
example, treating the bytes both as potential code (if they
disassemble without errors) and also as data, leaving the
original . text section in place. Dynamic binary translation
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can delay the decision to runtime, and only treat bytes as
code when when a jump to the memory is actually observed.

Modern binaries separate code and data sections, and re-
frain from using embedded constants. x86_64 code has no
need since RIP-relative literal loads can reach +/- 2GB, and
ARM64 constant pools (-mpc-relative-literal-loads)
are disabled except under the tiny memory model [15] (ad-
dress space < 1MB). This is consistent with prior work
which finds that while embedded constants are present in
real-world x86 Windows binaries [58], all GCC- and Clang-
generated binaries can be linearly disassembled on x86 [4].
Thus, linear disassembly of code sections will suffice.

5.2 Reconstructing Functions

Egalito operates on stripped binaries, where function bound-
aries are not specified. We approximate function boundaries
with a coarse-grained heuristic based on direct call targets,
which may conservatively lump functions together. We then
analyze jump tables. The final control flow graph of each
function is split into disjoint connected components to accu-
rately reconstruct function boundaries. There is one further
special case: non-returning functions. After a call to a func-
tion that never returns, the compiler will place the next
basic block immediately afterwards, knowing execution will
never fall-through. GCC tracks functions like exit with an
attribute noreturn, recursively propagating it to functions
that always call exit etc; Egalito uses a similar analysis.
Frame unwind information, created for C++ exceptions
and debugging, is sometimes present. When it is, we use it
to precisely identify function boundaries. On ARM64, this
info is only present for functions that throw exceptions; on
x86_64, stripped binaries contain frame unwind information
for every function (-funwind-tables is enabled by default).

5.3 Identifying Code Pointers

A binary is full of values that might be constants or might be
pointers. It is not sufficient to simply consider all values to
be pointers if they lie within the valid range for code virtual
addresses—even SPEC CPU is disassembled incorrectly under
such a heuristic (§6.1 of [55]). In PIC, all absolute pointers
will have relocations [7]. Relative pointers in the data section
are typically used only used for jump tables, covered next.
Relative pointers in x86_64 code sections are a %rip-relative
constant in a single instruction, and are easy to identify.

The situation is more complicated on RISC architectures
such as ARM64, however. A single fixed-length instruction
cannot encode a PIC reference. The compiler uses: 1) an adrp
instruction to load the upper bits; and 2) an add, 1dr, or str
instruction to load the page offset. These instructions form
a PC-relative load, so there is no relocation metadata. Fur-
thermore, the compiler’s optimizer may place these logically
related instructions far away from one another, in different
basic blocks, hoisted outside loops, etc. We leveraged data
flow analysis to find such split-pointer loads.
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@I DEF: target base I @I DEF: table base I @I DEF: index I
P <

v ! ®

— YES
@I target = target base + table[index] I

@I Indirect jump to target I

Figure 3. Jump table reconstruction steps.

5.4 Reconstructing Jump Tables

There is no metadata which can assist in locating jump tables
(no relocations in PIC). Standard ARMé64 jump tables can
use 4-, 2- or even 1-byte offsets—but ARM64 does not even
define standard relocation types for 1-byte values. Neverthe-
less, we aim to recover all jump table addresses, invocation
locations (indirect jumps), and table bounds (number of en-
tries). Although bounds checks may be optimized away by
the compiler, determining the bound is essential: if it is under-
estimated, some edges in the function’s control flow graph
will be unidentified, while if it is overestimated, arbitrary
data will be corrupted during recompilation.

Detection Procedure Our solution leverages sophisticated
data analysis techniques including use-def chains. We will
use Figure 3 as a running example. First, we consider every
indirect jump in the program ©. We look for expressions
that flow into the jump computation @, pattern-matching
against structures that the compiler uses to implement jump
tables. These patterns are independent of exact instructions,
registers, operand order, flow through repeated movs, basic
block structure, etc. We extract the address of the sequence
of table entries (the table base @), and the value added to
each table entry to compute its destination (the target base
@, same as table base on x86_64). Finally, we look for the
table bound. We extract the indexing register or memory
expression, find the definition of its value ®, and iterate over
all uses of this value. One or more uses will flow back to
the jump instruction, and there may be bounds checks along
those paths ®. We select the tightest comparison bound.

Bounds Not all bounds are enforced with a straightforward
comparison instruction, however. We implemented many
special cases, including: 1) subtraction/bitwise test, then
check flags against zero; and 2) bitwise and with a constant
bound (e.g., for hash computations). We also encountered so-
phisticated tables which we call multistage jump tables: one
table is indexed into to determine an index within a second
table, which finally contains a target address. We handle this
by parsing the first table as usual, with the correct striding.
We examine every value in the table and find the maximum
index—thus deducing the bound for the second-stage table.

Adjacency Heuristic In some cases, we simply cannot de-
termine the bound, and we use the following heuristic. We
observed that current compilers (GCC and Clang) place all
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jump table contents sequentially. We expand each table as
much as possible without including entries whose computed
target lies outside the source function, and stop at the end of
the section or when another link occurs. This heuristic can
fail in real-world cases such as tables that partially overlap
each others’ data (e.g., glibc hand-coded assembly, which
luckily contains explicit bounds checks), but it is a useful fall-
back. Our evaluation shows that across thousands of jump
tables, the adjacency heuristic is only used 6.52% of the time.
Considering that not all jump tables even include a bounds
check, we believe Egalito does very well in its analyses.

6 Egalito Tools
Nine tools follow, ordered from simple to sophisticated.

Counter-Based Profiling This tool instruments EIR (func-
tions or basic blocks) with counter increments. Each Chunk
is given a separate global variable, and its Egalito name is
written into a data section. Counter values are appended to
a binary file at program exit. We provide a gprof look-alike,
which prints accumulated statistics from past runs.

Profile-Guided Optimization We implemented a profile-
guided optimization tool which modifies a program’s layout
for the best performance given knowledge about the input.
Given function-call counts from a representative execution,
recorded by our profiling tool, this tool arranges functions
from most common to least for better caching performance.

Debloating We implemented a function-level debloating [2,
14] tool for x86_64 and ARMé64. Starting from the program
entry point and from every function whose address is taken,
this tool iterates over our control-flow graph and finds all
reachable code. Any unreachable functions are removed, as
they represent bloat and cannot be called (barring reflection).

Instruction Reordering In-place randomization [44] con-
sists of four techniques, of which we implemented two: in-
struction reordering within basic blocks, and reordering reg-
ister saves/restores. We use dataflow information to create
a graph of all instruction dependencies within each basic
block. We then choose a new order for the entire block,
maintaining a set of valid next instructions at each point
and selecting one at random. Note that this algorithm, while
simple, does not guarantee uniformly random permutation
selection. Within function prologues and epilogues, we re-
order register saves/restores by eliminating the ordering
constraint between push/pop instructions that would other-
wise hold (due to contention on %rsp). In the prologue, we
choose a new register save order; in each epilogue, we re-
strict the ordering between pops to follow the reverse of the
save order. Non-push/pop instructions may still be randomly
intermingled as dependencies allow.

Data Execution Prevention On x86_64, we wrote a sand-
box to enforce W* X memory: no memory page may be writable
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and later executable. We find all syscall instructions, lever-
aging dataflow analyses to deduce the system call number
(%rax). We instrument mmap, mprotect, and munmap to track
whether each mapped memory page has ever been writable.
If the program tries to make such a page executable, this con-
stitutes a sandbox violation and the program is terminated.
We combine this sandbox with our control flow integrity
from CET. The control flow integrity prevents an attacker
from jumping over the system call instrumentation, while the
data structure that tracks writable pages cannot be reliably
corrupted (located at a random address, only referred to by
%gs). Hence, this sandbox prevents any code-injection attack,
even if the attacker can corrupt data and call mprotect.

Retpolines The recent Spectre [32] vulnerability exploits a
hardware bug, an inconsistency in the way current CPUs (In-
tel, AMD, and ARM) implement speculative execution. One
available software fix for Spectre Variant 2 is to transform all
indirect jumps into retpolines [52], which force speculative
execution into safely contained infinite loops. We created an
x86_64 Egalito tool that transforms every indirect jump into
a retpoline. We outline retpolines to avoid duplicating their
code, generating a new function for each unique indirect
target expression (e.g., %rax, 0x10(%rax, %rbx, 2), etc).

Software Implementation of Intel’s CET Intel has re-
cently announced an x86_64 hardware extension called CET
or Control-flow Enforcement Technology [27, 28]. This ex-
tension specifies a set of hardware instructions that will be
made available in future CPUs, and map to no-ops on current
processors. CET consists of a) control-flow integrity (CFI) for
indirect branches, and b) a hardware shadow stack to protect
return statements. We implemented this defense in software
in August 2018 when the 1ibstdc++. so in Ubuntu 18.04 be-
gan to include endbr64 instructions (but other libraries did
not). Our tool may be applied comprehensively across a sys-
tem directly to the binary code, and when hardware support
becomes available, the instrumentation can be removed.

Under CET’s CFI scheme, the target of every indirect con-
trol flow (call or jump) is marked with a specific instruction
endbr64. Our CFI pass iterates over each function whose
address is taken and adds endbré4 to its prologue (if not
already present). Finally, we instrument each indirect call
with a runtime check to verify that its target is an endbré4.
If not, our error handler raises a fatal SIGILL signal.

We developed two shadow stack implementations. The
first is the simple constant-offset shadow stack used as an
example in Section 4.1. The second, a more faithful reproduc-
tion of CET, stores the shadow region at %gs with a shadow
stack pointer at %gs:0x@. Pushing and popping involves in-
crementing/decrementing this pointer, which means that a
push without a corresponding pop will cause a detectable
fault. CET also specifies hardware instructions that modify
the top-of-stack pointer directly, for stack unwinding and
exception handling. We leave these for future work.
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Egalito-AFL Egalito-AFL is a binary-level backend for the
AFL fuzzing framework [63]. It adds the instrumentation nec-
essary for AFL to determine coverage (i.e., the set of branches
that are taken). We integrate with the AFL forkserver, which
forks new targets to avoid exec calls. The forkserver creates
a System V shared memory segment and passes it to the
initial target via the __AFL_SHM_ID environment variable.
We inject code at program start to detect this and map a
0x10000-size memory region with shmat.

We instrument every basic block with a coverage-recording
snippet based on bin_coverage.c from drAFL [50]. Each
block is assigned a random (constant) ID, and an accumula-
tor tracks history of the past few branches, hashing into the
shared memory region [26]. Each time, the accumulator is
right-shifted by one, and XOR’d with the random block ID;
the index in the shared memory region corresponding to the
lower 16 bits of the accumulator is incremented. We perform
this update using only a single register (plus %rflags).

Just-In-Time Shuffling JIT-Shuffling is a novel continu-
ous code randomization defense, based on prior work (Shuf-
fler [61], TASR [8]). Like Shuffler, JIT-Shuffling is x86_64-only
and transforms every code pointer into an index within a
runtime dispatch table. Return addresses become a pair of
numbers, a function index and a byte offset into that func-
tion. The table is stored using the unused %gs segment regis-
ter [5, 61], to prevent an attacker from performing memory
disclosure on the table. Direct function calls, tail recursive
calls, indirect function calls, returns, etc, are replaced with
%gs-relative jumps, while pointer initializations are changed
into indices—addresses are never used as code pointers.

In a departure from Shuffler, JIT-Shuffling operates syn-
chronously. Function %gs-table entries initially point to the
address of an Egalito resolver function that instantiates the
function at a new address, similar to the way a lazy PLT
resolver computes addresses on the fly. Periodically, a “reset”
callback erases all functions, and points their table entries
back to the Egalito resolver. If control flow returns to a func-
tion which has been erased, it will be reinstantiated. As in
Shuffler, JIT-Shuffling makes use of two code sandboxes dur-
ing execution, and migrates between them while leaving
no fixed code in the address space—even Egalito code. JIT-
Shuffling supports fork and multiple threads: each execution
context uses its own sandboxes (threads share EIR).

7 Evaluation

Our evaluation uses the machines in Figure 4. Unless other-
wise noted, we used M1 for x86_64, and M8 for ARMé64.

7.1 Correctness of Binary Analysis

Function Boundaries On ARM64, we transformed all 105
GNU Coreutils binaries (stripped). Egalito identified all func-
tion boundaries; however, in 11 cases we split the code
into additional functions, when the (non-returning) error()
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ID [Arch Linux Distribution Machine RAM GCC
M1|x86_64 Debian buster 4c/8t 17-4770 32GB 7.2.0
M2 [x86_64 Debian stretch 9.6 8c/16t X5550x2 24GB 6.3.0
M3|x86_64 Debian testing 4¢/8ti7-2600 16GB 8.2.0
M4 [x86_64 Devuan ascii 8c/8t W-2145 64GB 6.3.0
M5 |x86_64 openSUSE* 4¢/8t i7-4770 32GB 7.3.0
M6 |x86_64 Ubuntu 18.04.1° 6¢/12t X5550x2 10GB 7.3.0
M7 |x86_64 Fedora 31 8c/16t X5550x2 24GB 9.2.1
M8 | ARM64 openSUSE Leap” 8c/8t ThunderX 8GB 7.1.1
M9 |ARM64 openSUSE* Raspberry PI3 1GB 7.2.1

Figure 4. Machines used for Egalito testing and evaluation.
*=openSUSE Tumbleweed rolling release. =Virtual Machine.

function is called with a constant argument. (Separating such
functions is an accurate representation of control flow.)

Code and Data Pointers We validated that Egalito can de-
tect all pointers using relocation ground truth. We compiled
GNU Coreutils and glibc on both x86_64 and ARM64 with
-ffunction-sections and -W1,--emit-relocs (-W1,-q),
to include as many relocations as possible in the output.
Egalito creates links for precisely the set of code and data
pointers in the ground truth (plus additional links for jump
table entries, which have no relocations).

Inline Assembly Egalito handles many assembly functions
correctly, e.g. those in glibc. However, some hand-coded as-
sembly (1ibffi, crypto code) embeds jump table values into
.text symbols. By design, Egalito trusts function boundary
metadata, but to handle non-standard cases we provide an
override settings file for users to define code/data boundaries.
Our evaluation does not rely on any such parse overrides.

Jump Table Study We verified Egalito’s detected jump ta-
bles against ground truth obtained from the compiler, using
GCC’s -fdump-final-insns, which outputs the RTL inter-
mediate language while producing the corresponding object
files. This data includes the number of jump tables per func-
tion as well as the number of entries in each table. On both
x86_64 and ARM64, we programmatically verified jump ta-
bles in glibc and Coreutils. We manually verified glibc
jump tables written purely in assembly.

To test jump table detection at scale, we ran a large-scale
experiment on x86_64 Debian packages. We built each pack-
age from source with the dpkg-buildpackage option DEB_-
CFLAGS_APPEND=-fdump-final-insns. We preserved every
.0 object file created during the build process by overriding
rm and various variants of gcc. Finally, we extracted the built
package (and its debug package) and found all executables
and libraries therein. We used FILE symbols to map func-
tions back to object files and hence to jump table information.
For functions not within a FILE, we searched for functions
with the same name in all object files. We also considered
function aliases and *.1to_priv.NN symbols generated by
link-time optimizations. We analyzed each case with Egalito
and compared our list of recovered jump tables with the
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ground truth. In case of multiple ground-truth options (mul-
tiple functions of the same name), we considered Egalito to
be correct if it matched one option.

Overall, we ran the experiment on 172 packages from
Debian’s popcon list [45] on M3. We excluded large pack-
ages like systemd and packages that would likely not con-
tain C/C++ executables. These 172 packages produced 867
executables and shared libraries, and in 866 cases, Egalito
successfully reproduced the ground truth jump table list.
(Parsing these 867 ELFs took Egalito 55 minutes on a sin-
gle core.) The single failure is sftp which contains heavily
nested jump tables that our control-flow graph does not
yet capture. Hence, Egalito correctly recovered jump tables
99.9% of the time. Nearly half of all executables included
complex stack-variable bounds checks that required track-
ing data flow through memory, not just registers. Of the 3970
recovered jump tables, Egalito analytically determined table
bounds in 93.48% of cases (relying on the table adjacency
heuristic in the remaining 6.52%). Since not all jump tables
even include a bounds check, Egalito’s analyses do very well.

7.2 Correctness of Binary Transformation

To gain confidence in Egalito’s generated code, we executed
and successfully passed the test suites for Coreutils, ffmpeg,
and sqlite on M2 (sqlite includes 2,583,067 tests). We
manually tested 13 arbitrary programs; many succeeded, in-
cluding dpkg, make, tmux, and vim, while 4 failed. Two failed
due to some position-dependent code linked in with PIC, one
failed due to Egalito features not yet implemented (aptitude
throws an exception), and Google’s V8 contains embedded
data after every function (within symbol boundaries).

Debian Package Tests We ran a second large-scale analy-
sis on Debian binaries, running test suites associated with
Debian packages on Egalito-transformed binaries. We found
that some 9904 Debian packages are registered in the De-
bian continuous integration system, and we targeted the 308
packages that have the tag implemented-in set to c or c++.
We transformed all executables in the distribution’s .deb
files with Egalito, then ran the package tests in a chroot
with autopkgtest. 149 packages contain tests and build cor-
rectly in the chroot. 90 out of 149 (60%) packages have all
tests pass. 38 failures can be detected by Egalito, they are be-
cause we do not yet support generating symbol versions (this
merely requires additional engineering effort). At least one
throws an exception (not supported), and one has a too-strict
test that looks for sequences of zeros in the executable. If we
take this into consideration, 90/109 (82.6%) of the packages
pass all tests (4 additional packages pass at least one).

Compiler Versions To test binaries from different compil-
ers, we built many versions of GCC from source. With each
GCC, we verified that sqlite (compiled position-independent)
still passed all tests. Specifically, we tested the following ver-
sions of GCC (earlier compilers no longer built cleanly): 4.9.4,
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5.3.0,5.4.0, 5.5.0, 6.1.0, 6.2.0, 6.3.0, 6.4.0, 6.5.0, 7.1.0, 7.2.0, 7.3.0,
7.4.0, 8.1.0, 8.2.0. We tested Clang 5.0.1 by transforming and
successfully running SPEC CPU ref on M5 (loader mode).

Linux Distributions We verified that Egalito-transformed
SPEC CPU ref runs correctly on four different distributions:
Debian (M1), Ubuntu (M6), openSUSE (M5) and Fedora (M7).
(Allin 1-1 ELF mode except M5, where we used loader mode).

Go Binaries Egalito cannot transform Go binaries correctly,
because they contain vtable-like structures in go.itab.*
without relocations. We would need to represent these data
structures in EIR in order to transform Go programs.

Chromium Libraries V8 and Chromium contain an un-
usual form of DWARF that we do not support. However, we
transformed Chromium’s shared libraries in 1-1 mode. Of
177 libraries, 59 use symbol versions in a way we do not
support (a low-level ELF generation, solvable with engineer-
ing effort). Of the 118 remaining, 12 cause Chromium to fail,
and 1ibff1 fails disassembly due to embedded jump tables
in assembly code. 105 of 118 (89%) transform correctly and
using LD_LIBRARY_PATH to load all transformed libraries,
Chromium can browse to news sites and display videos.

/usr/bin/ smoke test We tried to transform all the executa-
bles in /usr/bin/ on M4 (1-1 mode), then ran each program
with --help, comparing against baseline. There were 1379
executables; 90 (6.5%) failed during transformation because
they were position-dependent, and 11 failed transformation
for other reasons (Egalito was aware of a problem). Of the
remaining 1278 executables, 1256 (96.6%) produced identical
output and exit code. Of the remaining 33 failures, 25 were
due to lack of RUNPATH support, and 8 from fatal signals.

Kernels We transformed a Fuchsia [23] microkernel (for
ARM64) with Egalito. In lieu of PIC, we leveraged full re-
locations with the -q linker flag. We added function call
logging into a ring buffer, generated a flat binary image, and
successfully booted it on a bare-metal Raspberry PI 3 (M9).

7.3 SPEC CPU Performance Evaluation

Egalito supports three major execution modes: 1-1 ELF, union
ELF, and loader mode. We present Egalito’s performance
on SPEC CPU in each mode, utilizing binary optimizations
discussed in Section 7.4. In 1-1 ELF mode, we transformed
only the main executable and not shared libraries; in union
ELF and loader mode, we transformed all code. Since Egalito
does not yet support C++ exceptions, we modified SPEC CPU
by replacing exceptions with conventional control flow in
omnetpp (20-line change) and povray (15 lines). We also fixed
a compile error in soplex (1 line) in recent GCC versions.

Comparison with DynamoRIO and Pin As shown in
Figure 5a, Egalito has much better performance than ex-
isting DBT-based tools DynamoRIO and Pin (measured on
M1). DynamoRIO geo mean overhead is 28.8%, Pin is 77.7%,
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(b) Performance of Egalito-generated ELF outputs.

Figure 5. Egalito runtime overhead on SPEC CPU 2006, in
different modes, compared with DynamoRIO and Pin.

while Egalito in 1-1 mode is only 0.46% (executables pre-
transformed). For a fairer comparison, Egalito in loader mode
also parses all executables at load-time, incurring 8.7% slow-
down (1.1% slowdown with caching; see loader mode below).

1-1 ELF Mode This is Egalito’s default mode, reading in a
single ELF and outputting a single ELF. Since EIR represents
and recreates each input instruction, we can expect near zero
performance overhead (given a no-op transformation tool).
We measured this baseline overhead in 1-1 ELF generation
mode by running SPEC CPU 2006 on machine M1, and results
are shown in Figure 5b. Egalito incurs only 0.46% overhead.

Union ELF Mode In union ELF mode, Egalito combines the
input executable and all its shared libraries into one output
ELF, essentially transforming a dynamically linked program
into a statically linked one. We measured the baseline over-
head in union ELF mode (also on M1), and Egalito achieves a
1.7% geo mean speedup. We use original function order and
2-byte alignment as in 1-1 ELF mode; the speedup is because
union ELF mode collapses PLT calls into direct calls.

The memory and space overhead of Egalito-generated ELF
files is minimal. On SPEC CPU, union ELF outputs were on
average only 0.44% larger (low variance) than the sum of
input ELFs. At program entry, the mapped memory of union
ELFs is 79%-95% (average 88.4%) of baseline. At program
exit, file-backed resident memory use is 152KB-1.25MB less
(598KB average). So union ELFs are memory efficient, but will
not share library code pages with different programs. Code
sections, augmented with library code, are 540KB-2.56MB
larger (1.7MB average)—an upper bound on memory wasted.
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Egalito Tool Mode Overhead Worst case
No-op 1-1 mode 1-1  0.46% 2.8% omnetpp
No-op union mode union -1.7%" 1.6% gobmk
No-op loader mode loader -1.4%" 2.6% povray
Profiling 1-1  0.16%, 1 fail 3.3% povray
Profile-guided opt 11 -1.0%',Conly 3.2% h264ref
Retpolines -1 6.9% 63.0% povray
CET CFI only union  -1.4%" -0.57%" gobmk
CET CFI + const stack | union 4.4% 22.2% povray
CET CFI + %gs stack union 9.8%, 1 fail 40.7% povray
Instruction reordering | loader -2.7%} 3.8% povray

Figure 6. Geometric mean overhead of Egalito tools (loader
mode has load time excluded). f=performance speedup.

Loader Mode Next, we investigated Egalito’s baseline over-
head in loader mode. The unoptimized raw overhead of the
Egalito loader is 8.7% geo mean; using HOBBIT files (a bi-
nary serialization of EIR: Hierarchical Object Built for Binary
Transformation) gives 1.1% geo mean overhead. Much of this
is load-time overhead, spent parsing ELF files (9.4 seconds
average, max 15.9) or loading HOBBIT files (2.8 seconds,
max 4.1). Also, the SPEC CPU harness invokes the target
more frequently in certain cases—e.g., gcc is invoked nine
times per run while some binaries are only invoked once.
By subtracting all load-time cost (amortized in long-running
programs), we see a 1.4% geo mean speedup. (Some speedup
is again expected due to collapsed PLTs.)

7.4 Binary Optimizations

Function Padding The compiler uses 16-byte padding be-
tween functions, but we try 16-, 8-, 4, and 2-byte padding.
(1-byte function padding interferes with exception handlers;
the least significant bit is set to indicate thrown exceptions.)
Compact code may utilize instruction caches better, so Egal-
ito defaults to 2-byte padding. The best padding varies accord-
ing to test case and machine; for in-depth analysis see [62].
On M1 2-byte padding is 0.56% slowdown but 8-byte is best
at 0.53% speedup. Selecting the best case for each SPEC pro-
gram gives 1.2% geo mean speedup with 9.6% speedup in the
best case. On M2, 2-byte is fastest at 0.59% speedup.

PLT Collapsing To support dynamically linked libraries,
calls from one library to another go through indirection
via the Procedure Linkage Table (PLT). But in union ELF or
loader mode, Egalito knows all the code that will be executed.
So we collapse PLT calls into direct calls, and place code from
all libraries into a single text section, essentially transforming
a dynamically linked program into a statically linked one.

7.5 Egalito Tool Performance

Egalito is 51759 lines of code (determined by sloccount [17]);
each tool is between 157-306, except JIT-Shuffling with 1510.

Tools on SPEC CPU Figure 6 shows the performance of sev-
eral Egalito tools. Retpolines on M1 has geo mean overhead



Session 2B: Dynamic compilation — Who moved my cheese?

6.9%, in line with other published numbers (e.g., Bullet [34]).
However, it is prohibitively expensive for povray and xalan,
which use large numbers of virtual function calls and hence
incur the indirect-jump overhead repeatedly. The instruc-
tion reordering tool observed a speedup over the baseline,
likely noise from loader mode. In our CET tool, the simpler
constant-offset shadow stack is more efficient than %gs. The
%gs shadow stack fails in one case (gcc) due to a bug with our
conditional tail recursion detection. Profile-guided optimiza-
tion, trained with call counts on “test” and evaluated on “ref”,
shows a 1.0% speedup (best: 11.8% speedup for dealll) [62].

Egalito-AFL We measured the fuzzing throughput of Egalito-
AFL, in comparison with a DynamoRIO-based fuzzer called
drAFL [50]. Both tools operate directly on binaries, unlike
the original AFL which requires source-level instrumenta-
tion with an appropriate compiler. We fuzzed readelf and
libpng on M2 for 5 minutes, and Egalito-AFL obtained a
15.6x and 64.2x speedup respectively over drAFL; when run
for 10 minutes, these speedups became 18.0x (60060 vs 3353
executions) and 61.4x (526149 vs 8566). Egalito-AFL is 18-
61x faster because 1) Egalito-AFL outputs one ELF binary,
while drAFL runs DynamoRIO to rebuild the code cache for
each execution; and 2) Egalito-AFL integrates with AFL’s
forkserver (drAFL does not), allowing minimal exec syscalls.

Just-In-Time Shuffling To evaluate JIT-Shuffling, we de-
fended Nginx 1.11.3 on x86_64 (M5). We tested four workers
serving ten concurrent clients from the wrk tool over one
minute, for 612B, 100KB, and 1MB requests. Results in mul-
tithreaded and multiprocess mode are nearly identical.

We first erase all functions after each Nginx HTTP request,
as in TASR [8], but this is prohibitively expensive (5-50x).
TASR advocates this design but does not measure its per-
formance (Shuffler [61] would have 1.5% throughput with
100KB requests). We can trade performance for security by
resetting less frequently; instead of after every request, we
can reset after every 10, or every 100, etc. Nginx achieves
50-90% of the original throughput when resetting after every
100 requests. This policy is still orders of magnitude ahead
of leakage attacks like Blind ROP, which requires a total of
11070 Nginx requests [9]. It also results in re-randomizing
every 1.8-4.9 ms, much faster than Shuffler’s 50 ms interval.

7.6 Comparison with Other Frameworks

Ramblr [54] We installed Ramblr on M2, and tried to trans-
form /bin/1s with the simplest stackretencryption re-
assembler backend. It failed during code generation, as did
a) hello world, b) hello with -no-pie, c) hello with -static,
d) programs without glibc (complained about empty input).

Multiverse [6] On a 32-bit VM, pwntools dies (dependency).
We tested further on a 64-bit system (M3). Multiverse does
not work on position-independent executables (generates
invalid ELF headers), statically linked executables, or glibc
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(jump mapping table contains an invalid offset). On hello
world compiled with -no-pie, _start is transformed, but
the RIP-relative __libc_start_main pointer is unmodified
and the code runs the original main. By mapping the original
.text with executable permissions, Multiverse allows the
original code to execute. There are also several RWX mem-
ory regions in which Multiverse writes and then runs code,
opening the door to code injection attacks.

PSI [64] PSI is distributed on a 32-bit Ubuntu 12.04 Virtual-
Box VM. We measured the runtime of Egalito (M2) and PSI
(VM) against baselines on their respective machines. On zip,
Egalito had -3.07% overhead vs PSI’s 8.26%; on python, 3.33%
vs 44.6%; on perl, -13.6% vs 108%; on vim, success vs crash.
PSI’s higher overhead is due to its address virtualization.

8 Limitations and Discussion
Egalito works across many binaries and architectures, but it:

1. requires inputs to be position-independent code (PIC)
for sufficient metadata (discussed in Section 3);

2. uses data-flow analysis techniques that infer missing
metadata (see Section 5.4), and so is not complete and
cannot guarantee full disassembly;

3. cannot handle obfuscated code, nor inline assembly
which embeds data—like jump table values—into . text
symbols (discussed in Section 7.1);

4. does not yet support some implementation-level fea-
tures (described in Section 7.2), such as C++ exceptions
and atypical metadata (e.g., Go binaries or V8).

64-bit RISC-V support is well underway in Egalito: we parse
into EIR with a different disassembly library, and success-
fully analyze jump tables, but do not generate code. We are
extending Egalito to Windows, where newer executables
include relocations for base address randomization [40].

9 Conclusion

We have presented the Egalito recompiler, a layout-agnostic
binary rewriting framework. We implemented nine tools
with Egalito including a novel defense JIT-Shuffling, an AFL
backend, and a software version of Intel’s CET. Egalito is
very efficient, observing a substantial performance speedup
of 1.7% on SPEC CPU thanks to binary optimizations. It
successfully runs on programs from hundreds of Debian
packages. We open-sourced Egalito [59, 60] to aid researchers
in creating robust and efficient binary transformations.
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A Artifact appendix

Submission and reviewing guidelines and methodology:
http://cTuning.org/ae/submission.html

A.1 Abstract

We provide a virtual machine image which contains data
needed to replicate some Egalito experiments. The machine
contains the following:
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e Egalito source repository (pre-built).

e Instructions to build Egalito from scratch.

e Scripts for several SPEC CPU 2006 experiments.

e Scripts to run Egalito and DynamoRIO AFL fuzzing.
e Large-scale jump table analysis for Debian packages.
e Large-scale Debian package tests.

Some experiments need internet access; in particular, the
large-scale experiments rely on access to a Debian mirror.
At http://doi.org/10.17605/OSF.I0O/KDUZG we provide the
virtual machine image and a README . txt file (which includes
credentials).

A.2 Artifact check-list (meta-information)

e Algorithm: binary recompilation

e Program: SPEC CPU 2006 v1.1 (must be obtained sep-
arately)

e Compilation: GCC 6.3.0

e Transformations: binary-to-binary recompiler

¢ Run-time environment: Debian stretch 9.11 + internet
connection

e Hardware: 20GB disk, 8GB RAM, 4 core virtual ma-

chine

Execution: 24+ hour runtime for complete experiments

Experiments: via scripts in virtual machine
How much disk space required? 20GB (fixed)
Publicly available?: Yes

Code licenses?: GNU GPL v3

o Archived? Yes

o Artifacts publicly available?: Yes

o Artifacts functional?: Yes

o Artifacts reusable?: Yes

¢ Results validated?: No (as per conference policy)

A.3 Description

A.3.1 How delivered. Please go to http://doi.org/10.17605/OSF.
10/KDUZG and download egalito-artefact. tar.gz. The archive
is a 1.5GB download and requires 20GB of space once extracted.
It contains the QEMU/KVM-compatible virtual machine image, a

KVM machine definition XML file, and a copy of the README. txt

with username/password and basic instructions. Further instruc-
tions on each experiment are included in additional README files in

the home directory of the VM.

A.3.2 Hardware dependencies. The VM requires: 20GB disk
space, 8GB RAM, 4 CPU cores. It should run on any x86_64 system
(tested on Debian Linux only).

A.3.3 Software dependencies. We recommend using KVM with
hardware acceleration enabled to run the virtual machine with op-
timal performance.

A.3.4 Data sets. SPEC CPU 2006 v1.1 (SPECcpu2006-1.1.1is0)
is required to replicate the SPEC CPU experiments.

A.4 Installation

Extract the .tar.gz (needs 20GB disk) and obtain the following
files: egalito-artefact.qcow2, machine.xml, README. txt. Then,

Output: performance numbers and transformation pass/fail
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create a new virtual machine with the qcow?2 disk image, or im-
port the existing machine. To import the existing machine, update
the disk image path in machine.xml and import it into KVM with:
virsh define machine.xml. You may get errors about unsup-
ported CPU features depending on your CPU; the machine was
created for an Intel i7-4770 host (M1).

After you’ve booted the machine, log in with the credentials in
the README. txt. You can get a TTY console with virsh console
egalito-artefact. You can also find the IP address of the virtual
machine by running ip addr show on the guest, and then ssh in. If
you created a new machine, you may need to run sudo dhclient
DEVICE on the guest to get network access, where DEVICE is the
name Linux chooses for your new network card.

If you wish to replicate the SPEC CPU results, find the IP address
of the virtual machine, then scp your SPECcpu2006-1.1.1iso to
the VM’s home directory from your host machine. Continue to
follow the instructions in README-speccpu. txt.

A.5 Experiment workflow

Described in individual README files in the VM’s home directory:
README-manual. txt, README-speccpu. txt, README-afl. txt, and
README-largescale. txt.

We recommend running experiments from within tmux because
they can take a while. Also, you may wish to delete past experiments
before running new ones to avoid running out of disk space.
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A.6 Evaluation and expected result

Our SPEC CPU experiments should be able to successfully run
all_c and all_cpp targets on ref size. We provide mirrorgen (1-
1), uniongen, retpolines, endbr (Intel CET), ss-const (Intel CET
+ const shadow stack), and baseline configurations. Performance
numbers collected in a virtual machine cannot be relied upon, but
we observed similar results to our baremetal experiments: 4.4%
slowdown for retpolines and 3.3% speedup for uniongen in the VM.

The AFL experiment should run approximately 25x faster for
Egalito-AFL than for DynamoRIO-based fuzzing. The target is
/usr/bin/readelf; we are not aware of any bugs in this program.

The large-scale experiments rely on accessing packages, sources,
and build dependencies from a Debian mirror. These will necessarily
change over time, so different numbers are to be expected. We
successfully analyzed 1207 executables in the jump table analysis
with 17 skipped and 0 failures; full details are included in the README.
In the large-scale package tests, we saw 90 pass, 59 fail, and 140
skipped (due to compilation errors and/or lack of tests).

A.7 Experiment customization

The user can manually invoke Egalito on any executable, with
various transformations. Any binary can be fuzzed with our AFL
tool. Individual SPEC CPU targets can be run. We provide a SPEC
diffing script to compare multiple runs. The large-scale tests are
reusable, using a chroot environment to build and test packages.
We believe the scripts may be useful in other contexts as well.
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