
ARC: Protecting against HTTP Parameter

Pollution Attacks Using Application Request

Caches

Elias Athanasopoulos1, Vasileios P. Kemerlis1, Michalis Polychronakis1, and
Evangelos P. Markatos2

1 Department of Computer Science
Columbia University, New York, NY, USA
{elathan,vpk,mikepo}@cs.columbia.edu

2 Institute of Computer Science
Foundation for Research and Technology – Hellas

markatos@ics.forth.gr

Abstract. HTTP Parameter Pollution (HPP) vulnerabilities allow at-
tackers to exploit web applications by manipulating the query parameters
of the requested URLs. In this paper, we present Application Request
Cache (ARC), a framework for protecting web applications against HPP
exploitation. ARC hosts all benign URL schemas, which act as generators
of the complete functional set of URLs that compose the application’s
logic. For each incoming request, ARC exports the URL, extracts the as-
sociated schema, and searches for it in the set of already known benign
schemas. In case the schema is not found, the request is rejected, and
the event is recorded.
ARC can be transparently integrated with existing web applications
without any modifications to the server and client code. It is imple-
mented in Google’s Go language and uses efficient data structures for
storing the URL schemas, imposing negligible computational overhead
on the web application server. When running on a 4-core Linux server,
ARC can process hundreds of thousands of URL requests per second. A
typical URL resolution is in the scale of microseconds.

Keywords: HPP, Web Security.

1 Introduction

Web applications are experiencing a variety of highly sophisticated attacks that
stem from many different sources. Some of them exist due to fundamental design
choices of the web platform [5], while others rise due to faulty browser implemen-
tations [4,20]. Some of them are based on deceiving users by creating specially
crafted visual conditions [10,15], and others emanate from the complexity and
the wide use of web applications in many different systems [27,7]. HTTP Pa-
rameter Pollution (HPP) is a recently discovered technique for exploiting web
applications. HPP can be considered as an injection attack that targets URLs;

2 E. Athanasopoulos, V. P. Kemerlis, M. Polychronakis, E. P. Markatos

one of the fundamental concepts of the web platform [33]. Web browsers com-
municate with web applications through HTTP requests and responses, which
reference resources using URLs. This communication can be polluted by inject-
ing parameters in the HTTP stream. These injected parameters form URLs,
which if served, instruct the application to perform actions that were originally
not part of the application’s design. Thus, the control flow of the web application
is altered according to an attacker’s need.

To illustrate the attack in a short example (in Section 2 we give a detailed
presentation of HPP and, more particularly, in Section 2.1 we discuss a formal
threat model), consider an e-store application taking two arguments, namely a
product identifier and an action, which affects the product state. A combination
of a product identifier and the action purchase results in ordering a product.
The product identifier and the action must be attached as parameters in a URL,
which in turn is communicated to the application through the construction of
an HTTP request. If the attacker manages to pollute the request with extra
parameters, then the control flow of the application may change in numerous
ways. The simplest manifestation of the vulnerability is for the attacker to inject
a particular parameter multiple times. In case the parameter that carries out the
product identifier is duplicated, then many different control flows can take place,
depending on the parameter occurrence (first, last, or a combination of) that the
application will give significance while the URL is parsed.

About 1,499 of 5,000 highly ranked in Alexa.com web sites are considered
vulnerable to HPP exploitation according to the methodology outlined by Bal-
duzzi et al. [3]. In this paper, we propose Application Request Cache (ARC),
a framework that can protect web applications from HPP exploitation. ARC
does not detect HPP vulnerabilities, although it can record HPP exploitation
attempts. It is deployed at server side and works completely transparently. A
web application can be protected, using ARC, from HPP exploitation by simply
incorporating ARC in the application server. Note that clients need no further
modifications. In contrast to PAPAS [3], which currently is the only available
methodology for discovering HPP vulnerabilities, ARC aims at protecting the
web application without auditing. ARC assumes that the web application is vul-
nerable and tries to protect it from being exploited. To this respect, ARC and
PAPAS can be combined. The former as a protection layer and the latter as a
periodic auditor.

ARC is based on the following fundamental concept. Each web application is
characterized by a set of URL schemas, which act as generators of the complete
functional set of URLs that compose the application’s logic. A URL schema is
extracted by a URL by masking out all variables that are assigned to the URL’s
parameters. Each control flow is triggered by having the application serving a
URL, which stems from a particular URL schema. ARC collects all schemas
taken from benign requests during a training phase.3 At production time, for
each incoming request, ARC extracts the URL and its schema, and searches for

3 Notice that the term “cache” is frequently used to describe temporary storage that
holds recently or frequently used elements for improving performance. In this work,

ARC: Application Request Caches 3

it in a set of already known benign schemas. In case the schema is not found,
the request is rejected and the event is recorded. An incoming polluted URL
will have no schema stored in ARC and thus will be rejected. This methodology
cannot only prevent HPP, but also certain types of XSS [11], where JavaScript
is attached to HTTP parameters [37].

ARC is fast. Our prototype is developed using Google’s Go, a very efficient
programming language for constructing system tools. ARC stores all cached
schemas in carefully selected data structures, which are implemented using maps

and slices, as provided by Go. ARC also takes advantage of the multiprocessing
features of Go, goroutines and channels. In a 4-core Linux server, ARC can
process hundreds of thousands of URLs per second. A typical request resolution
takes no more than a few microseconds.

Contributions. This paper contributes the following:

– We define a formal threat model for HPP; a new class of vulnerability tar-
geting web applications.

– We design ARC, a framework that can efficiently protect web applications
from HPP exploitation. The framework can be applied transparently in any
application server. The web application and the available clients need no
modifications.

– We implement and evaluate an ARC prototype. We implement ARC in Go,
a fast strong typed C-like language by Google. ARC running on a 4-core
Linux server, with 4 concurrently running goroutines, can process hundreds
of thousands of URL requests per second. Memory requirements, in terms
of RSS, from application to application increase linearly with the size of
different URL schemas.

2 HTTP Parameter Pollution

Web sites have evolved from simple, mostly-static document repositories to com-
plex, multi-tier applications. Although different organizational paradigms are
possible (e.g., 3-, 4-, and n-tier), modern web applications incorporate a mixture
of technologies that are typically grouped into two parts: the application part
and presentation part. The former runs on the server and consists of server-side
code written in PHP, Perl, Java, ASP.NET, or even C/C++, whereas the latter
is rendered by the client, i.e., the web browser, and is made up of (D)HTML,
JavaScript, Flash, etc. The two parts communicate over TCP using the HTTP
protocol in a request-response manner. A typical form of communication involves
a request issued from a web browser, for accessing a resource provided by the
web application, using a request path defined very precisely in a URL [6]. The
web browser issues an HTTP request, which embeds the URL describing the
location of the resource, and if the web server can serve the request, it does so
by returning the result in the form of an HTTP response. Otherwise, an error is

we use the term “cache” to refer to storage that holds a set of benign URL schemas,
which can generate all possible URLs that can be safely served by a web application.

4 E. Athanasopoulos, V. P. Kemerlis, M. Polychronakis, E. P. Markatos

returned, again as an HTTP response. The following simplified URL shows an
example of an on-line purchase.

http://www.e-store.com/purchase?item_id=42 (1)

The communication channel between the server and the client that is used for
exchanging URLs can be attacked, affecting both the confidentiality and integrity
of the application. An attacker can eavesdrop the communication and steal confi-
dential information (e.g., credit card numbers or account credentials), or modify
a request issued by the client, before reaching the server, and hence break the
integrity of the communication. Such attacks can be easily prevented, by forcing
the web application to communicate with the client over HTTPS [17]. Neverthe-
less, carefully crafted injection attacks can still happen, even when HTTPS is
in use. For instance, an attacker can lure an unsuspecting user to click on a hy-
perlink that targets a URL embedding some JavaScript code. Upon clicking the
link, a request from the victim’s browser is sent to a server. This request embeds
JavaScript code, which, if not sanitized correctly by the web server, exists in the
response and will be executed in the victim’s browser. This is called Cross-Site
Scripting (XSS) reflection attack. HPP is yet another injection technique for
attacking web applications [21]. Instead of pushing JavaScript code in URLs,
the attacker is polluting the URL by injecting her own combination of HTTP
parameters. Consider the following URL that has the same HTTP parameter
(i.e., item id) encoded twice.

http://www.e-store.com/purchase?item_id=6&item_id=42 (2)

The result of processing this request depends on the web application’s logic.
There are three possible scenarios. If the application consumes the first (from
left to right) occurrence of item id, then the item with id 6 is purchased. On
the other hand, if the application consumes the second occurrence of item id,
then the item with id 42 is purchased. Finally, it is possible that the application
considers both values, or a concatenation of them, as a valid id. In that case,
both items or item 642 (or 426) are purchased. This ambiguity in processing URL
parameters is the core weakness behind HPP. The attacker is taking advantage
that there is no standardized way of processing URL parameters, in order to
exploit a web application by altering its the control flow.

To a large extent, HPP attacks are manifested by duplicating URL encoded
parameters. However, it is also possible to launch an HPP attack without inject-
ing the same parameter multiple times, but by constructing URLs that the web
application does not handle correctly.

http://www.e-store.com/purchase?item_id=42&action=empty_basket (3)

Normally, the request shown in URL 3 results in purchasing item 42. However,
due to the high complexity of modern web applications, each incoming request

http://www.e-store.com/purchase?item_id=42
http://www.e-store.com/purchase?item_id=6&item_id=42
http://www.e-store.com/purchase?item_id=42&action=empty_basket

ARC: Application Request Caches 5

is processed by a series of scripts. Hence, the script chain of the imaginary web
application may host a script for which the action parameter is significant. If
such a script is executed, then the basket holding user products will be emptied.

Running Example. Suppose that Alice is the victim, e-store is an electronic
commerce application, vulnerable to HPP, and Bob is the attacker, who runs his
own web site. Bob’s goal is to force Alice buying a different product than the
one she originally intended to. Additionally, Bob has no access to the e-store
and has not compromised Alice’s host machine or her browser. However, Bob
can lure Alice into visiting his site. Bob’s site presents some offers that can be
purchased from the e-store. The web application of e-store has an entrance page,
which shows all items per category, in the following form:

Show cat 1<a/>
Show cat 2<a/>
...

Show cat 9<a/>

Upon clicking one of the above links, the e-store application extracts the
category parameter, and concatenates it with the purchase action and a list of
available ids (item id) for the selected category. Note that e-shop erroneously
trusts category and does not verify it for validity before processing it.

Buy item 1<a/>
Buy item 2<a/>

...
Buy item 99<a/>

Now, Bob is creating his own entrance page with offers that can be purchased
from e-store and lures Alice to visiting his site. Bob’s site has the following form:

Go to offer 1<a/>

Go to offer 2<a/>
...

Go to offer 9<a/>

Alice clicks one of the above hyperlinks and the e-store application extracts
the category parameter, which in our case is <number>%26item id=42, and
performs the concatenation. The result is shown below (notice that %26 has
been compiled to ‘‘&’’).

Buy item 1<a/>
Buy item 2<a/>

...
Buy item 99<a/>

Assuming that the e-store application gives significance to the first parameter
(from left to right) while parsing a URL, the product with identifier 42 will be
purchased no matter which hyperlink Alice clicks.

6 E. Athanasopoulos, V. P. Kemerlis, M. Polychronakis, E. P. Markatos

[URL] [URL schema]
----- ------------

http://www.e-store.com/purchase?item_id=42 | purchase?item_id=
http://www.e-store.com/purchase?item_id=30&discount=true | purchase?item_id=&discount=

Fig. 1. Examples of URLs (left) and their respective URL schemas (right). A URL
schema expresses a family of HTTP requests that act as descriptors of valid control
flows.

2.1 Formal Threat Model

We now define a formal threat model for HPP vulnerabilities. A is a web
application, and ui is used for denoting any URL schema that has the following
form: action?p1=&p2=&...&pN=. The schema is composed of an action and a
set of parameters that can take arbitrary values. URL schemas express families

of HTTP requests that are served by the web application and act as descriptors

of valid control flows. Figure 1, illustrates a set of URLs with their respective
URL schemas.

Ua = {u1, u2, ..., un} is a set that contains all benign URL schemas that A

can handle. This means that for each incoming URL in Ua, a well defined control
flow f takes place, according to the application’s logic. More formally:

∀u ∈ Ua −→ f ∈ FL

FL = {f1, f2, ..., fN} contains the control flows that can be handled safely by
the web application. We denote as Fc the set of all possible control paths of A.
Apparently, FL ⊆ Fc and Fh = Fc −FL is the set of all control flows that A can
reach, but not initially programmed to execute.

We define the set Uhpp = {v1, v2, ..., vN} that contains all URL schemas that
can initiate a control flow f ∈ Fh. Ideally, we want A to reject all incoming v

for which the following relationship holds:

∀v ∈ Uhpp −→ f ∈ Fh.

Notice that flows in Fh may have arbitrary consequences and force the web
application to produce undesired results.

2.2 Extreme Cases

We have defined HPP as a technique that is based on the creation of URLs em-
bedding a combination of legitimate, yet unexpected, HTTP parameters, which
can drive a web application to an undesired state. So far, we have discussed
only the case where a combination of parameters is not handled (sanitized) cor-
rectly. However, it is possible that HPP can be carried out using the following
techniques, depending always on the complexity of the web application.

ARC: Application Request Caches 7

HASH

URLAction1

URLAction2

URLAction3

URLActionN

p1 = p2 = p3 =

p1 =

p5 =

p4 =

p2 =

p2 =

null

p1 = p6 = p7 =

p9 =

p2 = p4 =

Fig. 2. The data structures used by ARC. A hash table, which holds references to
linked lists hosting the set of the parameters of each schema. Each entry in the table
has been produced by hashing the action part of a URL schema.

Parameter Sequence. An attacker may carefully construct URLs that contain
valid HTTP parameters, but in a non-expected order. Depending on the com-
plexity of a web application, it might be possible that the URLs trigger a series
of server-side scripts, which if executed in a non-expected order, a surprising
result occurs. Note that ARC can be configured so that it can protect against
such attacks (see Section 3).

Parameter Values. An attacker may carefully construct URLs that have an
expected sequence of HTTP parameters, but with erroneous values. This case is
hard to prevent, since it stems from unsafe input sanitization. ARC is based on
URL schemas, which have already masked out all values, and tries to prevent
parameter injection. We believe that with minor modifications, ARC might be
able to handle such scenarios, but it needs significant effort and knowledge of
the web application’s internals by the developer.

3 Application Request Cache

An ARC is a cache that stores all possible URL schemas supported by a web
application’s logic. Recall that a URL schema is characterized by an action
and a set of parameters. Each parameter is not bounded by a specific range of
values. URL schemas express generators of HTTP requests served by the web
application and they act as descriptors of valid control flows. A URL schema
describes a series of different control flows. For example, consider the following
URL schema taken from the running example of this paper:

www.e-store.com/process-item?item_id=&action=

The schema is characterized by an action, in our example “process-item”,
and a set of two parameters: {item id, action}. New control flows are created

8 E. Athanasopoulos, V. P. Kemerlis, M. Polychronakis, E. P. Markatos

depending on the value each parameter of the set takes. If “delete” is assigned
to “action” the product corresponding to a given “item id” will be erased. If
“show” is assigned to “action” the product corresponding to a given “item id”
will be rendered in the user’s browser. ARC aims at collecting and maintaining
all benign URL schemas supported by a web application. An ARC-enabled web
application, checks every incoming HTTP request to verify if a benign URL
schema for the particular request is already stored in the ARC. In the case
there is no available schema, ARC does not forward the HTTP request to the
application server, and the event is logged. There are two crucial things for
the transparent and efficient operation of the system. First, the collection of
URL schemas must take place in a controlled environment and in an automated
fashion. Second, upon the schemas’ cache has been built, ARC must resolve each
incoming HTTP request as fast as possible.

Data Collection - Training. ARC needs to know in advance all valid URL
schemas supported by the web application. Thus, ARC needs initially to be
trained, while the web application is running in non-hostile environment and is
receiving only legitimate traffic. It is common for many anomaly detection sys-
tems to require an initial training phase [30,25,29]. While in training phase, ARC
passively monitors all web traffic received by the web application, filters out all
URLs and extracts all URL schemas. These URL schemas are the generators
of the complete set of legitimate HTTP requests the web application can serve
without becoming HPP exploitable. Training is particularly easy for large com-
panies, which perform extensive beta-testing prior publishing their applications
in the wild. Passively monitoring a web application while it is being developed
can produce the complete set of allowed schemas, since developers are used to
test every new feature they implement. Training is also easy for applications
that are based on frameworks for providing blog, forum, or other web services.
This is because the application must be monitored once for extracting all URL
schemas. The same cache can be used by all application instances.

Another option is to use a crawler or scanner for extracting all possible URLs
the application provides. However, modern applications use dynamic interfaces
implemented in AJAX [12], which many times perform requests towards the ap-
plication server asynchronously using JavaScript. These requests cannot be easily
captured by a crawler. However, today, there are efforts towards sophisticated
crawlers that can handle the complexity and the dynamic nature of Web2.0 ap-
plications with rich interfaces. One such effort is Crawljax [22], which has been
used by researchers for extracting the user interface of Web2.0 applications [8].
Finally, notice, that many frameworks assume that all URLs an application can
handle is known [26,16,2] (see discussion in Section 6).

Data Structures. The data structures used by ARC is a hash table and
a collection of linked lists. Each schema is stored in the cache in the following
way. First, the action part of the schema is hashed. In the case there is no entry
in the hash table with the same key, a new hash node is inserted at the index,
which is equal to the key. Otherwise, a pointer of the currently occupied index
of the hash table is fetched. This pointer holds references to linked lists, which

ARC: Application Request Caches 9

host the set of the parameters of each schema. In the case that there is no list
hosting the parameters of the new schema, a new one is created and a reference
is assigned to the hash index. The data structures are schematically depicted in
Figure 2. Observe the hash table that stores each action (from 1 to N), which
is noted with URLActionX. Each hash entry stores pointers towards a series of
linked lists. In the example ARC of Figure 2, URLAction1 stores two pointers,
meaning that this entry describes two different URL schemas, each of them de-
scribed by three different parameters. In the same fashion, URLAction2 stores
one pointer towards a list that contains a single parameter, and URLAction3

stores a pointer towards null, meaning the particular schema takes no parame-
ters. Finally, URLActionN stores three pointers towards three lists, containing 1,
4, and 2 parameters, respectively.

Search Algorithm. It is trivial now to derive the search algorithm and its
complexity, since we have analyzed the data structures employed by ARC in the
previous part. For each incoming HTTP GET or POST request the URL schema
is derived by parsing the request line. The action part (the part before the char-
acter “?”) and the set of parameters (all left parts of expressions “par=var”
delimited with each other by the character “&”) are derived in this step. We
assume that URLs follow the specification [6]. ARC can be extended to use a
custom URL schema, for web applications that do not follow the specification,
since ARC runs purely at the server side and, thus, can co-operate with the ap-
plication server. We do not account for parsing operations in complexity, since
all requests have to be parsed by the application server, no matter if ARC is
enabled or not. When a URL schema is derived, the action part is hashed and
is looked-up in the ARC table. The complexity of this operation is O(1). Now,
the set with the parameters of the schema has to be checked against all sets
already stored with this action. We define as URL action density, ρ, the ratio of
unique actions over all possible URL schemas. For example, a web application
that supports 1,000 URL schemas and those include 100 unique actions, has
ρ = 0.1. The density reversed approximates how many schemas are associated
with a particular action, or how many lists are associated with each hash bucket.
Assuming that an input schema has a number of parameters, N , then the com-
plexity of the search is O(N

ρ
). Thus, the complexity of the complete algorithm

is O(1) +O(N
ρ
) ≃ O(N). Thus, the search algorithm has linear complexity with

the number of parameters of each input schema.

Optimizations. We can substitute the linked lists with trees, in order to
reduce the search time required for scanning the lists. The optimized version can
reduce the search time and, thus, increase the URL throughput (see Section 4).
However, security must be sacrificed, since cases described in Section 2.2 cannot
be handled correctly. Thus, for the rest of this paper, we discuss and evaluate only
the unoptimized ARC. A second approach is to use DFAs for searching the cache.
Consider, for example, that each URL can be represented by a string, whose
characters are selected from a space defined by all the different parameters, which
can occur in all collected URL schemas. Although, a DFA has linear complexity
in search, in practice, implementing regular expressions that can contain all the

10 E. Athanasopoulos, V. P. Kemerlis, M. Polychronakis, E. P. Markatos

thousands of URL parameters used by a large web application is not considered
trivial, due to intrinsic constraints of current off-the-shelf implementations. For
example, PCRE 4 has a hard limit for the maximum size of a regular expression,
and it needs special recompilation for changing this. Finally, we can use a single
hash table for speeding up search. For each incoming schema, we can concatenate
the action part and all parameters and feed the result to a hashing function. By
definition, this will speed up the search to O(1), no-matter the length of the
URL parameters of each incoming schema. However, large web applications,
using many URLs, will experience hash collisions, which can be resolved by
incorporating linked lists. Thus for large web applications, this approach is,
essentially, identical to the approach we follow for building ARC.

3.1 Implementation

We implemented an ARC prototype in Go [19]. Go is a programming language
created by Google for fast system development. We created two versions, one
single-threaded and one that utilizes 4 threads. In the world of Go, the term
goroutine is used, instead of thread. Goroutines cannot be used standalone.
There is no way for a goroutine to complete and communicate the result to the
rest of the program, unless a channel is used. Thus, for the rest of this paper, we
will refer to the single-threaded version as single-channel ARC and to the multi-
threaded one as 4-channel ARC. As far as the data structures are concerned,
we use maps for implementing the hash and slices for implementing the linked
lists. Maps and slices are standard data structures provided by Go. A map

represents a relation of two data types, one serving as the key and one as the
data holder. On the other hand, slices are similar to C arrays, but their size
can be modified at run-time. The ARC implementation works as follows. First,
it builds the cache by reading a collection of already stored URLs in the disk. It
forms the cache (see Figure 2), which is maintained in memory (we evaluate the
system’s memory footprint in Section 4). For each incoming HTTP request the
application server extracts the URL (and the POST parameters, if it is required)
and forwards it to the ARC. The URL schema is extracted and the ARC looks
up in the available cache for its existence. If the schema exists, the parsed form of
the URL is forwarded to the application server, otherwise the incoming request
is dropped and the event is logged. We implemented ARC and the application
server in Go. However, with minimum changes, ARC can cooperate with any
modular application server.

4 Evaluation

All experiments are carried out using artificially created traces. In this way, we
are able to create large collections with thousands of URL schemas, in order to
stress our implementation as much as possible. Initially, we create three different

4 http://www.pcre.org

http://www.pcre.org

ARC: Application Request Caches 11

Web Application URLs Min Par. Max Par. ρ

Small 1,000 5 12 0.01
Medium 10,000 7 15 0.001
Heavy 100,000 12 20 0.001

Table 1. Properties of URL sets used in evaluation. Each set is characterized by
4 properties: (1) the amount of URLs the set includes, (2) the minimum number of
parameters a random URL of the set may include, (3) the maximum number of pa-
rameters a random URL of the set may include, and (4) the density ρ of the set.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 5 10 15 20

C
D

F

Number of HTTP Parameters

HTTP Parameters Distribution (Real Trace)

URLs

Fig. 3. Cumulative distribution function of HTTP parameters, as collected from a
real-world trace, including HTTP/HTTPS traffic for the phpBB and phpMyAdmin
applications. The plot depicts 1 million URLs sampled from a trace containing over 50
millions of captured URLs.

URL sets. The set is composed by URLs that are formed by a random action part
and by a set of random strings representing URL parameters. Each parameter is
a random string of size between 6 and 16 characters. Each set is characterized by
4 properties: (1) the amount of URLs the set includes, (2) the minimum number
of parameters a random URL of the set may include, (3) the maximum number
of parameters a random URL of the set may include, and (4) the density ρ of
the set. Recall from Section 3, that ρ is defined as the ratio of unique actions
over all possible URL schemas. Thus, we create three URL collections, each one
representing a different web application. The first set contains 1,000 URLs, each
one having 5 to 12 parameters, with ρ = 0.01. We will further refer to this set
as Small Application. The second set contains 10,000 URLs, each one having 7
to 15 parameters, with ρ = 0.001. We will further refer to this set as Medium

Application. Finally, the third set contains 100,000 URLs, each one having 12
to 20 parameters, with ρ = 0.001. We will further refer to this set as Heavy

Application. We summarize all these details in Table 1.

The characteristics of the artificially created traces are based on real-world
evidence. We monitored two well-known web applications, phpBB and php-
MyAdmin, and managed to collect over 50 millions of URLs. We then analyzed

12 E. Athanasopoulos, V. P. Kemerlis, M. Polychronakis, E. P. Markatos

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70
C

D
F

microseconds

Request Resolution (Single Channel)

Heavy App
Medium App

Small App

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

C
D

F

microseconds

Request Resolution (4 Channels)

Heavy App
Medium App

Small App

Fig. 4. Cumulative distribution function of all measured resolutions, for both the
single-channel and the 4-channel version of the ARC, and for all different web appli-
cations. The majority of all request resolutions, about 98%, are completed in less than
10 microseconds.

10
5

10
6

 0 100 200 300 400 500 600

U
R

L
s

seconds

Throughput (small web application)

Single Channel
4 Channels

10
5

10
6

 0 100 200 300 400 500 600

U
R

L
s

seconds

Throughput (medium web application)

Single Channel
4 Channels

10
4

10
5

10
6

 0 100 200 300 400 500 600

U
R

L
s

seconds

Throughput (heavy web application)

Single Channel
4 Channels

Fig. 5. Resolved requests per second for the small, medium, and heavy application, re-
spectively. The 4-channel ARC significantly outperforms the single-channel one, serving
hundreds of thousands requests per second, in all applications.

a sample of 1 million URLs and measured the number of HTTP parameters
per HTTP GET/POST request. We plot the CDF in Figure 3. Notice, that the
majority of HTTP requests include less than 5 different parameters, and there
were not recorded HTTP requests containing more than 18 parameters. The tree
different URL sets are precomputed and stored to files on disk. For each exper-
iment, ARC loads the URLs, exports the schemas, and creates the caches as we
described in Section 3 (see Figure 2). All information is maintained in memory.
As far as the hardware setup is concerned, all experiments run in a Linux server,
equipped with i7/2.93 GHz (4-cores) and 4 GB RAM.

4.1 Request Resolution

We are interested to identify the average time it takes for ARC to process one
singe request. We run the ARC with one of the three URL sets, which corre-
spond to a particular web application (small, medium, and heavy). We forward
1,000,000 URL requests towards ARC, after it has loaded all URLs and has built
all data structures. All requests are taken randomly from the initial file that hosts
the artificially created URLs. For each request we measure the time needed by
ARC to find the URL schema that corresponds to the incoming URL request.

ARC: Application Request Caches 13

10
3

10
4

10
5

10
6

Sm
all

M
edium

H
eavy

B
y
te

s

Application

Resident Set Size

Single
4-Channels

10
4

10
5

10
6

Sm
all

M
edium

H
eavy

B
y
te

s

Application

Virtual Size

Single
4-Channels

Fig. 6. Resident Set Size (RSS) and Virtual Size (VSIZE), both as reported by ps(1),
while running ARC for each one of the three applications. Notice, that both, 4-channel
and single-channel, versions have similar memory requirements. Also, memory require-
ments, in terms of RSS, from application to application increase linearly.

The search time includes parsing the initial URL. We perform all measurements
with the Nanoseconds() function, which is contained in the time package.

In Figure 4 we plot the CDF of all measured resolutions, for both the single-
channel and the 4-channel ARC, and for all different web applications. It is
important to highlight the following. First, the majority of all request resolutions,
about 98%, are completed in less than 10 microseconds. We consider that the
performance is enough for not causing significant overhead to an application
server, even in configurations that are based on commodity hardware. Second,
the requests for the heavy application seem to be resolved a little bit slower than
the medium one, and the requests of the medium one seem to be resolved a little
bit slower than the small one. This is reasonable, since the heavy application is
characterized by URLs that have more parameters that the ones of the medium
and of the small ones. This has two consequences: (1) the parsing time is longer
(recall, that we account for parsing in every search operation), and (2) the lists’
size is larger or, more formally, N is larger (recall the complexity of the search
algorithm, O(N), presented in Section 3). Finally, notice that the 4-channel ARC
behaves worse than the single-channel ARC (all CDFs are shifted to the right, in
the right plot of Figure 4). Initially, this seems to be counterintuitive. However,
it is not. The 4-channel version has the additional overhead of managing and
context-switching the 4 goroutines. This affects slightly the performance of each
request resolution. Nevertheless, the overall performance of the 4-channel version
significantly outperforms the single-channel version, since the 1,000,000 requests
are completed in shorter time. We quantify this in the following part.

4.2 Request Throughput

We configure ARC to run with each one of the three different applications for
600 seconds. We record how many requests ARC can resolve per second for the
small, medium and heavy application, respectively. We run all experiments for

14 E. Athanasopoulos, V. P. Kemerlis, M. Polychronakis, E. P. Markatos

1 package hello

2

3 import (

4 "arc"
5
6)

7

8 func init() {

9 http.HandleFunc("/", handler)
10 arc_stats = arc.Init()
11 }

12

13 func handler(w http.ResponseWriter, r *http.Request) {

14 if (arc.FilterURL(r.URL.RawPath) == true) {
15 fmt.Fprint(w, deliver_page(r))

16 } else {
17 fmt.Fprint(w, deliver_error("URL is not supported."))
18 }

19 }

Fig. 7. An example web application written in Go, for running over Google’s Ap-
pEngine, which incorporates ARC. Some functions are omitted for presentation pur-
poses. Notice, that ARC integrates seamlessly with the rest of the code.

both, 4-channel and the single-channel, ARC implementations. We present the
results in Figure 5. Notice, that the 4-channel ARC significantly outperforms
the single-channel one in all applications. Observe, that the 4-channel ARC can
serve hundreds of thousands requests per second. This is to be expected, because
the 4-channel ARC takes advantage of all 4 cores of the server. Thus, a typical
request resolution maybe slightly faster for the single-channel ARC, but the
overall throughput is much greater for the 4-channel ARC.

4.3 Memory Footprint

ARC stores all information (i.e., all URL schemas) in memory for fastest access.
The more the distinct URL schemas a web application has, the more the memory
the ARC needs. In Figure 6 we plot the Resident Set Size (RSS) and the Virtual
Size (VSIZE), both as reported by ps(1), while running ARC for each one of
the three applications. Notice that both versions (i.e., 4-channel and single-
channel) have similar memory requirements. This is to be expected, since both
versions maintain memory in exactly the same way. Notice, also, that the memory
requirements, in terms of RSS, from application to application increase linearly.
Recall from Table 1, that the size of complexity, in terms of URL schemas, for
each application increases by one order of magnitude.

5 Case Study

Google AppEngine [9] is a platform for deploying web applications. Recently,
Google announced an SDK for building web applications in Go. Although, it is

ARC: Application Request Caches 15

still experimental, it seems the ideal application server for incorporating ARC
into. Notice, that ARC can be enabled in any application server as an external
CGI script. A typical web application written in Go is composed as a package.
There are many official Go packages for managing HTTP requests and URLs,
which can be easily imported in the main package, which serves as the core of
the application. Next, there is an initialization routine which assigns handlers
for URLs matching a specific pattern, and, finally, there is a series of handlers
that can serve incoming requests. Enabling ARC for an AppEngine application is
trivial. In Figure 7 we present the skeleton of an example web application written
in Go for running over Google’s AppEngine. Some functions have been omitted
for presentation reasons. There are three basic steps needed for enabling ARC.
First, the arc package must be imported (line 4). Second, arc.Init() must be
called for initializing the cache (line 10). This function reads all available URL
schemas from a text file and organizes them to data structures in memory (see
Section 3 for the description of the data structures used). Finally, a check is
applied to the core request handler for filtering out all incoming URLs that are
not compatible with any of the available stored schemas. This check is performed
using the arc.Filter() function, which takes as a parameter the incoming URL
in raw format (line 14) and returns a boolean value (true if the URL compiles
to a valid schema, false otherwise).

6 Related Work

HPP is originally discovered by Luca Carettoni and Stefano di Paola in 2009 [21].
The most relevant research to ARC is PAPAS [3], which aims at detecting HPP
vulnerabilities through a black-box scanning technique. In this respect, PAPAS
and ARC are different, since ARC aims at preventing exploitation through HPP;
ARC assumes that the application is vulnerable. Nevertheless, the two technolo-
gies can be combined. A web application, which rapidly changes, can use ARC for
protection and occasionally scanned for new HPP vulnerabilities. HPP Finder [1]
is a Chrome extension that scans web pages in real-time for detecting potential
HPP exploits. Thus, the extension aims at protecting the end user from vulner-
able (to HPP) web applications. However, HPP Finder has limited scope. It can
identify only hyperlinks and forms that include a particular parameter multiple
times. As we have already discussed in Section 2, HPP is a broader class of vul-
nerabilities that can be manifested when a parameter occurs multiple times in
an HTTP request. Moreover, HPP Finder has many false positives, especially in
pages with radio buttons. Therefore, HPP Finder is not considered a complete
solution against HPP exploitation, but rather a precaution.
There are many frameworks for detecting and preventing XSS [18,23,14,28,26,32].
Robertson and Vigna [26] attempt to introduce structure in the web documents
served by a web application, for taking advantage of it and detect potential
injections. The framework needs a map of all URLs that the application sup-
ports in advance. In their context, this is called a RouteMap and it is similar to
the routes package present in popular web development frameworks, such as

16 E. Athanasopoulos, V. P. Kemerlis, M. Polychronakis, E. P. Markatos

Rails [16] and Pylons [2]. ARC needs also all URLs supported by a web appli-
cation, in order to extract all possible URL schemas. However, ARC does not
assume that this information is known (we have listed techniques in Section 3
for collecting URLs). Researchers have developed generic techniques for covering
web exploitation [25,30]. These techniques share a common property with ARC;
they are also based on a training phase for collecting features that characterize
the benign behavior of the web application. These proposals are more generic,
and, thus, suffer from false positives. ARC, on the other hand, is practical and
focuses on HPP only. Web exploitation is not only XSS. HPP is among the
recently discovered highly sophisticated techniques for attacking a web appli-
cation [5,7,27,20,4,15,36]. To that end, many academic efforts aim at applying
security concepts from operating systems to the web platform [34,35,13,24,31].

7 Conclusion

HTTP Parameter Pollution (HPP) is a recently discovered technique for exploit-
ing web applications. Since web applications communicate with browsers using
HTTP requests and responses, the communication can be polluted by injecting
parameters that alter the control flow of the web application according to an at-
tacker’s need. In this paper, we constructed a formal threat model for HPP and
we proposed Application Response Caches (ARC), a framework that can pre-
vent HPP exploitation in web applications. ARC can be transparently enabled
in an application server, without further modifications to the web application
and to the clients. We implemented a single-channel and a 4-channel ARC pro-
totype using Google’s Go language. ARC running on a 4-core Linux server, with
4 concurrently running goroutines, can process hundreds of thousands of URL
requests per second. A typical URL resolution is in the scale of microseconds.
Memory requirements, in terms of RSS, from application to application increase
linearly with the size of different URL schemas.

Acknowledgements. This work was supported in part by the FP7 project
SysSec, the FP7-PEOPLE-2010-IOFproject XHUNTER, and the FP7-PEOPLE-
2009-IOF project MALCODE, funded by the European Commission under Grant
Agreements No. 257007, No. 273765, and No. 254116, respectively, and by DARPA
through Contract FA8650-11-C-7190. Any opinions, findings, conclusions, or rec-
ommendations expressed herein are those of the authors, and do not necessarily
reflect those of the European Commission, US Government, or DARPA.

References

1. Athanasopoulos, E.: HPP Finder (2011), http://www.ics.forth.gr/~elathan/

extra/hpp/index.html

2. B. Bangert and J. Gardner: The Pylons Project http://pylonsproject.org, last
visited on July 2011.

http://www.ics.forth.gr/~elathan/
extra/hpp/index.html
http://pylonsproject.org

ARC: Application Request Caches 17

3. Balduzzi, M., Gimenez, C., Balzarotti, D., Kirda, E.: Automated discovery of pa-
rameter pollution vulnerabilities in web applications. In: Proceedings of the 18th
Network and Distributed System Security Symposium (2011)

4. Barth, A., Caballero, J., Song, D.: Secure Content Sniffing for Web Browsers or
How to Stop Papers from Reviewing Themselves. In: Proceedings of the 30th IEEE
Symposium on Security & Privacy. Oakland, CA (May 2009)

5. Barth, A., Jackson, C., Mitchell, J.C.: Robust Defenses for Cross-
Site Request Forgery. In: Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security (CCS) (2008),
http://crypto.stanford.edu/websec/csrf/csrf.pdf

6. Berners-Lee, T., Masinter, L., McCahill, M.: RFC 1738: Uniform Resource Locators
(URL) (1994), http://www.ietf.org/rfc/rfc1738.txt

7. Bojinov, H., Bursztein, E., Boneh, D.: XCS: Cross Channel Scripting and Its Im-
pact on Web Applications. In: CCS ’09: Proceedings of the 16th ACM conference
on Computer and communications security. pp. 420–431. ACM, New York, NY,
USA (2009)

8. Chapman, P., Evans, D.: Automated Black-Box Detection of Side-Channel Vul-
nerabilities in Web Applications. In: Proceedings of the 18th ACM conference on
Computer and Communications Security. pp. 263–274. CCS ’11, ACM, New York,
NY, USA (2011), http://doi.acm.org/10.1145/2046707.2046737

9. Ciurana, E.: Developing with Google AppEngine. Springer (2009)
10. Dhamija, R., Tygar, J., Hearst, M.: Why Phishing Works. In: Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. pp. 581–590. ACM
New York, NY, USA (2006)

11. Fogie, S., Grossman, J., Hansen, R., Rager, A., Petkov, P.: XSS Attacks: Cross
Site Scripting Exploits and Defense. Syngress Publishing (2007)

12. Garrett, J., et al.: Ajax: A New Approach to Web Applications. Adaptive path 18
(2005)

13. Grier, C., Tang, S., King, S.: Secure Web Browsing with the OP Web Browser. In:
Security and Privacy, 2008. pp. 402–416. IEEE (2008)

14. Gundy, M.V., Chen, H.: Noncespaces: Using Randomization to Enforce Informa-
tion Flow Tracking and Thwart Cross-Site Scripting Attacks. In: Proceedings of
the 16th Annual Network and Distributed System Security Symposium (NDSS).
San Diego, CA (Feb 8-11, 2009)

15. Hansen, R., Grossman, J.: Clickjacking (2008), technical Report, SecTheory,
http://www.sectheory.com/clickjacking.htm

16. Hansson, D.H. and others: Ruby on Rails http://www.rubyonrails.org, last vis-
ited on July 2011.

17. Jackson, C., Barth, A.: Forcehttps: Protecting High-security Web Sites from Net-
work Attacks. In: Proceeding of the 17th International Conference on World
Wide Web. pp. 525–534. WWW ’08, ACM, New York, NY, USA (2008),
http://doi.acm.org/10.1145/1367497.1367569

18. Jim, T., Swamy, N., Hicks, M.: Defeating Script Injection Attacks with Browser-
Enforced Embedded Policies. In: WWW ’07: Proceedings of the 16th international
conference on World Wide Web. pp. 601–610. ACM, New York, NY, USA (2007)

19. John P. Baugh: Go Programming (June 2010), iSBN: 1453636676
20. Lin-Shung, H., Zack, W., Chris, E., Collin, J.: Protecting Browsers from Cross-

Origin CSS Attacks. In: CCS 10: Proceedings of the 17th ACM Conference on
Computer and Communications Security. ACM, New York, NY, USA (2010)

21. Luca Carettoni and Stefano di Paola: HTTP Parameter Pollution (2009),
https://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf

http://crypto.stanford.edu/websec/csrf/csrf.pdf
http://www.ietf.org/rfc/rfc1738.txt
http://doi.acm.org/10.1145/2046707.2046737
http://www.sectheory.com/clickjacking.htm
http://www.rubyonrails.org
http://doi.acm.org/10.1145/1367497.1367569
https://www.owasp.org/images/b/ba/AppsecEU09_CarettoniDiPaola_v0.8.pdf

18 E. Athanasopoulos, V. P. Kemerlis, M. Polychronakis, E. P. Markatos

22. Mesbah, A., Bozdag, E., Deursen, A.v.: Crawling AJAX by Inferring User Interface
State Changes. In: Proceedings of the 2008 Eighth International Conference on Web
Engineering. pp. 122–134. ICWE ’08, IEEE Computer Society, Washington, DC,
USA (2008), http://dx.doi.org/10.1109/ICWE.2008.24

23. Nadji, Y., Saxena, P., Song, D.: Document Structure Integrity: A Robust Basis
for Cross-site Scripting Defense. In: Proceedings of the 16th Annual Network and
Distributed System Security Symposium (NDSS). San Diego, CA (Feb 8-11, 2009)

24. Reis, C., Gribble, S.: Isolating web programs in modern browser architectures. In:
Proceedings of the 4th ACM European Conference on Computer Systems (Eu-
roSys). pp. 219–232. ACM (2009)

25. Robertson, W., Vigna, G., Kruegel, C., Kemmerer, R.: Using Generalization and
Characterization Techniques in the Anomaly-based Detection of Web Attacks. In:
Proceeding of the Network and Distributed System Security Symposium (NDSS).
San Diego, CA (February 2006)

26. Robertson, W., Vigna, G.: Static Enforcement of Web Application Integrity
Through Strong Typing. In: Proceedings of the 18th USENIX Security Sympo-
sium. Montreal, Quebec (August 2009)

27. Saxena, P., Hanna, S., Poosankam, P., Song, D.: FLAX: Systematic Discovery of
Client-side Validation Vulnerabilities in Rich Web Applications. In: Proceedings of
the 17th Annual Network and Distributed System Security Symposium (NDSS)

28. Sekar, R.: An Efficient Black-box Technique for Defeating Web Application At-
tacks. In: Proceedings of the 16th Annual Network and Distributed System Secu-
rity Symposium (NDSS). San Diego, CA (Feb 8-11, 2009)

29. Sommer, R., Paxson, V.: Outside the closed world: On using machine learning
for network intrusion detection. In: Proceedings of the 2010 IEEE Symposium on
Security and Privacy. pp. 305–316. SP ’10, IEEE Computer Society, Washington,
DC, USA (2010), http://dx.doi.org/10.1109/SP.2010.25

30. Song, Y., Keromytis, A., Stolfo, S.: Spectrogram: A Mixture-of-Markov-Chains
Model for Anomaly Detection in Web Traffic. In: Proceedings of the 16th Annual
Network and Distributed System Security Symposium (NDSS) (2009)

31. Tang, S., Mai, H., King, S.: Trust and Protection in the Illinois Browser Operating
System. In: Proceedings of the 10th USENIX conference on Operating Systems
Design and Implementation (OSDI). USENIX (2010)

32. Ter Louw, M., Venkatakrishnan, V.: Blueprint: Precise Browser-neutral Prevention
of Cross-site Scripting Attacks. In: Proceedings of the 30th IEEE Symposium on
Security & Privacy. Oakland, CA (May 2009)

33. Tim Berners-Lee: Tim Berners-Lee on the WorldWideWeb project. USENET post.
(1991), http://groups.google.com/group/alt.hypertext/tree/browse_frm/

thread/7824e490ea164c06/f61c1ef93d2a8398

34. Wang, H.J., Fan, X., Howell, J., Jackson, C.: Protection and Communication Ab-
stractions for Web Browsers in MashupOS. In: Bressoud, T.C., Kaashoek, M.F.
(eds.) SOSP. pp. 1–16. ACM (2007)

35. Wang, H.J., Grier, C., Moshchuk, A., King, S.T., Choudhury, P., Venter, H.: The
Multi-Principal OS Construction of the Gazelle Web Browser. In: Proceedings of
the 18th USENIX Security Symposium. Montreal, Canada (August 2009)

36. Weinberg, Z., Chen, E., Jayaraman, P., Jackson, C.: I Still KnowWhat You Visited
Last Summer. In: Proceedings of the 32th IEEE Symposium on Security & Privacy.
Oakland, CA (May 2011)

37. XSSed.com: XSS exploit in key example., http://xssed.com/mirror/33541/

http://dx.doi.org/10.1109/ICWE.2008.24
http://dx.doi.org/10.1109/SP.2010.25
http://groups.google.com/group/alt.hypertext/tree/browse_frm/
thread/7824e490ea164c06/f61c1ef93d2a8398
http://xssed.com/mirror/33541/

	ARC: Protecting against HTTP Parameter Pollution Attacks Using Application Request Caches

