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ABSTRACT
In recent years, many techniques have been developed to improve
the performance and efficiency of data center networks. While these
techniques provide high accuracy, they are often designed using
heuristics that leverage domain-specific properties of the workload
or hardware.

In this vision paper, we argue that many data center networking
techniques, e.g., routing, topology augmentation, energy savings,
with diverse goals share design and architectural similarities. We
present a framework for developing general intermediate representa-
tions of network topologies using deep learning that is amenable to
solving a large class of data center problems. We develop a frame-
work, DeepConf, that simplifies the process of configuring and train-
ing deep learning agents by using our intermediate representation
to learn different tasks. To illustrate the strength of our approach,
we implemented and evaluated a DeepConf-agent that tackles the
data center topology augmentation problem. Our initial results are
promising — DeepConf performs comparably to the optimal solu-
tion.

CCS CONCEPTS
• Networks → Programmable networks; • Computing method-
ologies → Reinforcement learning;
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1 INTRODUCTION
Data center networks (DCN) are a crucial and important part of the
Internet’s ecosystem. The performance of these DCNs can impact
a wide variety of services ranging from web browsing and videos
to Internet of Things: the poor performance of these DCNs can
result in as much as a $4 million loss in revenue [1]. Motivated by
the importance of these networks, the networking community has
explored techniques for improving and managing the performance
of data center networks by: (1) designing better routing or traffic
engineering algorithms [6, 8, 12, 15], (2) enriching the fixed topology
with a limited number of flexible links [13, 18, 19, 37], and (3)
removing corrupted and underutilized links from the topology [16,
20, 39].

Regardless of the approach, these topology-oriented techniques
have three things in common: (1) Each is formalized as an optimiza-
tion problem with a corresponding Linear Program (LP) or Integer
Linear Program (ILP) solution. (2) Due to the impracticality of scal-
ably solving these optimizations, greedy heuristics are employed to
create approximate solutions. (3) Most of these heuristics do not gen-
eralize because they are intricately tied to the high-level application
patterns and technological constraints. In particular, determining the
optimal routes, the optimal location to add augmenting links, or the
optimal set of links to remove under diverse and rapidly evolving
conditions is challenging (even NP-hard) [13, 18, 19, 37]. Existing
domain-specific heuristics provide suboptimal performance and are
often limited to specific scenarios. Thus as a community, we are
forced to revisit and redesign these heuristics whenever the appli-
cation pattern or network details changes – even a minor change.
For example, while c-through [37] and FireFly [19] solve broadly
identical problems, they leverage different heuristics to account for
hardware differences.

In this vision paper, we articulate our vision for replacing domain-
specific rule-based heuristics for topology management with a more
general machine learning-based (ML) model that quickly learns op-
timal solutions to a class of problems while adapting to changes in
the application patterns, network dynamics, and low-level network
details. Unlike recent attempts that employ ML to learn point solu-
tions, e.g., cluster scheduling [25] or routing [9], in this paper, we
present a general framework, called DeepConf, that simplifies the
process of designing ML models for a broad range of DCN topology
problems and eliminates the challenges associated with efficiently
training new models.

The key challenges in designing DeepConf are: (1) tackling the
dichotomy that exists between deep learning’s requirements for large
amounts of supervised data and the unavailability of these required
datasets, and (2) designing a general, but highly accurate, deep
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learning model that efficiently generalizes to learning a broad array
of data center problems ranging from topology management and
routing to energy savings.

The critical insight underlying DeepConf is that intermediate fea-
tures generated from the parallel convolutional layers using network
data, e.g., traffic matrix, allows us to generate an intermediate repre-
sentation of the network’s state that enables learning a broad range
of data center problems. Moreover, while labeled production data
crucial for machine learning is unavailable, empirical studies [23]
show that modern data center traffic is highly predictable and thus
amenable to offline learning with network simulators and historical
traces.

DeepConf builds on these insights by using reinforcement learn-
ing (RL), a deep learning technique, that learns through experience
and makes no assumptions on how the network works. Rather, they
are trained through the use of a reward signal which “guides” them
towards an optimal solution and thus do not require real-world su-
pervised data, and, instead, they can be trained using simulators.

The DeepConf framework provides a predefined RL model with
the intermediate representation, a specific design for configuring
this model to address different problems, an optimized simulator to
enable efficient learning, and a Software-defined networking (SDN)
platform for capturing network data and reconfiguring the network.

In this paper, we make the following contributions:

• We present a novel RL-based SDN architecture for developing
and training deep ML models for a broad range of DCN tasks.

• We design a novel input feature extraction for DCNs for develop-
ing different ML models over this intermediate representation of
network state.

• We implemented a DeepConf-agent tackling the topology augmen-
tation problem and evaluated it on representative topologies [4, 17]
and traces [3], showing that our approach performs comparable to
optimal.

2 RELATED WORK
Our work is motivated by the recent success of applying machine
learning and RL algorithms to computer games and robotic plan-
ning [27, 33, 35]. The most closely related works [9, 36] apply RL
to Internet service provider (ISP) networks. Unlike these approaches,
DeepConf focuses on data center networks which have significantly
larger scale and higher velocity than traditional ISP networks. Addi-
tionally, while these approaches [9, 36] focus on network routing,
DeepConf tackles the topology augmentation problem and explores
the use of deep networks as function approximators for RL. Existing
applications of machine learning to data centers focus on improving
cluster scheduling [25] and more recently by Google to optimize
Power Usage Effectiveness (PUE) [2]. In this vision paper, we take
a different stance and focus on identifying a class of equivalent data
center management operations, namely topology management and
configuration, that are amenable to a common machine learning
approach and design a modular system that enables different agents
to interoperate over a network.

Figure 1: A k=4 Fat Tree topology with an optical switch.

3 BACKGROUND
This section provides an overview of data center networking chal-
lenges and solutions and provides background on our reinforcement
learning methods.

3.1 Data Center Networks
Data center networks introduce a range of challenges from topology
design and routing algorithms to VM placement and energy-saving
techniques. In this section, we focus on a subset of these problems
and illustrate high-level patterns that arise across these problems and
their solutions.

Data centers support a large variety of workloads and applica-
tions with time-varying bandwidth requirements. This variance in
bandwidth requirements leads to hotspots at varying locations and at
different points in time. To support these arbitrary bandwidth require-
ments, data center operators can employ non-blocking topologies;
however, non-blocking topologies are prohibitively costly. Instead,
these operators employ techniques ranging from hybrid architec-
tures [13, 18, 19, 37] and traffic engineering algorithms [6, 8, 12, 15]
to energy saving techniques [20, 30]. Below, we describe these tech-
niques and illustrate common design requirements and patterns.

Augmented Architectures: This class of approaches build on the
intuition that at any given point in time, there are only a small number
of hotspots. Thus, there is no need to use a non-blocking topology,
and the existing topology can be augmented with a small amount
of links to support these demands. For example, Figure 1 shows a
traditional Fat-Tree topology supplemented with an optical switch.
Additionally, over time these links can be moved around to different
locations as the hotspots move. These approaches augment the data
center’s electrical packet switched network with a small number of
flexible links (optical [13, 37], wireless [18], or free optics [19]. 1)
These proposals argue for monitoring the traffic, using an Integer
Linear Program (ILP) or heuristic to detect the hotspots and placing
these flexible links at the locations with these hotspots.

Traffic Engineering: Orthogonal approaches [6, 8, 12, 15] focus
on routing. Instead of changing the topologies, these approaches
change the mapping of flows to paths within a fixed topology. These
proposals, also, argue for monitoring traffic and detecting hotspots.
Instead of changing topologies, these techniques move a subset of
flows from congested links to un-congested links.

Energy Savings Data centers are notorious for their energy us-
age [16]. To address this, researchers have proposed techniques
to improve energy efficiency by detecting periods of low utilization
and selectively turning off links [20, 30]. These proposals argue for

1The number of augmented links is significantly smaller than the number of data center’s
permanent links.
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monitoring traffic, detecting low utilization, and powering-down
links in portions of the data center with low utilizations. A key chal-
lenge with these techniques is to turn on the powered-down links
before demands rise.

Taking a step back, these techniques roughly follow the same
design and operate in three steps (1) gather network traffic matrix,
(2) run an ILP to predict heavy (or low) usage, and (3) perform a
specific action on a subset of the network. The actions range from
augmenting flexible links, turning off links, or moving traffic. In all
situations, the ILP does not scale to a large network and a domain-
specific heuristic is often used in its place.

These set of tasks are ideal for a form of deep learning called
deep reinforcement learning — where in an algorithm learns through
experience the set of actions to perform under a variety of conditions.
Unlike supervised learning techniques which require a significantly
large corpus of labeled-data which is prohibitively expensive, unsu-
pervised learning techniques, e.g., DeepRL, learns from unlabeled-
data and merely requires data sets and a simulation.

3.2 Reinforcement Learning
Reinforcement learning (RL) algorithms learn through experience
with a goal towards maximizing rewards. Unlike supervised learning
where algorithms train over labels, RL algorithms learn by interact-
ing with an environment such as a game or a network simulator.

In traditional RL, an agent interacts with an environment over a
number of discrete time steps. Hence, at each time step t , the agent
in a world observes a state st in order to select an action at from a
possible action set A. The agent is guided by policy, π , which is a
function that maps state st to actions at . The agent receives a reward
rt for each action and transitions to the next state st+1. The goal
of the agent is maximizing the total reward. This process continues
until the agent reaches a final state or time limit, after which the
environment is reset, and a new training episode is played. After a
number of training episodes, the agent learns to pick actions that
maximize the rewards and can learn to handle unexpected states. RL
is effective and has been successfully used to model robotics, game
bots, etc.

Instead of learning over all state-action predictions, policy based
methods directly learn the policy to improve learning efficiency. The
goal of commonly used policy-based RL is to find a policy, π , that
maximizes the cumulative reward and converges to a theoretical
optimal policy. In deep policy-based methods, a neural network
computes a policy distribution π (at |st ;θ ), where θ represents the
set of parameters of the function. Deep networks as function ap-
proximators is a recent development and other learning methods
can be used. We now describe the REINFORCE and actor-critic
policy methods which represent different methods to score the pol-
icy J (θ ). REINFORCE methods [38] use gradient ascent on E[Rt ],
where Rt =

∑∞
i=0 γ

irt+i is the accumulated reward starting from
time step t and discounted at each step by γ ∈ (0, 1], the discount
factor. The REINFORCE method, which is the Monte-Carlo method,
updates θ using the gradient ∇θ logπ (at |st ;θ )Rt , which is an un-
biased estimator of ∇θ E[Rt ]. The value function is computed as
V π (st ) = E[Rt |st ] which is the expected return for following the

policy π in state st . This method provides actions with high returns
but suffers from high-variance of gradient estimates.

Asynchronous Advantage Actor Critic (A3C): A3C [26] im-
proves REINFORCE performance by operating asynchronously and
by using a deep network to approximate the policy and value faction.
A3C uses the actor-critic method which additionally computes a
critic function that approximates the value function. A3C, as used
by us, uses a network with two convolutional layers followed by
a fully connected layer. Each hidden layer is followed by a non-
linearity function (ReLU). A softmax layer which approximates
the policy function and a linear layer to output an estimate of the
value functionV (st ;θ ) together constitute the output of this network.
Asynchronous gradient descent using multiple agents is used to train
the network, and this improves the training speed. A central server
(similar to a parameter server) coordinates the parallel agents – each
agent calculates the gradients and sends the updates to the server
after a fixed number of steps, or when a final state is reached. Fur-
thermore, following each update, the central server propagates new
weights to the agents to achieve a consensus on the policy values.
There is a cost function with each deep network (policy and value).
Using two loss functions has found to improve convergence and
produce better-regularized models. The policy cost function is given
as:

fπ (θ ) = logπ (at |st ;θ ) (Rt −V (st ;θt )) + βH (π (st ;θ )) (3.1)

where θt represents the values of the parameters θ at time t , Rt =∑k−1
i=0 γ

irt+i + γ
kV (st+k ;θt ) is the estimated discounted reward.

H (π (st ;θ )) is used to favor exploration and its strength is controlled
by the factor β .The cost function for the estimated value function is:

fv (θ ) = (Rt −V (st ;θ ))2 (3.2)

Additionally, we augment our A3C model to learn current states
apart from accumulating rewards for good configurations using
GAE [32]. The deep network which replaces the transition matrix as
the function approximator learns the value of the given state and the
policy of the given state. The model uses GAE to compute the value
of a given state that not only returns the reward for the model for the
given policy decision but also rewards the model for estimating the
value of the state. This reward helps to guide the model to learn the
states instead of just maximizing rewards.

4 VISION
Our vision is to automate a subset of data center management and op-
erational tasks by leveraging DeepRL. At a high-level, we anticipate
the existence of several DeepRL agents, each trained for a specific
set of tasks, e.g., traffic-engineering, energy-savings, or topology-
augmentations. Each agent will run as an application atop an SDN
controller. The use of SDN provides the agents with an interface for
gathering network state and a mechanism for enforcing actions. For
instance, DeepConf should be able to assemble the traffic matrix by
polling the different devices within the network, compute a decision
for how the optical switch should be best configured to accommodate
the current network load and reconfigure the network.

At a high-level, DeepConf’s architecture consists of three com-
ponents (Figure 2): the network simulator to enable offline training
of the DeepRL agents, the DeepConf abstraction layer to facilitate
communication between the DeepRL agents and the network, and
the DeepRL agents, called DeepConf-agents, which encapsulate
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Figure 2: DeepConf Architecture.

data center functionality. Realizing this vision introduces several
interdisciplinary challenges across the networking, systems, and AI
communities.

Applying learning: The primary challenges in applying machine
learning to network problems are (1) the deficiency of training data
pertaining to operator and network behavior and (2) the lack of
models and loss functions that can accurately model the problem and
generalize to unexpected situations. This shortage of data presents a
roadblock for using supervised ML approaches which require data.
To address this issue, DeepConf uses RL where the model is trained
by exploring different network states and environments generated
by a simulators. Coupled with the wide availability of network job
traces, this allows for DeepConf to learn a highly generalizable
policy.

DeepConf Abstraction Layer: Today’s SDN controllers expose a
primitive interface with low-level information. The DeepConf ap-
plications will instead require high-level abstractions and interfaces.
For example, our agents will require interfaces that provide con-
trol over paths rather than overflow table entries. While emerging
approaches [21] argue for similar interfaces, these approaches do
not provide a sufficiently rich set of interfaces for the broad range
of agents we expect to support and do not provide composition
primitives for safely combining the output from the different agents.
Existing composition operators [14, 22, 29] assume that the different
SDN applications (or DeepConf-agent in our case) are generating
non-conflicting actions – hence these operators can not tackle con-
flicting actions. SDN Composition approaches [7, 28, 31] that do
tackle conflicting actions, require a significant rewrite of the SD-
NApps.

More concretely, we require high-layer SDN abstractions that
enable our DeepConf-agent to more easily learn and act on the
network. Additionally, we require novel composition operators that
can reason about and tackle conflicting actions generated by the
different DeepConf-agent.

Domain-specific Simulators: Existing SDN research leverages a
popular emulation platform, Mininet, which fails to scale to large
experiments. A key requirement for employing DeepRL is to have
efficient and scalable simulators that replay traces and enables learn-
ing from these traces [34]. We build on existing flow-based simula-
tors [10, 11] to model the various dimensions that are required to
train our models. To improve efficiency, we plan to explore tech-
niques that partition the simulation and enables reuse of results —
in essence, to allow incremental simulations.

In addressing our high-level vision and developing solutions to the
above challenges, there are several high-level goals that a production-
scale system must address: (1) our techniques must generalize across
topologies, traffic matrixes, and a range of operational settings, e.g.,
link failures; (2) our techniques must be as accurate and efficient as
existing state-of-the-art techniques; and (3) our solutions must incur
low operational overheads, e.g., minimizing optical switching time
or TCAM utilization.

5 DESIGN
In this section, we provide a broad description of how to define
and structure existing data center network management techniques
as RL tasks, then describe the methods for training the resulting
DeepConf-agents.

5.1 DeepConf Agents
In defining each new DeepConf-agent, there are four main functions
that a developer must specify: state space, action space, learning
model, and reward function. The action space and reward are both
specific to the management task being performed and are, in turn,
unique to the agent. Respectively, they express the set of actions
an agent can take during each step and the reward for the actions
taken. The state space and learning models are more general and
can be shared and reused across different DeepConf-agents. This
is because of the fundamental similarities shared between the data
center management problems, and because the agents are specifically
designed for data centers. The state-space consists of both general
state space and specific state space — we discuss the general state
space below and present a case study on a specific state space for
the topology problem in Section 6.

Next, we focus on the general components, i.e., state-space and
the learning model.

State Space: In general, the state space consists of two types of data
– each reflecting the state of the network at a given point in time.
First, the general network state that all DeepConf-agents require:
the network’s traffic matrix (TM) which contains information on the
flows which were executed during the last t seconds of the simulation.
Second, a DeepConf-agent specific state-space that captures the
impact of the actions on the network. For example, for the topology
augmentation problem, this would be the network topology – note,
the actions change the topology. Whereas for the traffic engineering
problem, this would be a mapping of flows to paths – note, the
actions change a flow’s routes.

Learning Model: Our learning model utilizes a Convolutional Neu-
ral Network (CNN) to compute policy decisions. The exact model
for a DeepConf-agent depends on the number of state-spaces used as
input. In general, the model will have as many CNN-blocks as there
are state spaces – one CNN-block for each state space. The output
of these blocks are concatenated together and input into two fully
connected layers, followed by a softmax output layer. For example,
for the topology-augmentation problem, as observed in Figure 4,
our DeepConf-agent has two CNN blocks to operate on both the
topology and the TM states spaces in parallel. This model allows
for the lower CNN layers to perform feature extraction on the input
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Figure 3: DeepConf-agent model training.

spatial data, and for the fully connected layers to assemble these
features in a meaningful way.

5.2 Network Training
To train a DeepConf-agent, we run the agent against a network
simulator. The interaction between the simulator and the DeepConf-
agent can be described as follows (Figure 3): (1) The DeepConf-
agent receives state st from the simulator at training step t . (2) The
DeepConf-agent uses the state information to make a policy decision
about the network and returns the selected actions to the simulator.
For topology augmentation problem’s DeepConf-agent, called the
Augmentation-Agent, the actions are the set of K optical links to
activate. (3) If the topology changes, the simulator re-computes the
paths for the active flows. (4) The simulator executes the flows for
x seconds. (5) The simulator returns the reward rt and state st+1 to
the DeepConf-agent, and the process restarts.

Initialization During the initial training phase, we force the
model to explore the environment by randomizing the selection
process — the probability that an action is picked corresponds to the
value of the index which represents the action. For instance, with the
Augmentation-Agent, link i has probability wi of being selected. As
the model becomes more familiar with the states and corresponding
values, the model will better formulate its policy decision. At this
point, the model will associate a higher probability with the links
it believes to have a higher reward, which will cause these links to
be selected at a higher frequency. This methodology allows for the
model to reinforce its decisions about links, while the randomization
helps the model avoid local-minima.

Learning Optimization: To improve the efficiency of learning,
the RL agent maintains a log containing the state, policy decision,
and corresponding reward. The RL agent performs experience replay
after n simulation steps. During replay, the log is unrolled to compute
the policy loss across the specified number of steps using Equation
3.1. The agent is trained using Adam stochastic optimization [24],
with an initial learning rate of 10−4 and a learning rate decay factor
of 0.95. We found that a smaller learning rate and low decay helped
the model better explore the environment and form a more optimal
policy.

6 USE CASE: TOPOLOGY AUGMENTATION
More formally defined, in the topology augmentation problem the
data center consists of a fixed hierarchical topology with electrical
packet switches and an optical switch, which connects all the top-of-
rack switches. While the optical switch is physically connected to
all ToR switches, unfortunately, the optical switch can only support
a limited number of active links. Given this limitation, the rules for
the topology problem are defined as: (i) The model must select K

Figure 4: The CNN model utilized by the DeepConf-agent.
links to activate at a given step during the simulation. (ii) The model
receives a reward based on the link utilization and the flow duration.
(iii) The model collects the reward on a per-link basis after x seconds
of simulation. (iv) All flows are routed using equal-cost multi-path
routing (ECMP).
State Space: The agent specific state space is the network topology,
which is represented by a sparse matrix where entries within the
cells correspond to active links within the network.
Action Space: The agent interacts with the environment by adding
links between ToR switches. The action space for the model, there-
fore, corresponds to the different possible link combinations and is
represented as an n dimensional vector. The values within the vector
correspond to a probability distribution, where wi is equal to the
probability of link i being the optimal pick for the given input state
s. The model selects the highest K values from this distribution as
the links that should be added to the network topology.
Reward: The goal of the model can be summarized as: (1) Maximize
link utilization and (ii) Minimize the average flow-completion time.
With this in mind, we formulate our reward function as:

R(Θ, s, t) =
∑
f ∈F

∑
l ∈f

bf

df
(6.1)

Where F represents all active and completed flows during the previ-
ous iteration step, l represents the links used by flow f , bf represents
the number of bytes transferred during the step time, and df rep-
resents the total duration of the flow. The purpose of this reward
function is to reward for high link utilization but penalize for long
lasting flows. The design of this function has the effect of guiding
the model towards completing large flows within a smaller period of
time.

7 EVALUATION
In this section, we analyze DeepConf under realistic workload with
representative topologies.

Experiment Setup We evaluate DeepConf on a trace driven flow-
level simulator using a large scale map-reduce traces from Face-
book [3].We evaluate two state-of-the-art clos-style data center
topologies: K=4 Fat-tree [5] and VL2 [17]. In our analysis, we
focus on flow completion time (FCT) a metric which captures the
duration between the first and last packet of a flow. We augment
both topologies by adding an optical switch with four links. We
compare DeepConf against: Optimal, the optimal solution derived
from a linear program with perfect knowledge of future application
demands — Note: this optimal solution can not be solved with larger
topologies [8].
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Figure 5: This figure shows loss value vs number of episodes and
that our model can learn in reasonable number of episodes.

7.1 Model Learning
Figure 5 shows the performance of the DeepConf-agent during train-
ing on a per-episode basis: the loss decreases as training increases
with the largest decrease occuring during the initial training episodes,
a result consistent with the learning rate decay factor employed dur-
ing training.

Figure 6 presents the performance of each independent agent
and we observe that each agent independently maximizes the total
reward for each episode. Around episode 35-40, the performance
of both agents begins to plateau as the policy becomes fine-tuned
towards maximizing the reward.

The training results demonstrate that the RL agent learns to opti-
mize its policy decision to increase the total reward received across
each episode.

7.2 DeepConf Performance
Figure 7 shows that DeepConf is able to learn a solution that’s close
to the optimal [13, 37] across representative data center topologies.
Other results, not included due to space constraints, show that Deep-
Conf outperforms greedy heuristics [13, 37] in terms of FCT and
remains competitive with the optimal solution.

We believe these initial results are promising, and that more work
is required in order to understand and improve the performance of
DeepConf.

8 DISCUSSION
We now discuss open questions:

Learning to generalize: In order to avoid over-fitting to a spe-
cific topology, we train our agent over a large number of simulator
configurations. DeepRL agents need to be trained and evaluated

Figure 6: This figure shows that the model is able to maximize
the rewards over the training period.

Figure 7: Mean flow completion time (Error Bars (5th and 95th
percentiles)).

on many different platforms to avoid being overtly specific to few
networks and correctly handle unexpected scenarios. Solutions that
employ machine learning to address network problems using simula-
tors need to be cognizant of these issues when deciding the training
data.

Learning new reward functions: DeepRL methods need appro-
priate reward functions to ensure that they optimize for the correct
goals. For some networks problems like topology configuration this
may be straightforward. However, other problems like routing may
require a weighted combination of network parameters that need to
be correctly designed for the agent to operate the network correctly.

Learning other data center problems. In this paper, we focused
on problems that center around learning to adjust the topology and
routing. Yet, the space of data center problems is much larger. As part
of ongoing work, we are investigating intermediate representations
and models for capturing other high-level tasks.

9 CONCLUSION
Our high-level goal is to develop ML-based systems that replace ex-
isting heuristic-based approaches to tackling data center networking
challenges. This shift from heuristics to ML will enable us to design
solutions that can adapt to changes in patterns by consuming data
and relearning – an automated task.

In this paper, we take the first steps towards achieving these
goals by designing a reinforcement learning based framework, called
DeepConf, for automatically learning and implementing a range of
data center networking techniques. This framework is supported by a
novel intermediate representation of network state that is amenable to
creating different sets of reinforcement learning models for different
tasks and an SDN-based architecture that abstracts away low level
network details. We believe that DeepConf represents a promising
step towards a datacenter framework that eschews human generated
domain-specific heuristics in favor of automated and general algo-
rithms generated by a machine learning framework. As part of future
work, we are planning to extend DeepConf to tackle the routing
problem, to perform a broader evaluation of DeepConf across differ-
ent topologies, and to explore the use of interpretable techniques to
explain the decisions made by DeepConf’s deep models.
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