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Abstract

We introduce a new variational inference ob-
jective for hierarchical Dirichlet process ad-
mixture models. Our approach provides
novel and scalable algorithms for learning
nonparametric topic models of text docu-
ments and Gaussian admixture models of im-
age patches. Improving on the point esti-
mates of topic probabilities used in previous
work, we define full variational posteriors for
all latent variables and optimize parameters
via a novel surrogate likelihood bound. We
show that this approach has crucial advan-
tages for data-driven learning of the num-
ber of topics. Via merge and delete moves
that remove redundant or irrelevant topics,
we learn compact and interpretable models
with less computation. Scaling to millions
of documents is possible using stochastic or
memoized variational updates.

1 INTRODUCTION

Bayesian nonparametric models are increasingly ap-
plied to data with rich hierarchical structure, such as
words within documents (Teh et al., 2006) or patches
within images (Sudderth et al., 2008). Hierarchical

Dirichlet process (HDP) admixture models provide a
natural way to discover shared clusters, or topics, in
grouped data. The HDP prior expects the number
of topics to smoothly grow as more examples appear,
making it attractive for analyzing big datasets.

While there are numerous existing inference algo-
rithms for the HDP, all suffer from some combina-
tion of inability to scale to large datasets, vulnera-
bility to poor local optima, or the need for external
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specification of the target model complexity. Simple
Markov chain Monte Carlo (MCMC) samplers (Teh
et al., 2006) can dynamically add or remove topics, but
are computationally demanding with more than a few
thousand documents and may take a long time to mix
from a poor initialization. Collapsed variational meth-
ods (Teh et al., 2008) are based on a sophisticated fam-
ily of marginal likelihood bounds, but lead to challeng-
ing optimization problems and sensitivity to initial-
ization. Stochastic variational methods (Wang et al.,
2011) and streaming methods (Broderick et al., 2013)
are by design more scalable, but are easily trapped
at a fixed point near a poor initialization. More re-
cent variational algorithms have dynamically inserted
or removed topics to escape local optima, but either
lack guarantees for improving whole-data model qual-
ity (Bryant and Sudderth, 2012) or rely on slow-to-mix
Gibbs sampler steps (Wang and Blei, 2012).

We develop a scalable HDP learning algorithm that
enables reliable selection of the number of active top-
ics. After reviewing HDP admixtures in Sec. 2, we
develop a novel variational bound (Sec. 3) that cap-
tures posterior uncertainty in topic appearance prob-
abilities, and leads to sensible model selection behav-
ior (see Fig. 2). Sec. 4 then develops novel stochas-
tic (Hoffman et al., 2013) and memoized (Hughes and
Sudderth, 2013) variational inference algorithms for
the HDP. The memoized approach supports merge and
delete moves (Sec. 5) that remove redundant or ir-
relevant topics, leading to compact and interpretable
models. Sec. 6 demonstrates faster and more accurate
learning of HDP models for documents and images.

2 HDP ADMIXTURE MODELS

Consider data partitioned into D exchangeable groups
x = {x1 . . . xD}, for example documents or images.
Each group d contains Nd tokens xd = {xd1, . . . xdNd

},
for example words or small pixel patches. For large
datasets we divide groups into B predefined batches,
where Db is the set of documents in batch b.
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Figure 1: Left: Directed graphical model for the HDP ad-
mixture (Sec. 2). Free parameters for mean-field varia-
tional inference (Sec. 3) shown in red. Right: Flow chart
for our inference algorithm, specialized for bag-of-words
data, where we can use sparse type-based assignments r̃
instead of per-token variables r̂. We define r̃dwk to be the
total mass of all tokens in document d of type w assigned
to k: r̃dwk =

∑Nd

n=1
r̂dnkδxdn,w. Updates flow from r̃ to

global topic-type parameters τ̂ and (separately) to global
topic weight parameters ρ̂, ω̂. Each variable’s shape gives
its dimensionality. Thick arrows indicate summary statis-
tics; thin arrows show free parameter updates.

To discover themes or topics common to all groups,
while capturing group-specific variability in topic us-
age, we use the HDP admixture model (Teh et al.,
2006) of Fig. 1. The HDP uses group-specific frequen-
cies to cluster tokens into an a priori unbounded set of
topics. To generate each token, a global topic (indexed
by integer k) is first drawn, and an observation is then
sampled from the likelihood distribution for topic k.

Topic-specific data generation. HDP admixtures
are applicable to any real or discrete data for which an
appropriate exponential family likelihood is available.
Data assigned to topic k is generated from a distribu-
tion F with parameters φk, and conjugate prior H :

F :

H :

log p(xdn|φk) = sF (xdn)
Tφk + cF (φk),

log p(φk|τ̄ ) = φTk τ̄ + cH(τ̄ ).

Here cH and cF are cumulant functions, and sF (xdn)
is a sufficient statistic vector. For discrete data x, F
is multinomial and H is Dirichlet. For real-valued x,
we take F to be Gaussian and H Normal-Wishart.

Allocating topics to tokens. Each topic k is de-
fined by two global variables: the data-generating
exponential family parameters φk, and a frequency
weight uk. Each scalar 0 < uk < 1 defines the condi-
tional probability of sampling topic k, given that the
first k − 1 topics were not sampled:

uk ∼ Beta(1, γ), βk , uk
∏k−1

ℓ=1 (1−uℓ). (1)

This stick-breaking process (Sethuraman, 1994; Blei
and Jordan, 2006) transforms {uℓ}

k
ℓ=1 to define the

marginal probability βk of selecting topic k.

Each group or document has unique topic frequencies
πd = [πd1, . . . , πdk, . . .], where the HDP prior induces a

finite Dirichlet distribution on the firstK probabilities:

[πd1 . . . πdK πd>K ] ∼ Dir(αβ1, . . . αβK , αβ>K). (2)

This implies that πd has mean β and variance deter-
mined by the concentration parameter α. The sub-
script >K denotes the aggregate mass of all topics with
indices larger than K, so that β>K ,

∑∞
ℓ=K+1 βℓ.

To generate token n in document d, we first draw
a topic assignment zdn ∼ Cat(πd), where integer
zdn ∈ {1, 2, . . .} indicates the chosen topic k. Second,
we draw the observed token xdn from density F , using
the parameter φk indicated by zdn.

3 VARIATIONAL INFERENCE

Given observed data x, we wish to learn global topic
parameters u, φ and local document structure πd, zd.
Taking an optimization approach (Wainwright and
Jordan, 2008), we seek an approximate distribution
q over these variables that is as close as possible to
the true, intractable posterior in KL divergence but
belongs to a simpler, fully factorized family q(·) =
q(u)q(φ)q(π)q(z) of exponential family densities.

Previous variational methods for HDP topic mod-
els (Wang et al., 2011) have employed a Chinese

restaurant franchise (CRF) model representation (Teh
et al., 2006). Here each document has its own local
topics, a stick-breaking prior on their frequencies, and
latent categorical variables linking each local topic to
some global cluster. With this expanded set of highly-
coupled latent variables, the factorizations inherent in
mean field variational methods induce many local op-
tima. We thus develop an alternative bound based on
the direct assignment HDP representation in Fig. 1.

3.1 Direct Assignment Variational Posteriors

Deferring discussion of the global topic weight pos-
terior q(u) until Sec. 3.2, we define other variational
posteriors below, marking free parameters with hats
to make clear which quantities are optimized:

q(z|r̂) =
∏D

d=1

∏Nd

n=1 Cat(zdn | r̂dn1, r̂dn2, . . . r̂dnK),

q(π) =
∏D

d=1 Dir(πd|θ̂d1, . . . θ̂dK+1), (3)

q(φ|τ̂ ) =
∏∞

k=1H(φk|τ̂k).

This posterior models data usingK active topics. Cru-
cially, as in Teh et al. (2008) and Bryant and Sudderth
(2012), the chosen truncation level K defines only the
form of local factors q(z) and q(π). Global factors do
not require an explicit truncation, as those with in-
dices greater than K are conditionally independent of
the data. This approach allows optimization of K and
avoids artifacts that arise with non-nested truncations
of stick-breaking processes (Blei and Jordan, 2006).
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Figure 2: Left: Comparison of variational objectives result-
ing from different choices for q(u) on the model selection
task of Sec. 3.2. Our new surrogate bound sensibly prefers
models without empty topics, while using point estima-
tion does not. Right: Illustration of Eq. (12)’s tight lower
bound on cD(αβ), shown for K = 1, β = [0.5, 0.5]. This
bound makes our surrogate objective tractable.

Factor q(z). Given truncation levelK, token indica-
tor zdn must be assigned to one of the K active topics.
The categorical distribution q(zdn) is parameterized by
a positive vector r̂dn of size K that sums to one.

Factor q(π). πd can be represented by a positive vec-
tor of size K+1 encoding the K active topic probabil-
ities in document d and (at the last index) the aggre-
gate mass πd>K of all inactive topics. Thus, q(πd) is

a Dirichlet distribution with parameters θ̂d ∈ R
K+1.

Factor q(φ). Data-generating factors q(φk) for each
topic k come from the conjugate family H with free
parameter τ̂k. For discrete data H is Dirichlet and τ̂k
is a vector the length of the vocabulary W .

Objective function. Mean field methods optimize
an evidence lower bound log p(x|γ, α, τ) ≥ L(·), where

L(·) , Ldata(·) +Hz(·) + LHDP (·) + Lu(·). (4)

The final term Lu(·), which depends only on q(u), is
discussed in the next section. The first three terms
account for data generation, the assignment entropy,
and the document-topic allocations. These are defined
below, with expectations taken with respect to Eq. (3):

Ldata(·) , Eq[log p(x|z, φ) + log p(φ|τ̄)
q(φ|τ̂) ], (5)

Hz(·) , −
∑K

k=1

∑D
d=1

∑Nd

n=1 r̂dnk log r̂dnk,

LHDP (·) , Eq

[

log p(z|π)p(π|α,u)

q(π|θ̂)

]

.

The forms of Ldata and Hz are unchanged from the
simpler case of mean-field for DP mixtures. Closed-
form expressions are in the Supplement.

3.2 Topic Weights and Model Selection

Previous work on the direct assignment HDP sug-
gested a point estimate approximation for topic ap-
pearance parameters β (Liang et al., 2007; Bryant
and Sudderth, 2012), or equivalently q(uk) = δûk

(uk).
While efficient, this approach creates problems with
model selection. The resulting objective lower bounds
a joint evidence that includes the point estimate u:
log p(x, u|α, γ, τ). Consequently, the point estimate for

u is a MAP estimate, with prior defined by Lu:

LPE
u =

∑K
k=1 log Beta(ûk|1, γ). (6)

Consider instead a different q(u) that places a proper
Beta distribution over each parameter uk:

q(u|ρ̂, ω̂) =
∏∞

k=1 Beta(uk | ρ̂kω̂k, (1−ρ̂k)ω̂k). (7)

Here, free parameter 0 < ρ̂k < 1 defines the mean:
E[uk] = ρ̂k, while ω̂k > 0 controls the variance of uk.
Under this proper Beta family, we can integrate the
variable u away to obtain a proper marginal evidence
log p(x|α, γ, τ). Consequently, Lu term has the form

LBeta
u (·) =

∑K
k=1 Eq[log

p(uk)
q(uk)

] (8)

Model selection. Given our chosen family for
q(z, π, φ) in Eq. (3) and a proper q(u) in Eq. (7), the
objective L can be used to compare two alternative
sets of free parameters, even if they have different num-
bers of active topics K. Our recommended setting of
q(u) enjoys the benefits of marginalization, while MAP
point estimation can yield pathological behavior when
comparing L at different truncation levels.

To illustrate, consider two candidate models, A and E.
Candidate A has K topics and token parameters r̂A.
Candidate EJ has the same token parameters as well
as J additional topics with zero mass. For each token
n, we set vector r̂En so the first K topics are equal to
r̂An , and the extra J topics are set to zero. We desire
an objective that prefers A by penalizing the “empty”
topics in E, or at least one that does not favor E.

The behavior of different objectives is shown in Fig. 2,
where we plot L(EJ )−L(A) for J = {0, 1, 2, 3} empty
topics. When using the Beta form for q(u), we find
that exact numerical evaluation of the HDP objective
is invariant to empty topics, while our scalable sur-
rogate objective from Sec. 3.3 penalizes empty topics
slightly. However, point-estimation of q(u) always fa-
vors adding empty topics. Thus, we focus on the Beta
form of q(u) to learn compact, interpretable models.

3.3 Surrogate bound for tractable inference.

Motivated by Fig. 2, we wish to employ the proper
Beta form for q(u). However, this leads to a non-
conjugate relationship between q(u) and q(π), compli-
cating inference. Some terms of the resulting objective
have no closed-form. To gain tractability, we develop
a surrogate bound on the ideal objective.

Consider the ELBO term LHDP under q(u) in Eq. (7).

Eq[log
p(z)p(π)

q(π) ] =
∑D

d=1 Eq[cD(αβ)] − cD(θ̂d) (9)

+
∑K+1

k=1

(

Ndk + αEq [βk]− θ̂dk

)

Eq[log πdk]

Here, sufficient statistic Ndk counts the usage of topic
k in document d: Ndk ,

∑Nd

n=1 r̂dnk. Furthermore,
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Figure 3: Sparsity-promoting restarts for local steps on the
Science corpus with K = 100. Left: Example fixed points
of the topic usage statistic Ndk for one document. Right:
Trace of single-document ELBO objective during E-step
inference for 50 random initializations (dashed lines), plus
one sparsity-promoting run (solid) which climbs through
the color-coded fixed points in the adjacent plot.

two required expectations have closed-form expres-
sions. E[βk] comes from Eq. (1), and

E[log πdk] = ψ(θ̂dk)− ψ(
∑K+1

ℓ=1 θ̂dℓ). (10)

However, cD is the cumulant function of the Dirichlet,

cD(a1, . . . aW ) = log
Γ(

∑
W

w=1
aw)

∏
W

w=1
Γ(aw)

, (11)

and Eq[cD(αβ)] has no closed form. To avoid this prob-
lematic expectation of log Gamma functions, we intro-
duce a novel bound on cD(·):

cD(αβ) ≥ K logα+
∑K

k=1 log uk (12)

+
∑K

k=1(K+1−k) log 1−uk.

Fig. 2 shows this bound is valid for all α > 0. For
proof, see the Supplement. We can tractably compute
the expectation of Eq. (12), because expectations of
logs of Beta random variables have a closed form.

Substituting Eq. (12) into our original objective L
yields a surrogate objective Lsur which can be used for
model selection because it remains a valid lower bound
on the log evidence log p(x|α, γ, τ̄ ). Our surrogate ob-
jective induces a small penalty for empty components
in Fig. 2, which is superior to the reward for empty
components induced by point estimates.

4 INFERENCE ALGORITHM

We now describe an algorithm for optimizing the free
parameters of our chosen approximation family q. We
first give concrete updates to local and global factors.
Later, we introduce memoized and stochastic methods
for scalable online learning.

4.1 Local updates.

In the local step, we visit each document d and update
token indicators rdn via Eq. (13) and document-topic

parameters θ̂d via Eq. (14). These steps are inter-
dependent: updating r̂dn requires an expectation com-
puted from θ̂d, and vice versa. Thus, at each document

we need to initialize θ̂d and then alternate these up-
dates until convergence. We discuss initialization and
convergence strategies in the Supplement.

Update of q(z). We update the free parameter r̂dn
for each token n in document d according to

r̂dnk ∝ exp
(

Eq[log πdk] + Eq[log p(xdn|φk)]
)

, (13)

which uses known expectations. The vector r̂dn is nor-
malized over all topics k so its sum is one.

Update of q(πd). We update free parameter θ̂d
given Ndk, which summarizes usage of topic k across
all tokens in document d. The update is

θ̂dk = αEq[βk] +Ndk, (14)

where the expectation Eq[βk] follows from Eq. (1).

This update applies to all K + 1 entries of θ̂d. The
last index aggregates all inactive topics, and is simply
set to αE[β>K ], since Nd>K is zero by truncation.

Sparse Restarts. When visiting document d, the
joint inference of θ̂ and r̂ can be challenging. Many lo-
cal optima exist even for this single-document task,
as shown Fig. 3. A common failure mode occurs
when a few tokens are assigned to a rare “junk” topic.
Reasignment of these tokens may not happen under
Eq. (13) updates due to a valley in the objective be-
tween keeping the current junk assignments and set-
ting the junk topic to zero.

To more adequately escape local optima, we develop
sparsity-promoting restart moves which take a final
document-topic count vector [Nd1 . . . NdK ] produced
by coordinate ascent, propose an alternative which has
one entry set to zero, and accept if this improves the
ELBO after further ascent steps. In practice, the ac-
ceptance rate varies from 30-50% when trying the 5
smallest non-zero topics. We observe huge gains in
the whole-dataset objective due to these restarts.

4.2 Global updates.

Fig. 1 shows global parameter updates to τ̂ , ρ̂, and ω̂
require compact sufficient statistics of local parame-
ters. The updates below focus on these summaries.

Update for q(φ). We update free parameter τ̂ to

τ̂k = Sk + τ̄ , Sk ,
∑D

d=1

∑

n sF (xdnk)r̂dnk, (15)

where Sk is the statistic summarizing data assigned to
topic k across all tokens. For topic models, Sk is a
vector of counts for each vocabulary type.

Update for q(u). Finally, we consider the free pa-
rameters ρ̂, ω̂ for all K active topics. No closed-form
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update exists due to non-conjugacy. Instead, we nu-
merically optimize our surrogate objective, finding the
best vectors ρ̂, ω̂ simultaneously. The constrained op-
timization problem is:

ρ̂, ω̂ = argmaxρ,ωLHDP (ρ, ω, T, α) + Lu(ρ, ω, γ) (16)

s.t. 0 < ρk < 1, ωk > 0 for k ∈ {1, 2, . . .K}

where sufficient statistic T = [T1 . . . TK TK+1] sums
the expectation of Eq. (10) across documents:

Tk(θ̂) ,
∑D

d=1 E[log πdk]. (17)

The Supplement provides implementation details, in-
cluding the exact function and gradients we provide to
a modern L-BFGS optimization algorithm.

4.3 Memoized algorithm.

We now provide a memoized coordinate ascent up-
date algorithm. The update cycle comes from Hughes
and Sudderth (2013), which was inspired by the in-
cremental EM approach of Neal and Hinton (1998).
Data is visited one batch at a time, where the batches
are predefined. We call each complete pass through
all batches a lap. At each batch, we perform a local
step update to q(zd), q(πd) for each document d in the
batch, and then a global-step update to q(u), q(φ).

Affordable batch-by-batch processing is possible by
tracking sufficient statistics and exploiting their ad-
ditivity. For each statistic, we track a batch-specific
quantity (denoted N b) for each batch and an ag-
gregated whole-dataset quantity (N). By definition,

Nk =
∑B

b=1N
b
k. After visiting each batch b, we per-

form an incremental update to make the aggregate
summaries reflect the new batch summaries and re-
move any previous contribution from batch b.

This algorithm requires storing per-batch summaries
N b, Sb, T b for every batch during inference. This re-
quirement is modest, remaining size O(BK) no matter
how many tokens or documents occur in each batch.

ELBO computation. Computing the objective L is
possible after each batch visit, so long as we track suf-
ficient statistics as well as a few ELBO-specific quan-
tities. First, we store the entropy Hz from Eq. (5) at
each batch, as in Hughes and Sudderth (2013).

Second, consider the computation of LHDP in Eq. (9).
Naively, this computation requires sums over all doc-
uments. However, by tracking the following terms we
can perform rapid evaluation:

Gb
k ,

∑

d∈Db
(Ndk − θ̂dk)E[log πdk], (18)

Qb
0 =

∑

d∈Db
log Γ(

∑K+1
k=1 θ̂dk), Q

b
k =

∑

d∈Db
log Γ(θ̂dk).

After aggregating these tracked statistics across all

batches, such as Qk =
∑B

b=1Q
b
k, Eq. (9) becomes

LHDP (·) = DEq[cD(αβ)] −Q0 (19)

+
∑K+1

k=1 Qk +Gk + αEq [βk]Tk

which given tracked statistics can be evaluated with
cost independent of the number of documents D.

4.4 Stochastic algorithm.

Our objective L can also be optimized with stochas-
tic variational inference (Hoffman et al., 2013). The
stochastic global step at iteration t updates the natu-
ral parameters of q(u) and q(φ) with learning rate ξt.
For example, the new τ̂t interpolates between the pre-
vious value τ̂t−1 and an amplified estimate from the
current batch τ̂b. When ξt decays appropriately, this
method guarantees convergence to a local optimum.

4.5 Computational complexity

Our direct assignment representation is more efficient
than the CRF approach of Wang et al. (2011). The
dominant cost of both algorithms is the local step for
each token. We require O(NdK) computations to up-
date the free parameters r̂ for a single document via
Eq. (13). The CRF method requires O(NdKJ) oper-
ations, where J < K is the number of global topics
allowed in each document (for more details, see Eq.
18 of Wang et al. (2011)). For any reasonable value of
J > 1, the CRF approach is more expensive. When
J = O(K), the CRF local step is quadratic in the num-
ber of topics, while our approach is always linear.

5 MERGE AND DELETE MOVES.

Here, we develop two moves, merge and delete, which
help discover a compact set of interpretable topics. As
illustrated in Fig. 4, merges combine redundant top-
ics, while deletes remove unnecessary “junk” topics or
empty topics. Both moves enable faster subsequent
iterations by making the active set of topics smaller.

5.1 Merge moves.

Each merge move transforms a current variational pos-
terior q of size K into a candidate q′ of size K − 1 by
combining two topics in a single merged topic. Dur-
ing each pass we consider several candidate pairs. For
each pair ℓ < m, we imagine simply pooling together
all tokens assigned to either topic ℓ orm in the original
model to create topic ℓ in q′. All other parameters are
copied over unchanged. Formally,

r̂′dnℓ = r̂dnℓ + r̂dnm, ∀d, n, θ̂
′
dℓ = θ̂dℓ + θ̂dm, ∀d. (20)

A global update to create τ̂ ′, ρ̂′, ω̂′ completes the can-
didate, and we keep it if the objective L improves.
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Figure 4: Left: Anchor topics (Arora et al., 2013) can be improved significantly by variational updates. Center: Topic
pairs accepted by merge moves during run on Wikipedia. Combining each pair into one topic improves our objective L,
saves space, and removes redundancy. Right: Accepted delete move during run on Wikipedia. Red topic is rarely used
and lacks semantic focus. Removing it and reassigning its mass to remaining topics improves L and interpretability.

For large datasets, explicitly retaining both r̂ and r̂′

via Eq. (20) is prohibitive. Instead, we can exploit ad-
ditive statistics to rapidly evaluate a proposed merge.
Eq. (20) implies that S′

ℓ = Sℓ+Sm and N ′
ℓ = Nℓ+Nm.

This allows constructing candidate τ̂ ′ values and eval-
uating Ldata without visiting any batches.

Not all statistics can be computed in this way, so
some modest tracking must occur. For each candi-
date merge, we must compute T ′b

ℓ from Eq. (17) as
well as the ELBO statistics G′b

ℓ , Q
′b
ℓ from Eq. (18) at

each batch. Finally, we track the entropy Hz for each
candidate, as did Hughes and Sudderth (2013).

The first step of a merge is to select candidate pairs
using a correlation score (Bryant and Sudderth, 2012):

score(ℓ,m) = Corr(N:ℓ, N:m), − 1 < score < 1. (21)

Large scores identify topic pairs frequently used in the
same documents. Before each lap we select at most 50
pairs to track with score above 0.05.

Next, we visit each batch in order, tracking relevant
merge summaries during standard memoized updates.
Finally, we evaluate each candidate using both tracked
summaries and additive summaries, accepting or re-
jecting as needed. Many merges can be accepted after
each lap, so long as no two share a topic in common.

5.2 Delete moves

Delete moves provide a more powerful alternative to
merges for removing rarely used “junk” topics. For an
illustration of an accepted delete on Wikipedia data,
see Fig. 4. After identifying a candidate topic with
small mass to delete, we reassign all its tokens to the
remaining topics and then accept if the objective L
improves. This move can succeed when a merge would
fail because each document’s tokens can be reassigned
in a customized way, as shown in Fig. 4.

To make this move scalable for our memoized algo-
rithm, we identify a candidate delete topic j in advance

and collect a target dataset x′ of all documents which
use selected topic j significantly: {d : Ndj > 0.01}.
Given the target set, we initialize candidate sufficient
statistics by simply removing entries associated with
topic j. From this initialization, we run several local-
global updates on the target and then accept the move
if the target’s variational objective L(·) improves. Fur-
ther details can be found in the Supplement. To be
sure of deleting a topic, the target set x′ must contain
all documents which pass our threshold test. Thus,
deletes are only applicable to topics of below some
critical size to remain affordable. We set a maximum
budget of 500 documents for the target dataset size in
our topic modeling experiments.

Acceptance rates in practice. Here, we summa-
rize acceptance rates for merges and deletes during a
typical run on the Wikipedia dataset with K = 200
initial topics. During the first 4 passes, we accept 73
of 79 proposed deletes (92%), and 12 of 194 merges
(6%). These moves crucially remove bad topics from
the random initialization. After the first few laps, no
further merges are accepted and only 10% of deletes
are accepted (at most 1 or 2 attempts per lap).

6 EXPERIMENTS

Our experiments compare inference methods for fit-
ting HDP topic models. For our new HDP objec-
tive, we study stochastic with fixed K (SOfix), memo-
ized with fixed K (MOfix), and memoized with deletes
and merges (MOdm). For baselines, we consider the
collapsed sampler (Gibbs) of Teh et al. (2006), the
stochastic CRF method (crfSOfix) of Wang et al.
(2011), and the stochastic split-merge method (SOsm)
of Bryant and Sudderth (2012). For each method, we
perform several runs from various initial K values.

For each run, we measure its predictive power via a
heldout document completion task, as in Bryant and
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Figure 5: Comparison of inference methods on toy bars dataset from Sec. 6.1. Top Left: Word count images for 7 example
documents and the final 10 estimated topics from MOdm. Each image shows all 900 vocabulary types arranged in square
grid. Bottom left: Final estimated topics from Gibbs and MOfix. We rank topics from most to least probable, and show
ranks 1-15 and 25-30. Right: Trace plots of the number of topics K and heldout likelihood during training. Line style
indicates number of initial topics: dashed is K = 50, solid is K = 100.

Sudderth (2012). Each model is summarized by a
point-estimate of the topic-word probabilities φ. For
each heldout document d we randomly split its word
tokens into two halves: x′d, x

′′
d . We use the first half

to infer a point-estimate of πd, then estimate log-
likelihood of each token in the second half x′′d .

heldout-lik(x|φ) =

∑

d∈Dtest
log p(x′′d |πd, φ)

∑

d∈Dtest
|x′′d |

(22)

Hyperparameters. In all runs, we set γ = 10,
α = 0.5 and topic-word pseudocount τ̄ = 0.1. Stochas-
tic runs use the learning rate decay recommended in
Bryant and Sudderth (2012): κ = 0.5, δ = 1.

6.1 Toy bars dataset.

We study a variant of the toy bars dataset of Griffiths
and Steyvers (2004), shown in Fig. 5. There are 10
ideal bar topics, 5 horizontal and 5 vertical. The bars
are noisier than the original and cover a larger vocab-
ulary (900 words). We generate 1000 documents for
training and 100 more for heldout test. Each one has
200 tokens drawn from 1-3 topics.

Fig. 5 shows many runs of all algorithms on this bench-
mark. Variational methods initialized with 50 or 100
topics get stuck rapidly, while the Gibbs sampler finds
a redundant set of the ideal topics and is unable to
effectively merge down to the ideal 10.

In contrast, our MOdm method uses merges and
deletes to rapidly recover the 10 ideal bars after only
a few laps. Without these moves, MOfix runs remain
stuck at suboptimal fragments of bars. Furthermore,
our MOdm method initialized with the sampler’s final
topics (fromGibbs) easily recovers the ideal bars.

6.2 Academic and news articles.

Next, we apply all methods to papers from the NIPS
conference, articles from Wikipedia, and articles from
the journal Science (Paisley et al., 2011), with 80%-
20% train-test splits. Online methods process each
training set in 20 batches. Trace plots in Fig. 6 com-
pare predictive power and model complexity as more
data is processed. We summarize conclusions below.

Anchor topics are good; variational is better.

Using the anchor word method (Arora et al., 2013)
for initial topic-word parameters yields better predic-
tions than random initialization (rand). However, our
methods can still make big, useful changes from this
starting point. See Fig. 4 for some examples.

Deletes and merges make big, useful changes.

Across all 3 datasets in Fig. 6, merges and deletes re-
move many topics. On Wikipedia, we reduce 200 top-
ics to under 100 while improving predictions. Similar
gains occur from the final result of the Gibbs sampler.

Competitors get stuck or improve slowly. The
Gibbs sampler needs many laps to make quality predic-
tions. The CRF method gets stuck quickly, while our
methods (using the direct assignment representation)
do better from similar initializations. The stochas-
tic split-merge method (SOsm) grows to a prescribed
maximum number of topics but fails to make better
predictions. This indicates problems with heuristic ac-
ceptance rules, and motivates our moves governed by
exact evaluation of a whole-dataset objective.

Next, we analyze the New York Times Annotated Cor-
pus: 1.8 million articles from 1987 to 2007. We with-
hold 800 documents and divide the remainder into 200
batches (9084 documents per batch). Fig. 6 shows the
predictive performance of the more-scalable methods.
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Figure 6: Comparison of inference methods on academic and news article datasets (Sec. 6.2). Line style indicates initial
number of topics K: 100 is dots, 200 is solid. Top row: Heldout likelihood (larger is better) as more training data is seen.
Bottom row: Trace plots of heldout likelihood and number of topics. Each solid dot marks the final result of a single run,
with the trailing line its trajectory from initialization. Ideal runs move toward the upper left corner.

For this large-scale task, our direct assignment rep-
resentation is more efficient than the CRF code re-
leased by Wang et al. (2011). With K = 200 topics,
our memoized algorithm with merge and delete moves
(MOdm) completes 8 laps through the 1.8 million doc-
uments in the amount of time the CRF code completes
a single lap. No deletes or merges are accepted from
any MOdm run, likely because 1.8M documents re-
quire more than a few hundred topics. However, the
acceptance rate of sparsity-promoting restarts is 75%.
With a more efficient, parallelized implementation, we
believe our variational approach will enable reliable
large-scale learning of topic models with larger K.

6.3 Image patch modeling.

Finally, we study 8 × 8 patches from grayscale natu-
ral images as in Zoran and Weiss (2012). We train on
3.5 million patches from 400 images, comparing HDP
admixtures to Dirichlet process (DP) mixtures using a
zero-mean Gaussian likelihood. The HDP model cap-
tures within-image patch similarity via image-specific
mixture component frequencies. Both methods are
evaluated on 50 heldout images scored via Eq. (22).

Fig. 7 shows merges and deletes removing junk top-
ics while improving predictions, justifying the gener-
ality of these moves. Further, the HDP earns better
prediction scores than the DP mixture. We illustrate
this success by plotting sample patches from the top 4
topics (ranked by topic weight π) for several heldout
images. The HDP adapts topic weights to each im-
age, favoring smooth patches for some images (d) and
textured patches for others (e-f). The less-flexible DP

(c) (b) (a) 

(d) (e) (f) 

Figure 7: Comparison of DP mixtures and HDP admix-
tures on 3.5M image patches (Sec. 6.3). (a-b) Trace plots
of number of topics and heldout likelihood, as in Fig 6.
(c) Patches from the top 4 estimated DP clusters. Each
column shows 6 stacked 8 × 8 patches sampled from one
cluster. (d-f) Patches from 4 top-ranked HDP clusters for
select test images from BSDS500 (Arbelaez et al., 2011).

must use the same weights for all images (c).

7 CONCLUSION

We have developed a scalable variational algorithm for
learning compact, interpretable HDP models from mil-
lions of examples. Our novel objective applies to any
exponential family likelihood and could prove useful
for sequential or relational models based on the HDP.
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