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A thorough understanding of specified behavior is essential for the completion of most programming tasks. Researchers have created

automated tools to help students with this task. Yet, even with automated feedback, students may still face self-insurmountable

challenges for which they must seek aid from the course staff.

What self-insurmountable challenges do students face? And (how) does access to automatic, on-demand feedback shape student

help-seeking? To find out, we manually reviewed the 1,247 assignment-related student posts in the online help-forum of a post-

secondary accelerated introductory computer science course. We report on the high-level relationships between student help-seeking

and (under)specification in assignments, and identify a number of behaviors relevant to both researchers and educators.

CCS Concepts: • Social and professional topics → Computing education.

Additional Key Words and Phrases: underspecification, help forum, problem understanding

ACM Reference Format:
John Wrenn and Shriram Krishnamurthi. 2021. Reading Between the Lines: Student Help-Seeking for (Un)Specified Behaviors. In 21st

Koli Calling International Conference on Computing Education Research (Koli Calling ’21), November 18–21, 2021, Joensuu, Finland. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3488042.3488072

1 INTRODUCTION

Students must understand programming problems as well as possible before starting to code. Failure to do so leads to

many negative consequences. First, they may get a poor grade. Second, they may experience unnecessary frustration.

Third, they may not meet the learning objective of that problem. A poor understanding of a problem can also lead

students to pick a poor solution strategy, in which they may get entrenched even if it is inappropriate, trying (often

unsuccessfully) to tweak it rather than start afresh [5, 8, 11].

These concerns are not hypothetical. A growing body of literature (see section 2) shows that students frequently

misunderstand the problem they have been asked to solve. Therefore, it is important to get students to establish

understanding before implementation.

How do we get students to understand problems before starting to write solutions? As we discuss in section 2,

researchers have adopted a variety of strategies for this purpose. Several of these amount to having students write

examples of expected behavior (e.g., in the form of unit tests) before starting to code. Research also shows [2, 7] that

these strategies are quite successful.

However, example-writing only works when the problem is fully specified; but unspecified behavior abounds.

Sometimes it is avoidable at a cost: e.g., an instructor may choose to elide pedantic details for brevity (such as the
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handling of null or extreme numerical inputs). There are also scenarios in which unspecified behavior is all-but-

unavoidable. If an assignment involves floating point arithmetic, slight variations in arithmetic order may produce

slightly different results. Moreover, unspecified behavior is inherent in some algorithms. A sortByKey procedure backed

by an unstable sorting algorithm will leave unspecified the relative ordering of elements with equal keys. Likewise, a

graph can have multiple shortest paths or minimum spanning trees. All these complicate the idea of using input-output

examples to confirm student understanding.

In this paper, we draw on Examplar [12], with which students can both confirm their understanding of the problem

with tests and be forewarned if they test incorrect or unspecified behavior. In Examplar, the course staff write a collection

of known-correct (“wheat”) and known-incorrect (“chaff”) implementations for each problem. Students’ unit tests are

run against wheats and chaffs. Correct unit tests should pass the wheats, and a sufficiently rich family of unit tests

should correctly identify the chaffs as incorrect. Examplar is provided as an interactive tool built into the student’s

development environment, and students use it voluntarily [13].

We present Examplar to our students as a kind of teaching assistant (ta). It has a very limited interface: it can

only answer questions about the input–output behavior described by the problem specification, and it only expresses

its answer in terms of wheat-passing and chaff-catching. However, it is always present, responds immediately, is

consistent, and is infallible (we accept any student work that passes it). Therefore, when students have questions about

the problem specification, we urge them to “ask Examplar first”. Given this infallible oracle of (un)specified behavior,

we are interested in learning: (1)What questions do students still have left about (un)specified behavior? (2)What is the

influence of automatic, on-demand feedback about (un)specified behavior in these questions?

2 THEORETICAL BASIS & RELATEDWORK

Whalley and Katso [11] identify how students retrieved the wrong schema and “did not recognize that their program

would not work and did not attempt to verify the correctness of their solutions”. Loksa and Ko [5] found that students

“often began coding without fully understanding the problem, leaving them with knowledge gaps in the problem

requirements”. Prather, et al. [8] observe that the “most frequent issue these students encountered was a failure to build

a correct conceptual model of the problem”.

Consequently, several authors have tried to build tool support to help students with this step. Prather, Denny and

colleagues present students with instructor-chosen inputs and ask students to enter the corresponding outputs [2, 7],

much like a quiz. In contrast, we adopt the line of work by Wrenn, et al. [12, 13], who follow the Design Recipe [3] in

asking students to write input–output examples but embed it into the development environment.

Given the importance of problem understanding, this paper examines situations where Examplar-style automation

is not enough. Our closest related work is other projects that have examined student help-seeking. While student

help-seeking is a longstanding area of inquiry in education research [4], research into computing students’ help-seeking

on course forums is comparatively nascent.

Vellukunnel, et al. [10] evaluated forum posts from 395 students enrolled in CS2 courses across two universities. The

researchers manually labeled work-related posts by quality and content, and found that some categories positively

correlated with grades. However, they do not offer detailed insight into the nature of the content-clarification posts,

which is our sole focus here.

We focus on forum posts but ignore help sought in ta hours. We chose to not monitor these hours because students

might find that invasive and become reluctant to seek help. Ren et al. [9] studied ta use through a non-intrusive but
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lightweight mechanism. The trade-off is that their instrument cannot provide more information into our question, and

they anyway find that relatively few questions about input–output behavior are asked during hours.

3 PEDAGOGIC CONTEXT

csa is an accelerated introductory computer science course at a private university in the USA. Students must place

into the course through (self-contained) programming tasks in the summer. Though some students have no prior

programming experience at all, most have at least a little, and many have completed Advanced Placement or the

equivalent. Its Fall 2020 enrollment was 114 students, of whom 92 were first-years and about 20% female. csa covered

rich data structures, graph algorithms, lazy streams, and Big-O.

Assignments. csa had 14 relevant programming projects (and no exams). For all assignments, students were provided

a handout describing the input–output behavior of the functions to implement, and were expected to submit a code

file with their solution. For most, they were provided template files with stubs of the functions to implement. Most

assignments also expected them to submit a separate file containing their test suite.

Grading. csa’s manual grading did some correctness checking, but focused much more on design and stylistic issues

(and also evaluated non-code aspects like Big-O analyses). Each of the code and test files were separately auto-graded.

The code was graded against a staff-authored test suite. This feedback was withheld from students until after the

assignment deadline.

Students tests were graded against wheats and chaffs (described in section 1). Students could run Examplar at any

time before the deadline; these were not monitored or graded. Because students can spend too long catching chaffs by

writing ever-more-complex tests [12], csa included only a small number (4–6) of chaffs in Examplar. This limits the

amount of time they spend on problem understanding. However, they are expected to write much more thorough test

suites to identify bugs in their implementations. During grading, their test suites were run against many more chaffs

(upwards of 20). Their testing grade was based on how well their valid tests did against these chaffs. Unlike with code,

they could obtain testing feedback against the full panel of wheats and chaffs at any time.

Student Help Resources. The Fall 2020 offering had 15 undergraduate tas who cumulatively provided 30 hours per

week of one-on-one live assistance to students, and answered questions posted to an online help forum (as did the

professor). Questions posed to the help forum were, as a rule, only visible to course staff; students could not see the

questions posed by other students. When, occasionally, course staff changed the visibility of a students’ post to ‘public’,

the poster’s identity remained hidden to other students.

Impact of COVID-19. Owing to the pandemic, the course was entirely virtual. Enrollment was about twice normal

but with only a 25% increase in course staff. Many students took this as their only course. Normally, students meet with

tas in person and value the interaction (often waiting in long lines to do so). However, ta sessions were also made

virtual (and staggered to handle time zones). For whatever reason, students posted many more forum questions (with

the same software, Campuswire) than before: 1,602 posts, which (after accounting for class size difference) is 54% more

than in Fall 2019, for largely the same assignments.

4 NAVIGATING (UN)SPECIFIED BEHAVIOR

Automated grading demands that students accurately match the behavior described by each assignment’s specification.

To succeed, students needed to precisely interpret both the specified and unspecified behaviors of each assignment. As
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many of our findings (section 6) relate to how students responded to (un)specified behaviors, we briefly review the

challenges they pose in this section.

Unspecified Behavior. The unspecified behaviors are those aspects for which the programmer has discretion over the

exact behavior of their program. For example, what is the mean of an empty list? Error? Exception? 0?

Resolving Invalidity. On such behaviors, a concrete test written by a student may clash with Examplar’s wheat,

making their test invalid. What a student does next is complicated. Perhaps they should write more tests to understand

the problem better. Maybe they have an errant test and should remove it. Or, most subtly, it may be that the test involves

semi-specified behavior, in which case the student should use property-based testing (pbt) [1]. For instance, a thorough

test suite of the mode should include inputs with multiple modes, but it should not assert that the output for such inputs

is any one value. Rather, it must check that the output satisfies a property: that it is a mode of the input list.

Pedagogy. To prepare students to handle semi-specified behavior, we devote two assignments entirely to pbt. For

these assignments, students’ sole objective was to produce a testing oracle, a function that consumes a purported

implementation, generates and runs tests, and labels it as (potentially) correct or (known) buggy.

We reference the first of these, Sortacle, below. In it, students implemented a predicate that consumes two lists of

Persons (records with a name and an age) and checks if the second list is an instance of the first sorted by age. Here,

the precise ordering of Persons with the same age is intentionally left unspecified.

5 METHODS

Of 1,602 forum postings overall, we harvested the 1,247 that were tagged with an assignment. We manually filtered for

those relating to input–output behavior of assignments. This netted 298 postings.

We reviewed these both per-assignment and cross-assignment for common (or otherwise notable) phenomena.

We additionally attempted to classify whether each posting was prompted by Examplar, and whether it related to

unspecified inputs, semi-specified outputs, or the specified behavior of the assignment. We considered a posting to be

prompted by Examplar if the student mentioned Examplar explicitly, included a screenshot of its feedback, or alluded

to its feedback (e.g., “Why is this test invalid?”). A posting related to unspecified inputs if it concerned an input outside

the domain of the assignment; it related to semi-specified outputs if it concerned an input admitting multiple possible

outputs; and it related to the specified behavior of the problem if it concerned a case in which the input is specified and

admits one valid output. We left particularly hard-to-classify postings—nine, in all—unclassified.

The first author did all the classification (so inter-rater reliability does not apply). For hard-to-classify postings, this

author sought feedback from former course TAs. The second author (who was the course instructor) provided context

and interpretation for the first author’s findings. As this interpretation is innately subjective, we center our presentation

on the quoted postings of students.

We pay special attention to the ninth assignment, TweeSearch. It asks students to implement a search function that

consumes a list of “tweets” and a query to fuzzily search for, and produces a list of tweets sorted by relevance. The

exact output order of equally-relevant tweets is unspecified, so there can be several valid answers. Examplar will reject

as invalid any test that asserts an exact order. Students were told to treat this like an exam: “without consulting course

staff except for critical issues (broken links, possible assignment typo, etc.)”. Therefore, any input–output behavior

questions about this assignment would have been posted as a last resort.
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6 OBSERVATIONS

We now try to answer our research questions. We begin with basic statistics about the kinds of questions asked, then

move on to several observations that we believe may be insightful to researchers and educators. The 298 postings we

reviewed were authored by 90 different students. The most prolific of these students authored 12 input–output related

posts; the median student authored three.

6.1 Distribution ofQuestions

We begin by examining the distribution of the 230 input–output related questions students posed across 12 programming

assignments (we exclude the 68 postings relating to Sortacle and Oracle, since the ed unusual nature of these

assignments precluded providing validity feedback) across several basic axes.

Specified or Unspecified? There is a big difference between (what a student believes to be) specified versus unspecified

behavior. If the behavior appears to be specified, a student is more likely to ask why the outcome is or is not what it

is. If it seems unspecified, the student does not know what should happen at all. We found 106 to be about specified

behavior and 110 about unspecified; a few could not be definitively classified, or included questions of both kinds.

Kinds of Unspecified Behavior. On most assignments, students grappled with one of two kinds of unspecified behavior:

inputs for which no output was specified, and inputs for which the output was only semi-specified. Among the 110

postings that included questions about unspecified behavior, 58 concerned unspecified inputs, and 60 concerned

semi-specified outputs.

Relationship to Automated Feedback. Within the ten assignments for which students had automated feedback about

the validity of their tests, students posed 169 input–output-related questions; of these 105 mentioned automated feedback

that a test was invalid. Of these 105 questions, 28 concerned specified behavior, 29 concerned unspecified inputs, and 43

concerned semi-specified outputs.

6.2 Not Using Examplar’s Feedback

Despite the availability of Examplar, students posed questions that could have been answered automatically with a

test case; e.g.: «Do the movement functions in Updater need to be repeatable/stackable?» For such questions, we might

attribute help-seeking on the course forum instead of Examplar to a preference for prose. One student, asked why they

had not answered their question using Examplar, clarified that they had been pen-and-papering out examples and had

not yet realized validity feedback was available.

Other cases are more puzzling. In several instances, students asked the TAs whether a particular test case was valid

or not:

«Should we be allowed to update multiple nodes or navigate around the tree without turning the cursor back into a tree

between updates. For example, would a test like this be consistent with the problem specification? [test case code elided]»

This question could have been answered by Examplar, but the student does not mention having tried it. Is it possible

that they did not know Examplar’s validity feedback corresponds to “consistent with the problem specification”? Or do

they prefer to ask staff instead of tools? For similar examples, see section 6.5.
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6.3 Input Bias

When faced with feedback that a test was invalid, students needed to determine whether the invalidity was caused by

an unspecified input, or an over-constrained assertion on semi-specified output. Multiple students mis-attributed the

invalidity of their over-constrained tests to unspecified inputs.

Recall that in TweeSearch, testing for a particular output order of equally-relevant search results is invalid. However,

at least six students misattributed the cause; e.g.:

«[C]an we assume that two tweets in our list will never have the same overlap with a search tweet? I think the answer is

yes since Examplar errors no matter the order of the outputted list, but I was unsure because it doesn’t error if you check

the length of the outputted list.»

This student misattributed their test invalidity to the input, and thus asks if they can (incorrectly) assume that inputs

that admit equally-relevant results are invalid.

Such misattributions are worrying. They might push students to delete their over-constrained tests, rather than to

reformulate them to be property-based. Much worse, students may end up implementing an incorrect solution that is

brittle in the face of valid inputs that they have incorrectly ruled out.

This posting is notable in that the student correctly intuits the method for distinguishing between invalid inputs

and semi-specified outputs: use pbt. Other students were not so fortunate, and even this student only presents this

as a passing observation, not recognizing that this is in fact what they are expected to do. This, at least, suggests a

pedagogic flaw in the class.

6.4 Failure to Transfer

Even though students had completed two assignments devoted to pbt, on postings for later assignments with semi-

specified outputs, course staff frequently had to prompt students to remember how they had handled this situation in the

past. This happened both soon after those assignments, and late in the semester.

On TweeSearch, which came two weeks after the latter pbt assignment, students needed to adapt the pbt they

developed in Sortacle. Unfortunately, 23 of the 36 input–output-related posts on this assignment concerned testing

sortedness. Several students drew a partial connection to pbt, but struggled to find a middle-ground between exact-value

testing and pbt; for instance:

«If we have tweets that have the same overlap coefficient w/ respect to the new tweet, should our tests allow for any

ordering of these overlap coefficients, or is there a secondary characteristic of the tweets that we should be sorting by

[. . . ]? Based on what Examplar seems to say, these tests are not valid at all if I’m checking order. However, if I just check

whether the resulting lists have the same elements in them, Examplar returns the expected result. Although this means of

testing works, this is not necessarily ideal considering it is not necessarily true that order is ENTIRELY irrelevant.»

This student has clearly read the specification closely, identified that exact-value testing is inappropriate, and succeeded

with weak pbt—but they were unable to commit to this strategy. (See also section 6.3.) These failures suggest difficulties

that students face with testing against properties rather than concrete outputs.

6.5 Specification Preconceptions

Postings regarding the specified behavior of functions often suggested the student carried preconceptions about the

intended behavior of the assignment.
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Imagined Functionality. Students wondered whether they needed to provide functionality not mentioned by the

assignment specification. For instance, on a recommendation system for books, two students wondered about case-

sensitivity; e.g.: «When matching titles, do we assume they match exactly, or should we take into account capitalization?

Should we also take other words into account?» The assignment handout does not suggest that the recommender should

do anything other than check exact matches, but such functionality would be useful in a real-world version of the

assignment.

Imagined Constraints. On Sortacle, in addition to building the checker, students had to read and reflect on the

article “Falsehoods Programmers Believe About Names” [6]. Nonetheless, among the 43 input–output-related questions

posed by students, over a dozen concerned the well-formedness of names and ages; e.g.: «Can the name of a person be

literally any String? It’s not specified in the assignment. For instance, can Strings like “@#$&@ˆ% 1112” or “Hello World” or

even “X ÆA-12” constitute names?» All of these were effectively answered by the handout (which does not rule them

out, and references the article, making these invalid constraints).

This tendency extended, to a lesser extent, to more abstract assignments. On Updater, two groups of students

wondered about validity constraints on trees; e.g., one wrote: «For a single node, is it guaranteed that its children will

have distinct values?» There was nothing in the specification suggesting that the data carried by sibling nodes ought to

be unique.

6.6 Expanding the Specification

Whether through prior conditioning or other reasons, many students seem to not entirely understand, or perhaps even

believe, that the assignment constitutes a kind of contract, and that the course staff will not demand, and often do

not even care about, aspects not specified. For instance, on a problem to compute text overlap, the function was only

specified on non-empty lists (since the formula does not make sense otherwise). Nonetheless, students wanted to know

the “right” thing to do for empty inputs.

Theoretically, unspecified inputs ought to reduce work for students: their use helps keep specifications shorter, and

they reduce the surface area of functionality that students must implement and test. In practice, however, these postings

suggest that unspecified inputs may be a source of anxiety, at least early in the semester.

6.7 Not Understanding Examplar

Some students’ postings indicated that they did not have a clear execution model for the validity feedback produced by

Examplar, even late into the semester. We saw three main categories of confusion.

What is Checked? As an example, on ContinuedFractions, the eighth programming project of the course, one

student asked:

«I tried testing threshold as followed below but received “These tests do not match the behavior described by the assignment”

[...] I don’t know if it is my implementation or something to do with an invalid test.»

Feedback that tests are invalid can only indicate an issue with tests. Because the student’s tests are run against instructor

implementations, and the tests can be run before the student’s implementation has even begun, invalidity cannot

possibly be a statement about the student’s implementation. We unfortunately see similar misunderstandings late into

the semester too.
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Mis-Experiments. Of the 23 postings to TweeSearch about its semi-specified behavior, 16 explained that they had

individually tested every possible ordering—all of which were (correctly) rejected as invalid by Examplar. Reactions

included bug reports; e.g.:

«I think there’s something broken. The following checks all fail, which is interesting because they seem to cover every

single possible output. Am I missing something, or is the [wheat] broken?»

Reifying the Model. An earlier version of Examplar [12] reported the number of wheats it uses to check validity. The

tool’s designers “simplified” its interface by removing this information [13]. Sadly, several postings suggest that hiding

this detail of the execution model may have been counterproductive; e.g.:

«If our tests are only being tested against one wheat, then something weird is happening. If there are deliberately multiple

wheats to ensure that our tests are order-agnostic, then it’d be good to know.»

This student had formed a perfect conception of the situation and, had they been given the wheat count, they would

have come to exactly the right understanding without needing to ask.

7 LIMITATIONS

We do not know what questions students asked course staff in office hours. • Our classifications of postings was done
by just one person. • Our interpretations are best-guesses, informed by our experience with the course, and need to be

validated by future interventions and research. • Different student populations, in different conditions, would likely

encounter different challenges. • Other instructional staff would vary in what they anticipated or failed to anticipate. •
This work only examines problems that, while sophisticated, for the most part: do not involve state or other side-effects;

have agreed-upon data structures; and have a clear goal. Removing each of these makes “automated taing” much

harder.

8 DISCUSSION

Our observations confirm that Examplar can serve as a guardrail for students, alerting them to their problem miscon-

ceptions before final grading [12]. Many of these instances we cannot—by definition—see in our current dataset, but the

105 postings that cited Examplar’s feedback reflect a lower-bound for the number of instances where a student was

stopped from veering off-track.

However, postings also suggest that many students did not know how to respond to feedback about invalidity. We

observe a time-consuming anti-pattern too, reminiscent of Prather et al.’s [8] observations of students consumed by

automated feedback on their implementations: students reacting to invalidity by exhaustively testing every possible

output of semi-specified functions. These students were not adequately prepared for testing unspecified behavior the

course’s pbt-focused assignments. And, at least one student who did understand Examplar’s assessment model for

unspecified behavior was hampered by the tool’s opaque feedback («If there are deliberately multiple wheats [...] it’d be

good to know.»). Educators must address how to help students respond productively to invalidity, especially if caused by

unspecified behavior.

More broadly, problem comprehension seems to demand new skills that are not very well covered in current curricula

or standards. For instance, early examples and subsequent testing both require good adversarial thinking: a mindset that

is not usually included in definitions of “computational” thinking but is clearly relevant even from an early stage (not

only in areas like security). Yet, the barriers to adversarial thinking may be more social than instructional or technical:
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the availability of Examplar did not stop students from posing questions about the expected input–output behavior

of problems. Future work should consider the possibility that students prefer the assurances of humans over that of

automated feedback.
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