
Accessible AST-Based Programming

for Visually-Impaired Programmers

Emmanuel Schanzer
Bootstrap / Brown University

schanzer@BootstrapWorld.org

Sina Bahram
Prime Access Consulting

sina@sinabahram.com

Shriram Krishnamurthi
Brown University

sk@cs.brown.edu

ABSTRACT
Most programmers rely on visual tools (block-based editors, auto-

indentation, bracket matching, syntax highlighting, etc.), which

are inaccessible to visually-impaired programmers. While prior

language-specific, downloadable tools have demonstrated benefits

for the visually-impaired, we lack language-independent, cloud-

based tools, both of which are critically needed.

We present a new toolkit for building fully-accessible, browser-

based programming environments for multiple languages. Given a

parser that meets certain specifications, this toolkit will generate a

block editor familiar to sighted users that also communicates the

structure of a program using spoken descriptions, and allows for

navigation using standard (accessible) keyboard shortcuts.

This paper presents the toolkit and a first evaluation of it. While

the toolkit allows for full editing of code, we chose to focus strictly

on navigation for this evaluation, using the navigation-only study

design of Baker, Milne and Ladner. Visually-impaired

programmers completed several tasks with and without our tool,

and we compared their results and experience. Users had

improved accuracy when completing tasks, were significantly

better able to orient when reading code, and felt better about

completing the tasks when using the tool. Moreover, these

improvements came with no significant change in task completion

time over plain text, even for experienced programmers who

navigate text using screen readers set to high words-per-minutes.

CCS CONCEPTS

• Human-centered computing~Empirical studies in

accessibility • Human-centered computing~Accessibility

technologies • Human-centered computing~Accessibility systems

and tools • Social and professional topics~People with disabilities

KEYWORDS: Accessibility; Visually Impaired/Blind

Programmers; Screen Reader; Code Navigation; Code Structure;

Blocks

ACM Reference format:

Emmanuel Schanzer, Sina Bahram, Shriram Krishnamurthi. 2018.
Accessible AST-Based Programming for Visually-Impaired Programmers.

In Proceedings of 50th ACM Technical Symposium on Computer Science

Education (SIGCSE ‘19), February 27-Mar. 2, 2019, Minneapolis, MN,
USA. ACM, NY, NY, USA, 7 pages. https://doi.org/10.1145/1234567890

1 Introduction
Reading the textual syntax of a program can be non-trivial. Novice

and expert programmers use various visual cues, such as block

languages, auto-indentation, syntax highlighting, bracket-

matching, and more. However, these cues are useless for the

roughly 65,000 blind and visually-impaired students in the US

alone [6], who must rely primarily or solely on the textual syntax

of the language, as spoken aloud by a screen reader or

communicated through a Braille display.

Screen readers are adept at communicating structure, and

conventions for navigating tree-like structures (e.g. mailboxes,

directories, etc.) are well-defined [4]. Unfortunately, screen readers

do not have access to a program’s structure. Tokens are read one-

at-a-time, and the program is broken up into nothing more than a

series of lines. Navigation suffers accordingly, with programmers

forced to use arrow keys to read each line of code. Losing the

visual cues on which sighted programmers rely is a significant

impairment: blind programmers have been shown to have more

difficulties navigating and understanding the structure of code

than their sighted counterparts [5, 9, 10].

Prior work has shown significant gains when screen-readers are

given access to structure rather than the raw text. Smith et al. [5]

created a language-specific tool to allow blind programmers to

navigate the tree structure of files in the Eclipse IDE, and Baker et

al. [2] created the StructJumper plugin for Eclipse that allows

programmers to navigate a Java program’s structure.

However, browser-based programming environments are

becoming increasingly popular in education. Environments such

as Code.org’s AppLab, Bootstrap’s WeScheme, MIT’s Scratch, and

others live in the browser [13]. For schools that have adopted

Chromebooks, desktop applications are not even an option. These

factors limit the usefulness of prior work, and introduce an

additional engineering constraint.

Our tool, CodeMirror-Blocks (CMB), expands on prior work in

three significant ways. First, it is designed to be extensible to other

languages. When provided with a parser that meets certain

requirements (described in the documentation), CMB will create a

fully-accessible Abstract Syntax Tree (AST) editor for that

language, rendered as blocks. Second, it is designed to run entirely

in a web browser. CMB is built atop the popular CodeMirror

library, which is used by thousands of software tools worldwide

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SIGCSE’19, February 27-March 2, 2019, Minneapolis, MN, USA.

© 2019 Association of Computing Machinery.

ACM ISBN 978-1-4503-5890-3/19/02...$15.00.

DOI: https://doi.org/10.1145/1234567890

Paper Session: Accessibility SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

773

https://doi.org/10.1145/1234567890
https://doi.org/10.1145/1234567890

[3]. Any programming environment that uses CodeMirror can be

accessibility-enabled by attaching this tool to the appropriate

parser. Finally, it decouples the textual syntax from the spoken

descriptive label for that text, allowing for plain-language

description of fragments of code.

While our tool allows for navigation and editing of code, this first

phase of the evaluation is strictly limited to navigation.

2 Related Work
Difficulties for blind developers to explore code efficiently as well

as lack of access to advanced IDE features were qualitatively

explored by Mealin et al. [5]. Baker et al. provide additional

evidence for the claim that blind developers are forced to read

entire source code files repeatedly and rely on their short-term

memory for complex pieces of information such as a nested

conditional within a loop, while also remembering their current

depth in said code [2].

2.1 Audio-Based Efforts
Stefik et al.’s work on SodBeans [10] provides both speech and

audio cues to notify blind developers of errors, assist in debugging,

and convey scope. It lays out three rules for providing lists of

information about code: lists must be browsable, short, and place

important things first. CMB attempts to strictly follow these rules.

To address the concern that audio cues are hard to understand [2],

CMB uses audio and speech cues, so that users can learn audio

cues over time but are never forced to remember them. Our hope

is that this hybrid approach will be accessible to novices and useful

for experts.

2.2 Purpose-Built Programming Languages
Stefik et al.’s work on the Quorum [12] language shows that

syntactic decisions can have a positive effect on accessibility.

Unfortunately, many programmers (and students) cannot choose

the language they use, and anyway such a language may not be a

good fit for the task in other ways (such as its features or semantic

choices). Many of the observations of that work may be replicable

by custom descriptions in CMB (section 3.4 and 3.5).

2.3 Enhancements to Existing IDEs
Potluri et al. explored enhancing blind developers’ efficiency

through their work on CodeTalk [7]. CodeTalk makes extensive

use of audio cues and aims to make improvements in four areas:

Discoverability, Glanceability, Navigability, and Alertability.

CodeTalk is a Visual Studio plugin and, as such, it can achieve

exacting control over sound effects and much tighter control over

said sound effects’ timing in relation to speech cues. While we do

not evaluate CMB along these four categories, we agree that they

are appropriate for blind developers. Evaluation along these lines

is an area for future work.

2.4 Structural Information
Screen readers use hierarchical language to convey heading level,

and therefore position, in many contexts. Several already-

discussed works [2, 5, 7, 10] include this feature. CMB also

prioritizes structural information for the blind, and goes further to

provide context beyond simple location (see section 3.4).

3 Design and Implementation
CMB had several design and implementation constraints:

1. It should not be tied to any one programming language. The

editor should be flexible enough to work with different

languages (assuming they can satisfy the parser constraints).

2. It should be easy to integrate into existing cloud-based editing

environments. The editor should not require any browser

plugins or extra programs to be installed, and should not

require any server-side processing.

3. It should communicate structure. As with StructJumper, the

structure of code should be navigable via keyboard,

announcing relevant information via a screen reader.

4. It should describe code, instead of reading syntax. This

addresses the same problem as Quorum, in a different way.

5. It should be performant. The tool should be responsive and

memory-efficient enough to run on tablets, underpowered

laptops, etc.

Our editor is built around a continuously-updated AST. The editor

has an internal definition of an AST structure, as well as various

ASTNode types (such as literals, function applications,

conditionals, etc.), which can be rendered as text or as a DOM tree

in the browser.

3.1 Language Flexibility
The first constraint is addressed through the AST interface. An

ASTNode includes from and to positions (implemented as line-

character pairs), as well as a type field that declares whether the

node represents a conditional, a literal, etc. To use our accessible

editor, a language designer must provide a parser that generates

the appropriate AST nodes. Additionally, language designers can

provide new ASTNode types in order to express semantic

elements not defined within the library itself.

3.2 Browser-Only Implementation
To address the second constraint, our editor is implemented

entirely in JavaScript, as a wrapper for the widely-used

CodeMirror library [3]. By implementing much of the same API as

CodeMirror, any project that uses CodeMirror can integrate our

editor with minimal effort beyond parsing (which it presumably

already has, or must anyway build).

CodeMirror runs on all major browsers, and provides text-

handling features like syntax-highlighting, bracket-matching,

auto-indenting, and more. While it provides a compelling

experience for sighted programmers, it is completely opaque to

users who rely on screen readers. Sadly, the best web-based

experience for programmers who use screen readers is essentially

an unformatted textarea. Fortunately, CodeMirror has a notion

of widgets, which are arbitrary DOM nodes that can replace a

range of text. We exploit this mechanism in CMB, leveraging

CodeMirror’s robust support for undo/redo, cursor tracking,

scrolling, etc.

Paper Session: Accessibility SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

774

3.3 Relationship to ARIA
ARIA [1] is a set of attributes designed to enhance accessibility,

typically by providing semantic information about content. After

parsing the contents of a CodeMirror editor into an AST, we

render each root node as a DOM tree, embed a great deal of

information via ARIA attributes, and use those trees as widgets to

replace the corresponding text range in CodeMirror. These DOM

trees allow us to replicate the functionality of StructJumper,

expressing the underlying structure of the code entirely in the

browser. When navigating a tree, a blind user orients in terms of

label (“what am I looking at?”), level (“how deep am I?”), size of the

set (“how many are there at this level?”), and set locus (“where am I

at this level?”). CMB represents each of these — for every AST

node — using aria-label, aria-level, aria-setsize

and aria-posinset, respectively.

3.4 Describing Structure
One of the key insights of StructJumper was the recognition that a

program can be thought of either as a list of tokens (after lexing)

or as a tree structure (after parsing). Their paper demonstrates that

visually-impaired programmers benefit from navigating the

structure of the code, rather than hearing the tokens read aloud.

CMB does exactly this.

Consider the following simple program:

(define (add a b) (+ a b)

(define (factorial n)

 (if (n < 2) 1 (* n (factorial (- n 1))))

A CMB user would see the first function rendered as a block:

Figure 1 – Function definition block (collapsed and

expanded)

When the block is focused, a V.I. user would hear “add: a
function definition with two arguments: a and

b. Level 1. 1 of 2.” Immediately, they are given a useful,

descriptive label, the level, the ordinality and the size. Repeatedly

hitting down-arrow will read the rest of the function, one part at

a time:

add

two arguments: a and b

a

b

plus expression, two inputs

plus

a

b

Alternately, they can collapse the function definition (left-

arrow), and move on to the next top-level expression. Shift-

left-arrow collapses all nodes, allowing the user to quickly

skim even very large programs, expanding only the nodes they are

interested in.

At any time, the user can also convert a node into its syntax, and

navigate it using normal text controls. This dual-syntax

functionality allows for a “syntax when you need it, structure

when you don’t” approach for both sighted and V.I. users. Prior

work has shown this modality to be effective [15].

CMB provides search functionality, allowing the user to search for

a term and page through all the matches in the document. Instead

of jumping from line to line in the document, however, the user

jumps from matching node to matching node. A sighted user, after

jumping to a random cursor location, will quickly scan the

adjacent code to see where they are. For a blind user, however,

hearing a line and column number is not a useful way to orient.

CMB provides a keyboard shortcut that will read the labels of the

ancestors of the active node. For example, instead of hearing “line

812, column 9”, they hear “inside multiply expression,
3 inputs; inside if-expression, inside foo: a

value definition.”

3.5 Describing Code
When parsing a program to generate an ASTNode, the parser may

also specify a label for that node, which is rendered to the DOM

using the aria-label attribute. This effectively separates the

way a node is written in the syntax from how it is described.

Descriptions can be pedagogical in nature (“foo: a function
definition that is public, static and

produces a double”), and can be tailored for age-level or

even spoken language (“foo: una definición de

función que es pública, estática y produce un

doble”). There are many interesting implications of this feature,

but space limits our ability to discuss it here.

While CMB will automatically provide location information for all

nodes in the tree, it is up to the parser to provide good labels for

those nodes. In short, any use of CMB is only as good as the parser

with which it is used.

3.6 Performance
By relying on CodeMirror, we achieve performance essentially for

free: our widgets are only rendered when they are visible. The

DOM nodes rendered and tracked are proportional to the size of

the visible content instead of the size of the program, resulting in

limited memory use and computation. Using the Chrome Task

Manager, we found that displaying a large program used only

277MB using this approach, and that even-larger programs never

used more than 290MB to display.

4 Study Design
To evaluate CMB, thirteen blind programmers completed three

tasks using two browser-based environments: CMB as the

experiment and a browser textarea element as the control.

Readers may point out that more sophisticated methods of

browser-based text delivery exist (using contentEditable on

a styled element, for example), but their support for screen-readers

is so poor as to be nearly unusable. We wanted to compare our

Paper Session: Accessibility SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

775

tool to the most accessible web-based option available. After

participants had completed the tasks, we asked them questions

about their experience.

We are aware of the challenges faced by those looking to

generalize from this sample. Similar studies (including

StructJumper) with single-digit sample sizes are common in this

space, highlighting the urgency of making programming

accessible to more users.

4.1 Participants
Using mailing lists, social media posts, and personal contacts, we

recruited 13 participants with an offer of a stipend of USD 150 in

exchange for two hours of their time. The number of participants

compares favorably to the sizes of other similar studies: the

SIGCHI paper on StructJumper, for instance, had only seven. In

addition, the community of visually-impaired programmers is

small — which highlights the need for work like ours.

Of the 13, three were “novice programmers” (1-5 years of

experience), seven had “moderate experience” (5-10 years), and

three more were “experienced” (10 or more years). One self-

reported as being “somewhat comfortable” with screen-readers,

and all others as being “very comfortable”. 12 participants were

totally blind, while one had profound visual impairment.

4.2 Configuration
Following the format of the StructJumper study, we conducted

interviews remotely using screen-sharing in Skype to watch and

record as the participants worked through the tasks. Participants

used either NVDA or JAWS (latest version as of May 2018) with a

current version of Chrome (as a preferred platform) or Firefox (as

a fallback). Participants used their preferred screen-reader settings

for talking speed and verbosity.

Blind programmers are comfortable hearing the syntax of their

preferred language(s) spoken aloud, and typically have their

speech settings turned up to several hundred words per minute

(one of this paper’s authors, who is blind, listens at well over

750wpm!). Programmers who can parse Java syntax into ASTs in

their heads at hundreds of words per minute will mask the effects

of a tool designed to communicate AST information. To mitigate

this effect, we specifically chose a language, Racket, with which

few of the participants were familiar.

4.3 Procedure
Participants were asked to provide information about their visual

impairment, programming experience, and screen reader use

before the interviews were conducted. As with StructJumper, the

study was divided into three parts:

1. A short “training session” in which participants learned to use

CMB.

2. A series of tasks with and without our tool, using two different

code bases.

3. A short, post-session interview.

In the training session, participants explored a small, “training”
code base and learned the various key commands and shortcuts

needed to navigate it. Once they felt familiar with CMB,

participants were asked to follow a series of directions to check if

they knew each of the key commands. After this period, the

experimental portion of the study began.

Participants were given two sample programs (Space Invaders and

Aliens vs. Cows), each of which had similar levels of structural

complexity (maximum nesting depth ~10 levels) and length (~250

lines of code). Both programs represent interactive animations,

similar to those use in the widely-used Bootstrap:Algebra [8]

curriculum, representing a real-world test case for CMB. Both

make use of data structures, recursion, multiple function and

variable definitions, switch-like condition statements and

deeply-nested if-expressions. Before completing the tasks, users

were given up to 15 minutes to familiarize themselves with the

program. To minimize interaction effects, we counterbalanced

which program was used with which tool, and which code base

was encountered first.

After 15 minutes, the participants were given three tasks modeled

on those used by Baker, Milne and Ladner [2]. The first two

involved navigating the code to answer questions. These questions

were non-trivial, requiring substantial program comprehension

and testing the capabilities of the tool as a navigation aid. One was

designed to be easier if the user relied on search (the With Search

task), and the other forced the user to manually-scan the entire

program (the Without Search task). As with Baker et al., our goal

was to determine whether search is an effective modality in the

context of a structured code-reader. The third task, Conditions,

asked the user to indicate which conditions would have to be true

in order for a particular line of code to execute. In both programs,

this line of code was nested within multiple if-expressions,

buried within a function definition.

The three tasks for Space Invaders were:

1. Locate With Search: Find the location in the code where a

cow is removed from the list of cows.

2. Locate Without Search: Find the location in the code where a

cow’s direction is updated because it hit a wall.

3. Conditions: What conditions have to be true in order for the

UFO to be moved left?

The three tasks for Aliens vs Cows were:

1. Locate With Search: Find the location in the code where

ALIEN-SIZE is used to determine if an alien hits a bullet.

2. Locate Without Search: Find the location in the code that is

evaluated when the mouse button is down.

3. Conditions: In what situation is the input parameter w returned

unchanged from the mouse-handler?

Participants were timed as they completed each task, and their

answers and duration of the task were recorded. Following the

StructJumper protocol, the specific timing of each task’s start and

end were based on the moment the interviewer finished reading

the question and the moment the participant stated their answer

after looking at the code. Due to timing restrictions, we deviated

Paper Session: Accessibility SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

776

from the StructJumper study in one significant way: participants

were given a limit of 5 minutes to complete each task.

Answers were rating on a scale from 0-3 points. For the Locate

tasks, 3 points were awarded if they found the precise location of

the desired expression, 2 points for finding the location of a similar

or related expression, 1 point for a loosely-related section of code,

and no points if their answer was unrelated to the desired

expression. For the Conditions tasks, 3 points were awarded for

finding the precise conditions necessary for the desired expression

to be evaluated, and a point was subtracted for every extraneous

or missing condition (until reaching zero). If a participant did not

provide an answer in the allotted time, they received a score of 0.

After completing all three tasks for the first code base, participants

were asked to provide three ratings of their experience on the

Likert scale established by Baker et al. The difficulty and

frustration of task completion were rated 1 (not at all) to 5 (very).

How well they knew where they were in the code while

completing the tasks were rated 1 (no idea) to 5 (always knew

where they were in the code).

Once participants completed all three tasks with one program and

rated their experience, participants repeated the process with the

second program. If they used CMB for the first program they were

given a textarea for the second, and vice versa. After

completing both sets of tasks and reflections, participants were

asked to share their thoughts on the process, both with and

without CMB.

4.4 Analysis
StructJumper’s use of a desktop environment and the context of a

single, fixed language make direct comparisons to CMB

impossible. However, the similarities in research question allow us

to borrow heavily from their analysis.

The two factors at work in our design are the program participants

encountered first (Aliens v. Cows and Space Invaders) and whether

or not they used CMB first. We used a 2x2 mixed factorial design,

allowing us to model both within-subject and between subject

variables. Participants completed a total of 6 tasks, for a total of 78

tasks completed altogether. When analyzing task completion time,

we used a mixed-effects model ANOVA with Tool and Participant

as model variables. For the semantically anchored scale, we used

the descriptive statistics to identify the impact of the Tool.

Differences between groups with and without the tool were

assessed for significance using two-tailed t-tests.

5 Evaluation Results
We measured the impact of CMB using multiple dimensions,

including time-to-complete, accuracy-of-answer, and the

semantically-anchored self-reported scales for perceived difficulty,

frustration, and orientation. For participants who did not finish the

task in the time allotted, we capped their completion time at 5m

and gave them an accuracy score of 0.

While the tool is intended for novice users, the difficulty in

recruiting novice V.I. users led to most participants being “expert

users” with years of experience reading code-as-text. As such, we

might expect to see an increase in task time for this population.

While not significant, we found that average task completion time

was slightly slower when using CMB, but also more accurate. In

addition, participants’ perception of task difficulty and sense of

frustration when completing the task were all better when using

CMB, and their sense of orientation within the code was

significantly improved.

5.1 Task Completion Time
Participants were more successful completing the tasks in the 5m

allotted when using CMB. If participants had not been capped at

5m, the average completion time would be greater for every

unfinished task. This impact would be disproportionally greater

for tasks done without CMB, of which far more were left

unfinished (10) than with CMB (3).

 Without CMB With CMB

 Mean SD Mean SD

Task 1 - Time 2m29s 2m3s 2m39s 1m44s

Task 2 - Time 1m55s 1m28s 2m27s 1m18s

Task 3 – Time 2m56s 1m20s 2m40s 1m30s

Avg. Time 2m28s 1m38s 2m35s 1m19s

As expected, this population was slightly (though not

significantly) slower with CMB than without it. Participants

completed the Locate with Search an average of 10 seconds slower

with CMB, and Locate without Search wan average of 32 seconds

slower. However, the Conditions task – the most cognitively

demanding of the three - was actually completed an average of 16

seconds faster with CMB than without it.

5.2 Task Score

 Without CMB With CMB

 Mean SD Mean SD

Task 1 – Score 2.31 1.11 2.62 0.51

Task 2 – Score 2.39 1.12 2.53 0.88

Task 3 – Score 1.85 1.34 2.23 1.17

Avg. Score 2.18 1.19 2.46 0.88

When using CMB, participants scored higher — and more

consistently so — on every task. The largest difference in task

score was found on the cognitively-demanding Conditions task.

When using CMB, 9 (out of 39) tasks lost points due to inaccurate

answers, compared to 6 without it. However, CMB resulted in less

than one-third the number of incomplete tasks (10) than

traditional text (3).

Participants lost points in the Locate tasks because they found a

related part of the code but not the precise location. These specific

mistakes involved participants searching for a particular term,

finding it, and then reporting it as the answer without checking to

see if this term was being used in the right place.

More participants lost points on the Conditions task than any other

task. Of the 13 participants in the study, 8 received the full score

when using CMB, compared to only 6 without. Of those who lost

Paper Session: Accessibility SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

777

points but still managed to complete the task, every point lost was

due to participants failing to consider the impact of nested if-

statements.

5.3 Participant Experience

Figure 2 – Orientation was significantly improved

When describing their ability to orient themselves while

completing the tasks, users felt that CMB was significantly better

than reading raw text (p < 0.005). Scores of 3 or above were more

far more frequent with the tool (38) than without it (29).

 Without CMB With CMB

 Mean SD Mean SD

Difficulty 1.34 1.03 1.31 0.98

Frustration 1.31 1.28 0.77 1.09

Orientation** 3.18 1.07 3.85 1.07

Users also reported lower levels of frustration when completing

tasks - as well as the perception that tasks were less difficult –

when using the tool. These differences were not significant.

5.4 Qualitative Results
After completing the tasks, participants were asked a series of

open-ended questions about their experiences, to get a sense for

what ways (if any) they found the tool helpful, frustrating, or

useful. Several common themes emerged.

5.4.1 Orienting Better. Nearly every participant commented that

CMB helped them orient themselves when reading code. Some

participants attributed this to the fact that browsing with CMB

naturally enforced an understanding of structure (“everything is

arranged so you hear the structure just by going to the next node”).
Other participants made ample use of “orientation shortcuts” in

CMB, which would read all of the ancestors of a particular node.

Several pointed out that “location” in a text editor is often defined

in terms of line and column numbers, and said they preferred

CMB’s orientation within the AST:

“It’s way more useful to hear that what I’m looking at is inside an if-

expression, which is inside the definition of the hitting-wall function,

rather than just hearing that I’m on line 215.”

5.4.2 Focus on Structure, not Syntax. Reading the structure of a

program is a different task than reading the syntax, and many

participants remarked on how freeing it was to be able to focus on

the structure: e.g., that “The TreeView was really nice. I didn’t have

to think about indentation to form a tree on my own” or “I wish I had

this tool for when I’m exploring new languages! I liked that it always

gave me a consistent view of the code…I’m often a little distracted if I

get different indentation, or if there are a lack of spaces I get funny

line wrapping with my braille display.”

This effect may have been enhanced by the fact that virtually none

of the participants were familiar with the syntax of the language.

One might expect, for example, that the syntax burden would be

less of an issue for Java programmers reading Java code; on the

other hand, it better reflects the experience of a novice. Indeed,

allowing students to focus on structure instead of syntax is one of

the goals of block languages like Scratch. Replicating that effect in

in a way that is accessible for visually-impaired users is an

important goal for this study.

5.4.3 Perceived Speed. Many participants indicated that things “felt

faster” when using CMB. In particular, they liked the ability to

collapse blocks and “skim”: “Loved the collapsed-all! Really handy to

skip over to skip over stuff I don’t care about. Very quickly, I knew

that the then clause of the if-expression was something I could skip.

Being able to just collapse it was awesome.”

6 Future Work

While this evaluation focused exclusively on using CMB to

navigate code, future user studies will focus on the editing

functionality. And given CMB’s ability to let users manage their

cognitive load (choosing when to work directly with syntax and

when to avoid it), it would be useful to evaluate the tool when

examining languages with which the users are already familiar.

The user studies described here also provided extensive feedback

about areas for future development. The simple search

functionality implemented for this study was clearly a limitation,

and multiple users communicated that a more robust search

feature would have been helpful when completing these tasks.

Additionally, several users asked for a “glances” stack, which

would allow them to hit a key and have their current position

saved. After further exploration, they could hit a different key a

quickly return to the location at the top of the stack.

Finally, it would be valuable to explore the impact of using CMB as

an IDE for sighted users. Having the computer read a description

of a block in an age-appropriate language, or different natural

language, could have major implications for all learners – not just

those with visual impairments.

ACKNOWLEDGMENTS

We are grateful to AccessCSforAll for their enormous efforts to

recruit participants, and to the participants themselves for their

time and feedback. We also thank Vint Cerf, the ESA Foundation

and the US National Science Foundation for supporting this work.

REFERENCES
[1] World Wide Web Consortium. Accessible Rich Internet Applications (WAI-

ARIA) 1.1 W3C Recommendation 14 December 2017. Retrieved August 29
th

,

2018 from https://www.w3.org/TR/wai-aria-1.1/

Paper Session: Accessibility SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

778

https://www.w3.org/TR/wai-aria-1.1/

[2] Catherine M. Baker., Lauren R. Milne., and Richard E. Ladner. 2015.

Structjumper: A Tool to Help Blind Programmers Navigate and Understand the

Structure of Code. In Conference on Human Factors in Computing Systems.

[3] CodeMirror. Retrieved August 29
th

, 2018 from https://codemirror.net/

[4] Becky Gibson. 2007. Enabling an Accessible Web 2.0. In International Cross-

Disciplinary Conference on Web Accessibility.

 [5] Sean Mealin, Emerson Murphy-Hill. 2012. An Exploratory Study of Blind

Software Developers. In Visual Languages and Human-Centric Computing.

[6] National Federation for the Blind, Retrieved August 29
th

, 2018 from

https://nfb.org/blindness-statistics

[7] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y. Vidya, Manohar

Swaminathan, and Gopal Srinivasa. 2018. CodeTalk: Improving Programming

Environment Accessibility for Visually Impaired Developers. In Conference on

Human Factors in Computing Systems.

[8] Emmanuel Schanzer, Kathi Fisler, and Shriram Krishnamurthi. 2018. Assessing

Bootstrap: Algebra Students on Scaffolded and Unscaffolded Word Problems. In

Symposium on Computer Science Education.

[9] Ann C. Smith, Justin S. Cook, Joan M. Francioni, Asif Hossain, Mohd Anwar,

and M. Fayezur Rahman. 2003. Nonvisual Tool for Navigating Hierarchical

Structures. In SIGACCESS Accessibility and Computing. no 77-78, (pp. 133-139).

ACM.

 [10] Andreas Stefik, Andrew Haywood, Shahzada Mansoor, Brock Dunda, and Daniel

Garcia. 2009. “Sodbeans.” In International Conference on Program Comprehension.

pp. 293-294.

[11] Andreas Stefik, Christopher Hundhausen, and Robert Patterson. 2011. An

empirical investigation into the design of auditory cues to enhance computer

program comprehension. In International Journal of Human-Computer Studies,

no 69 (pp. 820-838).

[12] Andreas Stefik,, Susanna Siebert, Melissa Stefik, and Kim Slattery. 2011. An

empirical comparison of the accuracy rates of novices using the Quorum, Perl,

and Randomo programming languages. In Workshop on Evaluation and

Usability of Programming Languages and Tools (pp. 3-8).

[13] Wilson, C. (2014). Hour of Code: We can solve the diversity problem in

computer science. ACM Inroads, 5(4), 22-22.

[14] Anja Thieme, Cecily Morrison, Nicolas Villar, Martin Grayson, and Siân Lindley.

2017. Enabling Collaboration in Learning Computer Programing Inclusive of

Children with Vision Impairments. In Proceedings of the 2017 Conference on

Designing Interactive Systems (DIS ‘17). ACM, 739-752.

[15] Weintrop, D., & Holbert, N. (2017). From Blocks to Text and Back:

Programming Patterns in a Dual-Modality Environment. In Proceedings of the

2017 ACM SIGCSE Technical Symposium on Computer Science Education (pp.

633-638). New York, NY, USA: ACM.

Paper Session: Accessibility SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

779

