
Iterative Student Program Planning using
Transformer-Driven Feedback

Elijah Rivera
eerivera@brown.edu
Brown University

Providence, Rhode Island, USA

Alexander Steinmaurer
alexander.steinmaurer@tugraz.at
Graz University of Technology

Graz, Austria

Kathi Fisler
kfisler@cs.brown.edu
Brown University

Providence, Rhode Island, USA

Shriram Krishnamurthi
shriram@brown.edu
Brown University

Providence, Rhode Island, USA

ABSTRACT
Problem planning is a fundamental programming skill, and aids
students in decomposing tasks into manageable subtasks. While
feedback on plans is beneficial for beginners, providing this in a
scalable and timely way is an enormous challenge in large courses.

Recent advances in LLMs raise the prospect of helping here.
We utilize LLMs to generate code based on students’ plans, and
evaluate the code against expert-defined test suites. Students receive
feedback on their plans and can refine them.

In this report, we share our experience with the design and
implementation of this workflow. This tool was used by 544 students
in a CS1 course at an Austrian university. We developed a codebook
to evaluate their plans andmanually applied it to a sample.We show
that LLMs can play a valuable role here. However, we also highlight
numerous cautionary aspects of using LLMs in this context, many
of which will not be addressed merely by having more powerful
models (and indeed may be exacerbated by it).

CCS CONCEPTS
• Applied computing → Education.

KEYWORDS
program planning; automated feedback; LLMs
ACM Reference Format:
Elijah Rivera, Alexander Steinmaurer, Kathi Fisler, and Shriram Krishna-
murthi. 2024. Iterative Student Program Planning using Transformer-Driven
Feedback. In Proceedings of the 2024 Innovation and Technology in Computer
Science Education V. 1 (ITiCSE 2024), July 8–10, 2024, Milan, Italy. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3649217.3653607

1 INTRODUCTION
In the context of programming, planning is the process of decom-
posing a program into subtasks and mapping out how the subtasks
will fit together (aka compose) in a final solution. It creates a space
for high-level thinking about a program prior to committing to
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE 2024, July 8–10, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0600-4/24/07.
https://doi.org/10.1145/3649217.3653607

details of code. A good plan should also help programmers focus
on manageable-size chunks of a program, rather than trying to con-
sider the entire program at once. In educational contexts, explicit
planning might help students who feel overwhelmed by assign-
ments to organize their thoughts and work, akin to using a to-do
list to manage a complex event in daily life (as seen in fig. 2).

We focus on planning for students in early post-secondary com-
puter science. Students at this level often struggle with program-
ming; planning could potentially help themmake progress in smaller
steps. Students can also be reluctant to throw out a program and
start over: knowing they are on a path to success before they commit
to code could be useful. Ideally, we would test whether a proposed
plan could solve the problem at hand prior to having a student code
the solution. However, this is only useful if students can get close-
to-immediate feedback on their plans, which is very difficult to do
with manual grading alone, that too in large classes. Furthermore,
traditional methods like software testing will not work on partial
programs or textual plans.

The code-generation abilities of LLMs provide an exciting oppor-
tunity to support planning education at scale. If LLMs can translate
a plan to code in a reasonable way, we could run that code against
test suites and provide validation feedback, enabling the student to
iteratively refine the plan until it is sufficiently viable. This experi-
ence report describes what happened when we tried this in a large
novice introductory programming course.

2 RELATEDWORK
Program Planning. Program planning finds its roots in plan com-

position work done by Spohrer and Soloway [26], who first posited
that CS novices have an internal plan from which they are starting
when solving a given programming problem. Attempts to inves-
tigate these plans first relied on interpreting them from student-
created programs [9, 13, 26], and also from observing students
during the programming process [4, 12, 22, 23]. Only a few prior
projects have explicitly studied pedagogic tools for using plans,
most notably Muller et al. on "pattern-oriented instruction" [19] and
de Raadt et al.’s "strategy guide" [7]. The "patterns" and "strategies"
identified by these two lines of work are very low-level imperative
programming constructs.

In contrast, our recent prior work [17, 25] lays out a framework
for a planning process that is a separate step with a deliverable
before the programming process, and it does so with more abstract

https://orcid.org/0000-0002-5374-0171
https://orcid.org/0000-0002-1760-2855
https://orcid.org/0000-0002-7895-8206
https://orcid.org/0000-0001-5184-1975
https://doi.org/10.1145/3649217.3653607
https://doi.org/10.1145/3649217.3653607


ITiCSE 2024, July 8–10, 2024, Milan, Italy Elijah Rivera, Alexander Steinmaurer, Kathi Fisler, and Shriram Krishnamurthi

Figure 1: Tool and user workflow

programming idioms like higher-order functions. The vision for
this project draws on these previous papers, and fits in line with
the recent push for more explicit metacognition education in pro-
gramming courses [1, 8, 18].

LLMs. Recent work has (somewhat) successfully prompted an
LLM to produce both plans [14, 29], and code [5, 28], especially for
programming problems typically found in CS classrooms [10, 11,
20, 21]. All that work has the goal of getting the LLM to produce
increasingly correct plans/code; Badyal et al. [2] showed that at
this point it is quite difficult to “convince” state-of-the-art LLMs
to hallucinate incorrect answers. However, to give accurate and
relevant feedback on student plans, we need the LLM to produce
syntactically correct but semantically wrong code when a student
submits an incorrect plan. We are not aware of any prior work that
has this orientation.

3 TOOL DESIGN
Figure 1 shows the workflow that occurs under the hood. After se-
lecting a problem to work on, the student writes a plan (in a textbox)
and submits it for evaluation. Our tool constructs an LLM prompt
that includes the student’s plan, then runs the LLM-generated code
against a staff-developed test suite. The tool then presents the test-
ing results to the student, who can modify their plan and repeat
the process. Our tool does not check any syntactic properties of the
student’s plan. We examine the structure of their plans in section 5
and discuss our reasons for not checking notation in section 6.

LLMand prompt configuration. The effectiveness of ourworkflow
is highly dependent on both the LLM and prompt used. Two general
failure modes are possible when using LLMs to generate code from
plans. False negatives arise when the plan is adequate but the LLM-
generated code lacks behaviors that the plan had covered. False
positives arise when the plan is deficient but the LLM fills in enough
details that the generated code passes the test-suite validation.

LLM. Initially, we attempted to build the tool atop OpenAI’s
GPT3.5 (gpt-3.5-turbo-0613). Our pilot experiments (not involv-
ing students) indicated that GPT3.5 yielded far too many false
negatives, even after substantial prompt engineering. We had simi-
lar results with InstructGPT (gpt-3.5-turbo-instruct) and the
open-source model StarCoder from HuggingFace. We therefore
switched to GPT4 (gpt-4-0613).

GPT4, in contrast, initially had a high rate of false positives. We
noticed that this was partially caused by providing the LLM too
much information about the problem, which caused it to fill in
details the students had not specified. We therefore removed the
problem statement from the prompt; we discuss the consequences
of this in section 6. We then performed multiple rounds of prompt
revision to bring false positives down to what we felt was an ac-
ceptable rate.

Prompt Design. After several iterations, we settled on the fol-
lowing prompt content because it seemed to remove almost all
false positives. We analyze the prompt quality in more detail in
section 5.3; The full prompt is provided alongside several other
supplementary materials in a GitHub repository.1

• Examples of any non-primitive data structures (e.g., the
Python representation of a “theater hall” (see section 4))

• information about functions which the student has previ-
ously defined in another task (including corresponding im-
port statements), if applicable

• the header of the function the student has been asked to
define in the current task, but renamed to student_plan
(so that the function name does not cause GPT4 to gener-
ate the correct function body automatically, as sometimes
happened)

• the student’s plan
• instructions telling the LLM to translate the student’s plan
step-by-step into equivalent Python code

• strict instructions to not correct errors that might be present
in the student’s plan.

Testing. Once the LLM pipeline produced code, we ran our test
suite on the code using the standard Python testing library unittest
inside Docker instances. Our test suites were sets of up to 5 exam-
ples per problem, written by hand.

4 GATHERING STUDENT PLANS
Course context. For this study, our goal was to work with stu-

dents who knew little programming, so that their programming
knowledge would not overly bias their planning. Indeed, we gave
them problems that they would not be able to program based on
their course content to date. Therefore, we deployed the tool in
week three of a CS1 course (using the C programming language)
at the Graz University of Technology in Austria. At the time of
the assignment, students had been introduced to computation in a
language-agnostic way by learning about data (types), data storage,
abstraction, pseudo-code, and charts.

Student population. The course had a total enrollment of 736
students, most of whom are bilingual. Overall, 544 of the enrolled
students submitted a solution for this assignment. In this course,
it is not mandatory to submit all assignments to pass them; for
this reason, students skip some tasks, especially if the points per
exercise do not make up an essential part of the total points. The
typical student was was enrolled in a computing-related program
such as computer science, software engineering and management,

1https://github.com/xstone93/iticse2024-planfeedback/

https://github.com/xstone93/iticse2024-planfeedback/


Iterative Student Program Planning using
Transformer-Driven Feedback ITiCSE 2024, July 8–10, 2024, Milan, Italy

A plan helps you articulate the high-level structure of your so-
lution to a problem. The plan may include information about
different steps that need to be taken, as well as any ordering be-
tween different steps. [...]
Example: You want to do your weekly grocery shopping. To get
a better structure, you write yourself a list with all the products
that you want to buy yourself. Subsequently, you will see two
variants of problem plans related to buying groceries. Keep in
mind that there are many possible ways to go, you may find easier
or more complex plans, which does not mean that one approach
might be wrong.
Variant 1:
1. Start with the first element on the list which is not crossed out.
2. Locate the element in the grocery store.
3. Put the desired amount of the element in your shopping bag.
[. . . ]
Variant 2:
1. Categorize items on the list according to similar categories.
2. Start with the first element in the first category, which is not
crossed out.
[. . . ]

Figure 2: Planning instructions

or information and computer engineering. Some students had prior
programming experience (which we account for in our analysis).

Task Design. We developed three problem scenarios, each with
three functions for which students had to write plans. Following
our prior work [24], we asked students to write plans as to-do
lists. Figure 2 shows (in abbreviated form) the planning instructions
given to students (the full instructions are in the GitHub repository).
To avoid over-constraining student plans we intentionally showed
two distinct plans for the same problem in the instruction document,
but students were only asked to produce one.

For seven of the nine functions, students received no feedback;
for the other two, they received immediate feedback from the tool.
For these two functions, students were allowed to use the tool up
to five times.2 An example of the feedback that students received
appears in Figure 3. The spacing of feedback was designed inten-
tionally, as described shortly.

Before students could submit a revised plan for feedback, they
had to fill in a single Likert-style question that asked, “How well
did you plan do compared to your expectations?” At the end of
the assignment, student gave free-response comments on their
experience with the tool.

Research Ethics. As this activity was a homework assignment
and not intended to be generalizable research, it did not require IRB
review in the US. The students were informed before the assign-
ment that the data would be analyzed for research purposes and
that their performance or participation had no negative influence

2We would have preferred to let students get feedback on every problem and to do so
more times. However, due to the cost of using GPT4, even this level of feedback cost
over USD 200. Our initial calculation had put the cost even higher, at the limit of our
budget, which is why we put these limits in place. We return to this in section 6.

Figure 3: Format of feedback on plans. The example is for the
second theater problem. Expanding a row shows the function
inputs and the output generated from the synthesized plan.

on their grades (since the data was analyzed anonymously). Fur-
thermore, the students could opt out of the data analysis at any time
without disadvantageous consequences. For this reason, IRB was
not required in Europe either. We nevertheless took various pre-
cautions, such as anonymizing student responses prior to sharing
them with the team for analysis.

The Planning Problems. The course instructor (one of the authors)
wanted to give problems that reflected the kinds of coding that
students would be learning to do later in the course. After reviewing
past course assignments and recent planning literature, we settled
on three high-level problems, each with three specific functions for
which students needed to develop plans. The two functions marked
with ‡ are the ones on which feedback was provided.

Theater Seating: Manage reservations in a theater with seats
arranged in a 2-dimensional grid.

(1) Count how many seats are available, given information on
the current reservations.

(2) ‡ Reserve seats, given information on the current reserva-
tions, the row number, the first seat to reserve in that row,
and the total number of seats to reserve.

(3) Purchase a ticket, given information on the current reserva-
tions, the number of tickets sought, and the ticket category
(regular versus premium). The per-ticket price differs based
on the category and percentage of seats that are available.



ITiCSE 2024, July 8–10, 2024, Milan, Italy Elijah Rivera, Alexander Steinmaurer, Kathi Fisler, and Shriram Krishnamurthi

Music Playlists: Create and manage playlists with songs from
multiple genres. Information about each song includes title, artist,
length, and its genre (e.g., rock, jazz).

(1) Given a playlist and a genre, count howmany songs are from
that genre.

(2) Calculate total playtime of a genre in a given playlist.
(3) ‡ Check whether the playlist is "balanced" (the number of

songs between any two genres differs by at most one).
Restaurant Ordering: Manage a queue of orders.
(1) Add a new order to the end of the queue, given the order

details and a reference to the head of the queue.
(2) Remove the order with a given ID from the queue, given a

reference to the head of the queue.
(3) Remove the first order from the queue, making the second

order the new head of the queue.
Within each problem, the tasks are semi-dependent: a student

did not need to solve one before attempting the others, but ideas
from earlier tasks might also apply to later tasks.

The feedback problems (‡) were chosen with intent. They are
complex enough to require multiple steps in a plan, but we felt they
would still be within their reach. In addition, theywere intentionally
staggered. The second problem was chosen in the first set so the
first problem could serve as a “warm-up” activity. Students then
went through a few more problems before getting feedback again.

5 ANALYSIS
For our analysis, we wanted to see both the structure and evolution
of student planning, especially on the functions where students
received feedback. It is worth remembering that these are problems
for which students (without prior programming experience) could
not yet write programs.

To make our analysis task tractable, we looked at the planning
results on four problems: the three theater-seating problems and the
first restaurant problem. We chose the former because they were
related but had feedback in the middle. We chose the first restaurant
problem because it came after a second round of feedback (on the
last music-playlist problem). We therefore assumed impacts from
planning feedback would be most salient when contrasting plan
styles on the first theater problem and the first restaurant problem.3

Given the large number of students, we chose to sample 50
students for analysis. We did not explicitly ask students about
their prior programming experience. However, several students
mentioned their prior experience, or lack thereof, in their additional
free-form responses. We therefore split the students into three
groups: those who explicitly mentioned experience (EXP: a total
of 34), those who explicitly said they had none (NOV: 25), and
everyone else (UNK: the remaining 412). We then chose 10 students
each from the prior and no-prior groups, and 30 from the middle
group. It is important to note that the middle group will include
students both with and without experience, but who did not give
any indication of it.

3We note that there are many different subsets that could be analyzed; indeed, there is
a combinatorial number of them. While there are other reasonable subsets, we feel
ours is reasonable enough.

5.1 Plan Iterations
RQ1: To what extent does getting feedback encourage students to revise
their plans?

On all the problems with no feedback (with one exception below),
the median number of submissions per student was 1 and the mean
under 1.5. On the two with LLM feedback, the medians were 4 and
2, with means 3.6 and 2.6. This shows that giving feedback made
a difference to student plan iteration. The sole exception was the
very first problem, which had a median of 2 and mean of 1.9. There,
we see that students were still getting used to planning; especially
after getting feedback on the second problem, they refined their
notion of “a plan” and went back and modified their first plan.

An ANOVA test [15] on the different problems confirmed sig-
nificant differences across the groups (p < 0.0001), and a posthoc
Tukey’s HSD test [27] confirmed the statistical significance (p <
0.0001) of the difference in the means between each of the 3 prob-
lems above and all other problems, including each other. In short,
students did take advantage of feedback to revise their plans.

5.2 Plan Characteristics
RQ2: What characteristics can we observe in students’ plans?

To evaluate the plans, two authors generated four codebooks
(which can be found in the GitHub repository). On the first they
reached a Cohen 𝜅 [6] of 0.8 in 13 rounds. On the second, they
reached 𝜅=0.8095 after 10 rounds. On the last two, they reached
𝜅=1 after 8 rounds. For each round, for each of the two functions
with feedback (reserve seat and balanced music playlist), five sub-
missions were randomly selected from across all submitted plans.

Table 1 explains the high-level goals and structure of each code-
book, which are levels of judgment that go much deeper than what
an LLM can reliably provide. As one example, based on these code-
books, the plans in Figure 2 would get codes of RIGHT-TRACK,
JUST-RIGHT, PROSE, and LABELED.

We labeled the sampled submissions using these codes. There are
several possible dimensions of analysis here. In addition to which
problem and which category of student (relative to indicated prior
programming experience), each student could also make multiple
attempts. For simplicity, we looked at the first and last submis-
sions students made (even on problems without feedback, students
sometimes fixed bugs or revised for other reasons).

The resulting six tables don’t fit within this paper (and can be
found in full in the GitHub repository). The variation between
problems was small enough that the summary of the codes per
group, shown in Table 1, is sufficiently informative. Based on this
and the detailed data, we observe the following:

Planning Attempts Across all groups, in very few instances
do students mostly repeat the problem statement as their
“plan” (PROB STATEMENT). Thus, students are taking the
planning process seriously.

Correctness Students, across all groups and all problems, are
on the right track in their first (and last) attempts. Novices
and unknown students do a bit worse on Reserve Seats and
New Order, but experienced students do not.

Level of Detail About 25% of novices start with extraneous
detail, and this number decreases slightly by the end. The
experienced and unknown groups have similar rates. Only



Iterative Student Program Planning using
Transformer-Driven Feedback ITiCSE 2024, July 8–10, 2024, Milan, Italy

Correctness - To avoid relying on the tool’s test suites, we instead manually
code for “How would a human grader assess this plan?”. A plan could be one
of: RIGHT TRACK, INCORRECT, PROB-STATEMENT (the plan essentially
restated the problem, without decomposing it), or NO ATTEMPT.

NOV EXP UNK
Code First Last First Last First Last
RIGHT TRACK 32 35 34 35 100 106
INCORRECT 6 4 6 5 13 10
PROB STATEMENT 2 1 0 0 5 3
NO ATTEMPT 0 0 0 0 2 1

Level of Detail - “How much decomposition into tasks did students per-
form?” One of: JUST RIGHT, NOT ENOUGH, or EXTRANEOUS (the plan
included details that were not expected by the problem statement).

NOV EXP UNK
Code First Last First Last First Last
JUST RIGHT 31 34 29 31 87 91
EXTRANEOUS 9 6 8 7 24 21
NOT ENOUGH 0 0 3 2 6 6

Notation - “What kind of notation did students use?” One of: CODE (mostly
using the syntax of a programming language, often C or Python), SEMI-
CODE (interleaved programming notation with prose), PROSE, or OTHER.

NOV EXP UNK
Code First Last First Last First Last
CODE 9 10 8 10 4 5
SEMI CODE 3 3 9 9 11 15
PROSE 28 27 23 21 103 99
OTHER 0 0 0 0 0 0

Structure - Separately, “what kind of visual structure did the plan fol-
low?” One of: CODE (resembled source code) LABELED (ordered sequence
of steps), UNLABELED (clear sequence without explicit labeling), PROSE
(lacking any visual structure), or OTHER.

NOV EXP UNK
Code First Last First Last First Last
CODE 10 11 15 17 9 11
LABELED 13 15 21 21 79 79
UNLABELED 7 4 3 1 11 12
PROSE 9 9 0 0 19 17
OTHER 1 1 1 1 0 0

Table 1: Plan Summary Across Problems

the unknown group is large enough to show many instances
of insufficient detail, at a rate of about 4%.

Notation Across all three groups, students only rarely change
their notation from first to last attempts. The novice group
has about three times as many CODE as SEMI CODE, and
three times as many PROSE as CODE (so PROSE is about
70% of all submissions). For experienced students, perhaps
somewhat surprisingly, the amount of CODE is about the
same as for novices, but the amount of SEMI CODE is three
times as much (about the same as CODE), so PROSE drops
to about 52–57%). The unknown group is curiously different:
three times as much SEMI CODE as CODE, and 7–9x as
much PROSE as SEMI CODE, so that PROSE is 83–87%. The
key takeaway is that in most cases students are writing
natural language descriptions (as we had hoped for), not

just programs; the rate is (unsurprisingly) much lower for
students with programming experience, though some of that
could be a consequence of the sample size.

Structure Students did not blindly follow our sample plan
structure. Only about 1/3 of novices followed our LABELED
structure. Experienced students much more closely followed
our sample structure (just over 50%) or otherwise used a
code-like structure (just under 50%). The unknown group
was much more varied: 66% used LABELED, 10% CODE, 10%
UNLABELED, but almost 15% PROSE.

5.3 System Accuracy
RQ3: How accurate is the system in providing feedback?

Our correctness coding also lets us analyze howwell the prompt+LLM
combination is working. Recall that students get test suite feedback
on the generated code. Since we do not expect plans to be complete
and perfect, we tolerate some test failures. We thus can refine our
definition of false positive to be a case where the plan passes the
majority of tests but we give it a code of INCORRECT or NO AT-
TEMPT, while a false negative fails a majority of tests but we give
it a code of RIGHT TRACK.

For false positives, there were only 13 instances of INCORRECT
or NO ATTEMPT for the reserve seats problem. 12 out of these 13
plans received system feedback of 0/5 or 1/5 test cases passed. We
had 1 outlier, which was a plan that received a 4/5 on the first run,
but then the exact same plan received a 0/5 on a future run.

For false negatives, we further break down the results, comparing
first-attempt plans (before the first round of feedback) with last-
attempt plans. There were 39 plans with a code of RIGHTTRACK on
the first attempt. Of these 39, 27 failed a majority of tests. However,
by the last attempt, there were 42 plans with a code of RIGHT
TRACK, and of these 42, only 19 failed a majority of tests.

In short, the system has an extremely low false positive but
moderate false negative rate. Thus, while not very detailed or in-
sightful, testing feedback seems to be a useful proxy for at least the
correctness of the plan.

6 DISCUSSION AND LESSONS LEARNED
At a superficial level, we should view this project as a preliminary
success. For decades computing education research has asked stu-
dents to plan, but there has been little ability to evaluate plans
rapidly enough that students can act on the feedback. The exis-
tence of LLMs has made it possible to provide feedback quickly and
scalably, enabling students to iterate on their designs.

Another positive takeaway—independent of LLMs—is that stu-
dents were able to plan! As we have seen, they wrote non-trivial
plans, instead of just copying the problem text. Furthermore, they
could write correct plans for problems they could not yet possibly
program. They also iterated their plans in response to feedback.

Another benefit to LLMs is their robustness in the face of human
language. They are robust to small typographical and other errors,
and can help students who are not native speakers of English.4

This paper is not, however, meant to be a celebration of LLM
technology. We experienced numerous issues on which (current)

4In our case, the language of instruction was English, and the vast majority of plans
were in English—but for most students, English was the second or even third language.



ITiCSE 2024, July 8–10, 2024, Milan, Italy Elijah Rivera, Alexander Steinmaurer, Kathi Fisler, and Shriram Krishnamurthi

LLMs are neutral, unhelpful, or even actively harmful. We spend
the rest of this paper discussing these aspects.

Student Opinion. At the end of the assignment, a total of 471
students answered the free-response question: “In what ways did
your planning process change when writing the plans with test
case feedback? How much did this feedback help/hinder your plan-
ning efforts?” We used VADER Sentiment Analysis [16] to identify
positive and negative sentiments in their responses, and then topic
modeling with Latent Dirichlet Allocation (LDA) [3]. This high-
lighted three topics for positive and six for negative feedback.
Positive Opinions:

+ Structure problem planning - Especially beginners men-
tioned that the feedback helped to break down and structure
ideas, and feedback helped them reflect and refine.

+ No expressive limitation - Students with highly detailed
plans (that use specific language features) mentioned that
they enjoyed having a high level of freedom on what fea-
tures they use since the tool translates them to code without
worrying about it.

+ Tests consider edge cases - Beginners noted that test cases
were helpful since their initial strategies were too simple
and did not consider edge cases.

Negative Opinions:
- Combatting the LLM - Some students wondered how to
write plans to please the LLM’s assessment. They mentioned
that they had to restructure their plans to receive better
results, even though they were already satisfied with their
solution.

- Attempt counting as a limiting factor - The limit of five
attempts per task made students feel pressured.

- Testing is not enough - Students wanted high-level feed-
back about their plans, not just testing results.

- Nondeterminism - Students were frustrated by the LLM’s
non-determinism, which made tests pass in one run and not
the next. Some wanted to see the generated code.5

- Unclear Test cases - Students mentioned having problems
understanding the test cases. They sometimes spent more
time understanding the tests than planning.

- Black box - Students sometimes did not receive any output
due to failure to return values in their plans. This resulted
in frustration since it was unclear what to do to pass tests.

What Kind of Feedback? As noted above, the author of a plan
primarily wants feedback in terms of the plan, not in terms of a
distant proxy like a test suite. Unfortunately, this is difficult.

One might think of using an LLM itself for this purpose. In fact,
in our early prompts, GPT4—unbidden—provided feedback on the
plans, and our eventual prompt had to suppress that. This is be-
cause its feedback was (as so often happens with LLMs) sometimes
excellent, sometimes unhelpful or a distraction, and sometimes
wrong. In the problematic cases, it would give feedback that was
wrong or—equally badly—when the plan had an error, just tell the
student how to fix the plan rather than Socratically leading them
to do so for themselves. Of course, it was impossible to tell which
5This would have made little sense in our setting, since many students didn’t know
how to program at all, and the course was teaching C but the tool generated Python.

case was which. For that reason, we chose to not provide direct
LLM feedback.

One intermediate design we used was to have each statement
(in a LABELED- or UNLABELED-style plan) turn into a function,
converting the plan into a Jupyter notebook. In this setting, with
discrete chunks of code, it may be possible to localize flaws (through
some form of testing) and provide targeted feedback about specific
plan details. However, we did not a priori want to force students
into a particular planning style (we offered one as a suggestion, but
were curious to see what students would produce). Given that most
students do write structured plans anyway, a future version may
be able to exploit this structure.

LLMs as Moving Targets. As every reader likely knows, the set
of LLMs keeps growing. As noted, even the change from GPT3.5
to GPT4 was significant. We were unable to get sufficiently high-
quality output from GPT3.5, which means students would have
unreasonably failed tests far too often, while GPT4 has been “too
good”. In contrast, one of the authors was able to dial down the
quality of generated code by asking for it in a less popular language
than Python (e.g., Racket).6 The complex interplay between model,
prompt, generated language, and student input makes it difficult to
design such tools.

Other Planning Notations. As our prior work [24] has noted, stu-
dents may also write plans in diagrammatic forms (e.g., as dataflow
diagrams). Older LLMs have only processed text. Towards the end
of this work, OpenAI released GPT-4V, a model capable of interpret-
ing images as well. We are interested in employing such models so
that students have greater flexibility in their planning language.

LLMs Cost Money! While we could have given students effec-
tively unlimited use of GPT3.5 on all the problems, the significantly
greater cost of GPT4 (at the time, about 20 times as much) meant we
had to significantly limit the number of interactions. While prices
did come down during the period of use, the very scale that seems
to necessitate LLMs also makes their cost nontrivial. Open-source
models have not worked for us, and also require computational
resources. While one could imagine training a model specifically
to help with planning, that task requires significant expertise.

Including the Right Context. We removed the problem statement
from the prompt to prevent the LLM solving the problem irrespec-
tive of the plan’s details. But this caused its own problems! Students
naturally assumed that the problem statement was known to the
code synthesizer, and either referenced them or left them out. This
caused some otherwise-good plans to fail. This shows that there is
a delicate balance to achieving just the right amount of context for
an LLM. Since we did not realize this problem until we analyzed
the data, we have to leave finding that sweet spot for future work.

Acknowledgements
Thanks to the course staff and students for their participation, and
for their patience with this experiment. Work partly supported by
NSF awards DRL-2031252 and SHF-2227863.

6Even though the course taught C, we chose to synthesize Python to exploit its testing
libraries and to avoid issues like segmentation faults.



Iterative Student Program Planning using
Transformer-Driven Feedback ITiCSE 2024, July 8–10, 2024, Milan, Italy

REFERENCES
[1] Vincent A.W.M.M. Aleven and Kenneth R. Koedinger. 2002. An effective metacog-

nitive strategy: Learning by doing and explaining with a computer-based cogni-
tive tutor. Cognitive science (2002). https://doi.org/10.1207/s15516709cog2602_1

[2] Nicklaus Badyal, Derek Jacoby, and Yvonne Coady. 2023. Intentional Biases in
LLM Responses. In IEEE Ubiquitous Computing, Electronics and Mobile Communi-
cation Conference (UEMCON ’23). https://doi.org/10.1109/UEMCON59035.2023.
10316060

[3] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. Journal of Machine Learning Research (2003).

[4] Francisco Enrique Vicente Castro and Kathi Fisler. 2016. On the Interplay Be-
tween Bottom-Up and Datatype-Driven Program Design. In ACM Conference
on International Computing Education Research (SIGCSE ’16). https://doi.org/10.
1145/2839509.2844574

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[6] Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Educational
and Psychological Measurement (1960).

[7] Michael de Raadt, RichardWatson, andMark Toleman. 2009. Teaching and Assess-
ing Programming Strategies Explicitly. In Proceedings of the Eleventh Australasian
Conference on Computing Education - Volume 95 (Wellington, New Zealand) (ACE
’09). Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 45–54.
https://dl.acm.org/doi/10.5555/1862712.1862723

[8] Paul Denny, James Prather, Brett A. Becker, Zachary Albrecht, Dastyni Loksa, and
Raymond Pettit. 2019. A Closer Look at Metacognitive Scaffolding: Solving Test
Cases Before Programming. In Koli Calling International Conference on Computing
Education Research (Koli Calling ’19). https://doi.org/10.1145/3364510.3366170

[9] Alireza Ebrahimi. 1994. Novice programmer errors: language constructs and
plan composition. International Journal of Human-Computer Studies 41 (1994),
457–480. https://doi.org/10.1006/ijhc.1994.1069

[10] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of Ope-
nAI Codex on Introductory Programming. In Australasian Computing Education
Conference (ACE ’22). https://doi.org/10.1145/3511861.3511863

[11] James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A. Becker. 2023. My AI Wants to Know If This Will
Be on the Exam: Testing OpenAI’s Codex on CS2 Programming Exercises. In
Australasian Computing Education Conference (ACE ’23). https://doi.org/10.1145/
3576123.3576134

[12] Kathi Fisler and Francisco Enrique Vicente Castro. 2017. Sometimes, Rainfall
Accumulates: Talk-Alouds with Novice Functional Programmers. In Proceedings of
the 2017 ACM Conference on International Computing Education Research (Tacoma,
Washington, USA) (ICER ’17). ACM, New York, NY, USA, 12–20. https://doi.org/
10.1145/3105726.3106183

[13] Kathi Fisler, Shriram Krishnamurthi, and Janet Siegmund. 2016. Modernizing
Plan-Composition Studies. In ACM Technical Symposium on Computing Science

Education. https://doi.org/10.1145/2839509.2844556
[14] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang,

Jamie Callan, and Graham Neubig. 2023. PAL: Program-aided Language Models.
In International Conference on Machine Learning (ICML ’23). https://proceedings.
mlr.press/v202/gao23f.html

[15] Ellen R Girden. 1992. ANOVA: Repeated measures. Sage Publications.
[16] C. J. Hutto and Eric Gilbert. 2014. VADER: A Parsimonious Rule-Based Model

for Sentiment Analysis of Social Media Text. Proceedings of the International
AAAI Conference on Web and Social Media 8, 1 (May 2014), 216–225. https:
//doi.org/10.1609/icwsm.v8i1.14550

[17] Shriram Krishnamurthi and Kathi Fisler. 2021. Developing Behavioral Con-
cepts of Higher-Order Functions. In ACM Conference on International Computing
Education Research. https://doi.org/10.1145/3446871.3469739

[18] Dastyni Loksa, Lauren Margulieux, Brett A. Becker, Michelle Craig, Paul Denny,
Raymond Pettit, and James Prather. 2022. Metacognition and Self-Regulation in
Programming Education: Theories and Exemplars of Use. ACM Transactions on
Computing Education (2022). https://doi.org/10.1145/3487050

[19] O. Muller, B. Haberman, and D. Ginat. 2007. Pattern-oriented instruction and its
influence on problem decomposition and solution construction. In Proceedings of
ITiCSE. ACM, New York, NY, 151–155. https://doi.org/10.1145/1268784.1268830

[20] James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi,
Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, Stephen MacNeil, Andrew Petersen, Raymond Pettit, Brent N. Reeves,
and Jaromir Savelka. 2023. The Robots Are Here: Navigating the Generative
AI Revolution in Computing Education. In "ACM Conference on Innovation and
Technology in Computer Science Education - Working Group Reports (ITiCSE-WGR
’23). https://doi.org/10.1145/3623762.3633499

[21] Brent Reeves, Sami Sarsa, James Prather, Paul Denny, Brett A. Becker, Arto
Hellas, Bailey Kimmel, Garrett Powell, and Juho Leinonen. 2023. Evaluating the
Performance of Code Generation Models for Solving Parsons Problems With
Small Prompt Variations. In ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’23). https://doi.org/10.1145/3587102.3588805

[22] Robert S. Rist. 1989. Schema Creation in Programming. Cognitive Science (1989),
389–414. https://doi.org/10.1016/0364-0213(89)90018-9

[23] Robert S. Rist. 1991. Knowledge Creation and Retrieval in Program Design: A
Comparison of Novice and Intermediate Student Programmers. Hum.-Comput.
Interact. 6, 1 (Mar 1991), 1–46. https://doi.org/10.1207/s15327051hci0601_1

[24] Elijah Rivera, Kathi Fisler, and Shriram Krishnamurthi. 2024. Observations on
the Design of Program Planning Notations for Students. In Proceedings of the
55th ACM Technical Symposium on Computer Science Education V. 1 (Portland,
OR, USA) (SIGCSE 2024). Association for Computing Machinery, New York, NY,
USA, 1133–1139. https://doi.org/10.1145/3626252.3630901

[25] Elijah Rivera, Shriram Krishnamurthi, and Robert Goldstone. 2022. Plan Com-
position Using Higher-Order Functions. In ACM Conference on International
Computing Education Research. https://doi.org/10.1145/3501385.3543965

[26] James C. Spohrer and Elliot Soloway. 1989. Simulating Student Programmers. In
International Joint Conference on Artificial Intelligence. 543–549. https://doi.org/
doi/abs/10.5555/1623755.1623841

[27] John W. Tukey. 1949. Comparing Individual Means in the Analysis of Variance.
Biometrics (1949). http://www.jstor.org/stable/3001913

[28] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation
vs. experience: Evaluating the usability of code generation tools powered by
large language models. In ACM CHI Conference on Human Factors in Computing
Systems Extended Abstracts (CHI ’22). https://doi.org/10.1145/3491101.3519665

[29] Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and
Subbarao Kambhampati. 2023. PlanBench: An Extensible Benchmark for Eval-
uating Large Language Models on Planning and Reasoning about Change.
arXiv:2206.10498

https://doi.org/10.1207/s15516709cog2602_1
https://doi.org/10.1109/UEMCON59035.2023.10316060
https://doi.org/10.1109/UEMCON59035.2023.10316060
https://doi.org/10.1145/2839509.2844574
https://doi.org/10.1145/2839509.2844574
https://arxiv.org/abs/2107.03374
https://dl.acm.org/doi/10.5555/1862712.1862723
https://doi.org/10.1145/3364510.3366170
https://doi.org/10.1006/ijhc.1994.1069
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3105726.3106183
https://doi.org/10.1145/3105726.3106183
https://doi.org/10.1145/2839509.2844556
https://proceedings.mlr.press/v202/gao23f.html
https://proceedings.mlr.press/v202/gao23f.html
https://doi.org/10.1609/icwsm.v8i1.14550
https://doi.org/10.1609/icwsm.v8i1.14550
https://doi.org/10.1145/3446871.3469739
https://doi.org/10.1145/3487050
https://doi.org/10.1145/1268784.1268830
https://doi.org/10.1145/3623762.3633499
https://doi.org/10.1145/3587102.3588805
https://doi.org/10.1016/0364-0213(89)90018-9
https://doi.org/10.1207/s15327051hci0601_1
https://doi.org/10.1145/3626252.3630901
https://doi.org/10.1145/3501385.3543965
https://doi.org/doi/abs/10.5555/1623755.1623841
https://doi.org/doi/abs/10.5555/1623755.1623841
http://www.jstor.org/stable/3001913
https://doi.org/10.1145/3491101.3519665
https://arxiv.org/abs/2206.10498

	Abstract
	1 Introduction
	2 Related Work
	3 Tool Design
	4 Gathering Student Plans
	5 Analysis
	5.1 Plan Iterations
	5.2 Plan Characteristics
	5.3 System Accuracy

	6 Discussion and Lessons Learned
	References

