
CaptainTeach: Multi-Stage, In-Flow
Peer Review for Programming Assignments

Joe Gibbs Politz
Brown University

joe@cs.brown.edu

Daniel Patterson
Brown University

dbp@dbpmail.net

Shriram Krishnamurthi
Brown University

sk@cs.brown.edu

Kathi Fisler
WPI

kfisler@cs.wpi.edu

ABSTRACT
Computing educators have used peer review in various ways
in courses at many levels. Few of these efforts have applied
peer review to multiple deliverables (such as specifications,
tests, and code) within the same programming problem, or
to assignments that are still in progress (as opposed to com-
pleted). This paper describes CaptainTeach, a programming
environment enhanced with peer-review capabilities at mul-
tiple stages within assignments in progress. Multi-stage,
in-flow peer review raises many logistical and pedagogical
issues. This paper describes CaptainTeach and our experi-
ence using it in two undergraduate courses (one first-year
and one upper-level); our analysis emphasizes issues that
arise from the conjunction of multiple stages and in-flow re-
viewing, rather than peer review in general.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education

Keywords
Peer-review, Learning environments, Testing

1. INTRODUCTION
Peer review has various educational roles, including en-

couraging reflection and metacognition [10], fostering critical-
thinking skills [5], and assisting in producing feedback or
grades in large courses [6, 8]. Many faculty have experi-
mented with peer review within computing courses, both
introductory and upper-level. The vast majority of these ef-
forts have applied peer review (a) after the assignment has
been turned in, and (b) to one deliverable within the assign-
ment. There are, however, strong arguments for relaxing
each of these constraints.

Reviews would ideally help students improve their work:
just as students utilize office hours and discussion boards,
peer reviews can provide valuable diagnostic information.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE ’14 Uppsala, Sweden
Copyright 2014 ACM 978-1-4503-2833-3/14/06 ...$15.00.
http://dx.doi.org/10.1145/2591708.2591738.

This is perhaps especially true for programming assignments,
whose problem specifications imply several objective crite-
ria. If a student misunderstood a programming problem,
peer-review while the assignment is open (henceforth in-
flow reviewing) could help the student get back on track
before the deadline. Naturally, this only works if students
complete assignments early enough to receive and act on
feedback. One way to accomplish this is to decompose as-
signments into multiple stages that each have concrete de-
liverables (e.g., requiring tests before code), and reviewing
after each stage.

In Fall 2013, we experimented with multi-stage, in-flow
peer review in two undergraduate courses (one a freshman
honors course that emphasized data structures1, the other
an upper-level programming languages course2). We built
an enhanced programming environment, CaptainTeach, to
support the reviewing process. For the programming assign-
ments in this paper, CaptainTeach used the programming
language Pyret3, whose design supports multi-stage review-
ing (Section 3 discusses how).

CaptainTeach’s novelty stems primarily from its integra-
tion of two ideas: (1) peer review and (2) decomposition
of programming assignments into multiple deliverables that
checkpoint student understanding of the assignment. Stu-
dents submit and review others’ work on each step before
being allowed to submit work on subsequent steps. This
paper focuses on logistical and policy considerations around
multi-stage, in-flow reviewing for programming courses. Our
evaluation focuses on whether this model is feasible and use-
ful from a students’ perspective. Section 6 contrasts Cap-
tainTeach to other peer-review practices from the literature.

2. DECOMPOSING PROGRAMMING
PROBLEMS FOR REVIEW

CaptainTeach strives to use peer review to help students
adjust their work on an assignment before the due date.
While reviewing complete drafts of programs is certainly
possible, we’d like to help students catch their mistakes even
earlier, before producing a complete program. In Captain-
Teach, we design assignments to have sequential, reviewable
deliverables and have students review one another’s work at
these intermediate stages. We explain how we decompose
assignments for CaptainTeach through an example.

Consider this data-structure programming problem:

1http://cs.brown.edu/courses/cs019/2013/
2http://cs.brown.edu/courses/cs173/2013/
3http://pyret.org/

Write a program that takes a binary tree of num-
bers and produces a list containing those num-
bers according to a pre-order traversal of the tree.

Before a student can write a correct solution to this problem
in any setting, she must be able to (1) develop and use a
binary-tree data structure and (2) understand the term“pre-
order traversal”. In our experience, students who come to
office hours with “code that doesn’t work” are often stuck
on one of these two more fundamental problems.

The How to Design Programs [4] methodology provides a
generalizable “design recipe” for staging programming prob-
lems such as this. The full recipe asks students to approach
a problem through seven ordered steps (paraphrased here for
an experienced computer science audience; the presentation
for beginners is worded differently):

1. Create the data structures needed for the input.

2. Create concrete instances of the data structure.

3. Write a type signature and summary of the function.

4. Write a set of test cases for the function, including the
code needed to call the function on concrete inputs and
the concrete answer that the function should produce
(typically using the concrete data from step 1).

5. Write a skeleton of code that traverses the input data
structure (but omits problem-specific logic).

6. Add problem-specific logic to the traversal skeleton.

7. Run the tests (from step 4) against the function.

Each step yields a concrete artifact that targets a different
aspect of the problem; if a student is unable to produce
one of the artifacts, he is likely to have trouble produc-
ing a correct and justifiable final program. When we work
with How to Design Programs in person, we take students
through each of these steps: a student asking for help must
show each step before we will help with a later step (meaning
we do not look at code—a step 6 concern—until the prior
steps are done). In our long experience using this curricu-
lum, many errors in student programs manifest in one of the
early steps. Thus, the early steps are vital for making sure
that students understand the problem.

In theory, one could build a programming environment
that asks students to submit work for each step separately,
optionally with reviewing on each step (though peer-review
on all steps would almost certainly be too cumbersome). In
our courses, we chose a coarser granularity. We provided
the data structures (step 1) and function header (step 3),
because having consistent shapes, field names, and function
headers reduces confusion and enables one person’s tests to
probe another’s code. Students submitted work twice per
problem: in the first stage, they submitted black-box test
cases (step 4) and any defined constants used in their test
cases (step 2). In the second stage, they submitted their
implementations (combining steps 5 and 6); we assumed
that students ran their code against their own tests (step 7)
before submitting. On one assignment, we used a three-
stage process in which students also developed their own
data structures (step 1) as the first stage.

The split in CaptainTeach of tests before implementations
reflects software-engineering practices such as test-first de-
velopment. In CaptainTeach, we use tests to checkpoint
students’ understanding of a problem: if a student misun-
derstands a question, misses a corner case, or misuses a data
structure, his test cases usually reflect this error.

Figure 1: CaptainTeach enabled for writing tests.

3. CaptainTeach: THE TOOL AND ITS
REVIEWING WORKFLOW

CaptainTeach typically takes students through a prescribed
sequence of four core steps on each programming problem:

1. submit a test suite for review
2. review 2–3 other students’ test suites
3. submit an implementation for review
4. review 2–3 other students’ implementations

Students get reviews from others on their own work as each
individual review is completed. Students can update their
submissions until the assignment closes, but can only submit
once for reviewing (to avoid over-burdening reviewers). Sec-
tion 4 discusses grading of submissions. This section focuses
on the interface, reviewing process, and language issues.

Figure 1 shows the interface when a student first starts a
problem in CaptainTeach (through a web browser). In the
right half of the page, students can evaluate expressions at
a prompt: this is a standard interactive read-eval-print-loop
(repl). The left half of the page is the editing area, with
the shaded portions locked to prevent editing. The data
structure definition appears first (locked, so that everyone
uses the same one), followed by an open area where students
can define examples of the data structure. The next shaded
area gives the name and type signature for the function.
That area ends with a keyword where, which marks the start
of test cases for the function. Students can enter their tests
in the unshaded area that follows. Just under the test area
is a button for submitting tests for review.

Markings in the leftmost portion of the editing area show
students where they are in the sequence of steps. The arrow
marks the area that students are currently expected to edit
(though they may edit in any unshaded area). Numbered
tags next to shaded areas show the order in which other
areas will open for editing.

Once a student submits tests for review, her editing page
gets additional tabs for others’ work that she needs to re-
view, as seen at the top of Figure 2. Her own code is still
accessible in the Code tab, but she will not be able to edit

Figure 2: Interface for reviewing others’ tests.

her implementation until after she submits reviews for each
Reviews tab. The figure shows the review form for test
cases. There are two prompts, each asking for a Likert-scale
rating and free-form comments. One prompt asks about the
correctness of the tests, while the other asks about test cov-
erage. The button to submit the review has been truncated
from the image, but appears below the lower prompt.

Once the student has submitted reviews for each tab, the
area for her implementation unlocks in her Code tab (the
interface is identical to Figure 1 except the area marked with

2 is no longer shaded and the progress tags have changed).
The review form for implementations also has two prompts,
one about correctness and one about design and structure:

• “This code correctly implements the desired behavior.”

• “This code is structured well.”

Though CaptainTeach could be applied to any language, it
works especially well with Pyret. In most languages, testing
is a library feature so the environment must necessarily guess
the loci of tests (which may even be split across files). In
contrast, Pyret has linguistic support for testing in the form
of where (and another kind of block indicated by check),
so the environment can unambiguously identify where the
tests should go, enabling it to lock and unlock portions of
the editor, and also report test failures more accurately.

4. LOGISTICS AND POLICIES
Multi-stage, in-flow reviewing raises several logistical and

policy questions. Some affect the design of CaptainTeach,
while others impact course policies.

Whether to Synchronize Deadlines Per Stage.
With multi-stage reviewing, instructors can either allow

students to complete stages at their own pace or synchro-
nize the class through a separate due date per stage. We
chose the former, so that peer-review would not constrain
students’ workflows. Section 5 reports timing patterns in
how students submitted across stages.

Non-synchronized submission could block progress for stu-
dents who submit first. We seeded CaptainTeach with sev-

eral solutions, both good and bad, to give early-submitters
something to review. In practice, multiple students submit-
ted initial stages around the same times, so each students’
work was sent out for review fairly quickly.

Grading and Reviews.
Other work on peer-review has unsurprisingly observed

that students take reviewing more seriously when reviews
themselves are graded or count towards course grades. We
did not grade reviews, and used a combination of human TAs
and results from an automated testing harness to determine
actual grades for code submissions.

We motivated good reviewing in several ways:

• Students had to submit reviews in order to submit sub-
sequent stages of the assignment or revisions to their
own submission for the same stage.

• If students gave a bad review score to a good seed (or
vice-versa), CaptainTeach told them so immediately.
The seed solution and their review were accessible from
their assignment page, so they could discuss their re-
view with TAs if necessary.

• The recipient of a review could give review feedback
to the reviewer, indicating if the review was helpful.
This feedback consisted of both a Likert-scale rating
and free-form comments.

The course staff also spot-checked reviews of seed solutions
for general content and tone. This process never identified
problems, so the staff used it only lightly later in the courses.

Potential for Plagiarism.
Showing students examples of others’ work while an as-

signment is open might invite plagiarism. Students can copy
code they are reviewing and paste it into their own solutions;
also, nothing prevents students from helping one another by
pasting their own solutions into reviews.

We could integrate code-similarity detection tools into
CaptainTeach, but have chosen to not do so. Plagiarism has
not historically been a problem in these courses, and they are
small enough that human TAs can flag blatant plagiarism.
More importantly, instead of fighting an uphill battle, we
adopt the following two perspectives on plagiarism enabled
by CaptainTeach:

First, we designed our grading policies to mitigate the ef-
fect of copying. For each deliverable (tests and implementa-
tion), students have two official submissions: one submitted
for review and the final version (whatever was present when
the assignment closed). Any influence from other students
would reflect in the latter, but not the former. When grad-
ing assignments, the initial submission was weighted heavily
(75% versus 25%): this allows students to benefit from re-
viewing insights, but does not allow someone to pass the
course on the work of others. This also nudges students
to submit what they believe is a quality submission before
taking up valuable reviewing resources.

This ratio does hurt the student who does poorly at first,
having significantly misunderstood the assignment, but uses
reviewing as intended to correct their mistakes before the
final submission. Having students submit tests first ame-
liorates this impact, as significant misconceptions about the
problem should manifest in the test cases, before the student
submits a correspondingly incorrect implementation. In ad-
dition, given that there were multiple course assignments, a

significant misconception on one or two assignments would
be unlikely to adversely impact the overall course grade. Fi-
nally, these discrepancies are easy to notice when making up
final grades.

Second, at a more principled level, we (controversially!)
view code availability as a valuable learning opportunity for
students, in that it reflects modern software practice. Sites
such as StackOverflow and blogs give programmers ready
access to code for various tasks; the problem for users is to
assess whether the code they find is worth copying. Captain-
Teach anonymizes the work being reviewed, so students can-
not rely on the reputation of authors when deciding whether
to follow ideas seen in other students’ work; instead, they
must judge the code itself. If they make a correct judge-
ment, this demonstrates learning and a corresponding im-
provement in their grade. However, they may also copy a
wrong solution (even one we used to seed the system, which
can look quite convincing!), so copying blindly is perilous.

Disrupting Mental Flow.
The reviewing process interrupts students as they work

on an assignment. This interruption could be helpful, as it
potentially reveals errors before students begin implementa-
tion. The interruption could also be disruptive, as students
have to wrap their heads around someone else’s solution be-
tween phases of working on their own.

We suspect that being asked to review would be most dis-
ruptive in the midst of working on the program body. How-
ever, test-first approaches develop tests with no dependency
on an implementation. This means that when reviewing test
cases, students have just finished a standalone test-writing
activity, and are presumably about to transition to solution
strategies. Therefore, we hope the timing of the first review
minimizes disruption and maximizes reflection, and we did
not receive student complaints about it.

In feedback given during the semester, students raised one
concern about the mental burden of reviewing: they wanted
to review work from the same students across the multiple
stages. Currently, CaptainTeach assigns reviews based on
submission time, and does not retain reviewer-reviewee pairs
across steps. Student felt they could reuse mental effort
across the review stages had they been reviewing work from
the same authors. The downside to this proposal lies in
timing: students might receive feedback later if they have
to wait for their original reviewers to submit work. This is
an interesting design choice to explore in the future.

In a similar vein, students requested an additional round
of back-and-forth with their reviewers to seek clarification
on comments. We had considered but not implemented this
out of concern that it would be too distracting and time-
consuming. In an open discussion on the system, however,
students felt that one additional optional round would have
struck an appropriate balance.

5. EVALUATION
CaptainTeach presumes that peer-reviewing helps students

get quick feedback on their work (both through reviews and
through self-assessment after seeing the work of others).
To understand how the multi-stage aspect of CaptainTeach
worked in practice, we analyzed the timings at which stu-
dents completed each stage relative to the overall assignment
due date, as well as student opinions on the relative value
of reviewing across the stages.

Figure 3: Bars show the percentage of submissions
made within the range of hours on the x-axis. “U”
and “F” in the legend refer to the upper-level and
freshman course, respectively.

The freshman course used CaptainTeach on 4 assignments,
with 2, 4, 6, and 17 reviewed steps. The upper-level course
used it on 8 programming assignments, each with 2 reviewed
steps, and 5 written assignments, each with a single reviewed
step. For the 2-step assignments, the steps were (1) tests for,
then (2) implementation of a single function. Assignments
with 4 (resp. 6) steps, had 2 (resp. 3) sequential instances of
writing tests for, then implementation of, a single function.
For the 17-step assignment, students first wrote a data defi-
nition, and then wrote 8 functions in tests-then-code style.4

5.1 Submission and Reviewing Behavior
Figure 3 shows how far in advance students submitted

each of tests and code in each course. With the exception
of code in the upper-level course, more than half of the stu-
dents submitted at least 12 hours before each assignment
was due, with noticeable differences between test- and code-
submission times in the upper-level course.

We also examined how long students had to wait to re-
ceive reviews on submitted work. The following table shows
summary statistics on (a) the hours between artifact sub-
mission and receipt of all reviews, and (b) the hours before
the receipt of the first review. These data show that stu-
dents do get some feedback reasonably quickly. In future
work, we will look at whether early feedback differs in re-
view helpfulness or quality compared to later feedback.

All Reviews First Review
(hrs to receipt) (hrs to receipt)

Course Stage Mean σ Mean σ
Upper Tests 12.33 19.45 4.59 7.81
Upper Code 11.54 20.9 4.66 11.89
Freshman Tests 6.03 9.7 2.38 4.07
Freshman Code 5.98 9.41 2.62 5.46

5.2 Student Reaction
Post-course, we surveyed students about the impact of re-

viewing on each individual assignment. We asked whether

4We deemed this assignment the hardest; students also rated
it as benefitting the most from reviewing (see Section 5.2).

each of reviews received and reviews written were not, some-
what, or very helpful in improving their work. We also asked
whether the review process was more helpful for tests, code,
or equally on both. Each of the three questions was presented
as a grid with assignment names labeling the rows and an-
swer options labeling the columns. We received responses
from 36 (of 49) students in the freshman course and 16 (of
37) students in the upper-level course.

The following table summarizes the survey results as per-
centages of students giving each response. The data from
the freshman course reports on 3 of the 4 assignments. The
omitted assignment was vastly easier than expected across
the class, leaving students little to learn from the review-
ing process (over 60% reported reviewing as not helpful on
that assignment). The data from the upper-level course is
broken into two groups of assignments: the programming as-
signments (reviews written on each of test cases and code),
and the written assignments (one stage of reviewing only).

How helpful was (receiving/writing) reviews?
Course Task Not Some Very
Freshman Receiving 26% 59% 15%
Freshman Writing 25% 45% 30%
Upper-Program Receiving 45% 38% 16%
Upper-Program Writing 43% 43% 14%
Upper-Written Receiving 44% 40% 16%
Upper-Written Writing 34% 28% 39%

The data on writing reviews on written assignments in the
upper-level course particularly stands out (χ2 = .05 using
the data on receiving reviews on writing assignments as ex-
pected values; this is significant at 97.5% with df =2). We
hypothesize that this means that students felt they benefited
from seeing each others’ solutions, regardless of whether
they had to write reviews on those solutions. Writing re-
views is also rated “very” useful more often than receiving
reviews within the freshman course. We are not sure how to
interpret the difference in “not” ratings between the fresh-
man and upper-level course: upper-level students may sim-
ply be more comfortable rating an aspect of the course nega-
tively than students in their first semester; other hypotheses
are also plausible.

On one assignment (in the freshman course), the “very”
and “somewhat” percentages were identical on the helpful-
ness of writing reviews (“very” was lower in all other pro-
gramming assignments in both courses). This was the only
assignment in which we had students review not just tests
and code, but also a data definition. The data definition
was the first step of the problem: the students first defined
a representation of a tree zipper, and then wrote various tree
operations using the definition. Picking a good representa-
tion strongly guides an implementation towards a correct
solution, and many representations cannot have implemen-
tations that are efficient (the assignment mandated big-O
time bounds on the tree operations). In future work, we
need to have students review data definitions on more prob-
lems, to help us assess whether the utility of reviewing varies
across more than two problem stages.

In the future, we need to better understand the conditions
that made the process more or less helpful. At mid-semester,
students reported frustration trying to provide useful re-
views on work that looked good overall: a student who did
well might find the process unhelpful because the review-
ers had offered little in the way of comment. Ratings of

“not helpful” from students who submitted good work would
mean something quite different than from students who sub-
mitted work with noticeable flaws. Deeper insight about the
effectiveness of reviewing will come from analyzing the ac-
curacy of students’ reviews relative to the quality of the
submitted work. We intend to provide a detailed analysis
on these quantitative issues in future work.

On the question of whether reviewing is more useful on
test cases or code, the two courses yielded opposite responses.
The following table summarizes the percentages of students
in each course choosing each option, averaged across the as-
signments for that course (omitting writing assignments).

Which of test or code reviews was more helpful?
Course Tests Code Equally
Freshman 24% 49% 28%
Upper 49% 27% 24%

All but one assignment in each course had subtleties that
testing could expose. These results could simply reflect bet-
ter appreciation of testing among upper-class students; fu-
ture work should correlate these ratings with surveys of stu-
dent attitudes towards testing in the vein of Buffardi and
Edwards’s work [1]. The upper-level course results, which
emphasize the value of reviewing tests, particularly support
CaptainTeach’s multi-stage approach.

6. RELATED WORK
There is extensive literature on the benefits and pitfalls

of peer-review in higher education and in computer science.
We do not review the general literature here. Rather, we
focus on research that touches on our foci: online reviewing,
in-flow reviewing, multi-stage reviewing, or reviewing test
cases. Topping’s 1980–96 literature survey on peer review
in higher education [11] predates uses of review in CS courses
similar to in-flow and multi-stage reviewing.

Søndergaard [10] uses in-flow peer review in a compil-
ers course. Students review after completing three compiler
stages but before two others. Surveys show 68% of students
agreeing that peer review helped improve their own work,
63% agreeing that it improved their ability to reflect on their
own learning and skills, and 89% reporting value in seeing
other groups’ solutions.

Expertiza [7] allows for multiple rounds of revision and re-
view, but on complete submissions, rather than on interme-
diate stages of assignments as in CaptainTeach. Expertiza
also allows students to review one another’s reviews, and
these meta-reviews are used in assessing grades. Captain-
Teach also allows students to give feedback on reviews, but
we do not use the review process in assigning grades.

Hundhausen, et al. [5] use code reviews to help students
develop soft skills in CS1. They study several variations
such as on-line versus face-to-face, inclusion of a moderator,
and re-submitting work after review. Their reviews do not
consider testing. Their online process has students submit
reviews individually, with an optional subsequent period for
group discussion of reviews. They view the failure to require
group discussion as more critical than the decision to con-
duct reviews online. The complaints made by our students
are similar to ones they report.

Reily, et al. [8] study the accuracy, effectiveness, and im-
pact of post-flow peer-review of programming assignments
in an introductory Information Systems course. Their pro-
cess requires submitting at least 3 (later 5) concrete test

cases as part of each review. Reviews also include Likert
and open-response questions on various code characteristics.
The sample review report in their paper suggests that their
test cases were higher-level than ours, and at least some of
them would be tested through manual interaction with a UI.
In contrast, our test cases are for individual functions, and
are expressed entirely in code. Their evaluation does not
consider the role of testing in reviews, focusing instead on
aggregation of reviews for accuracy and impact.

Zeller [13] presents the Praktomat system for submitting,
automatically testing, and code-reviewing assignments. The
reviewing is of whole assignments, with no in-flow compo-
nent. In addition, only the final submission is assessed,
rather than intermediate submissions. To combat plagia-
rism they personalize assignments, which results in a dif-
ferent reviewer experience from CaptainTeach as reviewers
are longer reviewing the same problem they just solved.

Clark [2] presents a methodology where students are put
in pairs or groups to review and test one another’s solu-
tions. This happens after an entire program has been cre-
ated, but the projects run over a semester, giving this an
in-flow feel. Students can use the outcomes of the review
and peer tests to improve their solutions. The authors state
that this caused students to work more steadily and consis-
tently across the term of the long project.

Wang, et al. [12] use a workflow of early submission, fol-
lowed by peer review, followed by resubmission, with the
goal of getting students to do work earlier. They report
that 88% (N=79) of their students “believed that their time
management ability has been improved” after doing 10 as-
signments through this workflow. If we take the early test
submissions in our data as an indication of good time man-
agement, this suggests similar results to our findings. While
they have multiple steps of review possible before instructor
review, students still submit the entire assignment at once,
in contrast to the staged assignments of CaptainTeach.

Smith, et al. [9] use peer testing in a freshman honors
data-structures course. After submitting a pair-programmed
assignment, each pair tests code submitted by four other
pairs. Students have three days to provide detailed reviews.
Pairs then evaluate the reviews, summarize what they learned,
and can submit updated solutions. To prevent copying,
the course staff obfuscate and compile programs before dis-
tributing them. Our approach is much lighter-weight: it
uses black-box tests primarily to diagnose whether students
understand a problem and its corner cases, and expects stu-
dents to spend much less time performing reviews. We would
expect our students to learn less about testing per se than
under Smith’s approach, though we would expect them to
gain a similar appreciation for good test cases.

Kulkarni, et al. [6] study how to scale peer-assessment to
large online courses, where face-to-face reviewing is not fea-
sible. To calibrate student reviews for accuracy, students
first review one of a handful of assignments that have been
assessed by TAs. Per assignment, students only review peers
after writing a review whose score approximates that of the
TAs. This approach takes training of reviewers more seri-
ously than our approach of spot-checking reviews on seeded
solutions, but the stakes are higher in Kulkarni’s work as
they use peer assessments for actual grades. Their rubrics
are more detailed and structured, in part due to their more
open-ended assignments. They also experiment with differ-
ent formats to prompt for better reviews.

Buffardi and Edwards [1] study student engagement in
test-driven development (tdd). We use tests first, but do
not rigorously follow the details of tdd. Neither this pa-
per nor Edwards’ other research on testing uses peer review
on tests. In a control-group-based study, they do not find
significant differences in attitudes towards tdd in students
who received feedback (hints) from automated test analysis,
versus those who received generic hints not driven by tests.

Denning, et al. [3] explore lightweight in-class peer review.
This provides students immediate, high-level feedback and
helps instructors assess a class’s understanding of a prob-
lem. In-class reviews are much lighter-weight than those
in CaptainTeach, and done on problems that allow for such
quick review. This work shares our goal of quick-turnaround
reviewing while problems are fresh in students’ minds.

Acknowledgments.
This work was partially funded by the US National Science

Foundation and by Google. We thank the staff of Brown’s CSCI
0190 and CSCI 1730 for their invaluable assistance, and the stu-
dents for their forbearance.

7. REFERENCES
[1] K. Buffardi and S. H. Edwards. Impacts of adaptive

feedback on teaching test-driven development. In SIGCSE
Technical Symposium on Computer Science Education,
2013.

[2] N. Clark. Peer testing in software engineering projects. In
Australasian Computing Education Conference, 2004.

[3] T. Denning, M. Kelly, D. Lindquist, R. Malani,
W. Griswold, and B. Simon. Lightweight preliminary peer
review: does in-class peer review make sense? In SIGCSE
Technical Symposium on Computer Science Education,
pages 266–270, 2007.

[4] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi.
How to Design Programs. MIT Press, 2002.

[5] C. D. Hundhausen, A. Agrawal, and P. Agarwal. Talking
about code: Integrating pedagogical code reviews into early
computing courses. ACM Transactions on Computing
Education, 13(3), Aug. 2013.

[6] C. Kulkarni, K. P. Wei, H. Le, D. Chia, K. Papadopoulos,
J. Cheng, D. Koller, and S. R. Klemmer. Peer and self
assessment in massive online classes. ACM Transactions on
Computer-Human Interaction, 2013.

[7] L. Ramachandran and E. F. Gehringer. Reusable learning
objects through peer review: The Expertiza approach. In
Innovate: Journal of Online Education, 2007.

[8] K. Reily, P. L. Finnerty, and L. Terveen. Two peers are
better than one: Aggregating peer reviews for computing
assignments is surprisingly accurate. In Proceedings of the
ACM International Conference on Supporting Group
Work, 2009.

[9] J. Smith, J. Tessler, E. Kramer, and C. Lin. Using peer
review to teach software testing. In International
Computing Education Research Conference, 2012.

[10] H. Søndergaard. Learning from and with peers: The
different roles of student peer reviewing. In ACM SIGCSE
Conference on Innovation and Technology in Computer
Science Education, pages 31–35, 2009.

[11] K. Topping. Peer assessment between students in colleges
and universities. Review of Educational Research,
68(3):249–276, 1998.

[12] Y. Wang, H. Li, Y. Sun, J. Yu, and J. Yu. Learning
outcomes of programming language courses based on peer
code review model. In International Conference on
Computer Science & Education, 2011.

[13] A. Zeller. Making students read and review code. In ACM
SIGCSE Conference on Innovation and Technology in
Computer Science Education, 2000.

