
Conceptual Mutation Testing for
Student Programming Misconceptions

Siddhartha Prasada, Ben Greenmana, Tim Nelsona, and Shriram
Krishnamurthia
a Brown University, Providence, RI, USA

Abstract
Context Students often misunderstand programming problem descriptions. This can lead them to solve the
wrong problem, which creates frustration, obstructs learning, and imperils grades. Researchers have found that
students can be made to better understand the problem by writing examples before they start programming.
These examples are checked against correct and wrong implementations—analogous to mutation testing—
provided by course staff. Doing so results in better student understanding of the problem as well as better test
suites to accompany the program, both of which are desirable educational outcomes.
Inquiry Producing mutant implementations requires care. If there are too many, or they are too obscure,
students will end up spending a lot of time on an unproductive task and also become frustrated. Instead, we
want a small number of mutants that each correspond to common problem misconceptions. This paper presents
a workflow with partial automation to produce mutants of this form which, notably, are not those produced by
mutation-testing tools.
Approach We comb through student tests that fail a correct implementation. The student misconceptions are
embedded in these failures. We then use methods to semantically cluster these failures. These clusters are
then translated into conceptual mutants. These can then be run against student data to determine whether we
they are better than prior methods. Some of these processes also enjoy automation.
Knowledge We find that student misconceptions illustrated by failing tests can be operationalized by the
above process. The resulting mutants do much better at identifying student misconceptions.
Grounding Our findings are grounded in a manual analysis of student examples and a quantitative evaluation
of both our clustering techniques and our process for making conceptual mutants. The clustering evaluation
compares against a ground truth using standard cluster-correspondence measures, while the mutant evaluation
examines how conceptual mutants perform against student data.
Importance Our work contributes a workflow, with some automation, to reduce the cost and increase the
effectiveness of generating conceptually interesting mutants. Such mutants can both improve learning outcomes
and reduce student frustration, leading to better educational outcomes. In the process, we also identify a
variation of mutation testing not commonly discussed in the software literature.

ACM CCS 2012
Applied computing→ Education;
Social and professional topics→ Computing education;

Keywords problem understanding, mutation testing, Examplar

The Art, Science, and Engineering of Programming

Submitted February 1, 2023

Published October 15, 2023

doi 10.22152/programming-journal.org/2024/8/7
© Siddhartha Prasad, Ben Greenman, Tim Nelson, and Shriram Krishnamurthi
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 8, no. 2, 2024, article 7; 28 pages.

https://doi.org/10.22152/programming-journal.org/2024/8/7
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


Conceptual Mutation Testing for Student Programming Misconceptions

1 Introduction

Writing Examples Many researchers [21, 27, 35] have observed that students often
misunderstand problem statements and consequently solve the wrong problem. This
not only creates frustration and leads to poor grades, but also means students may
also fail to learn whatever the assignment was meant to illustrate.
In many domains, it is common to test student understanding by asking them to

state the problem in their own words. Novice programmers often lack the vocabulary
for this. However, multiple research teams [7, 27, 37] have observed that test cases can
serve this purpose: they are a formal, machine-checkable restatement of the problem.
Some authors [37] make a terminological distinction (which we adopt) between tests,
which are meant to find errors in programs, and examples, which are meant to explore
the problem. Both use the same syntax and library support, but they are thought of
differently. Tests may explore implementation edge cases, while examples—which
are meant to be written before implementation even begins—probe the problem
definition. Writing examples early is also emphasized in widely-used curricula such
as How to Design Programs [10].

Providing Feedback If example-writing is a passive experience, however, then students
neither get feedback nor have much incentive to write them. Manual feedback is hard
to scale. Therefore, multiple teams have built interactive interfaces to give immediate
feedback for examples [6, 7, 41]. Examplar is one such interface [37] (It does not
force students to write examples first, but many do so voluntarily [38]).

Other educators have simulated such interfaces using auto-grader facilities, e.g., of
systems like Gradescope (personal communication). While less elegant than in-IDE
integration, it serves the same purpose of giving prompt feedback.
Examplar first runs student examples against one or more [39] correct implemen-

tations, called wheats. If an example fails the wheat, Examplar notifies the student
that they may be on the wrong track (Figure 1a). When all examples pass the wheat,
Examplar then runs a set of buggy implementations called chaffs to see whether the
examples are thorough enough to catch the bugs. Valid examples that fail to catch
the chaffs may be a symptom that the student does not fully understand the problem.

To use Wrenn’s example [37], assume students are asked to implement a function
to find the median. Many examples for median (e.g., median([1, 2, 3]) is 2) could just
as well be examples for mean and mode. These examples pass the wheats, but do not
sufficiently demonstate that students have understood their task. Thus, it is critical
that mean and mode (among others) are available as chaff implementations. If student
examples do not kill the chaffs (borrowing terminology from mutation testing), this
is a hint to hold off on implementation and instead demonstrate a more-thorough
understanding of the problem by writing a broader suite of examples.

How to Design Mutants? Unfortunately, the Examplar project leaves open a key issue:
how to design conceptual mutants (a.k.a. chaffs). If there are too many mutants, the
gamified interface may tempt students into catching them all instead of solving the

7:2



Siddhartha Prasad, Ben Greenman, Tim Nelson, and Shriram Krishnamurthi

(a) Examples that fail the hidden wheat are incorrect.

(b) Correct examples that fail to catch all chaffs are not thorough.

Figure 1 Examplar feedback for incorrect and incomplete examples.

assigned problem [37]. Therefore, to both be useful and not be counterproductive,
mutants:

must be few in number,
must correspond to problem misconceptions (not random bugs), and
should ideally correspond to misconceptions students actually have.

Whereas obscure mutants are helpful in traditional mutation testing, this educational
context calls for few and fruitful mutants to avoid overwhelming students.

Finding Misconceptions How do we learn what misconceptions students have? The
education literature has long documented the phenomenon of the “expert blind
spot” [23]: experts are often poor at predicting what students will find difficult.
Prasad et al. [26] explore this phenomenon in the Examplar context. Manually-

constructed chaffs, even though they had been curated by experts over several years,
did not accurately predict most student misunderstandings.
If both traditional mutation testing techniques and expert predictions of student

misunderstandings cannot be relied on to produce chaffs, what techniques can be used?
Prasad et al. [26] suggests using wheat failures (incorrect examples) as a starting point.
When an example fails a wheat, it could correspond to a problem misunderstanding.
For example, some students (in our experience) think that the median of [1, 3, 2] is 3
(the “middle” element) and consequently write an invalid example.

Prasad et al. [26] show that wheat failures are a productive source of misconceptions.
However, they do so through an enormous amount of manual clustering and analysis

7:3



Conceptual Mutation Testing for Student Programming Misconceptions

that is simply not replicable at scale. Even a small number of students (< 100) can
create thousands of examples (Section 6). Several questions must, therefore, be
answered to put their insight to work:
1. How to cluster wheat failures?
2. How to derive misconceptions from clusters?
3. How to realize misconceptions as chaffs?
Our contribution is to provide a workflow that addresses these questions.

2 Related Work

Mutation testing [1] is a venerable technique for determining the quality of a test
suite. A wide range of mutation tools exist today [20], and these tools can easily
generate huge numbers of mutants. These mutants, however, might be trivial, redun-
dant [28], or equivalent to the original program [22]. Finding methods to bridge the
semantic gap between generated mutants and real-world software bugs is an ongoing
challenge (e.g. [12, 28]).

An important difference between classic mutation testing and our work is that we
are not trying to determine the quality of an arbitrary test suite. Student examples
differ from tests in two important ways:
1. There is no implementation yet, so the kinds of tests that probe the corner cases of

a particular implementation strategy are meaningless here.
2. Example suites are not meant to be “complete” in the testing sense. We do not

want students to exhaust themselves trying to pin down every possible case of
the problem. Instead, we want just enough mutants to steer students in the right
general direction before they start implementing a solution.

Consequently, prior work that provides feedback on student examples uses manually-
constructedmutants instead of relying onmutation tools and dealing with the semantic
gap [6, 7]. Such mutants are hard to come by, but have a clear semantic payoff.

A related line of prior work is identifying redundant test cases. Chetouane et al. [4]
and Xia et al. [42] use k-means clustering to find tests that exercise similar components
of a system. Our work is seeks to cluster as well, but for incorrect examples rather
than test cases and based on the authors’ intent (specifically, their misconceptions).

3 Vocabulary

We establish some terminology that we will use in the rest of the paper:
wheat A (definitionally) correct implementation of an assignment.
wheat-failing example (wfe) An example, written in the syntax of a test case, that

rejects the wheat (i.e., describes incorrect behavior).
mutant Any incorrect implementation of an assignment.
chaff A mutant that corresponds to a known student misconception.

7:4



Siddhartha Prasad, Ben Greenman, Tim Nelson, and Shriram Krishnamurthi

Design a programming problem, Create a wheat

Collect wheat-failing examples (wfes)

Break the problem into characteristics, (Section 6.4.1)
Cluster wfes by characteristic feature vector (Section 6.4.2)

Analyze popular clusters (Section 7)

Select chaffs (Section 8)

Figure 2 How to produce a chaff suite from student data.

Traditional mutation operators are geared toward mutants rather than chaffs (Sec-
tion 2); hence the workflow of this paper.

4 Overview

The overall workflow that we propose is shown in Figure 2. Starting from a pro-
gramming problem that comes with a wheat implementation, we begin by extracting
wfes from student submissions, which is a simple matter of logging. There may
be a large number of wfes, so we need to cluster them. We employ a semantic
clustering method, which requires an initial set of mutants that reflect characteristics
of a correct solution (Section 6.4.1) and proceeds by running every wfe against
every mutant (Section 6.4.2). We then study the clusters with the most wfes to find
common misconceptions (Section 7). The final step is to choose a few effective chaffs
to deploy in the next iteration of the course (Section 8).

Each of these steps can be done manually [26], but doing so requires an infeasible
amount of effort from experts (Section 6). Our additional contribution is to automate
as much of the process as possible (Sections 7 and 8). We also identify research
challenges that would enable further automation (Section 10).

Since the workflow begins with wfes, we do not need any chaffs to bootstrap the
process. Nevertheless, in our work, students were given an initial set of manually-
constructed chaffs. This enables us to compare the chaffs developed through our
workflow with those written previously, which we do in Section 9.

5 Study Context

We developed and tested our chaff-creation workflow in the context of three program-
ming problems that were assigned at a highly selective, private US university as part

7:5



Conceptual Mutation Testing for Student Programming Misconceptions

of an accelerated introductory computer science course. The course used the Pyret
programming language (https://pyret-lang.org).

1. DocDiff is a document similarity problem [30]. A correct solution computes the
overlap between two non-empty lists of strings by reducing them to bags of words
and comparing the vectors.

2. Nile is about an imaginary online bookstore. The problem asks for two kinds of
collaborative filter: one to recommend a single book and another to recommend
pairs of books.

3. Filesystem defines mutually-recursive datatypes to represent a Unix-like filesystem
and asks for four functions: how-many, du-dir, can-find?, and fnd.

On all three assignments for three consecutive semesters, students were given access
to wheats and chaffs through Examplar. The course encouraged students to write
examples before starting their implementation, but did not require them to do so.
The Examplar UI also encouraged the examples-first style (Figure 1a). Students
were graded on both the implementation and their test suite. The latter could be
checked using Examplar, creating further incentive to use it at some point during the
assignment. Finally, Examplar was presented as a 24 hour teaching assistant that could
answer problem definition questions immediately, automatically, and consistently,
provided they could be phrased as an example [36].

Datasets We have data from three iterations of the course, from Fall 2020, 2021,
and 2022. Each dataset plays a different role. We used the 2020 data to develop our
workflow and create chaffs for 2022. This data is the focus of Sections 6 to 8. We
reserved the 2021 data for evaluation, to compare our chaffs against the course staff’s
latest, and presumably best, chaff suites (Section 9).
During the evaluation, we discovered that the Fall 2020 data was an unfortunate

training set for Nile because students used an additional tool, D4 [15], that reduced
the number and character of the wfes. Nevertheless, the chaffs that we developed
using this limited dataset out-performed the 2021 chaffs (Figure 4).

6 Clustering wfes

The first step in our search for common misconceptions is to cluster wfes into a
relatively small number of buckets. To this end, we introduce a semantic clustering
technique in Section 6.4. We were initially hopeful, however, that existing clustering
tools would suffice for wfes. They did not; nevertheless, we report on two syntactic
clustering tools in Section 6.2 and a failed attempt with the language-aware OverCode
in Section 6.3.

Why Cluster? Clustering is critical for two reasons. First, examples are hard to an-
alyze. By contrast to programs, most examples look fairly similar—whether or not
they are correct. Each example applies a function to an input datum and makes a
prediction about the result; there are few syntactic patterns to reveal their differences.

7:6

https://pyret-lang.org


Siddhartha Prasad, Ben Greenman, Tim Nelson, and Shriram Krishnamurthi

Figure 3 Number of wfes from 2020, number manually analysed.

Furthermore, the inputs and outputs may contain variables that point to large values
spread across the codebase, adding to the cognitive load. For large programs, we can
always rely on execution to show what the code does, but this approach does not
work for wfes. An example cannot run without an implementation of the function at
hand. One option is to use the wheat implementation, but this gives very little insight
because all wfes fail the wheat by definition.

Second, wfes are easy to come by. In our experience, a few dozens of students (well
under 100) can produce over one thousand wfes during one assignment (Figure 3).
With three assignments and three semesters, we have too much data to analyze in
reasonable time. Other educators will no doubt face the same problem.

6.1 Ground Truth Clusters

Using methods from grounded theory, we manually analyzed and clustered a tiny
sample of the wfes from the 2020 iteration of the three assignments (Section 5). Our
prior work describes the process in detail [26].

Figure 3 counts the total number of wfes and the number that we analyzed. There
were over 4,000 wfes in total. Of these, we analyzed 277 wfes: 52 from DocDiff, 122
from Nile, and 103 from Filesystem. While the number analyzed may not seem large,
it represents one month of work from two experts. In order to increase the ratio, we
would either need more experts or more of their time. This is not a task that we can
offload to non-experts (such as Mechanical Turk workers).

Evaluation Metrics We use two metrics to compare tool-generated clusters against
the ground truth: V-Measure and Homogeneity. The V-Measure is a standard cluster
analysis metric that assigns higher scores to clusters that contain only datapoints
from one ground-truth class (high homogeneity) and that cover the class (high
completeness) [29]. It makes no assumptions abouth underlying cluster structure.
Output values range from 0 to 1. These two extremes correspond to no agreement
and to perfect agreement.
Homogeneity is the component of the V-Measure that checks whether a cluster

spans few ground-truth classes (ideally, one cluster should match one class). This

7:7



Conceptual Mutation Testing for Student Programming Misconceptions

property is particularly important for wfe clustering because each ground-truth class
represents a distinct misconception. Tool-generated clusters should not span several
classes; doing so would conflate misconceptions.
In sum, good clusters should have a high correspondence to the ground truth

(V-Measure) and a Homogeneity score that is at least as large. (High Homogeneity
should be the primary reason for the high V-Measures.) We consider a V-Measure of
0.7 or greater to be a high score, though we acknowledge that there is no universal
definition of a high V-Measure.

6.2 Syntactic Clustering

The simplest, perhaps least-effort method for clustering is to use a syntactic approach.
Such out-of-the-box methods would be of tremendous value to instructors, allowing
them to easily reduce prohibitively large numbers of wfes to manageable clusters.
There are, however, good reasons to doubt that syntactic clustering will work for

wfes (and indeed, it fares poorly). Consider the median example from earlier. The
following two wfes reflect the “middle” misunderstanding of median (Section 1),
but are syntactically very different:

median([1, 3, 2]) is 3
median([4, 678, 0 , 99, 3]) is 0

Conversely, the following examples are syntactically similar, with an edit distance of
1, but represent different misunderstandings of the problem:

median([1, 2]) is 1
median([1, 2]) is 2

Both examples deal with the ambiguity surrounding even-length inputs: should the
median be to the left of the middle, right of the middle, or the average of the two
middle elements? The two examples above diverge. Consider two more examples:

median([5, 6, 7, 8]) is 6
median([5, 6, 7, 8]) is 7

Of the four even-length examples above, the first is semantically much closer to the
third and second to the fourth, but syntactically the first and second are very close as
are the third and fourth.
Nevertheless, for thoroughness, we made clusters using two standard similarity

measures: Levenshtein Distance [18] and GumtreeDiff [9]. We used these measures
in an affinity propagation [11] algorithm, which iteratively chose “best” wfes to build
clusters around and terminated when clusters were stable for five iterations.
For Levenshtein Distance, we obtained the following (low) scores:

Table 1 V-Measures and Homogeneity scores for Levenshtein Distance are low.

Assignment V-Measure Homogeneity
DocDiff 0.41 0.35
Nile 0.42 0.48
Filesystem 0.45 0.61

7:8



Siddhartha Prasad, Ben Greenman, Tim Nelson, and Shriram Krishnamurthi

GumtreeDiff compares AST representations of code. It can detect insertions, dele-
tions, moves, and even renames of source code elements. Since GumtreeDiff does not
support Pyret, we implemented a very simple translation of wfes to Python. (For the
wfes at the top of this section, only the list constructor and the is keyword needed
translating.) We used GumtreeDiff’s edit distances to build clusters and obtained the
following (very low) scores:

Table 2 V-Measures and Homogeneity scores for GumtreeDiff are low.

Assignment V-Measure Homogeneity
DocDiff 0.15 0.09
Nile 0.27 0.24
Filesystem 0.12 0.09

Given its AST-awareness, we were surprised that GumtreeDiff compared less
favourably with ground truth than Levenshtein Distance. But since both did poorly,
we did not investigate further.

6.3 Code Clustering: OverCode

OverCode was developed to assist educators in the visualization and analysis of large
amounts of code submitted by students in MOOCs [13]. The tool utilizes both static
and dynamic code analysis techniques to cluster programs.
Despite the many differences between wfes and programs, wfes are still code.

Thus, we thought that OverCode could generate clusters. However, OverCode requires
both a canonical solution and a suite of tests, neither of which are easy to define for
wfes. There is no canonical incorrect example and examples do not come with tests.
We attempted to move forward with a placeholder example, a wheat implementation,
and an empty test suite, but a second problem arose that prevented further progress:
OverCode’s dynamic analysis tracks program state. Failing examples have little state
of their own to analyze—any interesting state would be inside the wheat.

6.4 Semantic Clustering

Given the failures of syntactic clustering and OverCode, we created a semantic clus-
tering method, i.e., one that takes into account the meaning of the problem. We were
loosely inspired by prior work on property-based testing [24, 40], which proposes
that a property statement reflecting a problem can usefully be decomposed into a set
of sub-properties whose conjunction yields the desired property.

6.4.1 Extracting Problem Characteristics
Since the correctness of an example is already dictated by the wheat (and all wfes
are incorrect), our approach is to focus on the ways that an example can be incorrect.
Therefore, we extract what we consider key characteristics in the problem statement.
For example, the left column of Table 3 shows the characteristics we extracted from
the problem statement of DocDiff [8], paraphrased slightly. The right column justifies

7:9



Conceptual Mutation Testing for Student Programming Misconceptions

Table 3 DocDiff characteristics paired with potential student mistakes.

Characteristic Some ways it can fail

Two words are the same if they have
the same characters in the same order,
regardless of case.

Students might consider case significant.

The indices of the vector correspond
to words that are found in either doc-
ument. The value at each index is how
many times the corresponding word
occurs in the document.

Students may consider the presence,
rather than frequency, of each word
(thereby producing a binary vector).

Words can be repeated in a document. Students may choose a set instead of a list
to gather words, thereby losing duplicates.

Normalize overlap by the squared
magnitude of the larger vector.

Students may normalize by the wrong
value or not normalize at all.

The overlap between two documents
must be proportional to the dot-
product of the documents’ vectors.

Students may produce a binary classifier
that always returns 0 or 1.

The overlap between pairs of docu-
ments should be treated as a float and
should not be rounded.

Students may round to avoid problems
with floating-point comparison.

The document vector for a document
should account for all unique words,
including those not in that document.

Students may fail to consider words from
the other document, thereby producing
malformed vectors (that still work with
the dot-product if both documents have
the same number of unique words).

why these characteristics matter by describing corresponding ways in which students
may make mistakes in their examples.

6.4.2 Clustering by Characteristics
Our plan is to cluster wfes using the characteristics described above. The characteris-
tics form the basis of a feature vector. Each wfe is given a feature vector, which is a
binary vector indicating with a m if the wfe matches that characteristic and d if it
does not match that characteristic. Thus, given the above seven characteristics, a wfe
could have the feature vector m m d d m d m . We can then use standard clustering
methods for binary feature vectors.

It is, however, slightly subtle to check whether a wfe matches a characteristic. The
problem is that the characteristics, as stated above, are abstract statements, which
need to be translated into concrete programs. Consider the characteristic that overlap

7:10



Siddhartha Prasad, Ben Greenman, Tim Nelson, and Shriram Krishnamurthi

should be normalized by the squared magnitude of the larger vector. Per the Anna
Karenina principle [3], “Every passing example is essentially alike; each wfe fails
in its own way”. That is, there are many ways to fail to match the characteristic: the
overlap could not be normalized at all, it could be normalized relative to the smaller
vector, it could be normalized by something other than the squared magnitude, etc.

While it may be possible to use program synthesis in this setting (Section 10.5), for
this work, we simply create a few different implementations that cause the character-
istic to fail. Concretely, we take the wheat and manually mutate it to produce these
narrowly incorrect implementations (e.g., by removing the normalization step). This
results in a large number of potential chaffs — too many to present to students.
We then run each wfe against this family of potential chaffs to construct an

expanded feature vector that contains an m for each matching chaff and a d for
the others. Because of this expansion, feature vectors for DocDiff have 14 elements
even though there are only 7 characteristics in Table 3. Similarly, Nile has 12-element
feature vectors based on 8 characteristics. Filesystem has 14-element feature vectors
based on 9 characteristics.

The process above creates a feature vector that indicates how each wfe corresponds
to the characteristics. Now we can cluster the wfes. We employ a straightforward
clustering method: two wfes are in the same cluster if and only if they have exactly
the same feature vectors.
The clustering process requires multiple points of manual effort, and it is worth

teasing them apart:
One part is determining the interesting characteristics. We believe this is best done
with human insight, and do not wish to automate it. Indeed, educators already
perform such determinations when formalizing grading rubrics and writing down
test cases for autograders. Crucially, this manual effort needs to be performed once
up front; the set of characteristics can then be carried forward to future uses of the
assignment. We could chose to add characteristics as we notice student mistakes
(e.g., when helping them in office hours), but this is a small increment of labor.
The other part is generating failing implementations. Again, these implementations
can be reused in the future. However, especially assuming the characteristics are
written in some formal language, this process is ripe for automation, as we discuss
in Section 10.5.

Observe that this labor is independent of the number of students and wfes.

Relation to Standard Clustering Analysis Clustering analysis aims to divide data into
meaningful groups that capture the natural structure of the data [32]. In general, there
are three steps to clustering: (1) identify features of the data along which to cluster,
(2) use a similarity metric to compare these features, and (3) choose a clustering
algorithm that uses this metric. Since similarity metrics normally yield numbers or
tensors, the choice of clustering algorithm is an important and subtle point [19].
In our case, for clustering wfes, the subtle step is the first one. An expert must

decompose a programming problem into characteristics and then into mutant im-
plementations. The later steps are simpler. Each mutant either matches or does not,

7:11



Conceptual Mutation Testing for Student Programming Misconceptions

leading to binary feature vectors. Our similarity metric is exact equality, and so clus-
tering merely groups equal vectors (some may prefer to call this classification rather
than clustering). This pipeline reflects the natural structure of our data.

6.4.3 Cluster Evaluation
When evaluating clustering, we first split the wfes into two groups: those whose
feature vectors are all- d , and those that have at least one m . The reason is as follows.
For those that are all- d , our clustering method offers no insight. This could be because
we did not have enough implementations (the wfe may have failured a characteristic
in some unanticipated way!), or something else.
For our data, the percentage of all- d wfes was 51% for DocDiff, 71% for Nile,

and 74% for Filesystem. We can get insight into these wfes by checking what manual
label they had previously been given (if any). What we found is that over 80% of those
fell into one of two categories: typo / type error, or unrelated to any misconception.
This sample suggests there is not much information in these wfes, though further
sampling could uncover ideas for new candidate chaffs. It would also be useful to
mechanically discover which wfes are uninteresting, as we discuss in Section 10.3.

We now analyze the remaining 49% (DocDiff), 29% (Nile) and 26% (Filesystem)
of wfes, which have at least one m . We have clustered these by strict equality of
feature vectors. We can now compare how these clusters fare relative to the ground
truth manual clustering (Section 6.1):

Table 4 V-Measures and Homogeneity scores for semantic clustering are moderate-to-high.

Assignment V-Measure Homogeneity
DocDiff 0.83 0.90
Nile 0.75 0.82
Filesystem 0.67 0.85

These scores make two points. First, that clustering by characteristics significantly
outperforms the other clustering methods we have tried. Second, it is sufficiently
strong (especially in homogeneity) that we can use it as part of a workflow. This both
justifies the investment in labor that this method requires, and motivates trying to
better automate its steps.

7 Making Sense of Clusters

Semantic clustering reduces a huge set of wfes down to a much smaller set of feature
vectors. The next step is to determine what went wrong in each cluster that caused its
examples to fail the wheats. Put another way: what part of the problem did learners
misunderstand that led them to submit an incorrect example? Associating clusters
with potential misunderstandings allows instructors to understand the types and fre-
quencies of their students’ misunderstandings. With this insight, they can productively
adjust their assignments, lectures, and pedagogy to address these misunderstandings.

7:12



Siddhartha Prasad, Ben Greenman, Tim Nelson, and Shriram Krishnamurthi

In principle, this is a labor-intensive step. Making sense of clusters is a task that
calls for manual analysis by experts, ideally through several rounds of coding in which
experts study a few wfes in each cluster, pinpoint the issue in each wfe, and come
up with a robust label. It is also an interesting step, which helps justify the labor costs.
Analysis might uncover new ways of misunderstanding a problem and help improve
future course offerings. However, full-fledged manual analysis over a large number of
examples is not always feasible.
Thankfully, feature vectors provide a starting point for useful descriptions of the

misconceptions at hand. The key is that each characteristic comes with an explana-
tion (Section 6.4.2), thus each cluster comes with a set of explanations, one for each
matching characteristic. There are four typical outcomes for these sets:
one-m : For a cluster with only one m , the explanation of that characteristic is a good

candidate description of the cluster, though some wfes may not fit that explanation.
small-m : For sets of 2–3 explanations, an expert is needed. There may be a misconcep-

tion behind these wfes that is subtler than the combination of 2–3 misunderstood
characteristics. We recommend focusing expert time on these clusters.

no-m : For the cluster with no m s, our characteristics provide no help.
large-m : For sets of 4 or more explanations, our characteristics provide no help. But,

we also advise against further analysis. The wfes in these sets tend to have several,
orthogonal issues, which makes it hard to pin down a common misunderstanding.

Sorting the clusters by size helps to further organize the space. Our approach is to
sort, then focus on the small-m clusters.

DocDiff Clusters For DocDiff, we identified 7 characteristics and ultimately settled
on 14 chaffs for the feature vectors. Our dataset consists of 1,546 wfes. Semantic
clustering produced 64 clusters, the six largest of which are presented in Table 5.
There is a long tail of smaller clusters: the median number of wfes per cluster is 4
and there are 15 clusters that contain only one wfe.

By far the largest cluster has a feature vector with zero m ’s. The wfes in this cluster
do not match any of our characteristics. After a manual inspection, we concluded they
are mainly due to typos.
The second-largest cluster has one matching chaff (1-m ). The characteristic mo-

tivating this chaff is “The overlap between two documents must be proportional to
the dot-product of the documents’ vectors” (Table 3), and the actual chaff returns
an overlap of zero for any inputs (which is not proportional, and obviously incor-
rect). Our candidate cause is therefore that students did not correctly implement the
proportionality expectation. We manually analyzed half the wfes in this cluster to
determine how well they matched the candidate. Our analysis revealed that:

some failures were due to typos rather than misunderstandings;
some misunderstood that reordered documents can overlap;
some misunderstood that empty strings can overlap; and
some misunderstood other aspects of overlap.

7:13



Conceptual Mutation Testing for Student Programming Misconceptions

Table 5 Top six largest clusters for DocDiff 2020 and candidate descriptions.

Size Feature Vector Candidate Description
800 d d d d d d d d d d d d d d —
68 d d d d d d d d d m d d d d Overlap is always 0
66 m d d d d d d d d m d d d d Case sensitive
52 d d d d m d d d d d d d d d Normalize by mag4 instead of mag2

49 d d d m d d d d d d d d d d Normalize by min vector
48 d d d d d d d d d d m d m m —

Going through the failing examples with this characteristic in mind helps us pin down
a concrete explanation of the mistake that exemplifies this cluster: “documents have
no overlap unless they are identical lists”.
The third-largest cluster has two matching chaffs (2-m ), which calls for an expert

opinion. These chaffs are the zero-overlap chaff from the 2nd-largest cluster (dis-
cussed in the previous paragraph) and a chaff that makes case-sensitive comparisons
between words. We examined a sample of wfes from this cluster and found that
they all used inputs for which case-sensitivity implied a zero overlap, e.g.:

overlap(["A"], ["a"]) is 0

Thus, this cluster is better explained by students mistakenly thinking that case is
significant, when in fact it is not.
As Section 6.4.2 indicates, there are multiple ways to incorrectly normalize word

differences relative to document size. The fourth and fifth clusters have 1-m each
and correspond to different ways of mis-normalizing. This shows the value of having
multiple chaffs for one characteristic.
Finally, the sixth cluster has 3 matching chaffs (m ’s). A sample of its members

revealed mostly typos.

Nile Clusters For Nile, we identified 8 characteristics and created 12 chaffs. The
student data contains 324 wfes. This number is much smaller than for the other two
problems because, before using Examplar, students used a tool called D4 [15], which
made them work through examples in the context of the data definitions. As a result,
many of the issues that Examplar would have caught were pre-empted by D4.
Semantic clustering produced 12 clusters; the top 6 are in Table 6. The median

cluster size is 3. Two clusters contain only one wfe.
As with DocDiff, the largest cluster has a feature vector with zero m ’s. We sampled

wfes from this cluster and found only typos. Sampling showed that the 1-m clusters
corresponded well to the characteristic whose chaff produced that cluster. For the
fourth cluster (2-m ), we could not determine a misunderstanding from the examples.

Filesystem Clusters For Filesystem, we identified 10 characteristics and created 14
chaffs for the feature vectors. The data contains 3,359 wfes. Semantic clustering
produced 29 clusters; the top 6 are in Table 7. The median cluster size is 13. One
cluster contained only one wfe.

7:14



Siddhartha Prasad, Ben Greenman, Tim Nelson, and Shriram Krishnamurthi

Table 6 Top six largest clusters for Nile 2020 and candidate descriptions.

Size Feature Vector Candidate Description
232 d d d d d d d d d d d d —
37 d m d d d d d d d d d d Count books, not frequency
23 d d d d d d m d d d d d Count pairs, not frequency
9 d d d d d d d d d d m m —
7 d d d d d d d d d d d m Recommend only books from 2+ collections
5 m d d d d d d d d d d d Ignore case

Table 7 Top six largest clusters for Filesystem 2020 and candidate descriptions.

Size Feature Vector Candidate Description
2502 d d d d d d d d d d d d d d —
232 d d d m d d d d d d d d d d can-find? always succeeds
190 d d d d d d d d m d d d d d find returns duplicates
63 m m d m m m m m m m m d d m —
53 d d m d d d d d d d d d m d —
35 d d d d d d m d d d d d d d du-dir counts filename length

Again, the largest cluster has zero m ’s and is filled with typos. There are three 1-m
clusters; the chaff’s characteristic was an accurate description of these. There is one
2-m cluster. As with Nile, we studied its wfes but found no clear misunderstanding.

Most interesting of all is the cluster with a huge number of matches: 11-m out
of 14 chaffs. Filesystem asks students to implement four functions (Section 5). Each
function consumes the same kind of datum, which is complicated to write (instances
of mutually-recursive datatypes). A brief sample of the wfes in this cluster suggests
that these relationships between functions contributed to the large number of m s.
Students may have misunderstood relationships between functions (e.g., find succeeds
iff can-find? does); students wrote one datum and several functions over it; etc.
Consequently, we were unable to produce a description for this cluster.

8 Selecting Chaffs

The final step of our pipeline is to choose a small number of chaffs to expose to students
via Examplar. Recall that students send examples to Examplar and receive feedback
on how these perform against the chaffs (and also the wheat). The included chaffs
should therefore cover common misconceptions without becoming overwhelming.

The obvious strategy is to sort clusters by size and pick N chaffs that match the top
N clusters. This strategy has worked well for us with minor alterations:

Since many wfes are the result of typos, some of the largest clusters may not
illustrate a misconception. This happened in all three of our assignments. The
work-around is to skip uninformative clusters.

7:15



Conceptual Mutation Testing for Student Programming Misconceptions

A cluster can match several chaffs (it could be a 2-m or 3-m cluster). In this case, ex-
pert judgment is needed to decide whether to use some or all of the matching chaffs.
One method is to manually analyze wfes for common misconceptions. Another is
to pick chaffs that match the greatest number of wfes. (Table 9 in Section 10.1
presents per-chaff counts for our assigments.)
When one programming problem consists of several parts, such as Filesystem, an
early (or difficult) part can gather many more wfes than others. In this case, it’s
important to pick at least one chaff for each subproblem.
Outlier students can skew the ordering by submitting a huge number of similar
wfes. We observed this in 2022 when a student used a script to constantly probe
Examplar for feedback. These data need to be filtered before ranking clusters. This
is easy to detect using student identity.

DocDiff Chaffs We selected five DocDiff chaffs from the pool of 14 characteristic chaffs
to use in Examplar. Four of these came from the top clusters shown in Table 5. Note
that one of these clusters has a 2-m feature vector; we used both of its chaffs (one
overlapped with another cluster). The fifth reflects a common issue in the sample of
wfes that we manually analyzed (Section 6.1). It also matches more wfes (Table 9)
than any other unused chaff. The following list describes the mutation in each chaff:

1. Performs a case-sensitive comparison of words
2. Always returns 0 (no overlap)
3. Normalizes overlap based on the smaller document
4. Normalizes overlap by document magnitude rather than squared magnitude
5. Returns 1 if one document subsumes the other

Nile Chaffs We selected six chaffs from the 12 candidates in the feature vectors. Four
came from the top 1-m clusters. The fifth and six illustrate one issue in two contexts,
because Nile has two subproblems (recommend books, recommend pairs of books)
and we saw similar issues in both parts:

1. Counts number of books instead of their frequency
2. Counts number of pairs instead of their frequency
3. Recommends only books that appear in multiple collections
4. Performs case-insensitive comparisons of books
5. Recommends at most one book
6. Recommends at most one pair of books

Filesystem Chaffs We chose five chaffs from the 14 candidates. Two came from the
top clusters (Table 7) and two had high wfe counts (Table 9). We hand-picked the
final chaff for coverage because Filesystem is a four-part problem and the other chaffs
addressed only three parts of it:

1. can-find? always returns true
2. can-find? skips the root directory

7:16



Siddhartha Prasad, Ben Greenman, Tim Nelson, and Shriram Krishnamurthi

3. du-dir ignores the length of file and directory lists
4. how-many counts files (good) and directories (bad)
5. find returns the current directory on failure

The careful reader will notice that there are three 1-m clusters in Table 7. And yet,
we used only two. There is no deep reason for the omission: we were under pressure
to deliver chaffs, could not analyze the wfes in that cluster, and chose a different
chaff that matched a greater number of wfes (Table 9). In retrospect, we would have
used all three 1-m clusters.

9 Evaluating Chaff Suites

We constructed chaffs using data from 2020 and deployed them in 2022. We evaluate
the chaffs using a variety of data from 2020, 2021, and 2022. The same three problems
were used in every year, and the problem statements stayed largely unchanged across
years. The student populations between 2021 and 2022 were very similar, but due to
unique circumstances from COVID-19, the 2020 population was fairly different: there
were nearly twice as many students and, on average, they had somewhat less prior
computing experience. Thus, it was not a given that chaffs produced from the 2020
population would work well for the 2022 students.

Do the Chaffs Explain Errors? One useful way to evaluate chaff suites is to examine
how they fare against new (2022) wfes. What we would hope to see is a very small,
but non-zero, number of m s in the popular feature vectors. If there are zero, then the
wfes are not captured by any chaff; if there are many, then we cannot pinpoint what
is wrong with the wfes. In either case, we do not get insight into the wheat failure.
If, however, the vector has a low number of m ’s—say one or two—then there is a
good chance that those chaffs explain why the example failed the wheat. We present
the data in raw numbers and summarized in a graph (Figure 4).

The reader will note the odd outlier of Nile in 2020, which had no wfes that passed
a chaff. This is explained by the D4 tool [15]. We return to this issue in Section 10.3.

Statistical tests confirm that the apparent differences in the data are indeed signifi-
cant. Table 8 presents p values from a two-tailed Z test comparing the mean occurrence
rates of 1-m and 2-m wfes versus other outcomes. The p values are low for the 2022
chaffs compared to prior years and high for the 2021 vs. 2020 comparison, which
indicates a significant improvement. The one exception is Nile, which improved in
2021 due to D4 (Section 10.3). For completeness, Table 8 reports the actual Z scores
from the two tailed test and effect sizes (Cohen’s D) with confidence intervals.
We have two remarks about the data. First, recall from Section 6.4.3 that a large

portion of wfes are non-semantic mistakes like typos. Thus, we should not be sur-
prised that about 70% of wfes are not characterized by chaffs, and can assume a
ceiling of about 30%. Second, one of our goals was to overcome the expert blind spot.
The chaff suites for 2020 and 2021 were produced by experts based on several years of

7:17



Conceptual Mutation Testing for Student Programming Misconceptions

Assignment Year Number of wfes wfes in 1-m or 2-m clusters
2020 1546 37 (2.39%)

DocDiff 2021 987 23 (2.33 %)
2022 591 141 (23.86 %)

2020 286 0 (0.00%)
Nile 2021 1197 68 (5.68%)

2022 462 49 (10.61 %)

2020 3359 144 (4.28%)
Filesystem 2021 3121 145 (4.65%)

2022 895 105 (11.73 %)

Figure 4 Counting 1-m and 2-m wfes for instructor-chosen chaffs (2020 and 2021) and
chaffs produced from data (2022).

observing students working with these problems. And yet, our 2022 workflow, which
incorporates student-sourced data, handily beats the experts.

Are All Chaffs Useful? The data above tell us that our workflow produces chaff suites
that are useful in determining what is wrong with a wfe. However, there are still
open questions about the nature of these chaff-suites.
1. Are some chaffs redundant? It could be that only a small number of chaffs provide

value, and the remainder could have been elided.
2. Are some chaffs too general? It is possible that certain chaffs showed up in almost

all feature vectors. These could be split into multiple chaffs.
After statistical analysis of the chaff suites and wfes, we found that the data did
not suggest clear answers to these questions across all the problems. The one clear
improvement over previous years was that our 2022 methodology reduced chaff suite
size without reducing the rates of small-m feature vectors.

7:18



Siddhartha Prasad, Ben Greenman, Tim Nelson, and Shriram Krishnamurthi

Table 8 Our 2022 chaffs gave 1-m /2-m outcomes significantly more often than prior
chaffs. The 2021 vs. 2020 results are similar except for Nile, which used D4 in
2021.

Matchup Assignment p value Z score Effect Size [95% CI]
(Cohen’s D)

2022 vs 2020 DocDiff 1.35E-29 -11.24 0.66 [-0.75, -0.57]
Nile 9.07E-14 -7.36 -0.41 [-0.55, -0.26]
Filesystem 2.35E-10 -6.22 -0.28 [-0.35, -0.21]

2022 vs 2021 DocDiff 6.87E-29 -11.09 -0.61 [-0.70, -0.51]
Nile 1.82E-03 -2.91 -0.17 [-0.27, -0.07]
Filesystem 2.32E-09 -5.86 -0.26 [-0.33, -0.19]

2021 vs 2020 DocDiff 4.60E-01 0.1 0 [-0.07, 0.08]
Nile 1.15E-17 -8.48 -0.26 [-0.39, -0.13]
Filesystem 2.52E-01 -0.67 -0.02 [-0.06, 0.03]

10 Discussion and Future Work

Beyond the obvious issues of trying this workflow with more problems, different
students, other styles of courses, and so on, there are several salient points about the
work we have presented that suggest important ways to go forward.

10.1 Why Rank Clusters and Not Chaffs?

Our chaff selection strategy is to rank clusters by size and then have experts draw
chaffs from the top clusters (Section 8). An alternative is to skip clustering and simply
rank chaffs by the number of wfes they match (Table 9), choosing the top N chaffs or
perhaps the top N uncovered by prior chaffs. There are two issues with this approach:
it favors coarse-grained chaffs over specific ones and can reduce problem coverage.

Redundant Chaffs Chaffs that fail for a coarse reason typically match more wfes
than chaffs that reflect a specific issue. For example, in DocDiff, the top 5 chaffs by
wfe count are the following:
1. Always returns 1
2. Rounds overlap to 0 or 1
3. Always returns 0
4. Performs a case-sensitive comparison of words
5. Returns 1 if one document subsumes the other
The top chaff is coarse; it returns 1 no matter the input. Although it matches many
wfes (280), it gives little insight as to why those wfes are incorrect. By constrast,
chaff 5 returns 1 for a specific reason. Despite being fully covered by a more-popular
chaff, it is a better choice to include because it gives a precise explanation for large
fraction of the general failures (47%).

7:19



Conceptual Mutation Testing for Student Programming Misconceptions

Table 9 Number of wfes that match each chaff in the feature vectors.

DocDiff
m m m m m m m m m m m m m m
148 117 0 126 57 92 71 85 131 186 280 195 120 111

Nile
m m m m m m m m m m m m
13 37 0 4 0 0 23 1 0 1 11 25

Filesystem
m m m m m m m m m m m m m m
177 165 127 374 136 137 178 160 308 139 157 87 127 163

Reduced Problem Coverage Choosing chaffs that only match the most wfes also falls
short when dealing with assignments like Filesystem that have distinct sub-parts. The
5 largest chaffs from Table 9 for Filesystem are:
1. du-dir ignores the length of file and directory lists
2. can-find? always returns true
3. how-many counts files (good) and directories (bad)
4. how-many counts only directories
5. can-find? always returns false
These chaffs focus on the first sub-problems of the assignment and leave the final one
(find) entirely untouched, thereby giving students no feedback on it.

10.2 From Failure to Education

This paper argues for turning student misconceptions into chaffs. Of course, mis-
conceptions can also be used in other ways: refining the wording of assignments,
changing lecture strategies, informing TAing interventions, etc. Doing so hopefully
mitigates or eliminates some misconceptions, but it can also introduce new ones. As a
result, the set of chaffs may have to keep changing over time to track misconceptions.

The methodology presented in this paper enables easy chaff updates year-over-year.
Additionally, it allows instructors to test the effects of pedagogical interventions, seeing
if and how student misconceptions change with each course iteration.

10.3 Challenge: Reducing Noise

As we have repeatedly found, about 70% of student examples are typos and other
low-level mistakes. These lead to large, useless clusters that a researcher nevertheless
needs to wade through to confirm their lack of utility (with their lack of utility making
their size especially annoying). Writing and getting no useful feedback on these is
therefore likely also frustrating to students. How can we improve this situation?

One possible approach is to provide students with a structured editor to help author
examples. However, such an editor would address well-formedness but not validity
errors. Many low-level typos are structurally sound but just do not capture the authors
intent. Given that many of the examples students construct are small, we also worry
that the number of steps a required by a structured editor may prove onerous. This
may dissuade students from writing examples.

7:20



Siddhartha Prasad, Ben Greenman, Tim Nelson, and Shriram Krishnamurthi

Figure 5 Future Examplar: provide a hint (at the green arrow) for an invalid example.

The data from Nile in 2020 suggests another answer. There, we used the D4 sys-
tem [15] to force students to work through data examples first. In the process, they
effectively started Examplar with valid and thorough data. However, anecdotally, the
tool proved to be rather overwhelming for some students, so we stopped its use.
Nevertheless, we believe it has the germ of a good idea: a “data Examplar” that

focuses just on data instances, ignoring the relationship between inputs and outputs.
Both “wheats” and “chaffs” would be predicates on the datatypes. Students would
wrap up with a quality data suite, which they would then still need to arrange into
the correct input-output relationships.

At that point, most of the data should be both syntactically correct and semantically
valid, and the workflow here should be much more effective. Of course, we would
simply have moved some of the frustration elsewhere. However, it may be less frustrat-
ing to think of individual data in isolation without their relationships. This would not
only reduce cognitive load, but may also reduce the likelihood of frustrating, low-level
phenomena like typos.

10.4 From Chaffs to Hints

The key benefit of getting a small, non-zero number of m s is that it opens up a new
kind of student feedback. Currently, when students write a wfe, they simply get an
error message about invalidity (Figure 1a). But now we can do much better: we can
give a hint about their likely misconception (Figure 5).

It is up to an instructor whether they want to enable this feature or not. We believe
it would be a good idea to do so, because the goal of Examplar is to get students
to quickly understand the problem statement, not to play a testing game. Currently,
students have to seek help from an expert to understand why their example failed. If
the hints help students get on the right track quickly, they can advance quickly in their
problem understanding and get to programming sooner and with less frustration.

The data above give us the first step towards hint-generation: the small number of
m s. The next step is to confirm that the hint we would have given does in fact match
the misunderstanding apparently embodied by the wfe. Our goal is to check for this
and then deploy hints and measure their impact on student productivity.

7:21



Conceptual Mutation Testing for Student Programming Misconceptions

10.5 Challenge: Applying Program Synthesis

The task of translating problem characteristics to conceptual mutants (Section 6.4.1)
has the flavor of a program synthesis problem. We start with an English sentence
that describes a characteristic (e.g., “words can be repeated in a document”), observe
or invent ways that students can misunderstand the characteristic (e.g., fail to track
repeats), and create a mutant that reflects the misunderstanding (by modifying the
wheat). This presents a challenge: to what extent can synthesis replace the (boring!)
work of creating a mutant from a description of its behavior? A variant of this problem
could consider the wheat and a characteristic, and mutate the wheat accordingly.

Until now, we have not tried to apply program synthesis techniques, whether using
formal logic or large language models or the like. Our (limited) knowledge of the
synthesis literature does not suggest the ready applicability of the techniques we know,
so we present this task as a potential challenge—with working artifacts to try out—to
program synthesis researchers.

A broader kind of “synthesis” question, writ large, is to generate ideas for falsifying
a specification. This in turn would feed into the synthesis task described above. One
possibility is to decompose the problem into subproperties and try to falsify each of
these [24, 40]; this was the general inspiration for our work in Section 6.4. However,
this method does not enable us to get to misconceptions like “the median is the middle
element of list whether or not it’s sorted.” It is conceivable that more incorrectmethods
of generating content, like large language models, can actually be useful here!

10.6 Additional Ways to Curate Chaffs

As mentioned in Section 9, there are open questions about evaluating the value added
by each chaff in a chaff-suite. We hypothesize that the ratio of wfes that passed
each chaff (after accounting for outlier students) could be used as one measure of the
utility of a chaff. After running all chaffs against all wfe, for the next course offering,
the course staff could evaluate individual chaffs as follows:
1. If most (or all) of the wfes pass the chaff, it is under-constrained. It should probably

be decomposed into multiple chaffs.
2. If most (or all) of the wfes fail the chaff, it is either over-constrained or does not

reflect a common student misconception. It may be useful to remove it from the
chaff suite and replace it with a more productive chaff.

10.7 Broader Application

What we have presented, in effect, is a workflow (that can be used iteratively) to tease
out misconceptions that students have with a problem statement. This process can
help to create concept inventories [17, 33]. While traditional methods for creating
concept inventories are very heavyweight, reducing their burden (as we are trying to
do) means they can be applied broadly, not just to large topics of broad interest [2, 5,
14, 16, 33, 34] but also to individual problems that nobody else may share.

7:22



Siddhartha Prasad, Ben Greenman, Tim Nelson, and Shriram Krishnamurthi

That said, this process is agnostic to the size of the topic. The problem could be
quite narrowly scoped, but it could also be about broadly-applicable ideas. DocDiff is
a good example: it is about the classic TF-IDF measure [31]. Indeed, the issues we
found in student data mostly reflect general misunderstandings of document similarly
measure rather than any implementation details.

This suggests that the workflow we have presented here could be used in situations
other than programming. After all, the very first step in Pólya’s venerable How To
Solve It [25] is to understand the problem, often by restating the problem in one’s own
words. Thus, one could imagine creating an Examplar-like interface for any domain
that is amenable to sufficiently accurate automated checking—perhaps by creating
custom user interfaces for constructing the domain examples.

11 Conclusion

Mutation testing for example suites is an effective way to make sure students solve the
right problem, but requires a carefully curated set of mutants. Prior work has left the
task of finding mutants entirely in the hands of experts, who often fail to anticipate
student misconceptions [26].
Our work contributes a method to produce effective mutants at low cost by ana-

lyzing incorrect examples. The up-front cost is to decompose a correct solution into
characteristics. From there, the process is partially automated: use the characteris-
tics to build a feature vector for each incorrect example, cluster the examples with
identical vectors, and derive mutants from the top-ranked vectors.

Using this process, we producedmutants in a fewweeks (from thousands of incorrect
examples) that out-performed expert-written mutants that had been fine-tuned over
several years. The method helps experts find semantically interesting errors from
student data which, in turn, can lead to better feedback and (eventually) better
learning outcomes for students.

Acknowledgements Thanks to John Wrenn for helping us navigate the Examplar
codebase and logs, to Nihal Nayak for introducing us to the V-Measure, and to Sreshtaa
Rajesh for remembering that Nile 2020 used the D4 tool. Kuang-Chen Lu, Yanyan
Ren, and Elijah Rivera provided valuable feedback on the artifact. This work was
partially supported by the US National Science Foundation grant SHF-2227863 and
grant 2030859 to the CRA for the CIFellows project.

7:23

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2227863&HistoricalAwards=false
https://nsf.gov/awardsearch/showAward?AWD_ID=2030859&HistoricalAwards=false
https://cifellows2020.org


Conceptual Mutation Testing for Student Programming Misconceptions

References

[1] Allen Acree, Timothy Budd, Richard Demillo, Richard Lipton, and Fred Sayward.
Mutation Analysis. Technical report ADA076575. Sept. 1979, page 92. url:
https://apps.dtic.mil/sti/citations/ADA076575 (visited on 2023-01-31).

[2] Vicki L. Almstrum, Peter B. Henderson, Valerie J. Harvey, Cinda Heeren, William
A. Marion, Charles Riedesel, Leen-Kiat Soh, and Allison Elliott Tew. “Concept
Inventories in Computer Science for the Topic Discrete Mathematics”. In: ACM
SIGCSE Bulletin 38.4 (2006), pages 132–145. doi: 10.1145/1189136.1189182.

[3] Anna Karenina principle. url: https://en.wikipedia.org/wiki/Anna_Karenina_
principle (visited on 2023-02-01).

[4] Nour Chetouane, Franz Wotawa, Hermann Felbinger, and Mihai Nica. “On
Using k-means Clustering for Test Suite Reduction”. In: 2020 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW).
2020, pages 380–385. doi: 10.1109/ICSTW50294.2020.00068.

[5] Holger Danielsiek, Wolfgang Paul, and Jan Vahrenhold. “Detecting and Under-
standing Students’ Misconceptions Related to Algorithms and Data Structures”.
In: SIGCSE. 2012, pages 21–26. doi: 10.1145/2157136.2157148.

[6] Paul Denny, John Hamer, Andrew Luxton-Reilly, and Helen C. Purchase.
“PeerWise: Students Sharing their Multiple Choice Questions”. In: ICER. 2008,
pages 51–58. doi: 10.1145/1404520.1404526.

[7] Paul Denny, James Prather, Brett A. Becker, Zachary Albrecht, Dastyni Loksa,
and Raymond Pettit. “A Closer Look at Metacognitive Scaffolding: Solving Test
Cases Before Programming”. In: Koli Calling. 2019, 11:1–11:10. doi: 10.1145/
3364510.3366170.

[8] DocDiff. 2020. url: https://cs.brown.edu/courses/cs019/2020/docdiff .html
(visited on 2023-02-01).

[9] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. “Fine-grained and accurate source code differencing”. In: ASE. 2014,
pages 313–324. doi: 10.1145/2642937.2642982.

[10] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Kr-
ishnamurthi. How to Design Programs. second. MIT Press, 2018. isbn: 978-
0262534802. url: http://www.htdp.org/ (visited on 2023-02-01).

[11] Brendan J. Frey and Delbert Dueck. “Clustering by Passing Messages Between
Data Points”. In: Science 315.5814 (2007), pages 972–976. doi: 10.1126/science.
1136800.

[12] Gregory Gay and Alireza Salahirad. “How Closely are Common Mutation Oper-
ators Coupled to Real Faults?” In: ICST. 2023, To appear.

[13] Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C.
Miller. “OverCode: Visualizing Variation in Student Solutions to Programming
Problems at Scale”. In: ACM Transactions on Computer-Human Interaction 22.2
(2015), 7:1–7:35. doi: 10.1145/2699751.

7:24

https://apps.dtic.mil/sti/citations/ADA076575
https://doi.org/10.1145/1189136.1189182
https://en.wikipedia.org/wiki/Anna_Karenina_principle
https://en.wikipedia.org/wiki/Anna_Karenina_principle
https://doi.org/10.1109/ICSTW50294.2020.00068
https://doi.org/10.1145/2157136.2157148
https://doi.org/10.1145/1404520.1404526
https://doi.org/10.1145/3364510.3366170
https://doi.org/10.1145/3364510.3366170
https://cs.brown.edu/courses/cs019/2020/docdiff.html
https://doi.org/10.1145/2642937.2642982
http://www.htdp.org/
https://doi.org/10.1126/science.1136800
https://doi.org/10.1126/science.1136800
https://doi.org/10.1145/2699751


Siddhartha Prasad, Ben Greenman, Tim Nelson, and Shriram Krishnamurthi

[14] Kenneth J. Goldman, Paul Gross, Cinda Heeren, Geoffrey L. Herman, Lisa C.
Kaczmarczyk, Michael C. Loui, and Craig B. Zilles. “Identifying Important and
Difficult Concepts in Introductory Computing Courses using a Delphi Process”.
In: SIGCSE. 2008, pages 256–260. doi: 10.1145/1352135.1352226.

[15] Xingjian Gu, Max A. Heller, Stella Li, Yanyan Ren, Kathi Fisler, and Shriram
Krishnamurthi. “Using Design Alternatives to Learn About Data Organizations”.
In: ICER. ACM, 2020, pages 248–258. doi: 10.1145/3372782.3406267.

[16] Geoffrey L. Herman, Michael C. Loui, and Craig B. Zilles. “Creating the Digital
Logic Concept Inventory”. In: SIGCSE. 2010, pages 102–106. doi: 10.1145/
1734263.1734298.

[17] David Hestenes, Malcolm Wells, and Gregg Swackhamer. “Force Concept Inven-
tory”. In: The Physics Teacher 30.3 (1992), pages 141–158. doi: 10.1119/1.2343497.

[18] Daniel Hirschberg. “Serial Computations of Levenshtein Distances”. In: Pattern
Matching Algorithms. Oxford University Press, July 1997. isbn: 9780195113679.
doi: 10.1093/oso/9780195113679.003.0007.

[19] Anil K. Jain. “Data clustering: 50 years beyond K-means”. In: Pattern Recognition
Letters 31.8 (2010), pages 651–666. doi: 10.1016/j.patrec.2009.09.011.

[20] Yue Jia and Mark Harman. “An Analysis and Survey of the Development of
Mutation Testing”. In: IEEE Trans. Software Eng. 37.5 (2011), pages 649–678.
doi: 10.1109/TSE.2010.62.

[21] Dastyni Loksa and Amy J. Ko. “The Role of Self-Regulation in Programming
Problem Solving Process and Success”. In: ICER. 2016, pages 83–91. doi:
10.1145/2960310.2960334.

[22] LechMadeyski, Wojciech Orzeszyna, Richard Torkar, andMariusz Józala. “Over-
coming the Equivalent Mutant Problem: A Systematic Literature Review and a
Comparative Experiment of Second Order Mutation”. In: IEEE Transactions on
Software Engineering 40.1 (2014), pages 23–42. doi: 10.1109/TSE.2013.44.

[23] Mitchell J. Nathan, Kenneth R. Koedinger, and Martha W. Alibali. “Expert Blind
Spot: When Content Knowledge Eclipses Pedagogical Content Knowledge”.
In: International Conference on Cognitive Science. 2001, pages 644–648. url:
https://api.semanticscholar.org/CorpusID:14779203 (visited on 2023-10-26).

[24] Tim Nelson, Elijah Rivera, Sam Soucie, Thomas Del Vecchio, John Wrenn,
and Shriram Krishnamurthi. “Automated, Targeted Testing of Property-Based
Testing Predicates”. In: The Art, Science, and Engineering of Programming 6.2
(2022), page 10. doi: 10.22152/programming-journal.org/2022/6/10.

[25] George Pólya. How to Solve it: A New Aspect of Mathematical Method. Princeton
University Press, 1945. isbn: 9780691080970.

[26] Siddhartha Prasad, Ben Greenman, Tim Nelson, John Wrenn, and Shriram
Krishnamurthi. “Making Hay from Wheats: A Classsourcing Method to Identify
Misconceptions”. In: Koli Calling. 2022, 2:1–2:7. doi: 10.1145/3564721.3564726.

7:25

https://doi.org/10.1145/1352135.1352226
https://doi.org/10.1145/3372782.3406267
https://doi.org/10.1145/1734263.1734298
https://doi.org/10.1145/1734263.1734298
https://doi.org/10.1119/1.2343497
https://doi.org/10.1093/oso/9780195113679.003.0007
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1109/TSE.2013.44
https://api.semanticscholar.org/CorpusID:14779203
https://doi.org/10.22152/programming-journal.org/2022/6/10
https://doi.org/10.1145/3564721.3564726


Conceptual Mutation Testing for Student Programming Misconceptions

[27] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani L. Peters, John
Homer, and Maxine S. Cohen. “Metacognitive Difficulties Faced by Novice
Programmers in Automated Assessment Tools”. In: ICER. 2018, pages 41–50.
doi: 10.1145/3230977.3230981.

[28] José Miguel Rojas, Thomas D. White, Benjamin S. Clegg, and Gordon Fraser.
“Code Defenders: Crowdsourcing Effective Tests and Subtle Mutants with a
Mutation Testing Game”. In: Proceedings of the 39th International Conference
on Software Engineering. ICSE ’17. Buenos Aires, Argentina: IEEE Press, 2017,
pages 677–688. doi: 10.1109/ICSE.2017.68.

[29] Andrew Rosenberg and Julia Hirschberg. “V-Measure: A Conditional Entropy-
Based External Cluster Evaluation Measure”. In: Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and Compu-
tational Natural Language Learning (EMNLP-CoNLL). Prague, Czech Republic:
Association for Computational Linguistics, June 2007, pages 410–420. url:
https://aclanthology.org/D07-1043 (visited on 2023-10-15).

[30] Gerard Salton and Chris Buckley. “Term-Weighting Approaches in Automatic
Text Retrieval”. In: Information Processing and Management 24.5 (1988),
pages 513–523. doi: 10.1016/0306-4573(88)90021-0.

[31] Gerard Salton, Anita Wong, and Chung-Shu Yang. “A Vector Space Model for
Automatic Indexing”. In: CACM 18.11 (1975), pages 613–620. doi: 10.1145/
361219.361220.

[32] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. “Chapter 8: Cluster
Analysis: Basic Concepts and Algorithms”. In: Introduction to Data Mining. 2nd.
Pearson, 2015. isbn: 9780137506286.

[33] Cynthia Bagier Taylor, Daniel Zingaro, Leo Porter, Kevin C. Webb, Cynthia
Bailey Lee, and Michael J. Clancy. “Computer Science Concept Inventories:
Past and Future”. In: Computer Science Education 24.4 (2014), pages 253–276.
doi: 10.1080/08993408.2014.970779.

[34] Allison Elliott Tew and Mark Guzdial. “Developing a Validated Assessment of
Fundamental CS1 Concepts”. In: SIGCSE. 2010, pages 97–101. doi: 10.1145/
1734263.1734297.

[35] Jacqueline L. Whalley and Nadia Kasto. “A Qualitative Think-Aloud Study of
Novice Programmers’ Code Writing Strategies”. In: ITiCSE. 2014, pages 279–284.
doi: 10.1145/2591708.2591762.

[36] Jack Wrenn and Shriram Krishnamurthi. “Reading Between the Lines: Student
Help-Seeking for (Un)Specified Behaviors”. In: Koli Calling. 2021, 14:1–14:6.
doi: 10.1145/3488042.3488072.

[37] John Wrenn and Shriram Krishnamurthi. “Executable Examples for Program-
ming Problem Comprehension”. In: ICER. 2019, pages 131–139. doi: 10.1145/
3291279.3339416.

7:26

https://doi.org/10.1145/3230977.3230981
https://doi.org/10.1109/ICSE.2017.68
https://aclanthology.org/D07-1043
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.1080/08993408.2014.970779
https://doi.org/10.1145/1734263.1734297
https://doi.org/10.1145/1734263.1734297
https://doi.org/10.1145/2591708.2591762
https://doi.org/10.1145/3488042.3488072
https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1145/3291279.3339416


Siddhartha Prasad, Ben Greenman, Tim Nelson, and Shriram Krishnamurthi

[38] John Wrenn and Shriram Krishnamurthi. “Will Students Write Tests Early
Without Coercion?” In: Koli Calling. ACM, 2020, 27:1–27:5. doi: 10 . 1145/
3428029.3428060.

[39] John Wrenn, Shriram Krishnamurthi, and Kathi Fisler. “Who Tests the Testers?”
In: ICER. 2018, pages 51–59. doi: 10.1145/3230977.3230999.

[40] John Wrenn, Tim Nelson, and Shriram Krishnamurthi. “Using Relational Prob-
lems to Teach Property-Based Testing”. In: The Art, Science, and Engineering of
Programming 5.2 (2021), page 9. doi: 10.22152/programming-journal.org/2021/
5/9.

[41] John Sinclair Wrenn. “Executable Examples: Empowering Students to Hone
Their Problem Comprehension”. PhD thesis. Brown University, 2022. url:
https://repository.library.brown.edu/studio/item/bdr:wgtu3pq6/ (visited on
2022-09-21).

[42] Chunyan Xia, Yan Zhang, and Zhanwei Hui. “Test Suite Reduction via Evolu-
tionary Clustering”. In: IEEE Access 9 (2021), pages 28111–28121. doi: 10.1109/
ACCESS.2021.3058301.

7:27

https://doi.org/10.1145/3428029.3428060
https://doi.org/10.1145/3428029.3428060
https://doi.org/10.1145/3230977.3230999
https://doi.org/10.22152/programming-journal.org/2021/5/9
https://doi.org/10.22152/programming-journal.org/2021/5/9
https://repository.library.brown.edu/studio/item/bdr:wgtu3pq6/
https://doi.org/10.1109/ACCESS.2021.3058301
https://doi.org/10.1109/ACCESS.2021.3058301


Conceptual Mutation Testing for Student Programming Misconceptions

About the authors

Siddhartha Prasad (siddhartha_prasad@brown.edu, https://orcid.
org/0000-0001-7936-8147) is a PhD student at Brown University.

Ben Greenman (benjamin.l.greenman@gmail.com, https://orcid.
org/0000-0001-7078-9287) is a postdoc at Brown University. He
will be joining the University of Utah in Fall 2023.

Tim Nelson (timothy_nelson@brown.edu, https://orcid.org/0000-
0002-9377-9943) preaches the good news of logic and computing
at Brown University.

Shriram Krishnamurthi (shriram@brown.edu, https://orcid.org/
0000-0001-5184-1975) is the Vice President of Programming Lan-
guages (no, not really) at Brown University.

7:28

mailto:siddhartha_prasad@brown.edu
https://orcid.org/0000-0001-7936-8147
https://orcid.org/0000-0001-7936-8147
mailto:benjamin.l.greenman@gmail.com
https://orcid.org/0000-0001-7078-9287
https://orcid.org/0000-0001-7078-9287
mailto:timothy_nelson@brown.edu
https://orcid.org/0000-0002-9377-9943
https://orcid.org/0000-0002-9377-9943
mailto:shriram@brown.edu
https://orcid.org/0000-0001-5184-1975
https://orcid.org/0000-0001-5184-1975

	1 Introduction
	2 Related Work
	3 Vocabulary
	4 Overview
	5 Study Context
	6 Clustering wfes
	6.1 Ground Truth Clusters
	6.2 Syntactic Clustering
	6.3 Code Clustering: OverCode
	6.4 Semantic Clustering
	6.4.1 Extracting Problem Characteristics
	6.4.2 Clustering by Characteristics
	6.4.3 Cluster Evaluation


	7 Making Sense of Clusters
	8 Selecting Chaffs
	9 Evaluating Chaff Suites
	10 Discussion and Future Work
	10.1 Why Rank Clusters and Not Chaffs?
	10.2 From Failure to Education
	10.3 Challenge: Reducing Noise
	10.4 From Chaffs to Hints
	10.5 Challenge: Applying Program Synthesis
	10.6 Additional Ways to Curate Chaffs
	10.7 Broader Application

	11 Conclusion
	References
	About the authors

