Aluminum: Principled Scenario Exploration through Minimality
Tim Nelson, Salman Saghafi, Daniel J. Dougherty, Kathi Fisler, Shriram Krishnamurthi
International Conference on Software Engineering, 2013
Abstract
Scenario-finding tools such as Alloy are widely used to understand the consequences of specifications, with applications to software modeling, security analysis, and verification. This paper focuses on the exploration of scenarios: which scenarios are presented first, and how to traverse them in a well-defined way.We present Aluminum, a modification of Alloy that presents only minimal scenarios: those that contain no more than is necessary. Aluminum lets users explore the scenario space by adding to scenarios and backtracking. It also provides the ability to find what can consistently be used to extend each scenario.
We describe the semantic basis of Aluminum in terms of minimal models of first-order logic formulas. We show how this theory can be implemented atop existing SAT-solvers and quantify both the benefits of minimality and its small computational overhead. Finally, we offer some qualitative observations about scenario exploration in Aluminum.
Comment
Download the tool and watch our video blurb!
Paper
These papers may differ in formatting from the versions that appear in print. They are made available only to support the rapid dissemination of results; the printed versions, not these, should be considered definitive. The copyrights belong to their respective owners.