Developing Behavioral Concepts of Higher-Order Functions

Shriram Krishnamurthi
Brown University
Providence, RI, USA

ABSTRACT

Motivation. Higher-order functions are a standard and increas-
ingly central component in many kinds of modern programming,
including data science and Web development. Yet little research has
been devoted to student learning or understanding of this topic.

Objectives. We conducted formative research on how well stu-
dents are able to correlate higher-order functions with their input-
output behavior. We also wanted to evaluate a variety of techniques
for assessing their understanding.

Method. We created a series of instruments in which students
were given either concrete input/output examples or abstracted
diagrams of list transformations. Students were asked to cluster
or classify these examples by their behavior, sometimes against a
concrete list of higher-order functions and sometimes free-form.
We administered these over the course of a month, and then once
again three months later.

Results. We find that students initially have several difficulties
with clustering higher-order function examples. With different
instruments, we find that students are later able to do quite well,
largely avoiding large-scale errors but making several small-scale
ones. We also find some evidence of growth in their thinking about
these operations. We also find weaknesses in the nature and order
of techniques we used.

Discussion. Higher-order functions deserve far more attention
than they have been paid in the literature on programming educa-
tion. Their increasing use in several important domains makes this
need critical. Our proposed methods for conducting such research
are another contribution of this work. Our findings and methods
should also be relevant for exploring how students understand
libraries and APIs.

CCS CONCEPTS
« Applied computing — Education.

KEYWORDS

higher-order functions, behavior, clustering, classification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICER 2021, August 16—19, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8326-4/21/08...$15.00
https://doi.org/10.1145/3446871.3469739

Kathi Fisler
Brown University
Providence, RI, USA

ACM Reference Format:

Shriram Krishnamurthi and Kathi Fisler. 2021. Developing Behavioral Con-
cepts of Higher-Order Functions. In Proceedings of the 14th ACM Con-
ference on International Computing Education Research (ICER 2021), Au-
gust 16—19, 2021, Virtual Event, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3446871.3469739

1 INTRODUCTION

Higher-order functions (HOFs) are everywhere in programming.
What began as a niche feature in functional languages, like Lisp, is
now ubiquitous. Java, starting with Java 8, added them and corre-
sponding datatypes (i.e., Streams), so Java developers can (and do)
write code like

listOfStrings.stream()
.filter(s -> s.contains("CS"))
.collect(Collectors.tolList)
Web developers routinely write code like
$("ul").filter(
function() { return $("1i", this).length == 2; 3})
.css("color", "red")
in jQuery, a popular JavaScript library. Python programmers using
Pandas, an extremely popular data-analysis library, also routinely
write

df['withTax'] = df['price'].apply(lambda x:x*1.05)
R programmers in data analysis frequently write
Reduce(f = "+", x = 1:6, accumulate = FALSE)

All these use HoFs (filter, collect, apply, Reduce).

A bit of terminology is in order: there are two related concepts
here, anonymous and higher-order functions. The former (usually
called “lambda’s in many languages, most recently even Excel [16])
create function-values without names. The latter are functions that
accept function-values. Naturally, they have a close symbiosis: the
former create values that the latter can accept. However, HOFs can
exist without anonymous functions. Indeed, some learning progres-
sions pass named functions to HOFs before teaching anonymous
functions. Our focus in this paper is on HOFs, irrespective of how
the functions that are being passed to them were created.

There are many purposes for which one can use HOFs, and their
pedagogy must match these purposes. Our focus here is on HOFs for
processing data. This focus is shared in several quarters. The exam-
ples above from R and Python are both taken from data-processing
code. Hadley Wickham, Chief Scientist of RStudio and an influen-
tial data science educator, devotes a chapter of Advanced R [29]
to “Function Operators”, and has begun to create videos [30] to
introduce HOFs to R programmers. Another famous example of
HOFS in large-scale data processing is the MapReduce operator [5],
which was directly inspired by the standard HOFs map and reduce,
and consumes “functions” that implement the mapping and reduc-
ing steps. The growing importance of data science and its use in

https://orcid.org/0000-0001-5184-1975
https://orcid.org/0000-0002-7895-8206
https://doi.org/10.1145/3446871.3469739
https://doi.org/10.1145/3446871.3469739

ICER 2021, August 16-19, 2021, Virtual Event, USA

machine learning therefore highlights the importance and urgency
of quality HOF pedagogic methods for students. This ubiquitous
need has not been matched by pedagogy. There is little literature
on how to effectively teach with HOFs. Even introductory books
that have significant coverage of them (e.g., [1, 8, 26]), have not
been evaluated for their effectiveness in this area.

For decades, the authors of this paper have taught HOFs by hav-
ing students write data-processing traversals as recursive functions
over lists (without HOFs), then pointing out the similarities in the
functions for similar tasks, and abstracting over the similar traver-
sals to define HOFs from scratch. From this they proceed to showing
the collection of HOFs built into the programming language being
taught, and then have students define and use HOFs during the
rest of the course. This approach is based on the philosophy in the
Abstraction section of How to Design Programs [8]. In this approach,
fundamentally, HOFs arise as abstractions of code.

Selecting and applying HOFs in practice, however, starts not from
existing traversal code, but from a description of desired program
behavior. This description could be in prose or in the form of an in-
put/output example (or test case). Thus, to understand whether our
default pedagogic technique is working, we need to study whether
learning about HOFs as abstractions of code helps students perceive
them as abstractions of behavior as defined by features such as in-
put/output types and the relationships between input lists and the
lists or values produced as output.

This paper reports on a multi-stage study in which we gave
students several concrete input/output examples of operations on
lists and asked them to associate them with behaviors supported
by the HOFs described in section 4. Our first two studies asked
students to cluster the examples by their behaviors and name the
clusters. Our last three studies asked students to classify or label the
same examples with specific HOFs that matched each one. The first
four studies occurred just after the students were exposed to HOFs
through the default (code abstraction) pedagogy. The fifth occurred
three months later, after students had used the HOFs on multiple
assignments. Our analysis centers on two research questions:

RQ 1. Which behavioral features of HOFs are students attuned
to after learning about them as code abstractions and writing short
programs with them?

RQ 2. Which behavioral patterns of list transformations do stu-
dents correctly associate with the names of HOFs that exhibit corre-
sponding patterns?

We analyze these by asking students to both cluster and classify
examples of function behavior, presented textually and diagrammat-
ically. We then compare their annotations against a ground-truth
defined by us. This methodology, which has broad applicability, is
itself a contribution of this work. We find that they successfully
distinguish some features better than others. Section 8 provides
several reflections on this work.

2 THEORETICAL BASIS

In asking students to label examples, cluster examples, and name
clusters, we are asking students to form abstractions. Students had
already worked with HOFs as abstractions over similar programs,

Shriram Krishnamurthi and Kathi Fisler

but were now asked to work with them as abstractions over in-
put/output behavior.

Theories of abstraction formation build on theories of percep-
tion [14, 15]: one must identify features of a collection of samples
and discern which are important prior to abstracting over com-
mon features. In the case of HOFs from an input/output perspective,
important features include the types, lengths, and relative order
across inputs and outputs. Figure 1 summaries these features in
detail for the HOFs used in this study. The textbook that students
read to initially learn about HOFs (before our study started) makes
references to these features, but did not contrast them as sharply as
in the table (which we provided to students prior to the third stage
of our study). Our study explores feature identification through the
labels that students ascribe to examples.

The key behavioral features we have identified about HOFs are
relational, in that they capture relationships between the inputs
and outputs of a computation. Gentner and Kurtz [13] proposed
relational categories as a fundamental form of abstraction, separate
from other forms based on shared structure of objects (such as from
common pieces of code). The category status hypothesis proposes
that relational categories aid in cognitive retrieval of structurally-
relevant knowledge, based on tasks involving labeling, summariz-
ing, and describing materials [20]. Our study employs similar tasks
as a first step towards developing relational categories.

While theories of how programmers develop schemas [21, 24]
might also apply to our work, we believe abstraction-formation the-
ories are more relevant. Schemas are partially-instantiated patterns
of code (or pseudocode). They would be relevant to this study if we
were asking students to implement the underlying traversals many
times and (mentally) retrieve the patterns of those traversals (as
with code abstraction). Here, we are more concerned with students
retrieving the name of an appropriate HOF based on input/output
behavior. The whole point of using an HOF is that the common code
structure does not appear explicitly in the resulting program. While
schemas might get developed along the way, development of the
abstraction to a named HOF is our overarching goal.

3 RELATED WORK

Though there are numerous sources that teach HOFs, we are not
aware of literature on students’ understanding of them. Similarly,
we have not found prior work on how students learn or perceive re-
lationships between code abstractions and behavioral abstractions.

There have been studies that look at students’ selection and use
of HOFs in the context of plan composition. Fisler’s cross-language
study of the Rainfall problem [9] reported on students’ success-
ful use of filter (and occasionally fold). Fisler et al’s related
study [10] included students who were learning OCaml: they suc-
cessfully used both filter and take on the study problems.

Design patterns abstract over and descriptively name common
programming tasks [4, 12]. Relative to this project, we view design
patterns as being similar to schemas (discussed in section 2), in
that the goal is to learn a multi-line (or expression) code pattern
rather than the name of a single built-in operation with a specific
input/output behavior.

Selecting functions based on desired behavior arises when work-
ing with Ar1s. The API context is a bit different from the HOF one:

Developing Behavioral Concepts of Higher-Order Functions

ICER 2021, August 16-19, 2021, Virtual Event, USA

Functions\Criteria OT OET/I OL/I 00/1 WHE/I Op Type
map list candiffer same same 1 A->B

filter list same <= same 1 A -> Bool
take-while list same <= same 1 until criterion, then 0 A -> Bool
ormap bool -N/A- const 1 -N/A- 1 until true, then 0 A -> Bool
fold any candiffer candiffer any prefix/suffix AB->B

where the column headers are given by the following legend:

Abbreviation Expansion/Meaning

oT Output type

OET/1 For list outputs, output element type relative to input

OL/1 Output length relative to input

00/1 Output order relative to input

WHE/I Which/how many elements of input determine an output element
Op Type Type of operation consumed by the HOF

Figure 1: HOF Feature Summary

APIs are often stateful (so types are insufficient summaries of be-
havior) and they support domain concepts beyond what the pro-
grammer is already working with for themselves (e.g., access to a
cloud service vs. extracting items from a list). Programmers often
use APIs to extend the functionality of their programs, rather than
to write the same program more succinctly (as with HOFs). Docu-
mentation and instruction are nevertheless key instructional tools
in both contexts, making findings on how programmers learn from
API documentation potentially relevant to our work.

Duala-Ekoko and Robillard’s study of the questions that expe-
rienced programmers ask while learning ap1s [6] shows that pro-
grammers often navigate API documentation based on types and
keywords (which resemble the labels we ask students to construct).
Thayer et al’s theory of robust ap1 knowledge [25] synthesizes
many prior studies in discussing the importance of understanding
API usage patterns, which include input/output examples. In AP1
studies, developers typically have access to documentation that
contains types, examples, and behavioral descriptions. We provided
documentation only after the first 2 stages of our study, and even
then it was in a modified form of a table summarizing types and
features (fig. 1), rather than the richer behavioral descriptions found
in API documentation. This was by design in our study, so we could
explore how students’ prior use of the code underlying an HOF
would lead to understanding of input/output examples.

4 A SMALL GLOSSARY OF HIGHER-ORDER
FUNCTIONS

We assume that the reader has a basic familiarity with the standard
HOFs. Nevertheless, fig. 1 provides a summary of the key HOFs we
use in this paper (and their distinguishing features).

Due to the point in the curriculum where we conducted these
studies, we focused solely on functions over lists. map applies its
function argument to every element of a list. filter applies its
function argument, which should return a Boolean, to every ele-
ment of a list, and uses the Boolean to decide whether to retain
or drop that element in the result. take-while is subtly different

from filter: it retains the prefix for which the Boolean is true,
and at the first false value, drops the suffix. ormap also takes a
Boolean-generating function, which it applies to every element,
and computes the disjunction of the produced Booleans; it short-
circuits once it gets a first non-false value. fold is a generalized
accumulating loop.

Why these functions? We chose map, filter, and fold because
they are three common, canonical HOFs. We picked take-while for
its similarlity to filter. (With state, take-while can be expressed
using filter, but we are operating in a purely functional setting.)
We chose ormap because it produces non-list output and because
students had seen it in the text but had not had to use it, unlike its
sibling andmap, requiring some transfer.

Prior to our study, students had seen all these functions except
take-while. However, they had not been exposed to a systematic
way of thinking about the behavioral features of these functions, as
given by the columns in the figure. These functions have slightly
different names and argument orders in individual languages. In
our study we allowed students to write free-form text that we
interpreted, allowing students to use any reasonable names for
these functions.

5 PEDAGOGIC CONTEXT

This work is situated in a highly competitive private university
(post-secondary) in the USA. The setting is an accelerated introduc-
tory course. About two-thirds were first-year students (typically
18 years old); the rest had already had at least a semester of post-
secondary study. About 10% had no prior computing, with the rest
having taken some (high school) computer science, as much as the
AP CS A course, with a handful having gone farther. Nearly all
were new to functional programming.

To place into the accelerated course, all students had to complete
a month-long module (over Summer 2020) that teaches beginning
functional programming using How to Design Programs [8], with
assessment approximately every ten days. That material roughly
compares to the first month of a conventionally-paced introductory
course at the same university. By the end of the module, students

ICER 2021, August 16-19, 2021, Virtual Event, USA

were introduced to HOFs in Part Three (https://htdp.org/2019-02-
24/part_three.html) of the book, which teaches them as abstractions
over code. The fourth and last assessment asked students to redo
the same problems as in the third assessment, but using only higher-
order functions and no explicit recursion. This assignment required
students to work with the functions map, filter, fold (as foldr,
not foldl), and andmap (the latter is analogous to ormap as shown
in the table), often in composition. There were 5 problems total,
including stripping the vowels out of a list of words (filter and
map), producing the subset of words whose characters were all in
a reference list (filter and andmap), and produce a list of unique
elements from an input list (fold, with or without filter).

The first four stages of our study took place between the end of
the placement process (August 2020) and the start of the accelerated
course (September 2020), after students received acceptance deci-
sions into the course. The fifth and final stage of the study reported
in this paper occurred at the end of the semester.

During the semester (Fall 2020), students were encouraged but
not required to use HOFs. Though they saw HOFs used repeatedly,
they were not given any further instruction on them, assuming the
summer preparation (including the first four stages) were sufficient.

The placement and first two-thirds of the course proper used
pure functional programming, with state introduced and used ex-
tensively in the last third of the course. The placement process was
entirely in Racket, while the semester was entirely in Pyret.

6 INSTRUMENTS AND METHODS

Our studies use two different representations of examples of HOF
behavior. The first is input/output examples, such as’

(list "red" "green" "blue")
_-»

(list 3 5 4)

Our full list of examples appears in fig. 2. We carefully chose the
examples to explore the features in the columns of fig. 1. These same
examples were used in all stages of our study that used examples.?
In the above example, a list of three strings is turned into a list
of three numbers. These types greatly limit the set of candidate
functions. Figure 1 shows why: filter and take-while produce
lists of the same type as they consume, so they cannot possibly have
this outcome; ormap does not produce a list at all. In contrast, map is
a strong candidate: it is permitted to transform the type from input
to output, but in doing so must preserve the number of elements;
each output element must be generated in a consistent way from
the corresponding input. It is easy to see that each output number
is the length of its corresponding input string. This is indeed the
kind of example for map commonly found in books and tutorials.
The astute reader will notice that fold could also have gener-
ated this output. Indeed, fold has a universality property (a gentle
exposition is given by Hutton [18]) that makes it able to express all
the other operators we are studying in this paper. In other words,
every input/output example could (also) be generated by fold. We

IThe examples are written in the syntax of Racket [11], following How to Design
Programs [8], but because they involve only data and no code, they are extremely
straightforward to translate to any number of other programming languages.

ZExcept for two small edits made after Stage 1 to reduce confusion: example 11’s
input’s last element changed from 1 to 5, and example 16’s input went from 1 7 3 -1
-4289 -5to1 723 -1-427 89 -5 Figure 2 incorporates these two edits.

Shriram Krishnamurthi and Kathi Fisler

report on how we accounted for this when presenting the results
of each stage of the study in section 7.

Our ground-truth label for each example is marked in fig. 2 (these
were not shown to students). Our labels reserve fold for examples
that cannot be produced by a more specialized HOF.

The second instrument showed behavior through diagrams, which
are shown in fig. 3. The diagrams use space and color to capture
key features of most HOFs from fig. 1. (A) is intended to show a map;
(B) a filter; (C) is an intentionally-ambiguous distractor (it could
be interpreted as a filter, though the lack of line going to the
end might suggest a computation stopping short, like take-while,
except the whole prefix is not included); and (D) is (one case of)
fold, though it can also be specialized versions of it like ormap.
Students had not been introduced to these images before, nor were
they formally explained.

Study Tasks. Students used these representations in two styles
of tasks: the clustering tasks asked students to form clusters of the
textual examples (fig. 2) and suggest names for the clusters. The
classification tasks asked students to label the diagrams and the
textual examples with descriptions or names of HOFs that could
produce the depicted behavior.? Section 7 provides the motivations,
instructions, and findings for five study stages using these tasks.

Methods. Data collection for each stage occurred through Google
Forms with identity collection turned on for four of the five stages
(we accidentally forgot to enable identity gathering for the fourth
stage). Students were provided written instructions on the course
discussion forum including a link to participate in the study. Stu-
dents were encouraged to do all the stages (motivated as tasks that
would help prepare them for the course), but due to the various
pressures created by COVID-19, all were made optional. The fifth
stage (also optional) was conducted right after the last task of the
semester, three months after the end of the fourth study.

Critically, we two authors (one of who was the class professor;
the other was not affiliated with the course) agreed on how to clas-
sify each example. Since there are only 21 examples, there were not
enough items to use a process such as traditional inter-coder relia-
bility. Instead, we simply discussed each example until we arrived
at complete agreement. The examples were ordered randomly (as
shown in the figure) so that individual function examples did not
all group together; that same order was used in all stages. Once
we agreed on the labels, one author ran the analyses and did any
manual coding.

Population. A total of 114 students finished the course. About
20% were female. Only a few were Black or Hispanic/Latinx. The
number of students responding to each stage is as follows: Nj = 68,
N =70, N3 =76, Ny = 64, and N5 = 83. The students responding
are not all the same, and range over about half to two-thirds of the
class. At least 28 students did all of Stages 1, 2, and 5, with at least 38
doing both Stage 1 and Stage 5 (an exact count is difficult because
some students switched their email addresses between rounds and
cannot reliably be mapped, so these are slight under-counts).

30ur terminology is directly inspired by the corresponding terms in data science
and machine learning: “clustering” puts together like objects into groups (without
necessarily giving them a semantically-meaningful label), whereas “classification”
applies semantic labels to objects.

https://htdp.org/2019-02-24/part_three.html
https://htdp.org/2019-02-24/part_three.html

Developing Behavioral Concepts of Higher-Order Functions

1 FILTER/TAKE-WHILE
(list "cs@19" "ma@54" "cs033" "cs018" "visa@39")

(list "cs0@19")

2 MAP
(list 2 1 3)
-»

(list (list "a" "a") (list "a") (list "a" "a" "a"))

3 ANYTHING
(list 1 2 3 4)
-»

(list 1 2 3 4)

4 FILTER
(list "cs@19" "ma@54" "cs0@33" "cs@18" "visa@39")
-»

(list "ma@54" "visa039"))

5 FILTER
(list (list "a") (list "b") (list "d") (list "e"))
-»

(list (list "a") (list "e"))

6 Anything but MAP
(list 46 2 1)
-»

empty

7 FOLD (but could be a MAP that takes list suffixes)
(list 1 2 3 4)
-»

(list (list 10 6 3 1) (list 6 3 1) (list 3 1) (list 1))

8 MAP
(list "red" "green" "blue")

(list 3 5 4)

9 ORMAP
(list true true false true false true false)
-»

true

10 FOLD (AVERAGE)
(list 14426 1)
-»

3

11 MAP
(list 4 6 2 5)
-»

(list 111 1)

ICER 2021, August 16-19, 2021, Virtual Event, USA

12 TAKE-WHILE
(list true true false true false true false)
-»

(list true true))

13 FILTER
(list 14426 1)
-»

(list 1 1)

14 FOLD
(list "cs0@19" "ma@54" "cs@33" "cs018" "visa039")
-»

2

15 FOLD
(list 1 2 3 4 5)
-»

(list 1 4 9 25)

16 TAKE-WHILE
(list 1723 -1-42789 -5)
-»

(list 17 2 3)

17 FILTER/TAKE-WHILE
(list (list 2 3) (list 1) (list 4 52) (list) (list 2 7))
_»

(list (list 2 3) (list 1) (list 4 5 2))

18 FOLD (or MAP: lam(x): 4 - x end)
(list 1 2 3)
-»

(list 3 2 1)

19 MAP
(list addl subl)
ol

(list (list 2 3 4) (list @ 1 2))

20 FOLD
(list 1 2 3 4)
-»

24

21 FILTER/TAKE-WHILE
(list 17 3 -1 -4)
-»

(list 1 7 3)

Figure 2: The input/output examples used in the study, annotated with their ground-truth labels

ICER 2021, August 16-19, 2021, Virtual Event, USA

Shriram Krishnamurthi and Kathi Fisler

(A)

~
@
~

—~
N
~

(D)

Figure 3: Images to Label (most boxes are orange, except the second row of (A) is blue and the second row of (D) is green)

7 STUDY DESCRIPTION AND ANALYSIS
7.1 Stages 1 and 2: Clustering

In Stages 1 and 2, students were given the full list of examples
(fig. 2) (without the HOF labels) and asked to construct clusters. The
specific instructions were as follows:

Below we give you a list of 21 input/output pairs. Your task
is to cluster them into the ones you feel are similar.

What is “clustering”? That means making groups of things
where all the elements in one group are similar to each other,
but different from the elements of the other groups.

When should two pairs go in the same cluster? When the two
pairs could have been processed by the same higher-order
function (possibly including ones you haven’t seen before).
Therefore, you want to think about relationships between
the input and output in each pair (type, order, etc.). Within
each cluster, all examples should share these relationships.
We will ask you to describe these relationships after you form
your clusters. Identifying these relationships is the heart of
this exercise.

You can make as few or as many (up to 8) clusters as you
like.

You may find pairs that could fit in multiple clusters. If that
happens, make one separate cluster for all of them, and ex-
plain why you think they are ambiguous.

Students were also asked to give meaningful names to the clusters,
and were specifically told, “Note that a good name for a cluster
might be a higher-order function that would perform this mapping
(when supplied with a suitable function as a parameter).”

7.1.1 Analysis. We created ground-truth clusters based on the la-
bels on the examples in fig. 2. This yields six clusters (map, filter,
fold, ormap, takewhile, anything). We reserved fold for exam-
ples that cannot be produced by a more specialized HOF. We com-
pared each student’s clusters to our ground-truth ones. Since these
are set comparisons, we built atop the Jaccard index,* which gives
a score between 0 (nothing in common) and 1 (sets are identical).
Our exact scoring function is shown in fig. 4.

With 6 ground-truth clusters, a perfect score would be 1 per
cluster, for a total score of 6. The lowest score is not actually 0:
because every example is forced to end up in some cluster, every
student cluster will match some ground-truth cluster. Indeed, our
lowest observed score was 0.33, for a student who put all examples
into a single cluster (noting that all could be implemented through
the universal fold: section 6).

Observe that our scoring function can produce a generous over-
count! For a given student, several of their clusters could be close to
one ground-truth cluster. Each of these would get a fairly high score.
Instead, for each student cluster, we should remove the ground-
truth cluster that yields the highest score, and proceed only with
the remaining clusters. (Technically, this greedy algorithm may not

“The Jaccard index (or Jaccard similarity) of two sets, A and B, is |A N B|/|A U B|.

Developing Behavioral Concepts of Higher-Order Functions

For each student:
For each student cluster:
For each ground-truth cluster:

ICER 2021, August 16-19, 2021, Virtual Event, USA

Computed the Jaccard index between that student and ground-truth cluster.
Assign the student cluster its highest Jaccard index across all ground-truth clusters.

Sum the scores over all student clusters.

Figure 4: Our algorithm for scoring clusters

yield the highest possible score; instead, we have to consider all
such pairings of clusters and find the maximal summed score.) We
chose not to adjust for this overscoring in our analysis.

7.1.2 Findings. After Stage 1, we found a mean py = 2.51 (with
0% = 0.66,0 = 0.81) and median of 2.52. These outcomes suggest
that students have some ability to perform this classification, even
early into their use of HOFs. In particular, many students were able
to recognize basic map- and filter-like behavior. However, several
things stood out from their written responses:

o A failure to appreciate that multiple operators can produce
the same results. We believe there is a certain degree of
behavior akin to functional fixedness [7] in these answers: if
one operator produces a certain outcome, another one will
not.

o Difficulty with fold, which is anyway one of the more com-
plex HOFs (since it simulates an accumulating loop).

e Many cases where they were unable to use an operator name
even if they provided a meaningful description: e.g., “Member-
wise, order-retaining function application” in place of “map”.

e Several answers focused on the types but not on the opera-
tions: e.g., “Non-nested List of Integers” or “returns a list of
lists” as the label of a cluster.

e Looking at the order in which students presented their clus-
ters, earlier ones tended to have much crisper definitions,
and much more often corresponded to names of operators.
Later clusters were much more narrow and even explicitly
included guesses (e.g., “Reverse?”).

In the context of our research questions, we thus see many students
recognizing features (such as order, output length, and return type)
and connecting some HOF behavior to HOF names. Students strug-
gled more to describe their clusters when they could not connect
them to HOF names. Overall, the gaps between our ground truth
and their clusterings suggested that several students were still well
short of mastery of how the examples aligned with specific HOFs.
After Stage 1, we noticed two problems with our examples that
may have caused students to focus on overly-specific properties
(see footnote in section 6). After making slight adjustments to avoid
them, and improving the clustering instructions to avoid some
confusions we noticed, we asked students to try again (with no
feedback or additional directions). Note that both these factors,
combined with familiarity with the examples, could themselves
cause students to do a little better. Using the same scoring scheme,
this time student results produced a mean py = 2.64 (with o% =
0.70,0 = 0.83) and median of 2.51. This appears similar to the
results from Stage 1. We found 43 students had submitted responses
to both stages, so we performed a within-students comparison using

a paired two-sample for means t-test. For a significance level of
a = 0.05, we obtained a p-value of 0.21, indicating no significant
change for these students.

Nevertheless, we saw notable improvements in the prose, if
for no other reason perhaps because of practice and because our
instructions had improved. We still saw several of the phenomena
described above (e.g., “Keep Specific Elements” as a label in place
of “filter”). Given the persistence of these traits, we decided to
try an alternate strategy.

7.2 Stage 3: Labeling

Following the two clustering exercises, we explained the intent of
the exercises to the students and provided (a version of) the chart
in fig. 1. We also decided that the classification task was both too
onerous and too ambiguous (due to the lack of strict partitioning
of elements—both because some examples were intentionally am-
biguous, and because of the universality of fold). We decided to
try again with a lighter-weight (and potentially less ambiguous)
activity.

The new activity presented the diagrams from fig. 3 and asked
students to label them. The instructions read:

For the four pictures below, give each as meaningful and
concise a label as possible, and tell us why you picked it. It
may be helpful to think in terms of the characteristics you
may have used in the previous quiz.

Along with these directions, the instructor told the students,
“After you're done I'll post my thoughts on these exercises, so you’ll
have it fresh in your head in time for the start of class” (Recall
that these exercises occurred before the start of the semester, but
after students finished the placement process to be admitted to the
course.)

7.2.1 Analysis. Because each picture had been drawn with specific
a function label in mind (except in the case of the distractor), we
could simply compare student labels against our intent. One author
performed the evaluation.

7.2.2 Findings. Since the diagrams directly highlighted certain HOF
features—notably element type, output type, and output length—we
hoped students would have an easier time associating the diagrams
with specific HOFs. Our findings were somewhat surprising to us.’

For (A), map (the intended HOF) was indeed the most common
answer (just over half used the word “map” in some reasonable
form, mostly just “map” itself). A handful used what are effectively
5In retrospect, we realize that our figures were probably too abstract. As one possibility

to consider, Rodrigo Duran has suggested the use of shapes in addition to colors, to
reduce the abstraction leap.

ICER 2021, August 16-19, 2021, Virtual Event, USA

synonyms, like “transform-all”, “Element-wise function applica-
tion”, or “go-through-all single-input-dependent”. Some were less
crisp, e.g., “modifies every element” or “All elements processed to
obtain products in list”. Some were ambiguous, mixing function
and visual descriptions: “Orange rectangles mapped one-to-one
to blue” or “Map Orange "list" to Blue "list"". Finally, several were
fixated purely on the visual: e.g., “change-color”, “Color swap”, or
“Convert all to blue”. 10% focused purely on colors.

(B) was intended to be filter, and the responses fit the same
pattern:

e Over half used the word “filter” explicitly in some form.

o A handful used synonyms, like “Select”.

e Some used phrases that are vaguely reminiscent but insuffi-
ciently descriptive: “Returning subset of elements in list of
original length”, “Replace”, “Search and Return”.

e About 10% focused on physical attributes: e.g., “Remove
boxes 3, 4, and 6”, “Groups of Boxes have the same total
length of connected boxes but Number of Boxes are different
for each group”, “unchain”.

e A few combined abstract and physical descriptions: “Select-
ing some / filtering 7 orange rectangles”, “Filter Orange "list"
to "list" of oranges”.

Recall that (C) was a distractor. The responses, however, suggest
that students picked up on the visual quite well:

e About a third of students labeled it as some version of filter.

o About one fifth interpreted the short line as truncation, made
up a description of an abbreviating filter: e.g., “Filter with
Exit”, “filter-until”, “Select and truncate”, “filter-like”, “Filter
& Cut”, “Slice and filter”, “Limited Filter?”, “partial-filter”.

o Perhaps surprisingly, very few students made physical inter-
pretations: “Selecting some / filtering 7 orange rectangles”,
“filter_five”, “unchain-and-shorten”.

e About 10% of answers were difficult to understand and clas-
sify (e.g., “filter 2x”, “Select firsts”, “Different Number of
Boxes and Total Box Group Length”), perhaps reflecting the
distractor nature of the problem.

Finally, (D) was intended to represent a fold or special cases
of it that don’t produce lists, like ormap. Half the students chose
accurate names like fold, reduce, and ormap. However, numerous
students were thrown off by the single value of a different color, and
focused on that characteristic: there were numerous responses like
“returns new value”, “manipulateAllBoxesToOne”, “collapse”. Some
were unable to express any useful high-level characteristic, such as
“generates a result based on inputs” (which describes all functions!).
A few were arguably incorrect, like “Constant, different type” or
“count-filtered”. Finally, we again saw about 8% of students combine
form and function: e.g., “Foldl/r Orange ‘list’ to Green”, “Folding 7
rectangles to any color”, “Reduce and change-color”, “Condense to
one green box”.

Overall, we were surprised to see over 10% of students focusing
at least partly on the visual notation (including color) rather than
the depicted behavior. This suggests that students hadn’t really
grasped the point of the activity, despite having that described as
part of the post that released the exercise.

We did notice that many of the students who focused purely on
the visual had not completed the previous stages, so they may not

Shriram Krishnamurthi and Kathi Fisler

have fully grasped the task, and may not have paid attention to
the instructions. In contrast, most of the students who gave hybrid
answers had completed one or both prior stages. Nevertheless, our
general take-away was that the diagram-based version was perhaps
too open to interpretation. In light of this, we did not do in-depth
comparisons of results for students who completed both Stage 3
and one of the first two stages (at least 56 students).

Relative to our research questions, we find roughly half of the
students are accurately associating patterns with HOF names (RQ 2).
The others are detecting some patterns, but they aren’t all behav-
ioral and they aren’t necessarily aligned with the functions that
students learned during the initial pedagogy (RQ 1). Based on the
responses that emphasized the visual features of the diagrams, we
decided to try the labeling-oriented again, but this time on the
textual examples.

7.3 Stages 4 and 5: Classifying

Contrary to an earlier promise that Stage 3 would be the last one,
the instructor posted one “last step”, accompanied by a lengthy
explanation. (Space precludes including the entire text.) It briefly
mentioned the educational goal, then described how the instructor
thinks about functions in terms of their characteristics. The post
shared the table shown in fig. 1. Finally, students were told, “Based
on all this, I would like to request you to fill out one truly final quiz,
which should wrap up your training on this topic” The specific
instructions read:

For each pair, please select all the higher-order functions
that could (reasonably) have transformed the input into the
corresponding output.

Students were asked to check one or more boxes labeled map,
filter, take-while, fold, and “Other” (which let them enter free-
form text). We intentionally left out ormap, so students would have
to enter it using “Other”.

7.3.1 Analysis. We compared student labels to our ground-truth
labels (from fig. 2). For all examples, we accepted fold responses:
e.g., aresponse of filter and fold was put in the same bin as one
of filter alone. Thus students were never penalized for using the
more general operation in addition to the more specific one. In the
discussion that follows, we will discuss fold more specifically for
particular examples, and as a general phenomenon.

7.3.2 Findings Before The Course Started (Stage 4). The left-hand
chart in fig. 5 displays the frequency of errors (y-axis) as a % of
responses, binned by every 5% (x-axis). To make clear how to read
the graph: it says that 6 (y-axis) of the 21 examples have fewer than
5% of responses erroneous, but one example has 70-75% (specifically,
73.4%) responses wrong. Because the examples are all so different,
we do not believe summary statistics about these errors would be
meaningful.

Using the notation En to mean the example n from fig. 2, the
low error rates are on map (E2(1.6%), E8(0%), E11(3.1%), E19(12.5%)),
fold (E10(0%), E14(4.7%), E20(0%)), and map/fold (E18(12.5%)). We
put them in example- rather than percentage-order to make them
easier to look up in fig. 2.

The errors are somewhat higher for the filter-only examples
(E4(15.6%), E5(17.2%), E13(14.1%)) for a simple reason: students

Developing Behavioral Concepts of Higher-Order Functions

STAGE 4 ERROR % FREQUENCY

3=3=3

\

1=1 1 1 1

LINZIN O ZIN 71N
0 0 0=0 0=0 0=0=0=0-=0
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

ICER 2021, August 16-19, 2021, Virtual Event, USA

STAGE 5 ERROR % FREQUENCY

2 2

VARVA

0=0=0=0=0=0=0=0=0=0=0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Figure 5: Error Frequencies in Stages 4 (left) and 5 (right)

routinely also tag these as fitting take-while! All the errors on
those examples are caused by this confusion.

On the two examples that were take-while-only, the error rates
were somewhat higher: E12(25.0%) and E16(26.6%). All the errors
come from students incorrectly also marking filter. In one in-
stance, on E12, a student marked only fold.® The overall numbers
suggest a potential bias where students are more likely to mis-
classify take-while as filter than vice versa. We do not have an
explanation for this phenomenon (if true), though one conjecture
is their greater familiarity at that point with filter.

On two examples that could be either filter or take-while,
error rates were not too high: E1(18.8%), E21(17.2%). In both cases,
the only errors were when students forgot one or the other possi-
bility. However, the bias is not uniform. In the former (E1), 14.2% of
students (not of the errors!) neglected the take-while possibility.”
In the latter (E21), 15.9% overlooked the filter possibility. On
the third such example, the error rate is nearly double: E17(34.4%).
Here, 3% overlooked take-while but ten times as many overlooked
filter, perhaps because the empty list looks like a sentinel. At any
rate, it is notable that across all these examples, students never con-
fuse either for map, only for each other. This suggests that students
have accurately observed the HOF feature regarding whether all
items or a subset are in the output, but are perhaps not attending
to which elements are being dropped (a suffix as in take-while
versus interspersed as in filter).

Three high-level mistakes arise in the five high-error examples.

o Failure to mark all appropriate HOFs: On both E3(56.3%) and
E6(23.4%), multiple HOFs beyond fold applied. On E3, 60%
of errors came from omitting just fold, while the other 40%
omitted another applicable function. On E6, all options other
than map could have applied, and indeed nobody selected it
(the omissions were among the other options). This again
suggests a robust understanding of the HOF feature regarding

°Tt is possible that the idea of using filter and take-while on lists of Booleans
(which is quite rarely done in practice, and had not been done on the work they had
seen up to that point) was sufficiently unfamiliar that they failed to recognize these as
possibilities.

"In retrospect, this example was poorly designed: because the course’s name is “cs19”,
students may have instinctively expected one is filtering for the present course. We
did not spot this until writing this paper.

whether the output lists and the input lists have the same
length, but not a good understanding of fold.

e Marking HOFs whose types fail to match the examples: On
E9(23.4%), most of the erroneous answers chose only filter
and/or take-while, neither of which is even type-correct
(because a single boolean, not a list, was returned). Some
chose one or both of these in addition to ormap, which is
type-correct. This suggests that students were attending
more to the relative length of the input rather than the type.

o Mishandling details later in the lists: E15(40.6%) was intention-
ally subtle, and chosen as an attention test: at quick glance,
it looks like a map (of a squaring function), but the input
has five elements whereas the output has only four. Many
students used the “other” option to write in a statement,
e.g., wondering if the problem was incorrect, or indicating
that had a 16 been present, they would classify it a map (we
classified these as correct).

Throughout our data, we see evidence that students struggle
with fold (the general-purpose HOF). As we have noted, fold is
the hardest of the HOFs to use, presumably because it supports
all of the core features (transforming, skipping, and aggregating
elements). Indeed, one way to understand fold is through this
multi-feature support (though this is a hard perspective to detect
based on its unabstracted code or types). The data for E15(40.6%)
showed that students had not fully grasped this perspective: 13.3% of
students chose both map and one of filter or take-while, choices
which recognize that the example features both transformation and
skipped elements. Ideally, students would understand that such
situations call for fold (or a composition of HOFs, which 23% of
students wrote in).

E7(73.4%) is a slightly tricky example that also raises questions
about which features students might be perceiving (even the authors
originally mis-classified it, intending it as a fold problem but failing
to notice that it can also be a map). The example preserves list
length (suggesting map), but the transformation of elements is not
immediately obvious (suggesting fold). One student suggested
(free-form) a list-building function, build-1ist, which is loosely
applicable inasmuch as it is often used to generate sequences of

ICER 2021, August 16-19, 2021, Virtual Event, USA

Example
1 filter,take-while
2 map
3 anything
4 filter
5 filter
6 anything but map
7 fold
8 map
9 ormap
10 fold
11 map
12 take-while
13 filter
14 fold
15 fold
16 take-while
17 filter,take-while
18 fold,map
19 map
20 fold
21 filter,take-while

Shriram Krishnamurthi and Kathi Fisler

Labels Stage 4 Error Rate Stage 5 Error Rate Improvement

18.8 22.9 -4.1
1.6 1.2 0.4
56.3 14.5 41.8
15.6 8.4 7.2
17.2 10.8 6.3
234 20.5 3.0
73.4 36.1 37.3
0.0 1.2 -1.2
234 21.7 1.8
0.0 2.4 -2.4
3.1 1.2 1.9
25.0 24.1 0.9
14.1 6.0 8.0
4.7 9.6 -5.0
40.6 28.9 11.7
26.6 27.7 -1.1
34.4 39.8 -5.4
12.5 6.0 6.5
12.5 3.6 8.9
0.0 1.2 -1.2
17.2 21.7 -4.5

Figure 6: Error Rates and Difference

numbers, but cannot work here because it would lead to a type
error (it consumes only one number, in addition to a function).

Overall, these results support a conjecture that students are
generally learning to identify key features of input/output examples
and which HoOFs are associated with each of those features. Where
students make errors, they have not pushed far enough on those
associations, failing to notice inconsistencies in types or details in
how individual HOFs could be composed in actual code.

7.3.3 Findings Near the End of the Course (Stage 5). We might
expect that students’ concepts of HOFs would evolve after using
them throughout the course after the first four stages. Accordingly,
at the end of the semester (three months after Stage 4), we repeated
the Stage 4 study. Figure 5 contrasts the error frequencies for the
two stages. Figure 6 shows the changes in the class-wide error rates
on each example between the fourth and fifth stages.

Both the figure and the charts show some significant gains along-
side some worsening performance. That said, we cannot draw too
much knowledge (or comfort) from these results. Unfortunately, we
are unable to provide a per-student comparison as we critically
failed to record student identities in the Stage 4 data. However,
we do know that the overlap between Stages 3 and 5 is at least 51
students, so we can hope for about 40 students in common between
4 and 5. Nevertheless, irrespective of overlap size, it should hardly
be surprising if a semester of use (and teaching) of and with this
concept should generally improve student performance.

More troubling, perhaps, is that some of the errors seen earlier
persist. On E1, 16% of students missed take-while. On E21, 18%
missed filter. On E17, 36.1% missed filter. These error rates
are actually higher than on Stage 4! We caution that these may be
due to differences in population; also, the examples may have been

fresher in the minds of students at Stage 4. Still, coming at the end
of a semester of frequent use, these numbers are telling. Similar
patterns persist across other examples.® These similarities suggest
either that our populations are similar or even perhaps that these
are widespread mistakes even amongst programmers with some
experience.

DIFFERENCES IN MENTIONS OF FOLD

— —Staged — —Stage5

Figure 7: Frequency of fold in Stages 4 and 5

The Frequency of Fold. Our discussion of Stage 4 pointed to chal-
lenges that students appeared to have in using fold. As students
gained more facility with HOFs during the semester, we might see
8In addition, three students chose almost all functions for all examples. It is unclear
whether these were chosen with intent or by students who did not feel like doing the

exercise. We include these in our error rates, but they account for most of the small
declines, and mask some of the improvements.

Developing Behavioral Concepts of Higher-Order Functions

them recognize more problems as being instances of fold. Do we
see that in our data?

Indeed we do. In fig. 7 we graph the frequencies with which
students mention fold in their classification in Stages 4 and 5. There
appears to be a significantly greater number of students who label
most or all problems with fold. The summary statistics confirm
this: for Stage 4, a mean of 8.79 and median of 7; for Stage 5, a mean
of 15.43 and median of 19. Because of the potential differences
in population we do not try to interpret these differences further,
but simply record their presence and suggest that they are not
inconsistent with the growth we would expect to see in students.

7.4 Threats to Validity

There are natural threats to generalizability owing to population
sizes, locations, class-specifics, choices of HOFs, and the effects of
COVID-19. We list below more interesting considerations.

Threats to Internal Validity. Different subsets of students partici-
pated in each stage, which limits the conclusions we can draw from
our data. Out of the 114 students in the course, a low of 64 and
a high of 83 participated in the individual stages (the population
data in section 6 suggests roughly 35 students participated in all
stages) . Once students knew the instructional aims of the study,
stronger students may have stopped participating, which could
have skewed the data. In addition, classifying could be an easier
task than clustering, which could explain why students appear to
do better at the end. These said, the persistence of certain errors
into Stage 5 indicates that stronger methods for teaching about
HOFs are still in order.

Ecological Validity. Ultimately, we care about students applying
HOFs correctly while programming. We do not know whether stu-
dents make programming errors consistent with the confusions
that our data show. For instance, do students accidentally use
take-while where they should use filter or vice versa? It is
difficult to tell because it is possible students do make this mistake
but correct it before they submit their work—so the cost may not
be in eventual correctness but rather in frustration and time.

A related concern is that we never ask students to explicitly
write the functional parameter. While this does not affect our re-
search questions, it does impact students’ ability to transition from
a behavioral understanding to actually using these HOFs. This can
especially apply in situations like fold, where by semester’s end
many students may “know” these are all instances of fold, but
some of them may not necessarily be able to actually use fold to
produce the described behavior.

8 DISCUSSION

Research Questions. Our research questions asked whether stu-
dents were attuned to the feature-space of HOFs and able to con-
nect input/output examples to specific HOFs. We find few basic
errors: students don’t confuse map and filter, which differ on
multiple features including the relationship between the input list
and the output list. They are more likely to confuse filter and
take-while, which differ only on which elements are retained in
the output list. It is worth noting that not all developers can make
this distinction either: as just one example, an active StackOverflow

ICER 2021, August 16-19, 2021, Virtual Event, USA

user [22] who is a self-declared “Java Developer” with a high rep-
utation score (as of 2021-03-14) notices [23] the similarity in type
and, on a particular example, behavior between these two functions
and asks “What was the need of this new function then?” One can
see several questions along these lines on the Web [27]. (To be fair,
these developers may be used to thinking about the imperative
simulation of take-while using filter.)

Overall, our data suggest that a large fraction of participating
students are able to do fairly well on HOFs, initially with only
a little training and assessment, followed by a few iterations of
our instruments. In particular, though they may have benefited
from familiarity through repetition, it is critical to note that they
were not given any individual assessment that would guide their
correction (excluding Stage 5, by which time they would have
received feedback in the context of the course). Any correction
presumably came from their own observation.

We do still see several students making labeling errors that are
not type-consistent, and issues with students not knowing the
applicability of fold. One key question is the extent to which these
issues cause problems while students are actually programming.
Type errors would be flagged at compile- or run-time. Failing to
identify a potential use of fold might not lead to incorrect code, just
longer code. Our overall project has yet to address how the issues
we detect through our study instruments manifest in programming
behavior, productivity, or experience. That would be best done with
a separate component that watched what students do while coding.

Students’ free-form descriptions of clusters in the first two stages
show that many students struggle to provide crisp descriptions of
HOF behavior. This is hardly a new observation: students, as well
as programmers, can struggle to write precise behavioral specifi-
cations [2, 17]. Whether direct instruction on describing HOFs via
features would help students develop this skill is an open question.

Reflection on our Study Design. Ours is the first study we have
seen on the development of understanding of HOFs. As such, lessons
regarding our methodology are themselves a contribution of this
paper. Knowing what we do now, what changes would we make to
our instruments and methods?

o We would start with the classification task rather than the clus-
tering task. The classification task focuses on which features
of HOFs students are recognizing. The clustering task, in con-
trast, requires students to both perceive features and decide
how to group them. This conflation makes it harder for us
to tease apart which conceptions led to clustering decisions.
(In addition, Barsalou [3] points to additional considerations
for the design of categorization tasks.)

We would ask for justifications of classifications on some ex-
amples. Our current design, which only asked students to
label examples, doesn’t tell us which features students saw
in an example (especially one in which multiple features
arise). We have inferred the features from the HOFs a student
selected, but students might not be actively thinking through
the features when making these selections.

We would include an activity that has students write illustra-
tive examples of the HOFs for themselves. Recognizing features
within a given input/output example is a different activity

ICER 2021, August 16-19, 2021, Virtual Event, USA

than being able to generate input/output examples that re-
flect the defining characteristics that distinguish HoF. We
are curious as to which of the HoF features students would
touch upon if asked to generate the examples for themselves.

We are also rethinking our use of the diagrams from Stage 3,
given that they did not seem to improve student performance much.
The diagrams explicitly summarize the types and length features
of the HoOFs that we included in this study. That elements may
be transformed is implicit in the types, but students might not
recognize that feature without additional indicators, such as shapes,
in the diagrams. From a methodological standpoint, it would be
useful to know which features students perceive in the diagrams so
that we could pick an appropriate role for these diagrams in both
study instruments and pedagogy surrounding HOFs.

Static Types. Before Stages 1 through 4, students were exposed to
HOFs through the dynamically typed version of Racket. Following
How to Design Programs, students saw type specifications as com-
ments, but they were not checked. Therefore, students did not have
the benefit of static types. During the semester, they used Pyret, a
language with an optional static type checker, that they were at
least briefly required to use. It is unclear how our results would
change if students worked in a typed language all along, especially
given the mathematically interesting relationships between types
and the set of allowable program behaviors [28].

We see relatively little confusion when the types of functions are
sufficiently distinct: e.g., students rarely confuse map with filter
or take-while (but routinely confuse the latter two). However, this
phenomenon may not generalize: in our study students worked
with a very small number of HOFs, so they could have easily just
enumerated all the ones they knew. In real languages there can be
dozens of such functions, several with overlapping types and thus
similar but distinct functionality. Our study suggests that, at least
for novices, much more effort needs to be put into distinguishing
those functions that are similar in type.

From Categorization to Misconceptions. The categorization pro-
cesses we have used tell us only so much. They can point to mass
trends, and in particular can identify common weaknesses. But
without more narrative from students, they cannot tell us why they
made those choices.

Given that this was a first study in this space, we were unsure
of how much effort it would take students, and owing to COVID-
19, wanted to keep the stages especially low in burden. A future
study should, however, do more to ask students about the reasoning
behind their choices. We expect this will tap a rich vein of infor-
mation, even in cases where they chose the “right” answer (but for
“wrong” reasons). We believe that as a research community, we do
not understand student conceptions and misconceptions of HOFs
very well at all. It would also be interesting to relate findings at
this level to those on a larger scale, such as Khatchadourian, et al’s
analysis of Java streams [19].

Implications for Planning. This paper was partially motivated by
the value of planning in contemporary styles of programming, es-
pecially data-centric code. Some prior planning work [9, 10] shows
success when students are comfortable with HOFs, which in turn
Wickham shows [29] connect well to standard data manipulation.

Shriram Krishnamurthi and Kathi Fisler

However, none of this work has focused on what it takes to make
students comfortable with and develop a good “feel” for these oper-
ations. Our paper suggests techniques for helping them understand
these behaviorally.

Beyond correcting for the flaws described above, there are (at
least) two parts still missing from this work on the path to making
students better at planning:

® HOFs, by definition, are incomplete behavioral specifications:
a great deal depends on the function parameter passed to
them. Our work has ignored this parameter, asking students
to imagine which ones could possibly be passed. Focusing
on the function parameter—e.g., asking students to fill in the
actual function that would map a given input to the given
output—should yield new insights into student understand-
ing of HOFs. We conjecture that some students can correctly
identify which HOF can perform a transformation but might
have difficulty filling in the actual functional parameter;
would students also have difficulty going in the opposite
direction?

This paper has pointedly focused on one function at a time,
ignoring function composition. Once we start to consider
compositions, the space of possible answers for our cluster-
ing and classifying tasks becomes much richer (and thus
perhaps much harder to manage). However, function com-
position is critical for achieving the goal of planning. Thus,
we need methods that can tame this complexity and enable
us to help students develop behavioral conceptions of the
compositions of functions (higher-order or otherwise).

ACKNOWLEDGMENTS

This work is partially supported by the US National Science Foun-
dation. We are especially grateful to the students of CSCI 0190,
who cheerfully worked through these exercises. We thank Rob
Goldstone for instructive conversations. Elijah Rivera and our re-
viewers provided insightful comments which helped us clarify our
presentation.

REFERENCES

[1] Harold Abelson and Gerald Jay Sussman. 1985. Structure and Interpretation of
Computer Programs. MIT Press, Cambridge, MA.

[2] V.L. Almstrum. 1996. Investigating student difficulties with mathematical logic.
In Teaching and Learning Formal Methods. Academic Press, 131-160.

[3] Lawrence W. Barsalou. 1994. Deriving Categories to Achieve Goals. Psychology
of Learning and Motivation 27 (1994).

[4] Michael J. Clancy and Marcia C. Linn. 1999. Patterns and Pedagogy. In The
Proceedings of the Thirtieth SIGCSE Technical Symposium on Computer Science Ed-
ucation (New Orleans, Louisiana, USA) (SIGCSE ’99). Association for Computing
Machinery, New York, NY, USA, 37-42. https://doi.org/10.1145/299649.299673

[5] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. In Proceedings of the 6th Conference on Symposium on Operating
Systems Design & Implementation - Volume 6 (San Francisco, CA) (OSDI'04).
USENIX Association, USA, 10.

[6] Ekwa Duala-Ekoko and Martin P. Robillard. 2012. Asking and answering ques-
tions about unfamiliar APIs: an exploratory study. In Proceedings of the Interna-
tional Conference on Software Engineering. 266-276.

[7] K. Duncker. 1945. On problem solving. Psychological Monographs 58, 5 (1945).

[8] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2001. How to Design Programs. MIT Press. http://www.htdp.org/

[9] Kathi Fisler. 2014. The Recurring Rainfall Problem. In Proceedings of ICER.

[10] Kathi Fisler, Shriram Krishnamurthi, and Janet Siegmund. 2016. Modernizing
Plan-Composition Studies. In ACM Technical Symposium on Computer Science
Education.

https://doi.org/10.1145/299649.299673
http://www.htdp.org/

Developing Behavioral Concepts of Higher-Order Functions

[11

[12]

[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]

Matthew Flatt and PLT. 2010. Reference: Racket. Technical Report PLT-TR2010-1.
PLT Inc. http://racket-lang.org/tr1/.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
MA.

D. Gentner and K. Kurtz. 2005. Relational categories. In Categorization inside
and outside the lab. APA, Washington, DC, 151-175.

Eleanor J. Gibson. 1969. Principles of Perceptual Learning and Development.
Appleton-Century-Crofts.

James J. Gibson and Eleanor J. Gibson. 1955. Perceptual Learning: Differentiation
or Enrichment? Psychological Review 62, 1 (1955), 32-41.

Andy Gordon and Simon Peyton Jones. 2021. LAMBDA: The ultimate Excel
worksheet function. https://www.microsoft.com/en-us/research/blog/lambda-
the-ultimatae-excel-worksheet-function/.

Geoffrey L. Herman, Michael C. Loui, Lisa Kaczmarczyk, and Craig Zilles. 2012.
Describing the What and Why of Students’ Difficulties in Boolean Logic. ACM
Transactions on Computing Education 12, 1, Article 3 (March 2012), 28 pages.
https://doi.org/10.1145/2133797.2133800

Graham Hutton. 1999. A tutorial on the universality and expressiveness of fold.
Journal of Functional Programming 9, 4 (July 1999), 355-372.

Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh, and Baishakhi Ray. 2020.
An Empirical Study on the Use and Misuse of Java 8 Streams. In Fundamental
Approaches to Software Engineering.

K. J. Kurtz and G. Honke. 2020. Sorting out the problem of inert knowledge:
Category construction to promote spontaneous transfer. Journal of Experimental

IS
S

ICER 2021, August 16-19, 2021, Virtual Event, USA

Psychology: Learning, Memory, and Cognition 46, 5 (2020), 803--821.

Peter L. Pirolli. 1985. Problem Solving by Analogy and Skill Acquisition in the
Domain of Programming. Ph.D. Dissertation. Carnegie Mellon University, De-
partment of Cognitive Psychology.

StackOverflow Post. [n.d.]. https://stackoverflow.com/users/706317/zhekakozlov.
StackOverflow Post. [n.d.]. https://stackoverflow.com/questions/46850689/how-
is-takewhile- different-from-filter.

Elliot Soloway. 1986. Learning to Program = Learning to Construct Mechanisms
and Explanations. Commun. ACM 29, 9 (Sept. 1986), 850-858.

Kyle Thayer, Sarah E. Chasins, and Amy J. Ko. 2021. A Theory of Robust API
Knowledge. ACM Transactions on Computing Education 12, 1 (January 2021).
Simon Thompson. 1999. Haskell: The Craft of Functional Programming (2 ed.).
Addison-Wesley.

MSDN Forum Thread. [n.d.]. https://social. msdn.microsoft.com/Forums/en-
US/393da5e4-f33b-4f0d-bfc1-ae73d2cd77df/what-is-the-difference-between-
takewhile-and-where-in-linq.

Philip Wadler. 1989. Theorems for Free!. In Proceedings of the Fourth International
Conference on Functional Programming Languages and Computer Architecture (Im-
perial College, London, United Kingdom) (FPCA °89). Association for Computing
Machinery, New York, NY, USA, 347-359. https://doi.org/10.1145/99370.99404
Hadley Wickham. 2014. Advanced R. Chapman and Hall/CRC.

Hadley Wickham. 2019. The Joy of Functional Programming (for Data Science).
https://www.youtube.com/watch?v=bzUmK0Y07ck.

http://racket-lang.org/tr1/
https://www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-excel-worksheet-function/
https://www.microsoft.com/en-us/research/blog/lambda-the-ultimatae-excel-worksheet-function/
https://doi.org/10.1145/2133797.2133800
https://stackoverflow.com/users/706317/zhekakozlov
https://stackoverflow.com/questions/46850689/how-is-takewhile-different-from-filter
https://stackoverflow.com/questions/46850689/how-is-takewhile-different-from-filter
https://social.msdn.microsoft.com/Forums/en-US/393da5e4-f33b-4f0d-bfc1-ae73d2cd77df/what-is-the-difference-between-takewhile-and-where-in-linq
https://social.msdn.microsoft.com/Forums/en-US/393da5e4-f33b-4f0d-bfc1-ae73d2cd77df/what-is-the-difference-between-takewhile-and-where-in-linq
https://social.msdn.microsoft.com/Forums/en-US/393da5e4-f33b-4f0d-bfc1-ae73d2cd77df/what-is-the-difference-between-takewhile-and-where-in-linq
https://doi.org/10.1145/99370.99404
https://www.youtube.com/watch?v=bzUmK0Y07ck

	Abstract
	1 Introduction
	2 Theoretical Basis
	3 Related Work
	4 A Small Glossary of Higher-Order Functions
	5 Pedagogic Context
	6 Instruments and Methods
	7 Study Description and Analysis
	7.1 Stages 1 and 2: Clustering
	7.2 Stage 3: Labeling
	7.3 Stages 4 and 5: Classifying
	7.4 Threats to Validity

	8 Discussion
	Acknowledgments
	References

