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Abstract
Users often struggle with cloud file-sharing applications.

Problems appear to arise not only from interface flaws, but

also from misunderstanding the underlying semantics of

operations like linking, attaching, downloading, and edit-

ing. We argue that these difficulties echo long-standing chal-

lenges in understanding concepts in programming languages

like aliasing, copying, and mutation.

We begin to examine this connection through a formative

user study investigating general users’ understanding of file

sharing. Our study casts known misconceptions from the

programming-education literature into semantically-similar

cloud file-sharing tasks. It also uses tasks that echo two

kinds of analyses used in programming-education: tracing

and programming. Our findings reveal widespread misun-

derstandings across several tasks.

We also develop a formal semantics of cloud file-sharing

operations, reflecting copying, referencing, and mutating

shared content. By explicating the semantics, we aim to

provide a formal foundation for improving mental models,

educational tools, and automated assistance. This semantics

can support applications including trace checking, workflow

synthesis, and interactive feedback.

CCS Concepts: • Human-centered computing → Em-
pirical studies in collaborative and social computing;
Empirical studies in HCI ;Collaborative and social comput-
ing systems and tools; • Software and its engineering
→ Semantics; • Social and professional topics→ Com-

puting literacy.

Keywords: cloud file-sharing, end-user computing, formal

semantics, human-computer interaction
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1 Motivation
Many of us who work with computers have been called in

to support family members who are baffled and frustrated

by the systems they use. These are not systems designed

for highly specialized users—e.g., configuring the options

for SSL [21]. Rather, they are basic, mass-market cloud file-

sharing applications (cfs), like Google Docs or Dropbox.

This should be especially baffling. These systems are gen-

erally created by experts at large corporations (Google, Mi-

crosoft, etc.). Their creators are presumably motivated to

create interfaces that are enabling rather than frustrating.

Despite all that investment, these problems persist (section 3).

Beyond user-interface issues, could there be technical rea-
sons for this?

Here is an actual story (names altered) that illustrates this.

We start by posing the situation we were asked to help with:

Alice and Bob want to collaborate on a flyer for

a social event. They are more comfortable with

Word than with cloud-based tools like Google

Docs. They have both heard that Dropbox is a

good way to share and jointly edit files.

Alice thus creates a draft of the flyer 𝐹 on Drop-

box. She then shares 𝐹 with Bob. Bob makes a

change using Word and informs Alice he has

done so. Alice opens 𝐹 and sees no change. Bob

confirms he is editing a file that is in Dropbox.

They have several baffling rounds of exchange.

Do you see the problem? No? Here’s the critical question:

How did Alice share 𝐹? Alice dragged the file from the Folder

interface into Google Mail. (Do you see it now?)

Let us take a moment to consider a seemingly unrelated

topic: the semantics of conventional programming languages.

There is a large body of work [11, 16, 17, 22, 33, 34, 42, 48,

50, 52, 55], ranging across many years, countries, and pro-

gramming languages, that shows that students specifically

https://orcid.org/0000-0002-6256-4077
https://orcid.org/0000-0001-5184-1975
https://orcid.org/0000-0002-7895-8206
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3759429.3762621
https://doi.org/10.1145/3759429.3762621


Onward! ’25, October 12–18, 2025, Singapore, Singapore Skyler Austen, Shriram Krishnamurthi, and Kathi Fisler

and programmers more generally struggle with standard lan-

guage concepts such as aliasing and state. The recent work

on the SMoL Tutor [33] consolidates this work and shows

how even small programs can be quite challenging.

This is, of course, not unrelated at all! The problem above

is that Alice very reasonably thought she was sharing “the

file”, but what she was doing was making a copy of the file.

Bob was downloading the copy and storing it in his Dropbox.

His changes were being synchronized to Dropbox, but of

course this file had nothing to do with 𝐹 itself.

In other words, the problem has to do with sharing and

modification of content. “Sharing” can mean creating an

alias, but colloquially, can also includes operations that make

copies. In the absence of mutation, this conflation is mostly

harmless. But just as we see in the literature on programming,

the moment mutation enters the picture, the differences are

exposed, and there are clear parallels between the problems

programmers and cfs users face.

The cfs users are, of course, not “programming” in the

conventional sense, but they are if we change our perspec-

tive a little. To put it in context, David Patterson referred to

MapReduce [7] as the “first instruction” of the data-center

computer [39]. That claim is from a conventional program-
mer’s perspective. The user also “programs”, but with differ-

ent operations: creating documents, editing them, attaching

them, linking to them, and so on. Such operations form the

“end-user instruction set architecture” (euisa).
1

This paper explores the mapping between misconceptions

about programming-languages semantics and difficulties

that end-users face when sharing and editing documents.

Specifically, we observe the semantic analogies between shar-

ing document links ↔ aliasing, downloading or attaching

documents ↔ copying objects, and editing documents ↔
mutation. We term this the Central Analogy, and posit that
it could explain some end-user difficulties. Concretely, the

paper makes several contributions. It:

• Provides a catalog of problems we have seen in our

“tech support” roles (section 2).

• Employs the central analogy to designs instruments to

investigate how users perform on document-sharing

tasks (section 4).

• Runs a formative user study that shows that the central

analogy has legs, and that the problems are not limited

to our personal experience (section 5, section 6).

• Formalizes the euisa (section 8.1).

• Discusses ways this semantics could be used to create

different tools (section 8.3 and section 8.4).

Our goal, ultimately, is to apply the programming commu-

nity’s hard-won knowledge about state, aliasing, and related

operations to help end-users use cfs applications with fewer

errors and less frustration. This paper marks the first step by

1
We specifically use end-user when we want to emphasize people who likely

have limited understanding of technical details.

trying to confirm our hunch about the central analogy and

proposing a formalization that could provide ways forward.

2 A Catalog of Woes
For many years we have served as informal technical support

for family and friends and through public help sessions. Dur-

ing this time, we have recorded a catalog of actual problems

that people have run into in practice and come to us for help

with. We described one of these actual situations in the in-

troduction; we present several more in fig. 1. It is important

to note that these are cleaned-up accounts of actual problems
for which real people sought help.
It is important to read this catalog with an empathetic

mind. While some of the issues may be obvious to a technical

reader, they do not account for the “naïve models” that most

end-users have. Furthermore, some of the end-users we have

helped are uncomfortable with technology in general. (We

hesitate to report that many of the end-users are older people,

because we do not believe this problem is limited to older

adults. If anything, they may be more willing to ask for help,

whereas middle-aged and younger people may feel they are

expected to know how to function with technology and may

therefore be reluctant to express their struggles.)

We also note in passing that the issues reported here were

mostly encountered by people whowere still in full control of

their mental faculties. As we encounter people with memory

loss effects, we see the potential for these issues to become

significantly more problematic. We discuss work related to

this in section 3 and in more detail in section 10.

3 Related Work
A robust body of computing-education research has shown

that students struggle to reason about programming-language

semantics, particularly around aliasing, references, mutation,

and state [11, 16, 17, 22, 33, 34, 42, 48, 50, 52, 55]. The SMoL

Tutor [33] provides a comprehensive inventory of these mis-

conceptions and demonstrates their persistence even after

formal instruction. Our study, by contrast, examines how

analogous misunderstandings appear in everyday comput-

ing tasks like emailing attachments or sharing Google Docs.

It does so by drawing on this literature to identify possible

problems and construct scenarios.

Prior research on file sharing and synchronization has

largely used interviews, longitudinal studies, or in-person

usability testing. Interview- and survey-based studies have

investigated user practices, tool selection, and trust in file-

sharing technologies, revealing a wide range of ad hoc be-

haviors—including emailing oneself or reverting to USB

drives—and confusion around sharing and document version

control [4, 24, 58, 59]. Long-term studies have surfaced file

sharing scalability concerns and predictors of error [3]. Diaz

and Harari employed observational assessments to evaluate

task completion in Google Drive, where file sharing emerged
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Woe Discussion

Bob receives an email message that contains an attached Word docu-

ment. He downloads it to his desktop. He would like to edit it. However,

he is worried that if he does so, he will end up making changes to the

document on the sender’s machine.

It is worth noting that this is the exact reverse of

the situation in section 1!

Alice starts using a password manager. She knows she should stop

using her old, insecure passwords. Therefore, she allows the password

manager to suggest new, secure passwords. However, changing the

password in the password manager does not automatically change it

on the Web site! In fact, Alice is now worse off because she has lost her

old password, and has to go through a potentially complicated reset

process. Even worse, until she tries to log in she does not realize the

site has the old password—which is insecure, and hence much more

vulnerable.

Password managers do not always prompt a user

to go to a site to change the password there. Of

course, there are numerous good critiques of the

entire password infrastructure, though we believe

passkeys introduce their own concerns.

Charlie travels from his home in New York to Hawaii. While in Hawaii,

he creates a calendar entry for an event he will attend once he returns

home. When he returns, he is confused because it appears to him that

his phone is “still on Hawaiian time”. In fact, the phone has reset, but

the event shows up at the wrong (Hawaiian) time because it was created

in local time while he was in Hawaii.

Google Calendar offers the ability to display a “sec-

ondary time zone”, and can suggest this automati-

cally. However, the interface is not always clear to

users and, anyway, it still requires careful opera-

tion to check time zones for events.

Bob has the Google Drive synchronizer installed. He is running out of

space on his machine, which is much smaller than the available space

on Google Drive. To make room on his laptop, he deletes files that they

have synchronized. He does not realize that because it’s a synchronizer,
this also deletes the files remotely, and after a while they are purged.

Thus, the files he deleted because he thought they were securely stored

elsewhere are the very files he permanently lost.

Google Drive’s synchronizer, on some platforms

and at some points in its history, will prompt a user

with a warning when deleting a local file. But it is

easy to miss the warning, or to suppress it in the

future.

Alice sets up auto-payment on her credit card, where the bill is automat-

ically paid from her bank account. At this point she becomes nervous

about using her credit card online. Her threat model is that she has

now linked her credit card account to her bank account, so a person

who has access to her credit card may have access to her bank account

as well. Along similar lines, once she starts paying for Zoom access she

is nervous about leaving Zoom open, because “Zoom” now has access

to her credit card.

Arguably, having performed the linkage, there is
some tiny new threat. Having gained knowledge of

one piece of identity, one could escalate privilege

and learn more [27]. For this reason, modern sites

make it easy to change information like the credit

card number but not read (all) of it. Nevertheless,

it is easy to see why Alice has trouble, for instance,

distinguishing Zoom “the site” versus “the app”.

Figure 1. A partial catalog of woes.

as the single most difficult task [10]. In their study, Capra et

al. noted user struggles with file synchronization, but also

raised end-user concerns about privacy and work-personal

separation of files [4]. While these works identify important

usage challenges and concerns, our study focuses on relat-

ing these problems to programming semantics. Additionally,

none of these works present a formal model of file sharing.

Numerous additional studies have explored the usability

of document editing and collaboration tools, particularly

focusing on user experiences across diverse populations [15,

18, 28, 29, 31, 35, 49, 54, 56, 58, 60], especially older adults

and individuals with cognitive impairments [18, 31, 35, 54].

These studies often report on what participants find helpful

about document editing and sharing tools, as well as the

specific usability concerns faced by these populations.

Other prior work has proposed user-visible affordances

and prototypes for file sharing. Voida et al. [57] introduced

a “sharing palette” UI that unified sharing dimensions and

surfaced common confusions. Lindley et al. presented File

Biography to visualize file histories [32]. Nebeling et al.’s

MUBox [36] focused on simplified sharing controls. Siebers

and Schmid’s Dare2Del [51] system proposed a semantics
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and interface to recommend irrelevant file deletions, but has

nothing to do with file sharing. Finally, Dewan and Shen

introduced an access control framework for collaborative

applications with sophisticated ownership and access fea-

tures with parallels to programming semantics (i.e. reacha-

bility) [9]. While these works provide valuable insights into

user behavior or possible interface designs, they too do not

frame the issues in terms of semantic misunderstandings.

Finally, some prior work models systems like web security

protocols [1] and file sharing [20, 62]. However, these models

are more system- than user-focused and have no study of

usability or human factors. Additionally, the file sharing

models focus on peer-to-peer file sharing systems rather than

cloud sharing. One work [46] presents a usability-focused

semantics of permissions for platforms like Google Drive,

but it contains nothing about the end-user semantics of file

sharing, the core focus of our contributions.

4 Formative User Study: Design
Our paper is motivated by the idea that the central analogy

may explain some end-user difficulties. However, the stud-

ies discussed in section 3 are not centered on our premise;

while they broadly demonstrate difficulties, we often have

to read between the lines to find evidence for our claims.

We therefore used the central analogy to design a study that

translates programming misconceptions into cfs operations.

If our premise is correct, then we should find difficulties in

the cloud setting also.

For instance, the misconception literature (section 3) tells

us that the following kind of program (in pseudocode) is

often misinterpreted:

function Bob(receivedA):
receivedA[0] := 42

end

aliceDoc = [5, 10, 15]
Bob(aliceDoc)
print(aliceDoc)

In most languages (what [33] calls the “Standard Model of

Languages”), receivedA is an alias to aliceDoc, so themodi-

fication persists and is visible after Bob finishes. The common

misunderstanding is that receivedA is a copy, so the change
does not persist.

In cfs, Bob reflects Bob and the rest of the computation

reflects Alice. So Alice first authors a document. Alice then

shares a link to it with Bob. Bobmodifies the document. Then

Alice examines the document’s current state.

Having translated problems, how do we turn these into

tasks for participants? Again exploiting the central analogy,

we sought inspiration from the programming education lit-

erature. There is a long tradition of having students both

trace (given this program, what is the output?) and program
(given this specification, what is the program?).

To get a large and diverse set of participants, we chose to

design for a crowdsourcing platform. This in turn imposes

many limitations and creates specific threats to validity (sec-

tion 9), not least that we cannot assume, for instance, specific

programming abilities. In this section we describe the study

design, in section 5 the logistics of deployment, and in sec-

tion 6 our findings.

To begin, participants were given the following instruc-

tions:

In this survey, you’ll be asked to work through scenar-

ios about individuals who are trying to share and edit

documents. They could be using either Mac or Windows

computers. Answer the questions based on whichever

kind of computer you’re familiar with.

Each question includes a video explaining the steps

taken before the question being asked. Please watch the
associated video before answering each question.
The individuals are only using Google Suite (Docs,

Slides) and Microsoft Office (Word, PowerPoint) for
editing their documents and files. Additionally, they are

only using email andGoogle Docs file sharing to send or
share their files. They are not using any other programs

that automatically save and sync files across different

devices.

There are five scenarios in total.No details carry over
between scenarios.

4.1 Tracing Tasks
In a tracing task, we show the participant a sequence of

operations—in our case, through a video that screen-captures

the use of Google Docs, Google Mail, and the Windows file

explorer. The videos are accompanied by a voiceover ex-

plaining what they are showing. They also include transition

slides alerting the viewer when the actor in the scenario

changes. The videos range from 15 to 95 seconds in length.

We gave each scenario a single-word internal codename re-

lated to the content of the file being shared.

ScenarioMenu. This scenario illustrates a shared mutable
reference, where Alice and Joe collaborate on a single Google

Docs file. Edits made by one party are immediately visible

to the other, reflecting shared access to one file.

The video shows the following sequence:

1. The narrator already has on screen a Google Docs file,

created by Alice, containing a restaurant menu full

of burgers. The heading says “Alice’s computer” in

orange.
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2. The narrator then uses the share button to give edit

access to Joe.

3. Next, the narrator copies the link to the document,

showing it can be done both from the url-bar and

from the Share menu.

4. The narrator opens Google Mail and composes a mes-

sage to Joe that shares the url.

5. A black transition screen appears with the text “Now

on Joe’s computer”.

6. The narrator then says “Now on Joe’s computer”, the

heading says “Joe’s computer” in blue, and we see Joe’s

Google Mail inbox with the email sent by Alice opened.

7. Next, the narrator clicks on the link, which opens the

document in Google Docs.

8. Finally, the narrator then shows that Joe replaces the

menu with one full of salads.

We strongly recommend that the reader stop here and view

the scenario’s video (1m35s long):

https://www.youtube.com/watch?v=I8x-1VR45KU

After the video, the study asks the participant:

WhenAlice opens the document after Joe’s edits, which
list will she see?

❍ Alice will see the burgers list .

❍ Alice will see the salads list .

❍ It depends (please explain).

Correct Answer. Alice will see the salads list.

Corresponding Program. For each scenario, we provide

a program with the corresponding aliasing, copying, and

mutation operations. We represent Joe as a function.

# Joe edits the shared list.
function Joe(receivedDoc):

receivedDoc[0] := "Caesar"
receivedDoc[1] := "House"
receivedDoc[2] := "Wedge"

end

# Alice's steps:
menu = ['Ham', 'Cheese', 'Bacon']
Joe(menu)
print("Alice sees:", menu) # ["Caesar", ...]

This program mirrors Google Docs’s built-in sharing behav-

ior: when Joe modifies the shared document, those changes

are visible to Alice. This reflects aliasing, where both users

operate on the same underlying object.

Additional Tasks. We have two additional tracing scenar-

ios. Both of these ask two questions rather than one. The

participants are shown a video before each of the questions.

The video shown before the second question depends on their

answer to the first. While the videos in the follow-up ques-

tions all depict the same action, the state of the document

shown at the beginning of the second video is consistent

with their answer to the first question, even if that answer

was incorrect.

Scenario Logo. In the initial video,
2
Frank emails Kate a

PowerPoint file containing a square-shaped logo. Kate then

downloads the file and changes the logo from a square to a

circle. Participants are then asked:

After Kate has made her change, if Frank opens the

PowerPoint file that is on his laptop, which shape will

he see?

❍ Frank will see the square logo .

❍ Frank will see the circle logo .

❍ It depends (please explain).

2
Video: https://youtu.be/cMr6ddHcbmE

https://www.youtube.com/watch?v=I8x-1VR45KU
https://youtu.be/cMr6ddHcbmE
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Correct Answer. Frank will see the square logo.

Depending on their answer, participants are shown one

of two follow-up videos
3
where Frank opens the original file

he emailed to Kate and changes the logo to a hexagon. The

logo begins as the answer they chose (square or circle). If the

participant answers “It depends”, they are shown the square

video, which is the correct one. In all cases, participants are

then asked the following:

If Kate downloads the file from Frank’s original email

again, which logo shape will Kate see in that newly
downloaded file?
❍ Kate will see the square logo version.

❍ Kate will see the circle logo version.

❍ Kate will see the hexagon logo version.

❍ It depends (please explain).

Correct Answer. Kate will see the square logo version.

This scenario illustrates the behavior of isolated copies.
When Frank sends Kate a file via email, she downloads and

edits her own local version. Changes to this copy do not

propagate back to Frank’s original.

Corresponding Program.
coroutine Frank():

localFile = { "shape": " " }
# Create attachment, which is a copy.
attachment = localFile.copy()
Kate(attachment)

print("Frank sees:", localFile) #

localFile["shape"] := " "
Kate()

coroutine Kate(optional: receivedFile):
# Download the attachment locally.
localCopy = receivedFile.copy()

localCopy["shape"] := " "
Frank()
# Re-download the original attachment.
redownload = receivedFile.copy()

print("Kate sees:", redownload) #
end

Frank()

This program reflects the fact that an email attachment is

a copy. Kate’s downloding it creates a further copy. Her

edits to localCopy remain isolated from Frank’s original

localFile, which Frank later mutates independently. Kate’s

second download creates yet another copy. We use corou-

tines for this program because each person resumes where

they last left off.

3
Follow-up videos: https://youtu.be/aCmdeJ9tpPw (if square), https://youtu.
be/84EUn3wunb0 (if circle).

Scenario Farm. In the first video,
4
Marie shares a farm

brochure document made in Google Docs with Aaron. The

brochure features a cow. Aaron then opens the document in

Google Docs and downloads it to his laptop as a Microsoft

Word file. Finally, Aaron opens the Word file and changes

the cow to a pig and saves the document.

If Marie opens the Google Doc after Aaron edits the
file on his laptop, which animal will she see?

❍ Marie will see a cow .

❍ Marie will see a pig .

❍ It depends (please explain).

Correct Answer. Marie will see a cow.

Again, based on their answer, participants see a follow-up

video
5
in which Marie changes the animal to a chicken inside

the Google Doc. The animal begins as the answer they chose

(cow or pig). As in Scenario Logo, if the participant answers
“It depends”, they are shown the (correct) cow video. In all

cases, participants are then asked the following:

After Marie’s edits, Aaron opens the Word document

on his laptop. Which animal will he see?

❍ Aaron will see a cow .

❍ Aaron will see a pig .

❍ Aaron will see a chicken .

❍ It depends (please explain).

Correct Answer. Aaron will see a pig.

This scenario shows the semantics of local copies derived
from shared references. Downloading creates a second doc-

ument, so subsequent changes are isolated and no longer

synchronized. In the program below, this is reflected in down-

loading creating a copy.

Corresponding Program.
coroutine Marie():

onlineDoc = { "animal": " " }
# Share the live Google Doc with Aaron.
Aaron(onlineDoc)
# Edit the Google Doc.

onlineDoc["animal"] := " "
print("Marie sees:", onlineDoc) #
Aaron()

end

coroutine Aaron(optional: receivedDoc):
# Download local (Word) copy of Google Doc.
localCopy = receivedDoc.copy()

localCopy["animal"] := " "

4
Video: https://youtu.be/e7jlfwSJnws
5
Follow-up videos: https://youtu.be/VLsl-pCRNqY (if cow), https://youtu.
be/bIvuaQVB0_w (if pig).

https://youtu.be/aCmdeJ9tpPw
https://youtu.be/84EUn3wunb0
https://youtu.be/84EUn3wunb0
https://youtu.be/e7jlfwSJnws
https://youtu.be/VLsl-pCRNqY
https://youtu.be/bIvuaQVB0_w
https://youtu.be/bIvuaQVB0_w
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Marie()

print("Aaron sees:", localCopy) #
end

Marie()

4.2 Programming Tasks
Designing tracing tasks is relatively straightforward: we can

show participants a video and ask them what should have

happened by the end. Programming tasks are much harder,

because they require expressing instructions unambiguously.

How can we have participants do this? Using actual Google

Docs, say, poses various problems. First, participants would

need to create a second account, in ways that may affect

the Terms of Use, cause their accounts to be blocked, etc.

Second, we have to wait for email to be sent and received,

which can take a while and can have errors in transit (e.g.,

spam filtering). Next, participants may inadvertently leak

their identity in sharing information back with us. Finally, if

their attention wanders, they may not complete the task.

Another option is to create a completely artificial envi-

ronment in which they perform all their tasks. To make this

correctly resemble the actual systems, however, we would

have had to expend enormous programming effort, and small

discrepancies might still have become notable confounds.

We decided to instead have them write down their in-

tended instructions. While this does not let them check the

output after each step, it does give us a sense of how well

they understand cfs. It also matches a situation where, e.g.,

they have to tell someone else what to do over the phone

without actually executing it themselves.

“Programming” Medium. We wanted our “language”

and tool for capturing participants’ programs to yield a struc-

tured format that we could process with scripts. Drawing on

programming-education literature, we chose Parsons’ Prob-
lems [38], a question form in which students select from

and order candidate code snippets to complete a given task.

Research has shown that Parsons’ Problems are as effec-

tive as “write this program from scratch” tasks for assessing

novice students ability to construct programs [8]. In addi-

tion, students complete Parsons’ Problems in less time (again

with similar learning gain) than with block-based program-

ming [61]. In section 8.5, we will revisit the question of

medium and how LLMs might fit into the picture.

In a Parsons setup, a student is given a blank target area

and a set of cards with steps on them. Students must select

and drag the relevant ones into the correct order. There may

also be some distractor cards that are not part of the solution;
students must be careful to not choose these. In this way,

the student can demonstrate their semantic understanding

independent of low-level syntactic issues.

Figure 2 shows our version, built in Qualtrics [45]. The

steps are on the left; the region to assemble the program is

Figure 2. Parsons interface used in the programming tasks.

on the right. Qualtrics randomizes the order of the steps for

each participant.

Training. Before beginning the main programming tasks,

participants were introduced to the Parsons-style interface

via a short practice task. This ensured they understood how

to classify and reorder elements within the drag-and-drop

environment, mitigating interface confusion as a source of

error in subsequent tasks.

Participants were shown a (randomly ordered) list of six

items on the left of the screen under the heading “Items”:

“Apple”, “Bicycle”, “Onion”, “Straw”, “1764”, “1981”. To the

right, two boxes were displayed: “Words in Alphabetical

Order” and “Non-words”. They were instructed as follows:

On this page, you see a list of words and numbers,

a box labeled “Words in Alphabetical Order” and a box

labeled “Non-words”. Your task is to pick out all the words

and put them in alphabetical (A–Z) order. You can drag
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words into and out of the boxes, and reorder them by

dragging within the box. Anything you don’t want to

use you can either leave in the item column or put in the

box labeled “Non-words”. The survey will not let you
proceed until you have the words in alphabetical
order.

This activity provided a preview of the interface’s affor-

dances: filtering relevant steps, reordering elements, and re-

jecting distractors. Participants had to successfully complete

this practice task before continuing to the actual program-

ming scenarios involving cfs workflows.

Post-Training. After completing this question, partici-

pants were given the following instructions:

You will now use the same interface to help the user.

In the next two tasks, you will be given a list of possible

instructions. The list you are given is in no particular

order, and may contain superfluous or even incorrect

instructions. Your task is to pick out the necessary in-

structions and put them in the correct order. You can

drag instructions into and out of the boxes, and reorder

them by dragging within the box.

Participants were then shown two scenarios in randomized

order. We limited ourselves to no more than 13 total steps

including 4 or 5 distractors. This was to avoid overwhelming

the participants with too many options and to ensure the

entire panel of instructions fit on-screen.
6

Scenario Brochure. This has the following prompt:

Olivia creates a brochure in the desktop version
of Microsoft Word on her laptop, in her Documents

folder. She wants to share the brochure document with

Charlie (who works at the same company) so that they

can both continue to work on the same document si-
multaneously and see each other’s edits as they occur.

The 8 correct steps in their intended order are as follows:

1. Olivia uploads the brochure to Google Docs.

2. Olivia enables sharing access for Charlie.

3. Olivia drafts a new email.

4. Olivia gets a sharing link from Google Docs.

5. Olivia pastes the link to the brochure into the body

of the email.

6. Olivia sends the email to Charlie.
7

6
Both in traditional Parsons Problems and in our world, even though pro-

grams are written strictly sequentially, there can sometimes be a partial

ordering. For instance, it does not matter whether Alice starts composing

the email at the beginning or a few steps in; she just needs to have done so

before she can paste a link into it. We therefore admit a family of answers,

not just one.

7. Charlie clicks on the link in the email.

8. Charlie opens and edits the brochure in Google Docs.

The distractor steps are:

• Charlie downloads the Google Docs file onto his lap-

top as a PDF.

• Charlie edits the document in desktop Microsoft

Word.

• Olivia attaches the brochure Word file to the email.

• Olivia copies and pastes the brochure text into the

message body.

• Olivia makes a copy of the Word document.

This scenario captures the creation of a shared reference
derived from an originally local copy. By uploading a local file
to Google Docs and sharing it, Olivia makes a live, shared

instance of it. The distractors reflected the belief that attach-

ing a file, pasting its contents, or editing it locally in Word

would create a shared reference, indicating confusion about

aliasing and mutability and the role Google Docs plays in

maintaining shared state.

Corresponding Program.

function Charlie(receivedDoc):
# Edit the brochure in Google Docs.
receivedDoc["data"] := "Edited"

end

# Olivia's steps:
# Create the brochure locally in Word.
localFile = { "data": "original" }
# Upload, creating a shared Google Docs.
uploadedDoc = localBrochure.copy()
# Email Charlie the Google Docs link.
Charlie(uploadedDoc)
print("Olivia sees:", uploadedDoc) # Edited

Here, Olivia’s uploadedDoc = localFile.copy() step rep-
resents uploading her Word brochure to Google Docs and

establishing a live, shared instance. In the Charlie function,

he mutates that same shared object, so Olivia’s subsequent

print("Olivia sees:", uploadedDoc) reflects his edits.
This models how Google Docs maintains a single, aliased

document rather than independent copies.

Scenario Sensitive. This scenario is intended to reveal

whether participants recognize the constraints posed by data

sensitivity and the implications for tool selection. It begins

with the prompt:

7
Each “send the email to X” step implicitly includes the setRecipients
operation in the corresponding programs.



Linking Cloud File-Sharing to Programming Language Semantics Onward! ’25, October 12–18, 2025, Singapore, Singapore

David has a Microsoft Word file on his laptop. It
contains sensitive company data. He needs to send it to

Erica for her to review and edit. David also needs to

receive Erica’s edits back for review. Their company

prohibits uploading such files to third-party sites
like Google Docs.

The correct steps in their intended order are as follows:

1. David drafts a new email and attaches the document

file to it.

2. David sends his email to Erica.

3. Erica downloads the file from David’s email to her

laptop.

4. Erica opens and edits the document on her laptop.

5. Erica drafts a new email and attaches the edited doc-

ument to her email.

6. Erica sends her email to David.

7. David downloads the file from Erica’s email to his

laptop.

8. David opens and views the document on his laptop.

The distractor steps are:

• Erica uploads the Word file to Google Docs and edits

it.

• David enables sharing access to the document for

Erica.

• David downloads the file from Google Docs.

• David opens his original file in his Documents folder.

Semantically, this scenario emphasizes distributing iso-
lated copies to prevent data leakage. The sensitive document

is exchanged using email attachments to avoid persistent

shared references. The four distractors probed for confusion

about data locality and respecting the locality constraints.

Corresponding Program.
function Erica(receivedFile):

# Download the file from David's email.
localCopy = receivedFile.copy()
# Edit the file.
localCopy["data"] := "Edited"
# Create attachment, which is a copy.
outgoingAttachment = localCopy.copy()
# Send the attachment to David.
return outgoingAttachment

end

# David's steps:
localFile = { "data": "Original" }
# Create attachment, which is a copy.
attachment = localFile.copy()

# Send the attachment to Erica.
returnedAttachment = Erica(attachment)
# Download Erica's edited file from her email.
downloadedEdits = returnedAttachment.copy()
print("David sees:", downloadedEdits) # Edited

In this program, each copy() method represents creating an

email attachment or downloading it. Every handoff uses a

fresh copy, so Erica’s edit doesn’t affect David’s original.

5 Formative User Study: Logistics
We deployed the Qualtrics study on Prolific [44], a crowd-

sourcing platform. We selected Prolific based on our own

prior experience and on studies comparing crowdsourcing

platforms [12, 40], which show that Prolific responses tend

to be of higher quality than other platforms like Amazon

Mechanical Turk. Additionally, Prolific offers participants

stronger anonymization guarantees than Amazon.

The study was listed under the generic name “Technology

Study.” Participants were shown the following description

before opting in:

This study will ask a series of questions about specific

technologies. Payouts will be issued within a week of

completion.

The survey must not be taken on mobile devices

(phones or tablets). Participants must be able to watch

a video with included audio. No text captions will be

provided.

We used Prolific’s built-in filters to limit participation

to self-identified fluent English speakers. All participants

were paid above the US minimum wage at a rate of USD 8

per hour. The average completion time was approximately

30 minutes and 14 seconds, with individual times ranging

from 10 minutes and 29 seconds to 1 hour and 17 minutes.

(Because Prolific pays by duration, we suspect some partici-

pants artificially inflated their participation time.) A total of

46 participants completed the study.

The rest of this section provides details on our participant

selection and demographics for those who are interested.

Some readers may prefer to jump ahead to section 6 to learn

our findings.

Details on Screening and Demographics
We started the study with two screener questions. The first

screener asked them:

What’s your experience level with using computers to

share documents or presentations with others?

❍ I have never shared a document before

❍ I have shared documents once or twice

❍ I share documents occasionally

❍ I share documents regularly
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Question Correct Visualized Accuracy Semantic Concept Action Description

Menu Q1 85% Shared Mutable Reference Shared via Google Docs link

Logo Q1 63% Isolated Copy File emailed and edited locally

Logo Q2 63% Fresh Isolated Copy File re-downloaded from email

Farm Q1 52% Unsynced Local Edit Downloaded from Docs and edited in Word

Farm Q2 41% Diverged State Word file reopened after online edits

Table 1. Participant performance on tracing questions (N = 46), annotated with semantic concept and action description.

Scenario FC+CR+GC MR INC WR ICH Visualized Accuracy Semantic Concept

Brochure (share) 43% 20% 4.4% 24% 8.7% Shared Mutable Reference

Sensitive (attach) 48% 20% 2.2% 28% 2.2% Copy, Mutate, and Send

Table 2. Participant performance on programming questions (N = 46), annotated with semantic concept.

Participantswho selected “never”were immediately excluded

from the study and do not show up in our numbers. Of the

remainder, about 70% chose “regularly”, 28% “occasionally”,

and 2% (one person) “once or twice”.

Our second screener question asked:

What’s your experience level with Google Docs?

❍ I have never used Google Docs

❍ I have used Google Docs once or twice

❍ I use Google Docs occasionally

❍ I use Google Docs regularly

Again, we excluded people who selected “never”. Of the re-

maining respondents, 61% answered “regularly”, 30% “occa-

sionally”, and 9% “once or twice”. We kept the “once or twice”

group in our study, since there are many cloud file-sharing

systems with similar characteristics.

Participants who passed screening performed the main

study, as described above.

After completing the main study, participants were asked

for some additional information. First, we asked them for

their confidence with sharing:

How confident are you in your knowledge of how to

effectively share documents with others?

❍ I’ve never done it before

❍ Not at all confident

❍ Somewhat confident

❍ Confident

44% were “somewhat confident” and 56% were “confident”.

We also asked:

What’s your general comfort level with using computers

to prepare documents or presentations?

❍ I’ve never done it before

❍ Not at all comfortable

❍ Somewhat comfortable

❍ Comfortable

Similarly, 44% were “somewhat comfortable” and 56% were

“comfortable”.

These results confirm that participants had prior famil-

iarity with document sharing and editing, making them a

reasonable population for evaluating conceptual understand-

ing of cloud-based file operations. We intentionally asked

these questions after the scenarios; had seeing them reduced

confidence, this would be reflected in the response.

Finally, we asked participants for their age range:

18-24 28%

25-34 39%

35-44 13%

45-54 13%

55-64 7%

Nobody marked being 65+ or declined to answer.

6 Formative User Study: Findings
6.1 Performance on Tracing Questions
Table 1 shows the proportion of participants answering each

sub-question correctly. Participants performed best on Sce-

narioMenu, where 84.8% of respondents selected the correct

answer. This scenario was the most straightforward and in-

volves only sticking to one tool (Google Docs), so it is by

far the simplest. By contrast, questions that required rea-

soning about local vs. cloud-edited documents had notably

lower performance, with the final Scenario Farm question

answered correctly by just 41.3% of participants.

Two participants answered “It depends” on ScenarioMenu.
Both believed that Alice would only see Joe’s changes if he

saved the document or if autosave was enabled. Since saving
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would indeed affect whether changes persist, we marked

both responses as correct.

In Scenario Farm, question 2, two participants also se-

lected “It depends.” Both had previously answered question

1 incorrectly (choosing pig). One gave no explanation; the

other (one of the participants who answered “It depends.”

on ScenarioMenu) again cited saving as a factor. However,

because this question concerned changes made to the online

document, saving would not affect the diverged local copy.

As a result, we marked both of these responses as incorrect.

6.2 Performance on Programming Questions
Performance on the Parsons programming questions is more

complicated than a simple binary outcome. We coded re-

sponses using the following categories:

Fully Correct (FC) The response achieved the stated goal

without any unnecessary or incorrect steps.

Correct but Redundant (CR) The response achieved the

stated goal, but included one or more semantically

unnecessary steps.

Generously Correct (GC) The response achieved the stated
goal, but contained minor errors, such as a small mis-

ordering or an omitted low-impact step.

Middle of the Road (MR) The response worked toward

the stated goal but included one or more concerning

steps that indicate partial misunderstandings or mixed

conceptual models.

Incomplete (INC) The response made progress towards

the stated goal, but was not complete (and hence did

not attain the goal).

Incorrect (WR) The response contained one or more fun-

damentally incorrect or invalid operations that contra-

dicted the scenario’s stated goal or constraints.

Incoherent (ICH) The response’s steps appeared to be cho-
sen arbitrarily, with no meaningful alignment to the

stated goal.

Table 2 uses these codes to report on performance. Even after

grouping together the different kinds of correctness, we see

that the overall success rate is lower than for tracing.

Scenario BrochureAnalysis. In this scenario, Olivia must

share a brochure with Charlie such that both can simultane-

ously edit it. We expected participants to provide a sharing

workflow in Google Docs.

Responses were marked as Incorrect (IO) when:
• Only email attachments were used to send, and not

Google Docs, violating the collaboration goal.

• The file was uploaded and sent as a Google Doc, but

downloaded and edited locally.

• The file was both uploaded and sent as a link alongside

an attachment, and both “Charlie opens and edits the

brochure in Google Docs” and “Charlie edits the doc-

ument in desktop Microsoft Word” steps were used,

indicating a clear multi-modal confusion.

Responses were classified asMiddle of the Road (MR)
when they completed the task using Google Docs steps, but

concluded with “Charlie edits the document in desktop Mi-

crosoft Word” either as the only edit step or in addition

to “Charlie opens and edits the brochure in Google Docs”,

indicating some confusion.

Scenario Sensitive Analysis. In this scenario, David must

share a sensitive Word document with Erica without upload-

ing to Google Docs.

Thus, there is a positive goal (sharing) and a negative

goal (no data leakage). We expected participants to provide

a workflow with an exchange of email attachments.

The majority of Incorrect (IO) responses failed because

they included the step: “Erica uploads theWord file to Google

Docs and edits it”. This directly violated a core constraint

and thus rendered the solution invalid.

The only other incorrect response reversed the direction of

file exchange—having Erica send the document to David first,

who then returned it—which left the intent of the workflow

ambiguous and open to multiple interpretations.

Middle of the Road (MR) responses were generally

sound in their step selection and respected the data sen-

sitivity constraint, but included one step that introduced

potential confusion: “David enables sharing access to the

document for Erica”. While this did not necessarily violate

the leakage constraint (no actual upload occurred), it reflects

a conceptual blend between email and cloud file-sharing, sug-

gesting a partial or imprecise model of how sharing access

works across different platforms.

The presence of these semantically “near-miss” responses

in both scenarios underscores the importance of nuance

when evaluating the output from the Parsons tasks. Overly

rigid correctness criteria may obscure meaningful patterns

in participant understanding.

These findings suggest a gap between participants’ per-

ceived proficiency and their ability to correctly reason about

the semantics of cloud and local document interactions. The

results also reinforce the value of assessing both tracing and

“programming” tasks when evaluating user understanding.

Comparing Tracing and Programming. The programs

for ScenarioMenu (tracing) and ScenarioBrochure (program-

ming) are almost identical, with the exception that the former

creates a cloud document directly while the latter creates

its cloud document by uploading a local file. Programming-

education research has established that reading and writing

programs are distinct yet correlated skills [19]; novices typ-

ically perform better on the former when both are tested

together. Table 1 and table 2 also reflect this finding, show-

ing correctness rates of 85% (Scenario Menu) vs 43% (Sce-

nario brochure) respectively. While our design varies from

traditional reading-vs-programming studies in not using the

same notation for both kinds of tasks, the contrast lends

further credence to our central analogy.
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7 Taking Stock
At this point in the paper, it is useful to take stock of where

we are and what we’ve learned so far:

• We began by describing real problems we have ob-

served that people have with cloud-based applications

(section 1 and section 2).

• We argued (section 1) that these problems are analo-

gous to difficulties found in the literature with pro-

gramming semantics.

• We saw (section 3) that other researchers have also

found that users have difficulties with cloud applica-

tions. However, none of them have taken our theoreti-

cal stance, which is our central analogy. Their studies

are therefore not designed to investigate this connec-

tion.

• Thus, we used the analogy to design a user study. We

drew on the literature on programming misconcep-

tions to create potentially confusing user interactions

(section 4).

• We ran the user study (section 5) and saw (section 6,

most concretely in table 1 and table 2) that partici-

pants do not do well on most tasks. Their problems are

similar to those in the programming misconception lit-

erature (section 3), highlighting struggles with aliasing

and copying that are revealed through inspecting state.

Errors on ScenarioMenu can reflect failure to detect

aliasing when it occurs. Errors on Scenario Logo and
Scenario Farm can reflect assumptions that aliasing

has occured when indeed it has not.

This finding lends credence to our theory: namely, users’

difficulties with cfs are analogous to student difficulties with

stateful programming.
8

It is also useful to clarify what we have not done. While

we have shown that users make errors on our semantically-

inspired scenarios, we have not shown that misconceptions

about copies and aliases among documents are the root cause

of those mistakes. Perhaps some other issue led our partici-

pants to perform poorly in our study, and users actually have

a good conception of document copies. To be clear, our hy-
pothesis remains that such misconceptions about document

sharing exist and are a root cause; we just need more work

to confirm or refute it.

8 Looking Forward: Semantics and
Applications

To move forward, it would be helpful to (a) systematically

design further studies to explore where users trip up while

trying to achieve cfs goals, and (b) develop software tools

8
Of course, there may be a deeper problem—that people are just not very

good at reasoning about sharing and mutation—and the cloud and pro-

gramming settings may just be two concrete instantiations of that abstract

difficulty. These problems would then also manifest in other domains. In-

vestigating this deeper question is beyond the scope of this paper.

to help users achieve their goals. Both of these tasks would

benefit from a formal end-user semantics of cfs.
It’s worth clarifying what we mean by “end-user seman-

tics”. We do not mean “the semantics that the user believes

is in effect”; that object is called a mental model in education

and cognitive science. Each individual user could have their

own (faulty!) mental model. Instead, we mean “the semantics

of user-facing actions in this domain”, reflecting the behavior

of tools like Google Docs and email clients, with primitives

at the level of user actions: i.e., the euisa.

This object is called a notional machine [13] in the com-

puting education literature. For decades [52, 53], program-

ming educators have used notional machines—which have

been described as a “human-accessible operational seman-

tics” [30]—to help students better understand programming

models. Given a semantics of cfs (section 8.1), one could

build a variety of supports that guide users around their mis-

conceptions, which represent gaps between users’ mental

models and the actual notional machines.

However, conventional tutoring does not make sense in

this seting. Cognitively, learning something sufficiently for

longer-term recall requires multiple iterations spaced out

over time [14]. Investing time in tutoring for a one-off or

infrequently performed task is behaviorally irrational, as

Herley has argued (in the context of phishing training) [25].

We instead envision two potential support tools that we

could build atop the semantics. The first would simulate

the outcomes of specific actions (section 8.3); the second

would synthesize valid action sequences to achieve desired

sharing goals (section 8.4). Either of these uses could be built

into tools or agents for sharing documents. We also discuss

how large language models can help provide a user-friendly

interface to these formal methods (section 8.5).

8.1 Formal Semantics
Our semantics is written in Forge [37], which is a variant

of the popular Alloy [2] tool for modeling systems. The

visualizations shown in this paper are generated using Cope-

and-Drag [43], a tool for visualizing Alloy/Forge models.

Forge can be used both for simulation and for limited forms

of synthesis. For example, given a system model, Forge can

generate a sequence of operations that lead to a goal state.

Our Forge model is quite large and detailed, with 11 sig

(data) types, 19 operations, and more than 2000 lines of code.

It not only depends on details of the Alloy and Forge lan-

guages, it also contains a good deal of bookkeeping (e.g., to

maintain invariants). We do not expect the reader to find

the details especially interesting. Accordingly, we provide

an overview of the model and its relationship to conven-

tional programming-language semantics here. Our full for-

mal model is at https://cs.brown.edu/research/plt/dl/onward-
2025/ . From the overview, a reader comfortable with for-

mal modeling and familiar with the euisa should be able to

construct a semantics in their modeling system of choice.

https://cs.brown.edu/research/plt/dl/onward-2025/
https://cs.brown.edu/research/plt/dl/onward-2025/
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Figure 3. The datatypes in our semantic model. The datatypes towards the left capture files and folders, while the ones towards

the right capture emails.

Atomic Entities. The basic types of a document-sharing

system consist of documents (files) and folders (of files) that

are stored in the cloud accounts or computers of individ-

ual people. As our model includes sharing by email, our

datatypes also cover email messages, attachments, inboxes,

and email servers. Figure 3 shows the high-level data types as

a UML diagram. The full model also contains some datatype

attributes that capture reverse relationships, such as a list of

shared items in a Drive object that mirrors the shared_with
relation within Item.

State Invariants. The state of a program consists of the

atomic entities that exist within an instance of the model. To

ensure fidelity to real-world sharing behaviors, the model

enforces the following key consistency properties:

No dangling references All links and attachments must

point to existing items in valid locations.

Ownership consistency Items and their containing loca-

tions must agree on owner.

Structural constraints Items may appear in at most one

folder and one location; folders cannot be nested cycli-

cally.

Primitive Operations. The primitive operations support

creating and sharing documents, as well as creating and send-

ing emails that share documents. Figure 4 lists the operations

that create files, folders, and emails, as well as the operations

that create copies, create aliases, and mutate potentially-

shared data. The table elides some operations (such as re-

moving email recipients) that our scenarios do not exercise;

these appear in the full model.

Figure 4 shows that only files and folders can be aliased,

shared, or mutated. Emails cannot; they are merely a user-

facing mechanism for sharing documents and references to

them.

To track when a copy has been made, our model maintains

a relation between Items named same_content. Editing a

File creation and organization
createFile new object

createFolder new object

duplicateFile create copy

moveItem -

File transfer between location types
uploadFileToDrive create copy

downloadDriveFile create copy

Sharing
shareItem create alias

Email lifecycle
createEmail new object

setRecipients -

addText -

sendEmail -

sendReply -

Content embedding
addLink create alias

attachFile create copy

attachFolder create copy

Local retrieval
downloadFileAttachment create copy

downloadFolderAttachment create copy

Editing
editFile mutation

Figure 4. Summary of main operations in the semantic

model. The right column summarizes the impact on sharing,

aliasing, and mutation. When the right column contains a

hyphen, the operation adjusts other relations in the model,

but does not impact these semantic features.

file breaks its same_content relationships. Our state invari-

ants require same_content to be symmetric, transitive, and

irreflexive.

The information in same_content is not typically main-

tained in a programming-language semantics. Programming
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languages provide functions or methods to compute whether

two objects are structurally equal. Our same_content is

finer-grained than an equals function, however, because

it only captures equality derived from copying. It does not

capture pairs of objects that would be structurally equal by

virtue of being created with the same attribute values. Cap-

turing copies explicitly is helpful for generating traces that

illustrate misconceptions (as we will see in section 8.4), or

for explaining why a proposed program failed to achieve the

desired results.

Each operation is encoded as a transition predicate over

pre/post-states, where a state is the collection of entities (or

objects) that currently exist. For example, the key constraints

of the sendEmail operation are specified as follows:

pred sendEmail[actor: Person, email: Email] {
email in inbox_owner.actor.drafts
some email.to and some email.email_content
inbox_owner.actor.sent' =
inbox_owner.actor.sent + email

all r: email.to |
inbox_owner.r.received'
= inbox_owner.r.received + email

}

This predicate states that sendEmail is an operation involv-

ing a Person (the sender) and an Email that has already

been created. The predicate checks that the email has both a

recipient (email.to) and content (email_content). In the

post-state, the email has been added to the person’s set of

sent’ emails and to the received sets for all recipients (the
apostrophe denotes the relation in the post-state).

Programs. Programs in this semantics are sequences of

actions, as will be explained in section 8.3. A visualization

of one of these programs is shown in fig. 5. Full mappings of

each scenario to the Forge semantics operations and their

pseudocode programs appear in Appendix A.

8.2 Insights on Designing End-User Semantics
Our formal model highlights critical differences between

end-user semantics and typical operational semantics for

programming languages.

For starters, end-user semantics can have multiple primitive
operations that do basic linguistic tasks. A typical program-

ming language semantics may be much smaller than ours.

That is becuase it is for a minimal core language. It is driven
by goals such as keeping the number of cases small to fa-

cilitate (say) proofs by structural induction. But it does not

represent the full reality of the surface language, whose

many features are either left implicit or whose complexity is

pushed somewhere else (such as desugaring operations [23]).

In contrast, we faithfully represent all the end-user opera-

tions. We could have decomposed our semantics into a core

into which we desugar these operations, but that means the

output might be much harder to understand, since it would

all be in terms of core operations, not those the user recog-

nizes. (Solutions like resugaring [41] may be of help here,

but are still in a preliminary state.)

Secondly, an end-user semantics should directly expose rela-
tionships that will have explanatory power for its users. Here,
we reiterate the point made earlier about same_content:
if this relationship is visible in our semantics, we can use

it to try to explain program behavior to end-users. In our

user-study, many participants thought two references to

files referred to the same object, missing the point at which

copies were created and content diverged. Maintaining the

same_content relation means we can use it to identify this

point in time.

8.3 Program Simulation
In one modality, given a user’s desired sequence of opera-

tions, we use the semantics to simulate the steps; the user

adjusts the sequence until they obtain their desired behavior.

We have already seen instances of this in section 4.2. Now

we examine this through the lens of a semantics.
9

Suppose Mary wants to share a file with John in such a

way that he can view and edit it simultaneously. She might

describe a sequence of steps where she:

1. Creates a file on her computer.

2. Uploads the file to Google Drive.

3. Opens Google Drive and configures sharing

so that John can edit the file.

4. Copies the sharing link to the file.

5. Creates a new draft email.

6. Adds John as a recipient.

7. Pastes the link into the email body.

8. Sends the email.

which turns into the following operations over the semantics:

createFile[Mary, MaryComputer] # Create Item0
uploadFileToDrive[Mary, Item0] # Create Item1
shareItem[Mary, Item1, John]
createEmail[Mary] # Create Email0
setRecipients[Mary, Email0, John]
addLink[Mary, Item1, Email0]
sendEmail[Mary, Email0]

(Note: in the semantics, the fourth step about copying the

sharing link occurs as part of the addLink operation.)

Running this program through the semantics shows the

trace shown in fig. 5. Mary would examine this sequence

of states and confirm that it has the effect she wants. Space

limits preclude us including readable images in the print

version of the paper (though zooming into the PDF will

help). Instead, the images in the supplement show the result

of each step in full detail. We do show the final state to give

a better sense of what it looks like, but note that it would be

the result of stepping through six previous steps:

9
A natural next experiment would be to repeat those studies with these

traces, to see whether errors reduce.
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Figure 5. Trace steps (sans the last step) illustrating the progression of sharing actions in a boustrophedonic layout. The

purple dashed-line boxes highlight what has changed.

8.4 Program Synthesis
More often, we expect users will have a desired goal—e.g.,

“I want to share this file with Joe in such a way that we

can both edit it at the same time”—and want instructions

that achieve it. Using the semantics in reverse amounts to

a synthesis problem: producing a sequence of actions that

results in this property. This sequence of actions can then

be simulated (as above). This lets the user confirm that their

intent has been accomplished. There are several reasons

why it might not: they have have made a mistake in their

description; their description may have been ambiguous;

their description might have been misinterpreted (e.g., by an

LLM); or, seeing the actual simulation, they may realize it

has undesired consequences.

Because the simulation is based on the precise semantics,

these problems have a much better chance of being caught

than without it. Once the user confirms the simulation, the

sequence of instructions can be described to them in human-

friendly form (and perhaps even partially executed on their

behalf, e.g., by browser plugins or agents).

8.5 A Role for Language Models
To actually apply the semantics, we must help users translate

their intent into a form that can exploit it. We can certainly

consider block-based editors or a Parsons-style interface,

as in section 4.2. However, both of these presume some fa-

miliarity with the available operations and their semantic

implications. Those interfaces reduce surface-level complex-

ity but still require users to explicitly reason about system

behaviors and construct sequences of steps.

Large language models (LLMs) offer a compelling inter-

face layer to bridge this usability gap. On the one hand,

many LLMs are trained on common cfs workflows, allowing

them to generate plausible, human-readable instructions. On

the other hand, they are unreliable and can produce incor-

rect or subtly misleading suggestions, which are especially

unsuitable when helping end-users or operating in security-

sensitive contexts (e.g., when adding users to a Signal chat).
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To mitigate this risk while retaining their accessibility,

we propose a hybrid approach. LLMs work well as a front-

end that accepts high-level natural instructions such as a

sequence of instructions or a desired end-state. The LLM can

then generate either an instruction sequence or a predicate—

both in formal language—to be given to the simulator or

synthesizer, respectively. This hides the surface language

of the formal model from the user; they then interact with

it through visualizations (as seen in fig. 5) to confirm that

their intent has been properly understood. The translated or

synthesized instructions can then be presented to the user

and, in some cases, even executed directly (e.g., by a browser

plugin). Thus, the LLM facilitates conversational interaction

and clarification, but the formal model ensures that this

remains grounded in precise and accurate semantics.

9 Threats to Validity
The main purpose of our user study is to build a bridge across

the central analogy: that problems in programming could

also be present in cfs. It also validates that the problems we

have observed in person may be found in a much broader

population. We are careful to consider it formative and pre-

liminary. Nevertheless, for thoroughness, we list some of the

threats to validity.

Internal Validity. Our goal was to assess conceptual

understanding of cloud file-sharing behavior, but several

factors could have interfered with that goal:

Branching logic effects For the two-part scenarios, the

second video shown depended on the participant’s an-

swer to the first question. This may have inadvertently

reinforced incorrect mental models by confirming the

participant’s earlier misconception.

Surface-level guessing Some participants may have an-

swered correctly through deduction or pattern-matching

without fully understanding the underlying concept,

especially in the Parsons-style programming tasks.

Mistakes vs. misinterpretation Wrong answers could have

resulted from task complexity rather than a true mis-

understanding of the semantics.

Inconsistent engagement duration Some participants took

significantly longer than the average of all participants.

These extended durations may reflect interruptions or

disengagement, which could reduce attention or con-

tinuity of reasoning between scenario questions, po-

tentially distorting their understanding and therefore

response accuracy.

Lack of validation Wehave not conducted any studies that

ensure that our semantic model, its visualizations, and

proposed tools (section 8), will actually aid users. We

leave this for future work.

External Validity. There are numerous reasons why our

work may not generalize:

Lack of ecological validity Participantswere asked to sim-

ulate interactions with tools like Google Docs and

Google Mail in their heads, rather than actually using

the interfaces. In real environments, affordances, auto-

suggestions, or UI constraints might help or hinder

performance differently.

Sample representativeness While our sample includes par-

ticipants across a range of ages, it may not fully rep-

resent the populations most susceptible to real-world

cfs errors, such as older adults or less technically expe-

rienced users. However, given that our sample skews

younger, we anticipate that including a broader age

range might result in lower overall performance.

Device and platform variation We instructed participants

to imagine using their preferred system (Mac or Win-

dows), but did not control for actual experience or

prior habits, which may influence reasoning.

Limited real-world stakes Participants were performing

hypothetical tasks for compensation, not trying to ac-

tually share files or meet a goal. This may reduce their

focus and effort invested in careful decision-making.

10 Discussion
The core contribution of our work is the central analogy,

connecting cfs to programming operations. We not only

see that there are clear parallels between aliasing, mutation,

and copying, but that the problems end-users suffer from

have parallels in difficulties that programmers also face. This

suggests that tools analogous to those that help programmers

may also help end-users. At the very least, this connection

provides some clarity about what is happening, reducing

the large number of applications and the variation in their

interfaces to a small number of key semantic primitives—

which is often a necessary precursor to a scientific treatment.

Interface Confusion. As we and the prior research show,

users already suffer from semantic difficulties. We suspect

these only get worse as more applications blur the bright line

between the desktop and the cloud. For example, Microsoft

Word’s desktop and online versions offer nearly identical

interfaces, yet differ significantly in how they synchronize

changes and track file state across devices. This surface-

level consistency conceals deep semantic variation, making

it difficult for users to build accurate mental models of what

their actions actually do.

Helping Users. A valuable tool in STEM education is the

concept inventory [26]. This is a multiple-choice instrument

where every question has one correct answer and several

wrong answers, where the wrong answers are each crisply

tied to a specific misconception. This has the benefit that if a

user chooses the wrong answer, they can be given feedback

tied to that particular misconception, thus hopefully helping

fix their underlying misunderstanding. While the average
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end-user likely has neither the time nor inclination to use

such an instrument, there are settings where it could be

useful: e.g., in training staffwithin an organization, especially

if they have to deal with sensitive documents.

Traces. The traces our models can generate, such as the

one shown in section 8.3, are not necessarily ready to be

consumed directly by an end-user. Here, we have focused on

presenting the formal object. User-testing it and translating

it into an end-user–friendly presentation remains an open

problem for human-computer interaction research. However,

we feel it is important that such work should be based on

ground truth, which is what we have provided.

Growing theModel. Our semantic model can be extended

in several directions. Our lived experience and study re-

sponses suggest features that would benefit both analysis

and user-facing tools: support for fine-grained permission

levels (view/comment/edit), representations of device power

state (e.g., unsynced edits made offline), and the inclusion

of alternative platforms such as Dropbox, which have dis-

tinct sync and versioning semantics. These extensions would

allow the semantics to support broader categories of user

confusion and better reflect real-world diversity in tooling.

Alternate Models. Our semantics (section 8) is based on

first-order logic. It is possible that other models could also

be effective. For instance, separation logic [47] helps users

reason about sharing and non-sharing of values on the heap,

which relates to our work using the central analogy. It is also

possible that ownership [5] is relevant here, and validated

work to explain ownership [6] may therefore also be useful.

Broader Populations. Our findings also raise concern

for more vulnerable populations. Previous work has empha-

sized the value of systems that support situated reasoning

for older adults and those experiencing cognitive decline

(section 3). Our model and tools could provide a foundation

for such systems: ones that can explain, simulate, or con-

strain user actions in ways aligned with their intent, rather

than requiring them to guess what a platform will do.

The study conducted by McDonald and Mentis demon-

strates that people experiencing memory loss can make in-

formed decisions about their personal cybersecurity when

systems allow them to reason about risks in context [35].

Participants were better able to choose appropriate safety

settings—such as those for email, online banking, and pass-

word management—when they could visualize the implica-

tions of different actions through concrete scenarios. This

ability to assign risk meaningfully to particular activities

motivated the use of security features and shaped shared

decision-making within caregiving partnerships. Our work

parallels this emphasis on situated reasoning: by providing

an interface to explore traceable, semantically explicit mod-

els of cloud file-sharing, we aim to support similar forms of

understanding and planning.

More broadly, much of the human-computer interaction

literature on dementia emphasizes the importance of tech-

nologies that support social connection, communication, and

sharing [18, 31, 35]. These are also the domains in which

misunderstandings about cfs can lead to confusion, data loss,

or worse, that may be especially consequential for users with

cognitive impairments. Our findings underscore the need to

design systems that not only function securely but also sur-

face their underlying behaviors in ways that are intelligible

and support shared reasoning.

Looking Forward. This paper is the first step in a larger

project on whether knowledge about misconceptions in pro-

gramming can be applied to improve the design of end-user

tools. This paper presents the architecture of studies towards

this goal: check whether the end-user task reflects similar

errors to a programming task (our user study); formalize

a notional machine of how the end-user tool works (our

model); use the notional machine to try to identify the spe-

cific misconceptions in the end-user domain (future work);

develop tool supports after the notional machine has been

validated (future work). Additional steps include exploring

ways that current user-interfaces might contribute to creat-

ing semantic misconceptions and how situational and con-

textual factors might affect the general application of the

semantics. Addressing these questions and expanding the

work to the remaining scenarios in fig. 1 are fertile spaces

for future work.
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A Scenario-to-Semantics Mapping

Table 3. Tracing scenarios: Program pseudocode and Forge semantics steps.

Scenario & Narrative Program Pseudocode Forge Semantics Steps

Menu: Alice creates a burger menu in

Google Docs and shares it live with Joe.

Joe then edits in place (salads).

# Joe edits the shared list.
function Joe(receivedDoc):
receivedDoc[0] := "Salad X"
receivedDoc[1] := "Salad Y"
receivedDoc[2] := "Salad Z"

end

# Alice's steps:
menu = ['Burger A', 'Burger B', 'Burger C']
Joe(menu)
print("Alice sees:", menu) # ["Salad X", ...]

// Create Item0 atom in Alice's Drive.

createFile[Alice, AliceDrive]

// Share Item0 with Joe.

shareItem[Alice, Item0, Joe]

// Create Email0 atom.

createEmail[Alice]

// Set Joe as a recipient.

setRecipients[Alice, Email0, Joe]

// Add a link to Item0 to Email0.

addLink[Alice, Item0, Email0]

// Send Alice's Email0 to Joe.

sendEmail[Alice, Email0]

// Joe edits the shared document.

editFile[Joe, Item0]

Logo: Frank emails Kate a PPT with a

square logo. Kate changes her copy to

a circle. Frank later edits his original to

a hexagon. Finally, Kate re-downloads

the original logo attachment.

coroutine Frank():

localFile = { "shape": " " }
# Create attachment, which is a copy.
attachment = localFile.copy()
Kate(attachment)

print("Frank sees:", localFile) #

localFile["shape"] := " "
Kate()

coroutine Kate(optional: receivedFile):
# Download the attachment locally.
localCopy = receivedFile.copy()

localCopy["shape"] := " "
Frank()
# Re-download the original attachment.
redownload = receivedFile.copy()

print("Kate sees:", redownload) #
end

Frank()

// Create Item0 atom on Frank's computer.

createFile[Frank, FrankComputer]

// Create Email0 atom.

createEmail[Frank]

// Set Kate as a recipient.

setRecipients[Frank, Email0, Kate]

// Create Item1 atom attached to Email0.

attachFile[Frank, Item0, Email0]

// Send Frank's Email0 to Kate.

sendEmail[Frank, Email0]

// Create Item2 atom on Kate's computer.

// (same_content as Item0 and Item1)

downloadFileAttachment[Kate, Email0]

// Kate edits her local copy (Item2).

editFile[Kate, Item2]

// Frank edits his original file (Item0).

editFile[Frank, Item0]

Farm: Marie shares a Google Doc

(cow) with Aaron. Aaron downloads

it locally as Word and changes to pig.

Marie then changes the shared Doc to

chicken.

coroutine Marie():

onlineDoc = { "animal": " " }
# Share the live Google Doc with Aaron.
Aaron(onlineDoc)

# Edit the Google Doc.

onlineDoc["animal"] := " "
print("Marie sees:", onlineDoc) #
Aaron()

end

coroutine Aaron(optional: receivedDoc):
# Download local (Word) copy of Google Doc.
localCopy = receivedDoc.copy()

localCopy["animal"] := " "
Marie()

print("Aaron sees:", localCopy) #
end

Marie()

// Create Item0 atom on Marie's Drive.

createFile[Marie, MarieDrive]

// Share Item0 with Aaron.

shareItem[Marie, Item0, Aaron]

// Create Item1 atom on Aaron's computer.

// (same_content as Item0)

downloadDriveFile[Aaron, Item0]

// Aaron edits his local copy (Item1).

editFile[Aaron, Item1]

// Marie edits the shared Doc file (Item0).

editFile[Marie, Item0]
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Table 4. Programming scenarios: Program pseudocode and Forge semantics steps.

Scenario & Narrative Program Pseudocode Forge Semantics Steps

Brochure: Olivia creates a Word

brochure locally, uploads to Google

Docs, shares live with Charlie, who

then edits.

function Charlie(receivedDoc):
# Edit the brochure in Google Docs.
receivedDoc["data"] := "Edited"

end

# Olivia's steps:
# Create the brochure locally in Word.
localFile = { "data": "original" }

# Upload, creating a shared Google Docs.
uploadedDoc = localBrochure.copy()

# Email Charlie the Google Docs link.
Charlie(uploadedDoc)

print("Olivia sees:", uploadedDoc) # Edited

// Create Item0 atom on Olivia's computer.

createFile[Olivia, OliviaComputer]

// Upload Item0 to Drive, creating Item1.

// (same_content as Item0)

uploadFileToDrive[Olivia, Item0]

// Share Item1 with Charlie.

shareItem[Olivia, Item1, Charlie]

// Create Email0 atom.

createEmail[Olivia]

// Add link to Item1 to Email0.

addLink[Olivia, Item1, Email0]

// Send Olivia's Email0 to Charlie.

setRecipients[Olivia, Email0, Charlie]

sendEmail[Olivia, Email0]

// Charlie edits the shared document.

editFile[Charlie, Item1]

Sensitive: David and Erica exchange

only isolated email attachments of a

sensitive file, round-trip.

function Erica(receivedFile):
# Download the file from David's email.
localCopy = receivedFile.copy()

# Edit the file.
localCopy["data"] := "Edited"

# Create attachment, which is a copy.
outgoingAttachment = localCopy.copy()

# Send the attachment to David.
return outgoingAttachment

end

# David's steps:
localFile = { "data": "Original" }

# Create attachment, which is a copy.
attachment = localFile.copy()

# Send the attachment to Erica.
returnedAttachment = Erica(attachment)

# Download Erica's edited file from her email.
downloadedEdits = returnedAttachment.copy()

print("David sees:", downloadedEdits) # Edited

// Create Item0 atom on David's computer.

createFile[David, DavidComputer]

// Create Email0 atom.

createEmail[David]

// Create Item1 atom attached to Email0.

attachFile[David, Item0, Email0]

// Send David's Email to Erica.

setRecipients[David, Email0, Erica]

sendEmail[David, Email0]

// Create Item2 atom on Erica's computer.

// (same_content as Item0 and Item1)

downloadFileAttachment[Erica, Email0]

// Erica edits her local copy (Item2).

editFile[Erica, Item2]

// Creates Email1 atom.

createEmail[Erica]

// Create Item3 atom attached to Email1.

attachFile[Erica, Item2, Email1]

// Send Erica's Email to David.

setRecipients[Erica, Email1, David]

sendEmail[Erica, Email1]

// Create Item4 atom on David's computer.

// (same_content as Item2 and Item3)

downloadFileAttachment[David, Email1]
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