Cloud Security & Cryptography I

Cloud Computing

SENY KAMARA
MICROSOFT RESEARCH
Computing as a Service

- Computing is a vital resource
 - Enterprises, governments, scientists, consumers, ...
- Computing is manageable at small scales...
 - e.g., PCs, laptops, smart phones
- ...but becomes hard to manage at large scales
 - build and manage infrastructure, schedule backups, hardware maintenance, software maintenance, security, trained workforce, ...
- Why not outsource it?
Computing Architecture

Applications
- Email, WWW, Social Net.,....

Platform
- Windows, Linux, MacOSX,...

Infrastructure
- memory, disk, network,
Cloud Services

- **Software as a service**
 - Gmail, Hotmail, Flickr, Facebook, Office365, Google Docs, …
 - Service: customer makes use of provider applications
 - Customer: consumers & enterprise

- **Platform as a service**
 - MS SQL Azure, Amazon SimpleDB, Google AppEngine
 - Service: customer makes use of provider’s software stack
 - Customer: developers

- **Infrastructure as a service**
 - Amazon EC2, Microsoft Azure, Google Compute Engine
 - Service: customer makes use of provider’s (virtualized) infrastructure
 - Customer: enterprise, developers
Cloud Deployment Models

Public

Private
Why the Hype?
Why Providers Care

- Spare capacity
 - most providers have underutilized data centers
 - might as well monetize it
- Potentially huge market
- Major *infrastructure shift*
 - Comparable to the Internet (?)
 - MS, Apple, Google, Amazon, Facebook
 - Can’t risk missing it
Why Clients Care

- Consumers
 - Convenience: backups, synchronization, sharing
- Startups/SME
 - Low CAPEX: low risk, less VC
 - Focus on product/service
 - Elasticity (can scale fast)
- Enterprise
 - Turn CAPEX into OPEX
 - Cheaper & more reliable services (email, payroll, …)
Why Researchers Care

- Papers!
- Grants!
- Interesting research
 - Distributed systems: fault-tolerance, cluster & parallel computing
 - Storage systems: GFS, HDFS, ...
 - Databases: Big Data, analytics, NoSQL, GraphDBs
 - Operating systems: virtualization
 - Algorithms: resource allocation, cluster algorithms, parallel algs
 - Economics: pricing, auctions
 - Security: forensics, VM isolation,
 - Networking: data center networks, architectures, protocols
 - Cryptography: new types of encryption, signatures, protocols, ...
Why Governments Care

- Cloud will impact cost of hardware and software
 - will impact the cost structure of many industries
 - will impact business creation
 - will impact economic performance of countries
- Cloud can provide cost savings for public sector
 - Hospitals, healthcare, education
 - Agencies that have periodic peaks (e.g., IRS)
 - Improved energy efficiency
 - Europe: 1.75% of carbon emissions due to IT usage
What are the Risks?
Cloud Policy

- What is the legal definition of a Cloud?
- Determines regulatory & policy frameworks
- What if
 - cloud's computation is wrong?
 - data stored is tampered with or lost?
 - customer goes out of business?
Cloud Policy [Jaeger-Lin-Grimes08]

- Should Telecom laws apply?
- Entities in telecom laws
 - ISP, telecomm providers, common carrier
- Telco laws assume purpose of technology is to ship bits
 - Do not offer legal compensation framework
 - If call or packets are dropped, just resend
- Cloud stores, computes and ships
 - What happens if data is lost?
Cloud Policy

- If Clouds are Telcos should net neutrality apply?
 - Net neutrality is good for Clouds
 - Cloud relies on stable and high quality Internet access
 - Prevents ISPs from extracting profits from providers
 - Prevents ISPs from gaining unfair advantage for own clouds
 - Net neutrality could be disastrous for Clouds
 - No differential pricing
 - No QoS
Cloud Policy

- Is a Cloud responsible for its tenants?
 - EC2 hosted Wikileaks and spammers
 - What if DoS attacks are launched from the Cloud?
 - What if hackers use cloud as stepping stone?
Cloud Insurance

Should customers be insured?

- 100% reliability is impossible
- Downtime can be costly (startups can go out of business)

AWS outages

- **December 12th, 2010**: EC2 down for 30 mins (Europe)
- **April 21, 2011**: storage down for 10-12 hours (N. Virginia)
 - Foursquare, Reddit, Quora, BigDoor and Hootsuite affected
- **August 6th, 2011**: storage down for 24 hours (Ireland)
- **August 8th, 2011**: network connectivity down for 25 mins (N. Virginia)
 - Reddit, Quora, Netflix and FourSquare affected
- **July 7th, 2012**: storage down for few hours (Virginia)
 - Instagram, Netflix, Pinterest affected

What is the right model for Cloud insurance?
Data-Related Issues

- Where is the data?
 - In which legal jurisdiction?
 - Does that government have access?
 - Which regulations apply?
- Compliance
 - If I store data of type X, am I compliant with regulation Y?
- Licensing
 - If I store licensed data and/or code, am I violating terms?
Data-Related Issues [Reed10]

- Who owns the data?
 - No notion of property rights for information
 - Property rights only for physical object that stores information
 - “owner” can control information through mix of IP, privacy rights and contracts

- Typical Cloud scenario
 - Customer entrusts own data + data of clients to cloud
 - Cloud stores and processes data
 - Client uses cloud services to create new data
 - Cloud generates metadata and new data
Data-Related Issues

What can the Cloud do with Data?
- Can Cloud mine tenant data to improve its cloud services?
- Can Cloud mine tenant data to improve its other products
 - Can MS mine cloud data to improve Bing, Office, ... ?
Data-Related Issues

- Google Drive
 - Released April 24th, 2012
 - Similar to Dropbox, Skydrive, etc...
 - Media firestorm with respect to license
 - User retains intellectual property rights
 - Google retains rights to
 - reproduce, use, and create derivative works
 - Extract content to customize advertising and other services
 - *perpetually*...even after removal of content!
Data-Related Issues

- Entropy reduction [Ohm09]
 - anonymized data sets can be de-anonymized using auxiliary information
 - Cloud providers hold a large amount of auxiliary information!
 - Therefore can have large effect on privacy
 - Should they be regulated?
Government Surveillance

- Gordon Frazer
 - managing director of Microsoft UK
 - Office 365 Launch (July, 2011):
 - “cloud data is not protected against US Patriot Act...”
 - “…no matter where it is stored, …”
 - “and we might give data without telling you”
 - Huge controversy!
Government Surveillance

- Ivo Opstelten [Dutch minister of safety & justice]
 - US providers could be excluded from bidding on Dutch contracts
- Sophie in ‘t Veld [Dutch member of European Parliament]
 - asked European Commission to clarify jurisdictional issues urgently!
 - But banning transfer of European (citizen) data to U.S. could violate WTO agreements…
Government Surveillance

- France
 - invested 150/225M euros in SFR & Orange
 - so CloudWatt & Numergy have *local* data centers?
The Patriot Act

- 1968: Omnibus Crime Control and Safe Streets Act
 - Prohibits interstate gun sales, set 21 as minimum age to buy guns, ...
 - Also set rules for obtaining wiretap orders in the United States

- 1986: Electronic Communications Privacy Act
 - Amendment to OCCSSA
 - Prevents unauthorized government access to private electronic communications

- 2001: “Patriot Act”
 - Series of amendments to previous acts including ECPA
 - Increased law enforcement's ability to recover data and communications
The Patriot Act

- EU allows private data to be exported to
 - Argentina, Israel, most of Canada, ...
 - ...but not to US or most of Asia

- Safe Harbor
 - US companies promise to enact certain security & privacy measures
 - Most US companies agree
 - SH has exception for national security...
 - But SH was enacted before 911 and PA
 - EU would have never agreed to SH if it knew PA was coming
Patriot Act

Effects of controversy

- EU enterprises and govs nervous about US clouds
- Great for EU cloud providers!
- US cloud providers asked Obama administration to clarify scope of PA
Cloud Adversarial Models
The Cloud Abstraction
Cloud Adversarial Models

- Clouds must protect against traditional adversaries
 - Hackers, malware, botnets, spammers, ...

- And against
 - Physical attackers
 - Rogue employees: can access part of infrastructure
 - Steal hard drives, see PII
 - Tenants: are like traditional adversaries but inside the cloud
 - DoS, cross-VM attacks
 - Providers: control entire infrastructure
 - hardware, OS, HV, network, data center
 - Governments: can issue subpoenas, get warrants, ...
 - Get keys, hard drives, servers, monitor communications
Cloud Attacks
Overview of EC2

- Infrastructure cloud (IaaS)
- 1st generation compute instances
 - **M1 Small**: 1.7GB, 1 v-core & 1 ECU, 160GB storage (6 c/hr)
 - **M1 Medium**: 33.75GB, 1 v-core & 2 ECU, 410GB storage
 - **M1 Large**: 7.5 GB, 2 v-cores & 2 ECU each, 850GB storage, 64-bit
 - **M1 XLarge**: 15GB, 4 v-cores w/ 2 ECU each, 1690GB storage, 64-bit (1 $/hr)
- 2nd generation compute instances
 - **M3 XLarge**
 - **M3 Super XLarge**
Overview of EC2

- More instances
 - High memory instances
 - High CPU instances
 - Cluster compute instances
 - Cluster GPU instances
Overview of EC2

- **Storage**
 - Instance local storage (volatile)
 - Size depends on instance type
 - Elastic Block Store (≈ virtual hard drive)
 - Up to 1TB per volume

- **Pricing options**
 - On-demand instances (pay per use)
 - Reserved instances (pay up front) & marketplace
 - Spot instances (bid and use while < spot price)
Overview of EC2

- **Regions**
 - US East (Northern Virginia)
 - US West (Oregon)
 - US West (Northern California)
 - EU (Ireland)
 - Asia Pacific (Singapore)
 - Asia Pacific (Tokyo)
 - South America (Sao Paulo)
 - GovCloud (US)

- **Availability zones**
 - Insulated from each other
 - Zone 1 cannot affect Zone 2 & 3
Attacking EC2 Tenants

- [Ristenpart-Tromer-Shacham-Savage09]
- Cloud cartography
 - Map internal IP to instance parameters
- Co-location
 - Place an attack VM on same server as target
- Co-residency checks
 - Check if attack VM is co-located with target VM
- Cross-VM attacks
 - Steal keys using a cache-based side-channel attack
Cloud Cartography

- Map from internal IP to instance parameters
 - Launched 20 instances for every zone/type (3x5) in US
 - EC2 IP space partitioned by zone/type
- Using cartography
 - Get target’s external IP
 - Query internal DNS service for internal IP
 - Use map to guess instance type and zone
Co-Location

- Co-location strategy #1
 - Just launch as many VMs as possible in same zone+region
- EC2 co-location is biased towards
 - Sequentially launched VMs
 - Parrallely launched VMs from different accounts
- Co-location strategy #2
 - Launch attack VMs as soon as target VM is launched
 - Or overload target and wait for Autoscaling
Co-Residence Testing

- EC2 observations
 - First hop from any VM is Dom0
 - Numerically-close IPs typically assigned to same server
- Co-residency testing
 - If IPs are numerically close
 - Traceroute to target should include only 1 hop (Dom0)
Cross-VM Attacks

- Coarse-grained [Ristenpart-Tromer-Shacham-Savage09]
 - Recovers traffic rates, keystroke activity, ...
 - Single-core virtualized server (running Xen)
 - Cache attack (L1 data cache)
 - Requires co-locating 1 VM
Cross-VM Attacks

- **Fine-grained** [Zhang-Juels-Reiter-Ristenpart12]
 - Recovers El Gamal secret key (457-bit exp & 4096-bit p)
 - Multi-core (4) virtualized server (running Xen)
 - Cache attack (L1 instruction cache)
 - Requires co-locating 1 VM with 2 VCPUs
 - VCPU1 probes (measures victim through cache)
 - VCPU2 issues interrupts to force Xen to run VCPU1
 - Uses machine learning (SVMs) + HMMs extract signal
 - Training SVMs requires
 - machine with same architecture & victim code
More Cloud Attacks

- Amazon machine images [Bugiel et al.11]
 - Analyzed 1225 AMIs
 - Found source code, private keys, administrator pwds
- Topology inference [Raiciu-Ionescu-Niculescu12]
 - Mapped the EC2 US-EAST AvZ D data center network
 - Cloud-specific covert DoS attacks
Securing the Cloud

- How do we secure public infrastructure clouds?
 - Systems security: virtualization, isolation, access control, ...
 - Network security: firewalls, network intrusion detection, ...
- How do we protect against all adversaries?
 - New systems security mechanisms
 - New cryptographic techniques!