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Abstract
We present an algorithm to estimate fast and accurate depth maps from light fields via a

sparse set of depth edges and gradients. Our proposed approach is based around the idea that true
depth edges are more sensitive than texture edges to local constraints, and so they can be reliably
disambiguated through a bidirectional diffusion process. First, we use epipolar-plane images to
estimate sub-pixel disparity at a sparse set of pixels. To find sparse points efficiently, we propose
an entropy-based refinement approach to a line estimate from a limited set of oriented filter
banks. Next, to estimate the diffusion direction away from sparse points, we optimize constraints
at these points via our bidirectional diffusion method. This resolves the ambiguity of which sur-
face the edge belongs to and reliably separates depth from texture edges, allowing us to diffuse
the sparse set in a depth-edge and occlusion-aware manner to obtain accurate dense depth maps.

1 Introduction
Light fields record small view changes onto a scene. This allows them to store samples from

both the spatial and angular distributions of light. The additional angular dimension allows imaging
applications such as synthetic aperture photography and view interpolation [14, 33]. Most of
these applications can be directly implemented in image space using image-based rendering (IBR)
techniques [10, 21]. For applications such as light field editing and augmented reality, we require
an explicit scene representation in the form of a point cloud, depth map, or derived 3D mesh, to
allow occlusion-aware and view-consistent processing, editing, and rendering.

However, light field depth estimation is a difficult problem. Oftentimes, state-of-the-art methods
strive for geometric accuracy without always considering occlusion edges, which are especially
important for handling visibility in light field editing applications. Further, while the many views
allow dense and accurate depth to be derived, the extra angular dimension carries large data costs that
makes most depth estimation algorithms computationally inefficient [15, 36]. Recent methods have
sought to overcome this barrier by learning data-driven priors with deep learning. While this can
be effective, it requires additional training data, and may overfit to scenes or capture scenarios [22].

We present a first-principles method for estimating occlusion-accurate depth maps from light
fields with no learned priors and demonstrate its application in light field editing tasks. This is
achieved by estimating disparity at a sparse set of pixels identified as most important for the final re-
sult. These estimates are then propagated to all pixels using occlusion-aware diffusion. Traditionally,
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Figure 1: Light field editing requires high-accuracy depth edges. Middle: The dense depth estimated
by Zhang et al. [36] illustrates the difficulty of extracting correct edges, with inserted content
appearing at incorrect depths or with overhanging regions. Right: The accuracy of our depth edges
allows effective occlusion handling when editing light fields. The inset shows our disparity map.

diffusion pipelines for depth completion attempt to recover a complete description of depth maps
via a sparse set of depth edges and gradients [8]. Commonly, techniques follow three steps [11, 35]:

1. Obtain sparse depth labels accurately and efficiently,

2. Determine diffusion gradient at each labeled point, and

3. Perform dense depth diffusion.

Step 1 is critical yet difficult: finding sparse depth labels via edges in EPIs requires robustness
to noise and occlussion-awareness. For this, we identify unwanted edges by observing gradients
along and just next to the edge. Second, using large filter banks for subpixel depth precision is
expensive. Thus, from an initial depth estimate from a moderately-sized filter bank, we propose a
novel entropy-based depth refinement using efficient random search to obtain a subpixel estimate.

Step 2 is also critical yet difficult: determining the diffusion direction requires us to know the
depth at pixels around each label, but for efficiency we only have a sparse set of labeled points.
Holynski and Kopf [11] deal with this by assuming that sparse labels do not lie on depth edges
so that neighboring pixels have a similar label. Yucer et al. [35] handle labels on depth edges,
but their method is designed for light fields with a large number (≈3000+) of views. Our novel
contribution here is that we determine diffusion direction from other sparse labels within context via
a bidirectional ‘backward-forward’ diffusion process. Together, improvements in these steps allow
fast and accurate occlusion estimation for light fields. https://visual.cs.brown.edu/lightfielddepth/

2 Related Work
The information implicit within an EPI (Epipolar-Plane Image) is useful for depth or disparity

estimation algorithms, and the regular structure of an EPI obviates the need for extensive angular
regularization. Thus, many light field operations seek to exploit it [23]. Wanner et al.’s [32] was
among the earliest widely-applicable method to use EPI lines for local depth estimates. These were
then optimized in a global framework with visibility constraints. Their results, while accurate, are
computationally expensive to compute. Many subsequent methods have adopted a similar approach
by posing depth estimation as an energy-minimization problem in EPI space. Zhang et al. [36]
replace the structure tensor of Wanner et al. with a spinning parallelogram operator. Wang et al. [29,
30] propose a photo-consistency based energy term to address occlusion. Tao et al.’s [28] work
considers higher dimensional representations of EPIs which allows them to use both correspondence
and defocus to get depth. The latter two works rely upon the earlier work of Kolmogorov and
Zabih [20] to minimize the NP-hard energy function using graph-cuts. The relation between defocus
and depth is also exploited by the sub-pixel cost volume of Jeon et al. [15], who also present a
method for dealing with the distortion induced by micro-lens arrays. The variational methods used
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Figure 2: Sparse labels at edges are difficult to propagate because the edge is weakly localized
at the boundary of two projected surfaces. As a result, labels may be assigned to the incorrect side
of a depth boundary. (a) Two different scene configurations captured with cameras C1 and C2 may
generate similar EPIs. The EPI edge represents the boundary of the occluding surface. For C1 this is
the surface on the left (black); for C2 it is on the right (blue). (b) The direction from which occlusion
happens cannot be disambiguated from edge activations alone, leading to incorrect label placement.

by the above-mentioned works lead to high computational costs and—in the case of Tao et al. [28]
and Wang et al. [29, 30]—large outliers and quantization artifacts resulting from the graph-cut.

An efficient and accurate method for wide-baseline light fields was proposed by Chuchwara
et al. [7]. They use an oversegmentation of each view to get initial depth proposals, which are
iteratively improved using PatchMatch [3]. Closely related to our method is the work of Holynski
and Kopf [11], who present an efficient method for depth densification from a sparse set of points
for augmented reality applications. However, they assume that the set of sparse points and their
depth values are known beforehand. Our method does not make this assumption, and seeks to
identify both the points and their depth as well as performing dense diffusion. Similarly, Khan et
al. [18] use a set of large Prewitt filters to reliably detect oriented lines in EPIs, then diffuses these
across all light field views using occlusion-aware edges to guide a depth inpainting process [19].
However, their estimate of which edges are depth edges can be inaccurate, leading to errors in
diffusion. Yucer et al. [35] present a diffusion-based method that uses image gradients to estimate a
sparse label set. However, their method is designed to work for light fields with thousands of views.
Chen et al. [5] estimate accurate occlusion boundaries from superpixels to regularize the depth
estimation process. In general, densification methods [6, 31, 34] largely seek to recover accurate
metric depth without considering occlusion boundaries.

Many methods have sought to use data-driven methods to learn priors to avoid the cost of
dealing with a large number of images, and to overcome the loss of spatial information induced
by the spatio-angular tradeoff in lenslet images. Huang et al.’s [13] work can handle an arbitrary
number of uncalibrated views. Alperovich et al. [2] use an encoder-decoder architecture to perform
an intrinsic decomposition of a light field, and also recover disparity for the central cross-hair of
views. Jiang et al. [16, 17] fuse the disparity estimates at four corner views estimated using a deep
learning optical-flow method, and Shi et al. [25] build on this by adding a refinement network to the
fusion pipeline. Li et al. use oriented relation networks to learn depth from local EPI analysis [22].
In general, learned prior methods have been successful in estimating depth [6, 9, 26, 34]; we show
that a method without any learned priors or training data requirements can be efficient and effective.

3 Our Approach
Our goal is to estimate disparity at a sparse set of points such that their labels can be efficiently

diffused to generate occlusion-accurate depth maps. Based on this requirement we populate our
sparse set for diffusion by selecting points around light field edges (Section 3.1). However, while
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Figure 3: EPI edges provide both the location and disparity labels of a sparse point set P. Thus,
the first stage of our sparse labeling pipeline consists of EPI edge detection and line fitting. In
the second stage, we compare the direction of each EPI line with underlying image gradients
to remove noisy labels and points that are occluded in the central view. Finally, we improve the
disparity estimates of the sparse set through an entropy-based random search.

past work on image reconstruction has shown that edges are sufficient for recovering a perceptu-
ally accurate representation of the original image [8], labels at edges are poorly localized at the
intersection of surfaces (Fig. 2). Hence, we use a bi-directional diffusion process to determine the
propagation direction that generates the most accurate occlusion boundaries (Section 3.2).

3.1 Sparse Depth Labels from EPI Edges

An EPI (Epipolar-Plane Image) provides an angular slice through a 4D light field, and has a linear
structure resulting from epipolar geometry constraints: points in world space become lines in an
EPI, with the slope of each line corresponding to the depth of the point. The regularity of an EPI
makes it easy to identify salient edges and their depth at the same time.

Noise & Occlusion Filtering. For each EPI I in the central cross-hair of views, we use large
Prewitt filters [18] to recover a set L of parametric lines representing edge points in 4D space.
This process, while fast, tends to generate many false-positives. To filter these out we use a
gradient-based alignment scheme: each line l∈L is sampled at n locations to generate the set of
samples Sl ={(xi,yi)}. The line l is considered a false-positive if the local image gradient of I does
not align with the line direction at a minimum k number of samples:

∑
s∈Sl

1

(
∇I(s)(∇l)T

‖∇I(s)‖‖∇l‖
>cos(τ f )

)
<k, (1)

where 1(·) is the indicator function that counts the set of aligned samples, ∇I is the first-order
image gradient approximated using a 3×3 Sobel filter, and ∇l is perpendicular to the line. The
parameters τ f and k are constants with τ f =π/13 and k=(EPI height)/c, with 1≤c≤EPI height.
To determine the constant value c, we consider two factors: 1) the accuracy of EPI line fitting, and
2) the expected minimum number of views a point is visible in. In the case of perfect alignment
between the line and EPI gradients, c=1. This means that a line with even a single misaligned
sample is rejected. However, if a point is occluded in some views, the corresponding EPI line
will be hidden and misalignment of samples in those views is inevitable. If we set c=1 we risk
discarding such lines. We determine empirically that c=4 provides good results across the synthetic
and real world scenes, and across the narrow and wider baseline light fields that we evaluate on.
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The parametric definition of EPI lines does not carry any visibility information for a point
across light field views. We determine visibility v(l) of a point l∈L in the central view as:

v(l)=1
(

∇I(sc)(∇l)T

‖∇I(sc)‖‖∇l‖
>cos(τv)

)
, (2)

where sc is the EPI sample corresponding to the central view and τv=π/10.

Entropy-based Disparity Refinement. Notice that the number of discrete disparity values of
points inL is bounded by the number of large Prewitt filters used for EPI line fitting. Computational
efficiency considerations prevent this number from becoming too large. Moreover, numerical
precision and sampling errors result in the granularity of depth estimates plateauing beyond a
certain number of filters. Thus, to enable the calculation of sub-pixel disparity values we fine-tune
the initial estimates through random search and filtering. Let Lc={l∈L | v(l)=1}. Then for each
l∈Lc and image samples Sl ={(xi,yi)} along the line we minimize the energy function defined
by the entropy of normalized intensity values:

E(l)= ∑
s∈Sl

−P(I(s))log2(P(I(s))), (3)

where I(s) is the intensity value at s and P(s) is estimated from a histogram.
We minimize E(l) by performing a random search in the 2D parameter space defined by the

x-intercepts of l on the top and bottom edge of the EPI, l = (xt,xb): at the jth iteration of the
search we generate uniform random numbers (ot,ob)∼U(−1,1)(αt j), to generate a proposal
l j=(xt+ot,xb+ob) (Fig. 3). This is accepted with probability one if E(l j)<E(l j−1). We use t=
0.88, α= 0.15 and run the search for a maximum of 10 iterations.

The resulting disparity estimates are then refined by joint filtering in the spatial, disparity, and
LAB color space. Let P represent the spatial projection of Lc into the central view, and let ps, pd,
and pc be the spatial position, disparity, and color of a point p∈P. The filtered disparity estimate
f (pd) is calculated via a spatial neighborhood S around p:

f (pd)=
1

W ∑
q∈S
Nσs(‖ps−qs‖)Nσd(pd−qd)Nσc(‖pc−qc‖)pd,

where the normalization factor W is given by

W = ∑
q∈S
Nσs(‖ps−qs‖)Nσd(pd−qd)Nσc(‖pc−qc‖). (4)

We found that the combination σs= 10, σd = 0.1 and σc= 0.5 works for all scenes.

3.2 Occlusion Edges via Diffusion Gradients
We want to diffuse the sparse set of disparity labels in P to a dense grid of pixels D̂ such that ∇D̂
accurately represents all occlusion edges in the scene. However, this is a chicken-and-egg problem
as we need the occlusion edges to determine the diffusion direction at each p ∈ P. As Figure
2 shows, the disparity for a point lying on an EPI edge alone is not sufficient to determine the
surface direction in which to perform diffusion. Directly propagating the sparse disparity estimates
to generate a dense depth map results in significant errors around edges (supplemental Fig. 10).

As all potential occlusion edges are also depth edges, one way to determine diffusion direction
is by distinguishing depth and texture edges. Yucer et al. [35] do this by comparing the variation
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(a) (b) (c)

Figure 4: (a) Given an edge point p with image gradient ∇I(p) and depth label pd we would like
to determine which side of the edge to propagate pd. We generate images D̂[P f ] (b), and D̂[Pb]
(c) by solving a Poisson optimization problem with diffusion direction p+∇I(p) and p−∇I(p)
respectively. The correct diffusion direction (b) generates an intensity profile resembling a step
function. In the example shown, pd corresponds to the surface on the right of the edge as p+∇I(p)
generates a profile more closely resembling a step function.

in texture on both sides of an edge as the view changes: the background seen around a depth edge
will change more rapidly than the foreground, leading to a larger variation in texture along one
side of the edge. The correct diffusion direction is to the side with lower variation. This method
works for light fields with thousands of views (3000+ images), but proves ineffective on datasets
that are captured using a lenslet array or camera rig (Fig. 7). This is because the assumption fails
to hold in cases where 1. the background lacks texture, and 2. the light field has a small baseline
with relatively few views, which is common for handheld cameras. Here, occlusion is minimal
and image intensity variation is caused more by sensor noise than by background texture variation.

Our proposed solution to the depth edge identification problem works for light fields with few
views (e.g., 7×7 from a Lytro). We use S[A] to represent the image created by splatting sparse
points in a setA onto a w×h raster grid, and D to be a dense w×h disparity map. Diffusion is
formulated as a constrained quadratic optimization problem:

D̂[A]=argmin
D

∑
p∈A

Ed(p)+ ∑
(p,q)∈S

Es(p,q), (5)

where D̂[A] is the optimal disparity map given the sparsely labeled image S[A] and S is the set of all
four-connected neighbors in D. The data term Ed(p) and smoothness term Es(p,q) are defined as:

Ed(p)=λd(p)
∥∥S[A](p)−D(p)

∥∥, and Es(p,q)=λs(p)
∥∥D(p)−D(q)

∥∥, (6)

with λd(·) and λs(·) being the spatially-varying data and smoothness weights.
Equation (5) represents a standard Poisson problem, and we solve it using an implementation

of the LAHBPCG solver [27] by posing the constraints in the gradient domain as proposed by Bhat
et al. [4]. We begin by defining two sets formed from opposite offset directions ∇I(p) and−∇I(p):

P f ={p+∇I(p) ∀ p∈P}, and Pb={p−∇I(p) ∀ p∈P}, (7)

where ∇I(p) is the gradient of the central light field view at point p. Then, we solve Equation (5)
for both offset directions D̂[P f ] and D̂[Pb] using data and smoothness weights:

λd(p)=
{

106 if p∈A,
0 otherwise,

and λs(p)=
1

‖∇I(p)‖+ε
. (8)

Given both solutions, we compare the normalized depth profile around each point p∈P along
∇I(p) in D̂[P f ] and D̂[Pb]. Figure 4 shows that the profile for the correct offset direction (∇I(p)
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Figure 5: Estimated depth edge confidence λs. The bi-directional diffusion process allows us to
identify depth edges by considering the mean gradient at each pixel across the backward-forward
pass. Texture edge gradient remains low in both passes. For depth edges, the gradient is higher
in one pass. For depth edges that are not meant to be sharp, the change in depth around that region
from the bi-directional solve is small, and picking either offset leads to low error.

or−∇I(p)) more closely resembles a step function around p due to a strong depth gradient. This
is because neighboring points in the correct offset direction will have a disparity value similar to
p. The high data term together with the global smoothness constraint results in a small gradient
around p when the incorrect offset pushes it to the wrong side of the edge. We estimate the profile
around p in D̂[P f ] and D̂[Pb] by convolving the normalized value of a set Np of pixels around p
with the step filter F=[−1−1 1 1]. We define:

λe(p)= max
{D̂[P f ],D̂[Pb]}

‖Np~F‖. (9)

The final map D̂[Q] with the desired depth edges is generated using Equation (5) where Q=
{p±∇I(p) ∀ p∈P} is a sparse set of points offset in the diffusion direction determined above.
The final data and smoothness weights are:

λd(p)=ω exp(aλe(p)), and λs(p)=
1

‖∇I(p)‖‖∇D̂[P f ]+∇D̂[Pb]‖
, (10)

where λs(p) defines the depth edge confidence at every pixel (Fig. 5). The parameters in Equa-
tion (10) are set as ω=1.5×102 and a=3. These values work for all scenes.

4 Experiments
Occlusion Edge Accuracy. Qualitatively, our method produces sharper and more accurate oc-
clusion edges than state-of-the-art light field depth estimation methods. We compare our results
to three non-learning-based methods: the defocus and correspondence cues methods by Jeon
et al. [15] and Wang et al. [30], and the spinning parallelogram operator of Zhang et al. [36].
We also compare with the learning-based methods of Jiang et al. [16], Shi et al. [25], and Li et
al. [22]. We do not compare to Holynski and Kopf [11]: this uses COLMAP, which fails on
typical skew-projected light field data. In Figure 6, we show results on light fields from the EPFL
MMSPG Light-Field Dataset [24] (7×7) and the Stanford Light Field Archive [1] (17×17). The
latter dataset is captured with a camera rig and has a wider baseline than the EPFL light fields,
which come from a Lytro Illum camera. Our method was implemented in MATLAB, as were the
three traditional algorithms, and parts of Jiang et al. The network code of Jiang et al. Li et al., and
Shi et al. was implemented in Tensorflow. All CPU code was run on an AMD Ryzen Threadripper
2950X 16-Core Processor, and GPU code on an NVIDIA GeForce RTX 2080Ti.

In Figure 7, we visualize occlusion boundaries as depth gradients. While the learning-based
methods of Shi et al. and Li et al. generating spurious boundaries in textureless regions, the approach
of Yucer et al. [35] fails entirely in the absence of thousands of views. We also evaluate our edges
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quantitatively on four scenes from the synthetic HCI Light Field Dataset [12] via ground truth
disparity maps for the central view (Fig. 8 and Tab. 1). Although our Q25 error is higher, our method
has high boundary-recall precision, and a lower average mean-squared error than all baselines.

Our method works on 2D slices of a 4D light field. While jointly considering the 4D structure
may improve accuracy, edge detection and diffusion become computationally expensive. In prin-
ciple, the accuracy of our current edge detection can be improved by entropy-based refinement of
labels (Sec. 3) in both vertical and horizontal EPIs. In practice, we found no advantage of doing so.

Diffusion Gradients as Self-supervised Loss. One way to think about bidirectional diffusion
gradients is as a self-supervised loss function for depth edge localization. With this view, we
compare its performance to multi-view reprojection error—a commonly used self-supervised loss
in disparity optimization. We use the dense disparity maps D̂[P f ] and D̂[Pb] to warp all light
field views onto the central view through an occlusion-aware inverse projection. A reprojection
error map is calculated as the mean per-pixel L1 intensity error between the warped views and the
central view. The offset direction at each point p∈P is then determined based on the disparity
map that minimizes the reprojection error at the pixel location of p. Table 2 evaluates the result
of calculating Q= {p±∇I(p) ∀ p ∈ P} based on the reprojection error maps instead of our
bidirectional diffusion gradients. Our method has consistently lower MSE, indicating better edge
performance. This intuition is qualitatively confirmed by supplemental Figure 17.

5 Discussion
Light Field Editing. As our method generates accurate depth edges that allow visibility to be
handled correctly, our depth allows simple object insertion with few artifacts (Figs. 1 and 9).

Errors. Our method has consistently lower mean squared error (MSE), but suffers a higher
number of erroneous pixels (Q25). As Q25 measures the first quantile of absolute error, this
indicates that baseline methods must have more outliers: the errors that they do have must be
considerably large. This intuition is confirmed by visualizing the absolute error (supplemental
Fig. 18) which shows regions of large error around occlusion boundaries for the baseline methods.

Our method outperforms deep learning methods when they suffer from under-specification and
over-fitting. Our three learning-based baselines are trained by supervision on the synthetic HCI
dataset. When tested on real-world light fields, they produce artifacts along depth edges (Fig. 6).
This failure to generalize is especially evident with Li et al. [22] which suffers severe artifacts on
real world data (compare supplemental Figs. 16 and 19). Our method is not susceptible to these
problems, producing comparable output on both synthetic and real-world light fields. Moreover,
our method is robust to noise in the label set and low-gradient edges (supplemental Figs. 12 and 13).

In addition, our method explicitly optimizes depth-edge localization whereas the learning-based
methods are trained to minimize mean depth error over all pixels—edge and non-edge. Incor-
porating hard edge information in CNNs is generally not straightforward due to its sparsity and
non-differentiability. Shi et al. [25] include a Canny edge-based loss term in their training routine,
and consequently their performance on edges is relatively higher. Nonetheless, they are unable
to effectively differentiate depth and texture edges (Figure 7).

Hyperparameters. Supplemental Fig. 14 shows our method’s stability to hyperparameter variation.

Limitations. As we estimate depth explicitly only around potential occlusion boundaries our
method has lower accuracy in non-edge regions, reflected by the Q25 error (Table 1). A fundamen-
tal trade-off exists between dense processing of all pixels and the disambiguation of depth and color
edges, as well as run-time. We focus on the latter attributes as they are more useful for scene editing.
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Figure 6: Occlusion edges in disparity maps. Top: Stanford dataset light field captured with a
camera rig. Bottom: EPFL light field from a Lytro Illum. Left to right: Jeon et al. [15], Zhang
et al [36], Jiang et al. [16], Shi et al. [25], and ours.

Figure 7: Visualizing occlusion edges as gradients of disparity maps. Left to right: Shi et al. [25], Li
et al [22], Yucer et al. [35], and ours. Bottom row, red circle: the learning-based methods hallucinate
a strong depth edge on the plow even though it is in contact with the black ground cloth at the
same depth (supplemental Sec. A.1). Yucer et al.’s method fails in the absence of many views.

Table 1: Quantitative comparison of our method and the baselines on the synthetic HCI light fields.
The top three results are highlighted in gold , silver and bronze . MSE is the mean squared
error; Q25 is the 25th percentile of the absolute error.

Light
Field

MSE× 100 Q25 Run time (s)
[15] [36] [16] [25] [22] [30] Ours [15] [36] [16] [25] [22] [30] Ours [15] [36] [16] [25] [22] [30] Ours

Sideboard 3.21 1.02 1.96 1.12 1.89 13.3 1.03 0.61 1.15 0.37 0.48 0.66 2.46 1.22 754 537 507 72.3 77.1 635 35.5
Dino 1.73 0.36 0.47 0.43 3.28 4.19 0.45 1.07 1.40 0.25 0.31 0.50 2.02 0.85 805 531 500 59.3 76.8 609 37.7
Cotton 12.5 1.81 0.97 0.88 1.95 9.56 0.70 0.50 1.01 0.21 0.36 0.59 2.30 0.74 748 530 500 79.8 76.9 612 34.0
Boxes 16.0 7.90 11.6 8.48 4.67 12.5 7.52 0.75 1.64 0.42 0.69 0.78 2.21 1.41 736 541 491 56.2 78.0 667 34.3
Average 8.37 2.77 3.75 2.72 2.94 9.91 2.43 0.73 1.3 0.31 0.46 0.63 2.25 1.05 761 535 500 66.9 77.2 631 35.4
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Light
Field

MSE× 100 Q25
Reproj Ours Reproj Ours

Sideboard 1.39 1.03 1.20 1.22
Dino 0.64 0.45 0.81 0.85
Cotton 1.04 0.70 0.68 0.74
Boxes 9.32 7.52 1.65 1.41

Average 3.10 2.43 1.08 1.05

Table 2: Evaluating disparity maps with depth edges
identified via reprojection error and via our approach
of diffusion gradients on the synthetic HCI dataset.
MSE is the mean squared error; Q25 is the 25th
percentile of absolute error.

Figure 8: Average precision-recall curves of depth
boundaries for all baseline algorithms (HCI dataset).
Learning-based methods are shown as dotted lines.
Our approach consistently outperforms traditional
algorithms [15, 30, 36] and the learning-based method
of Jiang et al. [16], while outperforming Shi et al. [25]
and Li et al. [22] at medium-to-low recall rates.

Light Field Mean F1† Peak F1† AUC†

Zhang [36] 3.41 6.07 5.07
Jiang [16] ∗ 2.64 5.23 4.52
Shi [25] ∗ 3.29 6.85 6.30
Li [22] ∗ 3.72 5.78 4.60
Jeon [15] 2.14 3.67 3.06
Wang [30] 2.02 3.56 2.70
Ours 3.42 6.52 6.30

†×10−1 ∗ Learning-based

Table 3: Mean and Peak F1 across all thresholds, and
the area under the precision-recall Curve (AUC) for
the HCI dataset. Our method has the second-highest
F1 score and, along with the learning-based method
of Shi et al., the highest AUC.

6 Conclusion
Estimating occlusion-accurate depth maps from light fields is useful for scene editing and AR

applications. Our approach is based around a bidirectional diffusion process that can disambiguate
depth from color edges and estimate a correct depth edge offset to provide accurate gradient
information for diffusion. We also contribute a faster method to find sub-pixel disparity labels at a
sparse set of points via an entropy-based depth refinement process. The effectiveness of this strategy
is shown with results on synthetic and real world light fields, producing competitive or better mean
squared error accuracy while being significantly faster than other non-learning-based methods.

Acknowledgments. Numair Khan acknowledges an Andy van Dam PhD Fellowship, Min
H. Kim acknowledges the partial support of Korea NRF grants (2019R1A2C3007229) and Sam-
sung Electronics, and James Tompkin acknowledges support from Cognex and NSF CNS-203889.

Figure 9: Adding a BMVC’21 tarot card to the scene. Left: input scene. Center: Our editing results.
Right, clockwise from top-left: Detail of the unmodified light field image, Zhang et al. [36]’s
editing result, Shi et al. [25]’s editing result, and our result with fewer artifacts.
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A Supplemental Material
We include additional discussion covering the benefits over naive diffusion, consistency over

views within the 4D light field, tolerance to depth label errors and edge blur, robustness to hy-
perparameter variation, details of dataset preprocessing, and an example of textures within dark
backgrounds in the Stanford dataset (Section A.1). Next, we present error maps comparing re-
projection loss versus our bidirectional diffusion approach (Section A.3), and error maps versus
ground truth for the HCI dataset (Section A.4). Finally, we show additional qualitative results on
the Stanford dataset (Section A.2) and an additional editing example (Figure 20).

A.1 Additional Discussion
Naive Diffusion. In Figure 10, we demonstrate visually that naively diffusing disparity labels
can be problematic because edge localization is ambiguous.

Figure 10: Left: Naïvely diffusing disparity labels causes artifacts around edges due to ambiguity
in the localization of labels around edges. Right: Estimating the diffusion gradient removes this
ambiguity and yields sharp depth edges.

Multi-view Depth and Error. As ground truth disparity is only provided for the central view
of the HCI data set, and as the Stanford data set has no ground truth depth, we did not include
quantitative error evaluation across ‘4D’ views. Qualitatively, our method tends to produce results
that are consistent across views (Fig. 11).

Figure 11: (a) We visualize depth consistency for the highlighted epipolar line. (b) Our results
are more consistent than Shi et al. [25] across views (EPIs are scaled vertically for clarity).
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Disparity Noise and Blur Tolerance. To show our robustness, we evaluate our method on noisy
disparity labels (Fig. 12) and low-gradient edges (Fig. 13). Our method provides greater robustness
to disparity errors than naive diffusion, and provides greater robustness via MSE to low-gradient
(or blurry) edges than two learning-based baselines.

Figure 12: Robustness of our method to noise in disparity labels (Dino light field; we compare
with naive diffusion.).

Hyperparameter variation. Figure 14 demonstrates the variation in error as hyperparameter
values change. Across all parameters, our approach is stable around our declared values.

Lenslet Distortion and EPFL Lytro Dataset. The Lytro light fields in the EPFL dataset are
provided decoded as MATLAB files. In general, while our method can handle small amounts of
distortion, the EPI-based edge detection stage expectedly fails when EPI features are no longer
linear. This is true for the edge views of Lytro light fields. As such, we only use the central 7×7
views of the EPFL scenes for all experiments.

Black Backgrounds and Stanford Dataset. Our EPI edge detector aggregates information
from all three channels in CIE LAB color space, which allows it to detect even faint edges. Thus,
it captures the subtle background texture on the black cloth in the Stanford dataset examples of
single objects; typically, this detail is not visible to the naked eye. This feature of our work also
explains why we do not incorrectly detect false edges in the Lego Technic Plow scene, as shown
in Figure 7 of the main paper.

A.2 Expanded Results

We present qualitative results on the HCI dataset in Figure 16, and expanded results on the real-
world light fields of the Stanford dataset in Figure 19. Our method produce stronger depth edges
compared to the baselines, and our smoothness regularization (Equation 10, main paper) leads to
fewer artifacts in textureless regions.
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Figure 13: Robustness of our method to low-gradient edges (Dino light field; we compare to the
methods of Zhang et al. [36] and Jiang et al. [16] which have the best MSE and Q25 performance
on this light field, respectively).

Figure 14: Effect of hyperparameter values on the MSE and Q25, averaged across the HCI dataset:
k and τ f (Eqn. 1), τv (Eqn. 2), t and α (entropy-based refinement), and σs, σd and σc (Eqn. 4). The
vertical lines indicate our chosen values. The stochasticity of our algorithm means the chosen values
may not be optimal in all cases. However, the method is stable to variation around these values.

A.3 Diffusion Gradients as Self-supervised Loss

As in main paper Section 4, we compare our method to a reprojection error loss. In Figure 17,
to complement the quantitative MSE numbers in the main paper, we demonstrate the qualitative
improvement from our bidirectional diffusion gradient approach in comparison.
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Figure 15: Top: On the Stanford Bunny scene, enhanced image contrast shows the texture of the
cloth in the seemingly black background. Bottom: In EPI space (scaled vertically for clarity) the
texture appears as sloped lines, providing background disparity to methods that can exploit this
subtle information.

A.4 Error Maps
We visualize the absolute disparity error of all baselines and our method in Figure 18. The baseline
methods produce larger errors around depth edges compared to our approach. This can be seen
in the fewer regions of red for our method compared to the baselines. The corresponding dense dis-
parity maps are shown in Figure 16. Qualitatively, our results are comparable to the learning-based
baselines [16, 22, 25] with fewer extreme errors around edges.
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Figure 16: Results on the synthetic light fields of the HCI dataset. Left to right: Jeon et al. [15],
Zhang et al [36], Jiang et al. [16], Shi et al. [25], Li et al. [22], our method, and finally, the ground
truth. Qualitatively, our results are comparable to the learning-based baselines [16, 22, 25] with
fewer extreme errors around edges.
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Figure 17: Multiview reprojection error (center) as self-supervised loss for depth edge localization,
compared to our bidirectional diffusion gradients (right). We show absolute disparity error. Our
method has lower error around edges.



20 KHAN ET AL.: EDGE-AWARE BI-DIRECTIONAL DIFFUSION

Figure 18: A visualization of the absolute disparity error for all baselines. Top to bottom: Jeon
et al. [15], Zhang et al [36], Jiang et al. [16], Shi et al. [25], Li et al. [22], and our method.
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Figure 19: Results on light fields from the Stanford dataset. Top to bottom: Jeon et al. [15], Zhang
et al [36], Jiang et al. [16], Shi et al. [25], Li et al. [22] and our method.

Figure 20: Additional light field editing result. Left: input scene. Center: Our editing results. Right,
clockwise from top-left: Detail of the unmodified light field image, Zhang et al. [36]’s editing
result, Shi et al. [25]’s editing result, and our result with fewer artifacts.
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