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1. Expanded Results
To evaluate our results qualitatively, we refer the reader to

our supplemental video which demonstrates view consistency
by animating between the views. In this document, we present
additional information and experimental results to better
characterize the performance of the tested methods:
Section 2 An explanation of boundary accuracy metric

computations as is common for 2D superpixel methods.
Section 3.1 More qualitative results for central-view superpixel

boundaries across synthetic HCI and real-world EPFL Lytro
Illum datasets.

Section 3.2 Visualizations of the average number of labels per
pixel metric, which show the spatial distribution of errors in
correspondence by label reprojection into the central view.

Section 3.3 Visualizations of the achievable segmentation
accuracy metric, which shows the spatial distribution of
boundary errors.

Section 3.4 Parameter variation of weight of clustering features
in the k-means baseline and in our method. This shows that
increasing intensity and color weight increases boundary
performance but decreases view consistency performance.

Section 3.5 We show performance trends of all tested methods
as the baseline of the light field increases and the number of
views decreases.

Section 3.6 Per dataset metric scores for the HCI dataset, rather
than the average presented in the main paper. These show
the relative characteristics of the different scenes.
Finally, our open source code and precomputed results are

available at https://github.com/brownvc/lightfieldsuperpixels.

2. Superpixel Evaluation Metrics
Along with the two light field specific view consistency

metrics used to evaluate our work (self-similarity and number
of labels per pixel, as explained in the main paper), we use four
metrics from existing 2D segmentation and superpixel literature
to assess non-view specific qualities of our method: achievable
segmentation accuracy, boundary recall, undersegmentation
error, and compactness.

Achievable Segmentation Accuracy Given a ground-truth
object-level segmentation map, this metric measures the achiev-
able accuracy possible by the oversegmentation, e.g., in a later

interactive object selection stage. To compute the metric, we
assign labels to superpixels according to the ground truth object
labels from the synthetic HCI dataset [7]. The label which maxi-
mizes overlap with a superpixel across views is the assigned label.

Boundary Recall Given a ground truth boundary image G
and an algorithm’s boundary image B, we compute the fraction
R of ground truth edges that fall within a certain distance d of
at least one superpixel boundary [3]. We use d=2 chessboard
distance. True Positives (TP) is the number of boundary pixels
in G for whose exist a boundary pixel in B in range d; False
Negative (FN) is the number of boundary pixels which do not
fall within this range. Boundary recall is:

R=
TP

TP+FN
. (1)

Intuitively, the higher the boundary recall, the better the
superpixels adhere to object boundaries. However, using this
alone favors segments with long boundaries. Thus, we plot the
metric with different superpixels sizes and accompany this with
the undersegmentation error for more considered evaluation.

Undersegmentation Error A segment S in the ground truth
segmentation image G divides a superpixel P into an in and
an out part. The undersegmentation error compares segment
areas and provides the percentage of superpixels which overlap
ground-truth segment borders. Various implementations of the
undersegmentation error metric exist; we adopt the formulation
from Neubert et al. [3] which does not penalize large superpixels
that have only a small overlap with the ground truth segment:

UE=
1

NS

∑
S∈G

∑
P :P∩S 6=∅min(|Pin|,|Pout|)

|S|
. (2)

The inner sum is the error introduced by this specific combination
of ground truth segment and superpixel, depending on their
overlap.

Compactness Compactness provides a measure of superpixel
boundary curvature. We use Schick et al.’s compactness
metric [4]:
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C(S)=
∑
S∈S

4πAS|S|
|I|L2

S

, (3)

where S is the set of superpixels, |I| is the size of a single
light field view, and AS and LS are the area and perimeter of
superpixel S, respectively. We compute the median superpixel
compactness per light field for a fixed superpixel size of 20, then
average across the HCI dataset.

3. Additional Experiments

3.1. Qualitative Per-View Superpixel Boundaries

We present a single (central) view of the qualitative results for
inspection of the superpixel boundaries. First, we note that rating
the shape of a superpixel may require knowing what application
is in mind; typically boundary recall can be improved if shape
‘regularity’ is sacrificed, but regular shapes may provide a more
consistent expectation for applications with user interaction.
Clustering-based methods can pick points within this trade-off
by varying the weight of feature terms; we demonstrate this
in Figure ??. Second, we note that these results only express
boundary shape in a single view, and that view inconsistency
can appear as boundary shape error between views. Please refer
to our supplemental video for this behavior.

We show full and window cut-out superpixel results for our
method, for LFSP [8], and for our baseline method of k-means
clustering on a central view depth map computed by the method
of Wang et al. [5, 6]. For full details of the baseline k-means
method, we refer the reader to Section 4.1 of the main paper. This
baseline is also related to the recent work of Hog et al. [2] on
light field superpixels for video, which uses SLIC [1] (k-means
on a regular initialization grid, as per our method) with angular
coordinates as features (cf. our depth feature).

Figure 1 shows superpixel boundaries for the HCI dataset
across the ‘buddha’, ‘papillon’, ‘still life’, and ‘horses’ datasets.
Figures 2 and 3 shows boundaries for six images from the
real-world EPFL dataset captured with a Lytro Illum camera.

3.2. Spatial Maps for Average Number of Labels
per Pixel

Figure 4 shows the average number of labels per pixel metric
as a heatmap for the central view, where blue is low (good view
consistency) and red is high (bad view consistency). We see that
most errors occur at edges; that LFSP has more inconsistency
around edges; and that k-means is sometimes sensitive to
high-frequency pattern textures.

While this could be alleviated with clustering feature weight
parameter tuning, we note that our method does not suffer this
issue even though it uses the same component weight parameters
as our k-means baseline. This is because we cluster on EPI
segments, as outlined in section 3.2, rather than individual pixels.
Our method, effectively, performs a per-scanline segmentation
before clustering.

3.3. Spatial Maps for Achievable Accuracy

Figure 5 shows a visualization of achievable accuracy via the
ground truth semantic-level segmentation maps provided in the
HCI dataset. Red denotes where a superpixel crosses a boundary
in the ground-truth map. Generally, our approach performs better
than LFSP and comparably to our k-means baseline.

3.4. Parameter Variation

The baseline k-means-based segmentation method
clusters each pixel in the central view based on a vector
f = (x,y,d,L∗,a∗,b∗) of spatial, depth, and CIELAB color
features. For our evaluation in the paper, each feature was
assigned the same weight parameters as used in the spatio-angular
segmentation stage of our method. Figures 6-8 explore the effect
of varying the feature weights on the accuracy, compactness, and
consistency metrics for our method and the k-means baseline.
For reference, results for the LFSP [8] algorithm using both
ground-truth (LFSP-GT) and Wang et al.’s [5, 6] (LFSP-Wang)
method for disparity estimation are shown on each plot.

In the main paper, we chose a spatial feature weight of 1 to
increase accuracy. At this level, our superpixels are approximately
as compact as those of LFSP (main paper Fig. 7; supplemental
Fig. 1). However, overall, at this weight our superpixel boundaries
are sometimes less smooth than LFSP; here, compactness is not a
sufficient metric to describe the differences in boundary curvature.

As spatial feature weight ωxy increases, our superpixels
become increasingly compact and so more regular in shape
(bottom left, Fig. 7 (a)). At comparable compactness to LFSP,
we have improved boundary recall and achievable accuracy,
and lower undersegmentation error. For our paper’s research
focus—view consistency—we have lower self similarity error
and fewer labels per pixel.

3.5. Large disparity light fields

We incrementally remove views from the HCI light fields
(superpixel size = 20, ωxy = 1; Fig. 9). The performance of
our method follows the same trend as LFSP and k-means, while
meeting our goal of greater view-consistency.

3.6. HCI Per-Scene Quantitative Metrics

For completeness, we include the per-scene qualitative
measures on the HCI dataset across Figures 10 to 15. We can
see varying complexity across the datasets, e.g., papillon has
relatively easier boundaries, while horses has difficult boundary
segmentation with text in the background. Different techniques
also perform better or worse on different datasets, e.g., our
approach does well on still life, but less well on papillon due
to our weaker regularization for smooth untextured regions.
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Pascal Fua, and Sabine Süsstrunk. SLIC superpixels. page 15, 2010.
2



Figure 1: Superpixel segmentation boundaries and view consistency for the k-means baseline, LFSP [8], and our method. Disparity
maps for LFSP and k-means were calculated using the algorithm of Wang et al. [5, 6]. We include all four HCI dataset [7] light fields
for completeness; we highlight superpixels which either change shape or vanish completely across views. Our superpixels tend to
remain more consistent over view space, which can be easily seen as reduced flickering in our supplementary video. Note: Small solid
white/black regions appear when superpixels are enveloped by the boundary rendering width. k-means tends to have more of these
regions which helps it increase boundary recall, but this behavior is not useful for a superpixel segmentation method.



Figure 2: Superpixel segmentation boundaries and view consistency for the k-means baseline, LFSP [8], and our method. Disparity maps
for LFSP and k-means were calculated using the algorithm of Wang et al. [5, 6]. We include six light fields from the EPFL Lytro light
field dataset [9], with three more in Figure 3. Our superpixels tend to remain more consistent over view space, which can be easily
seen as reduced flickering in our supplementary video. Note: Small solid white regions appear when superpixels are enveloped by the
boundary rendering width. k-means tends to have more of these regions which helps it increase boundary recall, but this behavior is not
useful for a superpixel segmentation method.



Figure 3: Superpixel segmentation boundaries and view consistency for the k-means baseline, LFSP [8], and our method. Disparity maps
for LFSP and k-means were calculated using the algorithm of Wang et al. [5, 6]. We include six light fields from the EPFL Lytro light
field dataset [9], with three more in Figure 2. Our superpixels tend to remain more consistent over view space, which can be easily
seen as reduced flickering in our supplementary video. Note: Small solid white regions appear when superpixels are enveloped by the
boundary rendering width. k-means tends to have more of these regions which helps it increase boundary recall, but this behavior is not
useful for a superpixel segmentation method.



Figure 4: Average number of labels per pixel metric, shown as a heatmap for the central view where blue is low (good view consistency)
and red is high (bad view consistency). From left to right, the images are: input, k-means, LFSP, and our result. Both k-means and LFSP
use the Wang et al. generated depth map. We can see that most errors occur at edges; that LFSP has more edge inconsistency; and that
k-means is sometimes sensitive to high-frequency pattern textures.
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Figure 5: A visualization of the achievable segmentation accuracy in the central light field view. Red regions are superpixel sections
which cross ground truth object segmentation boundaries. All other colors denote object labels.



(a) Increasing the CIELAB color weight improves performance on traditional 2D superpixel metrics but decreases compactness, while
slightly degrading performance on the light field specific metrics. Note that, as the average labels per pixel metric does not include
non-central occluded pixels, this baseline performs strongly (as discussed in the main paper).

(b) A larger CIELAB color weight generates less compact superpixels.

Figure 6: An evaluation of the effect of feature weight on clustering, as a demonstration of the trade-off between boundary following and
spatial/depth regularity. The superpixel size is fixed at 20.



(a) Increasing the spatial feature weight improves compactness, while degrading performance on traditional 2D superpixel metrics.
Performance on light field specific metrics is slightly improved. This improvement may be attributed to the smaller perimeters of more
compact superpixels: fewer edge pixels implies fewer sub-pixel projection errors at superpixel boundaries.

(b) A larger spatial weight generates more compact superpixels, at the expense of boundary accuracy.

Figure 7: An evaluation of the XY spatial feature weight on clustering. The superpixel size is fixed at 20.



(a) When using ground-truth disaprity for the k-means baseline, we observe that increasing the weight of the disparity feature improves
performance on traditional metrics, while degrading performance on light field specific metrics by a very small amount. Our results
follow a similar trend. However, the results for the k-means baseline with Wang et al.’s disparity are more unpredictable. This shows that
the k-means baseline is sensitive to errors in disparity estimation.

(b) A larger CIELAB color weight generates less compact superpixels.

Figure 8: An evaluation of the disparity feature weight on clustering. The superpixel size is fixed at 20.



Figure 9: Performance on large disparity light fields. As the number of views decreases and the baseline increases, the performance
trends found at 9×9 views tend to be maintained.

Figure 10: Self-similarity error measured over all light fields in the HCI dataset. This error provides a measure of the consistency of
superpixel shape across views; smaller errors indicate greater consistency.



Figure 11: The average number of labels per pixel measured over all light fields in the HCI dataset. Smaller values indicate that a greater
number of pixels have a consistent label across views.

Figure 12: The achievable segmentation accuracy measured over all light field in the HCI dataset. The achievable segmentation accuracy
describes how well the segments align with the ground truth labels. Hence, it provides a measure of the percentage of correctly labeled
pixels. While ASA is not the same as object segmentation accuracy, it provides an upper bound on the accuracy of an object-level
segmentation based on the current oversegmentation.

Figure 13: Boundary recall measured over all light fields in the HCI dataset. Boundary recall measures the fraction of ground truth edges
which fall within a distance d of one or more super pixel boundary. Intuitively, the higher the boundary recall, the better the superpixels
adhere to object boundaries.



Figure 14: Undersegmentation Error measured over all light fields in the HCI dataset. Undersegmentation error measures the percentage
of superpixels that extend over ground truth segment borders

Figure 15: Compactness measured over all superpixels in the light fields of the HCI dataset. The compactness is related to the ratio of
area to perimeter, and larger values signify smoother superpixel boundaries.


