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A concurrent object is a data object shared by concurrent processes. Linearizability is a correctness 
condition for concurrent objects that exploits the semantics of abstract data types. It permits a high 
degree of concurrency, yet it permits programmers to specify and reason about concurrent objects 
using known techniques from the sequential domain. Linearizability provides the illusion that each 
operation applied by concurrent processes takes effect instantaneously at some point between its 
invocation and its response, implying that the meaning of a concurrent object’s operations can be 
given by pre- and post-conditions. This paper defines linearizability, compares it to other correctness 
conditions, presents and demonstrates a method for proving the correctness of implementations, and 
shows how to reason about concurrent objects, given they are linearizable. 
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D.2.1 [Software Engineering]: Requirements/Specifications; D.3.3 [Programming Lan- 
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Programs-pre- and post-conditions, specification techniques 

General Terms: Theory, Verification 

Additional Key Words and Phrases: Concurrrency, correctness, Larch, linearizability, multi- 
processing, serializability, shared memory, specification 

1. INTRODUCTION 

1 .l Overview 

Informally, a concurrent system consists of a collection of sequential processes 
that communicate through shared typed objects. This model encompasses both 
message-passing architectures in which the shared objects are message queues, 

A preliminary version of this paper appeared in the Proceedings of the 14th ACM Symposium on 
Principles of Programming Languages, January 1987 [21]. 
This research was sponsored by IBM and the Defense Advanced Research Projects Agents (DOD), 
ARPA order 4976 (Amendment 20), under contract F33615-87-C-1499, monitored by the Avionics 
Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB. Additional spport 
for J. M. Wing was provided in part by the National Science Foundation under grant CCR-8620027. 
The views and conclusions contained in this document are those of the authors and should not be 
interpreted as representing the official policies, either expressed or implied, of the Defense Advanced 
Research Projects Agency or the US Government. 
Authors’ address: Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 
15213-3890. 
Permission to copy without fee all or part of this material is granted provided that the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by permission of the Association 
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific 
permission. 
0 1990 ACM 0164-0925/90/0700-0463 $01.50 

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 3, July 1990, Pages 463-492. 



464 l M. Herlihy and J. Wing 

and shared-memory architectures in which the shared objects are data structures 
in memory. Each object has a type, which defines a set of possible values and a 
set of primitive operations that provide the only means to create and manipulate 
that object. In a sequential system, where an object’s operations are invoked one 
at a time by a single process, the meaning of the operations can be given by pre- 
and postconditions. In a concurrent system, however, an object’s operations can 
be invoked by concurrent processes, and it is necessary to give a meaning to 
possible interleavings of operation invocations. 

A concurrent computation is linearizable if it is “equivalent,” in a sense formally 
defined in Section 2, to a legal sequential computation. We interpret a data type’s 
(sequential) axiomatic specification as permitting only linearizable interleavings. 
Instead of leaving data uninterpreted, linearizability exploits the semantics of 
abstract data types; it permits a high degree of concurrency, yet it permits 
programmers to specify and reason about concurrent objects using standard 
verification techniques. Unlike alternative correctness conditions such as sequen- 
tial consistency [31] or serializability [40], linearizability is a local property: a 
system is linearizable if each individual object is linearizable. Locality enhances 
modularity and concurrency, since objects can be implemented and verified 
independently, and run-time scheduling can be completely decentralized. Linear- 
izability is also a nonblocking property: processes invoking totally-defined oper- 
ations are never forced to wait. Nonblocking enhances concurrency and implies 
that linearizability is an appropriate condition for systems for which real-time 
response is critical. Linearizability is a simple and intuitively appealing correct- 
ness condition that generalizes and unifies a number of correctness conditions 
both implicit and explicit in theliterature. 

Using axiomatic specifications and our notion of linearizability, we can reason 
about two kinds of problems: 

(1) We reason about the correctness of linearizable object implementations using 
new techniques that generalize the notions of representation invariant and 
abstraction function [18, 251 to the concurrent domain. 

(2) We reason about computations that use linearizable objects by transforming 
assertions about concurrent computations into simpler assertions about their 
sequential counterparts. 

Section 2 presents our model of a concurrent system and the formal definition 
of linearizability. Section 3 discusses linearizability’s locality and nonblocking 
properties and compares it to other correctness conditions. Section 4 presents 
our proof technique for reasoning about implementations of linearizable objects, 
and illustrates this technique on two novel implementations of a highly concur- 
rent queue. Section 5 presents examples of reasoning about concurrent registers 
and queues, given that they are linearizable. Section 6 surveys some related work 
and discusses the significance of linearizability as a correctness condition. 

1.2 Motivation 

When defining a correctness condition for concurrent objects, two requirements 
seem to make intuitive sense: First, each operation should appear to “take effect” 
instantaneously, and second, the order of nonconcurrent operations should be 
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Fig. 1. FIFO queue histories. 

preserved. These requirements allow us to describe acceptable concurrent behav- 
ior directly in terms of acceptable sequential behavior, an approach that simplifies 
both formal and informal reasoning about concurrent programs. We capture 
these notions formally in the next section; here we informally review some 
examples to illustrate what we do and do not consider intuitively acceptable 
concurrent behavior. Our examples employ a first in, first out (FIFO) queue, a 
simple data type that provides two operations: Enq inserts an item in the queue, 
and Deq returns and removes the oldest item from the queue. Figure 1 shows 
four different ways in which a FIFO queue might behave when manipulated by 
concurrent processes. Here, a time axis runs from left to right, and each operation 
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(b) Ha (not acceptable). 

Fig. 2. Register histories. 

is associated with an interval. Overlapping intervals indicate concurrent opera- 
tions. We use “E(x) A” (“D(X) A”) to stand for the enqueue (dequeue) operation 
of item x by process A. 

The behavior shown in H1 (Figure la) corresponds to our intuitive notion of 
how a concurrent FIFO queue should behave. In this scenario, processes A and 
B concurrently enqueue x and y. Later, B dequeues x, and then A dequeues y and 
begins enqueuing z. Since the dequeue for x precedes the dequeue for y, the FIFO 
property implies that their enqueues must have taken effect in the same order. 
In fact, their enqueues were concurrent, thus they could indeed have taken effect 
in that order. The uncompleted enqueue of z by A illustrates that we are interested 
in behaviors in which processes are continually executing operations, perhaps 
forever. 

The behavior shown in HP, however, is not intuitively acceptable. Here, it is 
clear to an external observer that x was enqueued before y, yet y is dequeued 
without x having been dequeued. To be consistent with our informal require- 
ments, A should have dequeued x. We consider the behavior shown in H3 to be 
acceptable, even though x is dequeued before its enqueuing operation has re- 
turned. Intuitively, the enqueue of x took effect before it completed. Finally, Hq 
is clearly unacceptable because y is dequeued twice. 

To decide whether a concurrent history is acceptable, it is necessary to take 
into account the object’s intended semantics. For example, acceptable concurrent 
behaviors for FIFO queues would not be acceptable for stacks, sets, directories, 
etc. When restricted to register objects providing read and write operations, our 
intuitive notion of acceptability corresponds exactly to the notion used in Misra’s 
careful axiomatization of concurrent registers [35]. Our approach can be thought 
of as generalizing Misra’s approach to objects with richer sets of operations. For 
example, H5 in Figure 2a is acceptable, but H6 is not (examples are taken from 
[35]). These two behaviors differ at one point: In Hg, B reads a 0, and in Hg, 
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B reads a 1. The latter is intuitively unacceptable because A did a previous read 
of a 1, implying that B’s write of 1 must have occurred before A’s read. C’s 
subsequent write of 0, though concurrent with B’s write of 1, strictly follows A’s 
read of 1. 

In the next section, we formalize the intuition presented here by defining 
the notion of linearizability to encompass those histories we have argued are 
intuitively acceptable. 

2. SYSTEM MODEL AND DEFINITION OF LINEARIZABILITY 

2.1 Histories 

Informally, a concurrent system consists of a collection of sequential threads of 
control called processes that communicate through shared data structures called 
objects. Each object has a unique name and a type. The type defines a set of 
possible values, and a set of primitive operations that provide the only means to 
manipulate that object. Processes are sequential: each process applies a sequence 
of operations to objects, alternately issuing an invocation and then receiving the 
associated response. (Dynamic process creation can be modeled simply by treating 
each child process as an additional process that executes no operations before 
the fork or after the join.) 

Formally, an execution of a concurrent system is modeled by a history, which 
is a finite sequence of operation invocation and response events. A subhistory of 
a history H is a subsequence of the events of H. An operation invocation is 
written as (x op(args*) A), where x is an object name, op is an operation name, 
args* denotes a sequence of argument values, and A is a process name. The 
response to an operation invocation is written as (x term(res*) A), where term 
is a termination condition, and res* is a sequence of results. We use “Ok” for 
normal termination. A response matches an invocation if their object names 
agree and their process names agree. An invocation is pending in a history if 
no matching response follows the invocation. If H is a history, complete(H) is 
the maximal subsequence of H consisting only of invocations and matching 
responses. 

A history H is sequential if: 

(1) The first event of H is an invocation. 
(2) Each invocation, except possibly the last, is immediately followed by a 

matching response. Each response is immediately followed by a matching 
invocation. 

A history that is not sequential is concurrent. 
A process subhistory, H 1 P (H at P), of a history H is the subsequence of all 

events in H whose process names are P. An object subhistory H 1 x is similarly 
defined for an object x. Two histories H and H’ are equivalent if for every process 
P, H 1 P = H’ ) P. A history H is well-formed if each process subhistory H ) P of 
H is sequential. All histories considered in this paper are assumed to be well- 
formed. Notice that whereas process subhistories of a well-formed history are 
necessarily sequential, object subhistories are not. 
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An operation, e, in a history is a pair consisting of an invocation, inv(e), and 
the next matching response, res(e). We denote an operation by [q inv/res A], 
where q is an object and A a process. An operation e. lies within another operation 
e, in H if inu (e,) precedes inu (eo) and res (eo) precedes res (ei) in H. Angle brackets 
for events and square brackets for operations are omitted where they would 
otherwise be unnecessarily confusing; object and process names are omitted 
where they are clear from context. 

For example, H, of Figure 1 is the following well-formed history for a FIFO 
queue q. 

Q Endx) A 
4 EwW B 
q Ok( 1 B 
q W 1 A 
q De4 1 B 
q Ok(x) B 
q Ded 1 A 
q Ok(y) A 
q Endz) A 

The first event in H, is an invocation of Enq with argument x by process 
A, and the fourth event is the matching response with termination condition 
Ok and no results. The [q Enq(y)/Ok( ) B] operation lies within the 
[q Enq(x)/Ok( ) A] operation. The subhistory, complete (H,), is H1 with the last 
(pending) invocation of Enq removed. Reordering the first two events yields one 
of many histories equivalent to H,. 

A set S of histories is prefix-closed if, whenever H is in S, every prefix of H is 
also in S. A single-object history is one in which all events are associated with 
the same object. A sequential specification for an object is a prefix-closed set of 
single-object sequential histories for that object. A sequential history H is legal 
if each object subhistory H ] x belongs to the sequential specification for x. Many 
conventional techniques exist for defining sequential specifications. In this paper, 
we use the axiomatic style of Larch [19], in which an object’s sequential history 
is summarized by a value, which (informally speaking) reflects the object’s state 
at the end of the history. These values are used in axioms giving the pre- and 
postconditions on the objects operations. For example, axioms for the Enq and 
Deq operations for FIFO queues are shown in Figure 3. The post-condition for 
Enq states that on termination, the new queue value is the old queue value with 
e inserted. The specification for Deq states that applying that operation to a 
non-empty queue removes the first item from the queue. An operation is total if, 
like Enq, it is defined for every object value, otherwise it is partial, like Deq 
which is left undefined for the empty queue. 

2.2 Definition of Linearizability 

A history H induces an irreflexive partial order <u on operations: 

e. <u e, if res(e,) precedes inv(el) in H. 

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 3, July 1990. 



Linearizability: A Correctness Condition for Concurrent Objects l 469 

Axiom E: 

WeI 
EnqW / Ok0 
(4’ = Wq, e)) 

Fig. 3. Axioms for queue operations. 
Axiom D: 

(9 f Ill 
DeqO /Ok(e) 

(q’ = rest(q) A e = first(q)) 

(Where appropriate, subscripts on partial orders are omitted). Informally, <n 
captures the “real-time” precedence ordering of operations in H. Operations 
unrelated by <n are said to be concurrent. If H is sequential, <n is a total order. 

A history H is linearizable if it can be extended (by appending zero or more 
response events) to some history H’ such that: 

Ll: complete(H’) is equivalent to some legal sequential history S, and 
L2: <H 2 CS. 

Informally, extending H to H’ captures the notion that some pending invoca- 
tions may have taken effect even though their responses have not yet been 
returned to the caller (as in the pending Enq in history H, in Figure 1). Restricting 
attention to complete(H’) captures the notion that the remaining pending 
invocations have not yet had an effect. Ll states that processes act as if they 
were interleaved at the granularity of complete operations. L2 states that this 
apparent sequential interleaving respects the real-time precedence ordering of 
operations. 

We call S a linearization of H. Nondeterminism is inherent in the notion of 
linearizability: (1) For each H, there may be more than one extension H’ 
satisfying the two conditions, Ll and L2, and (2) for each extension H’, there 
may be more than one linearization S. A linearizable object is one whose concur- 
rent histories are linearizable with respect to some sequential specification. 

2.3 Queue Examples Revisited 

Let “ . ” denote concatenation of events. The history H1 shown in Figure 1 is 
linearizable, because H, . (q Ok( ) A) is equivalent to the following sequential 
history: 

q h(x) A (History Hi) 
q ON ) A 
q End B 
q Ok( 1 B 
q Ded ) B 
q Ok(x) B 
q De4 1 A 
q Ok(y) A 
q End4 A 
q W 1 A 
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Hz is not linear&able: 

q h(x) A 
q W 1 A 
q Endy) B 
q De4 1 A 
q W 1 B 
q Ok(y) A 

(History HJ 

because the complete Enq operation of x precedes the Enq of y, but y is dequeued 
before x. 

Linearizability does not rule out histories such as H3, in which an operation 
“takes effect” before its return event occurs: 

q EnqW A 
q De4 1 B 
q 0%) B 

(History HJ 

H, can be extended to Hi = H3 . (q Ok( ) A), which is equivalent to the sequential 
history in which the enqueue operation occurs before the dequeue. 

Finally, H4, 

q J%(x) A 
q Endy) B 
q ON 1 A 
q ON 1 B 
q Ded ) A 
q Ded 1 C 
q Ok(y) A 
q Ok(y) C 

(History HJ 

is not linearizable because y is enqueued once but dequeued twice, and hence H, 
is not equivalent to any sequential FIFO queue history. 

3. PROPERTIES OF LINEARIZABILITY 

This section proves that linearizability is a local and nonblocking property, and 
discusses the differences between it and other correctness conditions. 

3.1 Locality 

A property P of a concurrent system is said to be local if the system as a whole 
satisfies P whenever each individual object satisfies P. Linearizability is a local 
property: 

THEOREM 1. H is linearizable if and only if, for each object x, H 1 x is linearizable. 

PROOF. The “only if” part is obvious. 
For each X, pick a linearization of H 1~. Let R, be the set of responses appended 

to H 1 x to construct that linearization, and let cX be the corresponding lineari- 
zation order. Let H’ be the history constructed by appending to H each response 
in R,. We will construct a partial order < on the operations of complete(H’) 
such that: (1) For each X, <X G <, and (2) <n C <. Let S be the sequential history 
constructed by ordering the operations of complete(H’) in any total order that 
extends <. Condition (1) implies that S is legal, hence that Ll is satisfied, and 
Condition (2) implies that L2 is satisfied. 
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Let < be the transitive closure of the union of all <X with <n. It is immediate 
from the construction that < satisfies Conditions (1) and (2), but it remains to 
be shown that < is a partial order. We argue by contradiction. If not, then there 
exists a set of operations el, . . . , e,, such that e, < e2 < . . . < e,, e, < el, and 
each pair is directly related by some <X or by <H. Choose a cycle whose length is 
minimal. 

Suppose all operations are associated with the same object X. Since <x is a 
total order, there must exist two operations ei-1 and ei such that ei-1 < n ei and 
ei <x ei-1, contradicting the linearizability of x. 

The cycle must therefore include operations of at least two objects. By rein- 
dexing if necessary, let el and e2 be operations of distinct objects. Let z be the 
object associated with el. We claim that none of e2, . . . , e, can be an operation 
of X. The claim holds for e2 by construction. Let ei be the first operation in 
e3, . . . . e, associated with x. Since ei-1 and ei are unrelated by <%, they must be 
related by <n; hence the response of ei-1 precedes the invocation of ei. The 
invocation of e2 precedes the response of ei-1, since otherwise ei-1 <H e2, yielding 
the shorter cycle e2, . . . , ei-1. Finally, the response of el precedes the invocation 
of e2, since e, <n e2 by construction. It follows that the response to el precedes 
the invocation of ei, hence el <n ei, yielding the shorter cycle el, ei, . . . , e,. 

Since e, is not an operation of x, but e, < el, it follows that e, <n e,. But 
el <u e2 by construction, and because < H is transitive, e, <n e2, yielding the 
shorter cycle e2, . . . , e,, the final contradiction. II 

Henceforth, we need consider only single-object histories. 
Locality is important because it allows concurrent systems to be designed and 

constructed in a modular fashion; linearizable objects can be implemented, 
verified, and executed independently. A concurrent system based on a nonlocal 
correctness property must either rely on a centralized scheduler for all objects, 
or else satisfy additional constraints placed on objects to ensure that they follow 
compatible scheduling protocols. Locality should not be taken for granted; as 
discussed below, the literature includes proposals for alternative correctness 
properties that are not local. 

3.2 Blocking versus Nonblocking 

Linearizability is a nonblocking property: a pending invocation of a totally- 
defined operation is never required to wait for another pending invocation to 
complete. 

THEOREM 2. Let inv be an invocation of a total operation. If (x inv P) is 
a pending invocation in a linearizable history H, then there exists a response 
(x res P) such that H . (x res P) is linearizable. 

PROOF. Let S be any linearization of H. If S includes a response (x res P) to 
(x inv P), we are done, since S is also a linearization of H e (x res P). Otherwise, 
(x inv P) does not appear in S either, since linearizations, by definition, include 
no pending invocations. Because the operation is total, there exists a response 
(x res P) such that 

S’ = S - (-2 inv P) . (x res P) 
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is legal. S’, however, is a linearization of H . (X res P), and hence is also a 
linearization of H. 0 

This theorem implies that linearizability per se never forces a process with a 
pending invocation of a total operation to block. Of course, blocking (or even 
deadlock) may occur as artifacts of particular implementations of linearizability, 
but is is not inherent to the correctness property itself. (Techniques for con- 
structing nonblocking implementations of linearizable objects are discussed 
elsewhere [23].) This theorem suggests that linearizability is an appropriate 
correctness condition for systems where concurrency and real-time response 
are important. We shall see that alternative correctness conditions, such as 
serializability, do not share this nonblocking property. 

The nonblocking property does not rule out blocking in situations where it is 
explicitly intended. For example, it may be sensible for a process attempting to 
dequeue from an empty queue to block, waiting until another process enqueues 
an item. Our queue specification captures this intention by making Deq’s speci- 
fication partial, leaving it undefined for the empty queue. The most natural 
concurrent interpretation of a partial sequential specification is simply to wait 
until the object reaches a state in which the operation is defined. 

3.3 Comparison to Other Correctness Conditions 

Lamport’s notion of sequential consistency [31] requires that a history be equiv- 
alent to a legal sequential history. Sequential consistency is weaker than linear- 
izability, because it does not require the original history’s precedence ordering 
to be preserved. For example, history H7 is sequentially consistent, but not 
linearizable: 

q End4 A 
q Ok( 1 A 
q Endy) B 
q ON 1 B 
q De4 1 B 
q Ok(y) B 

(History H7) 

Sequential consistency is not a local property. Consider the following history 
H8, in which processes A and B operate on queue objects p and q. 

P End4 A (History H8) 
P ON 1 A 
q Endy) B 
q W ) B 
q Enqbd A 
q ON 1 A 
P Enqb) B 
POkOB 
P De4 1 A 
P Ok(y) A 
q D-d ) B 
q Ok(x) B 

It is easily checked that H, ] p and H8 ] q are sequentially consistent, but Hs itself 
it not. 
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Much work on databases and distributed systems uses serializability [40] as 
the basic correctness condition for concurrent computations.l In this model, a 
transaction is a thread of control that applies a finite sequence of primitive 
operations to a set of objects shared with other transactions.’ A history is 
serializable if it is equivalent to one in which transactions appear to execute 
sequentially, i.e., without interleaving. A (partial) precedence order can be defined 
on non-overlapping pairs of transactions in the obvious way. A history is strictly 
serializable if the transactions’ order in the sequential history is compatible with 
their precedence order. Strict serializability is ensured by some synchronization 
mechanisms, such as two-phase locking [12], but not by others, such as multi- 
version timestamp schemes [41], or schemes that provide high levels of availa- 
bility in the presence of network partitions [22]. 

Linearizability can be viewed as a special case of strict serializability where 
transactions are restricted to consist of a single operation applied to a single 
object. Nevertheless, this single-operation restriction has far-reaching practical 
and formal consequences, giving linearizable computations a different flavor from 
their serializable counterparts. An immediate practical consequence is that con- 
currency control mechanisms appropriate for serializability are typically inap- 
propriate for linearizability because they introduce unnecessary overhead and 
place unnecessary restrictions on concurrency. For example, the queue imple- 
mentation given below in Section 4 is much more efficient and much more 
concurrent than an analogous implementation using conventional serializability- 
oriented techniques such as two-phase locking or multi-version timestamping. 

One important formal difference between linearizability and serializability is 
that neither serializability nor strict serializability is a local property. For 
example, in history Hs shown above, if we interpret A and B as transactions 
instead of processes, then it is easily seen that both Hs ] p and Hs ] q are strictly 
serializable but He is not. (Because A and B overlap at each object, they are 
unrelated by transaction precedence in either subhistory.) Moreover, since A and 
B each dequeues an item enqueued by the other, H8 is not even serializable. A 
practical consequence of this observation is that implementors of objects in 
serializable systems must rely on global conventions to ensure that all objects’ 
concurrency control mechanisms are compatible with one another. For example, 
it is well known that two-phase locking is incompatible with multiversion 
timestamping [46]. 

Another important formal difference is that serializability places more rigorous 
restrictions on concurrency. Serializability is inherently a blocking property: 
under certain circumstances, a transaction may be unable to complete a pending 
operation without violating serializability, even if the operation is total. Such a 
transaction must be rolled back and restarted, implying that additional mecha- 
nisms must be provided for that purpose. For example, consider the following 

i In practice, serializability is almost always provided in conjunction with failure atomicity, ensuring 
that a transaction unable to execute to completion will be automatically rolled back. There is no 
counterpart to failure atomicity for linearizability. 
* Some models permit transactions to be nested, or to encompass concurrent threads of control. Our 
remarks about locality and nonblocking hold for these more elaborate models as well. 
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history involving two register objects: x and y, and two transactions: A and B. 

x Read( ) A (History H,) 
y Read( ) B 
x Ok(O) A 
Y Ok(O) B 
x Write(l) B 
y Write(l) A 

Here, A and B respectively read x and y and then attempt to write new values to 
y and x. It is easy to see that both pending invocations cannot be completed 
without violating serializability. Although different concurrency control mecha- 
nisms would resolve this conflict in different ways, such deadlocks are not an 
artifact of any particular mechanism; they are inherent to the notion of serializ- 
ability itself. By contrast, we have seen that linearizability never forces processes 
executing total operations to wait for one another. 

Perhaps the major practical distinction between serializability and lineariza- 
bility is that the two notions are appropriate for different problem domains. 
Serializability is appropriate for systems such as databases in which it must be 
easy for application programmers to preserve complex application-specific invar- 
iants spanning multiple objects. A general-purpose serialization protocol, such as 
two-phase locking, enables programmers to reason about transactions as if they 
were sequential programs (setting aside questions of deadlock or performance). 
Linearizability, by contrast, is intended for applications such as multiprocessor 
operating systems in which concurrency is of primary interest, and where pro- 
grammers are willing to apply special-purpose synchronization protocols, and to 
reason explicitly about the effects of concurrency. 

4. VERIFYING THAT IMPLEMENTATIONS ARE LINEARIZABLE 

In this section, we motivate and describe our method for verifying implementa- 
tions of linearizable objects. We begin with our definition of when an implemen- 
tation is correct. In order to prove correctness, we reexamine the notions of 
representation invariant and abstraction function (Section 4.2), and use their 
new interpretation in our proof method (Section 4.3). 

4.1 Definition of Correctness 

An implementation is a set of histories in which events of two objects, a 
representation (or rep) object REP of type REP and an abstract object ABS of type 
ABS, are interleaved in a constrained way: for each history H in the implemen- 
tation, (1) the subhistories H ( REP and H ( ABS satisfy the usual well-formedness 
conditions; and (2) for each process P, each rep operation in H ] P lies within an 
abstract operation in H ] P. Informally, an abstract operation is implemented by 
the sequence of rep operations that occur within it. 

An implementation is correct with respect to the specification of ABS if for 
every history H in the implementation, H ( ABS is linearizable. 

4.2 Representation Invariant and Abstraction Function 

We first review how to verify the correctness of sequential objects [18, 251. In 
the sequential domain, an implementation consists of an abstract type ABS, the 
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type being implemented, and a representation type REP, the type used to 
implement ABS. The subset of REP values that are legal representations 
is characterized by a predicate called the rep invariant, I: REP + BOOL. 
The meaning of a legal representation is given by an abstraction function, 
A: REP + ABS, defined for representation values that satisfy the invariant. 

An abstract operation (Y is implemented by a sequence, p, of rep operations 
that carries the rep from one legal value to another, perhaps passing through 
intermediate values where the abstraction function is undefined. The rep invar- 
iant is thus part of both the precondition and postcondition for each operation’s 
implementation; it must be satisfied between abstract operations, although it 
may be temporarily violated while an operation is in progress. An implementation, 
p, of an abstract operation, a, is correct if there exists a rep invariant, I, and 
abstraction function, A, such that whenever p carries one legal rep value r to 
another r’, CY carries the abstract value from A(r) to A(r’). 

This verification technique must be substantially modified before it can be 
applied to concurrent objects: we change both the meaning of the rep invariant 
and the signature of the abstraction function. To help motivate these changes 
and to make our discussion as concrete as possible, consider the following highly 
concurrent implementation of a linearizable FIFO queue. The queue’s represen- 
tation is a record with two components: items is an array having a low bound of 
1 and a (conceptually) infinite high bound, and buck is the (integer) index of the 
next unused position in items. 

rep = record [back: int, items: array [item]] 

Each element of items is initialized to a special null value, and back is initialized 
to 1. Enq and Deq are implemented as follows: 

Enq = proc (q: queue, x: item) 
i: int := INC(q.back) %Allocate a new slot. 
STORE (q.items[i], x) % Fill it. 
end Enq 

Deq = proc (q: queue) returns (item) 
while true do 

range: int := READ(q.back) - 1 

for i: int in 1 . . range do 
x: item := SWAP(q.items[i], null) 
if x -= null then return(x) end 
end 

end 
end Deq 

An Enq execution occurs in two distinct steps, which may be interleaved with 
steps of other concurrent operations: an array slot is reserved by atomically 
incrementing back, and the new item is stored in items.3 Deq traverses the array 
in ascending order, starting at index 1. For each element, it atomically swaps 
null with the current contents. If the value returned is not equal to null, 

3 Like the FETCH-AND-ADD operation [30], INC returns the value of its argument from before the 
invocation, not the newly incremented value. 
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Deq returns that value, otherwise it tries the next slot. If the index reaches 
q.back - 1 without encountering a nonnull element, the operation is restarted. 
(Note that there is a small chance that a dequeuing process may starve if it is 
continually overtaken by other dequeuing processes. Any queue item, however, 
will eventually be dequeued as long as there are active dequeuers.) All atomic 
steps can be interleaved with steps of other operations. An interesting aspect of 
this implementation is that there is no mutual exclusion: no process can delay 
other processes by halting in a critical section. As an aside, we note that this 
implementation could be rendered more efficient by reclaiming slots from which 
items have been dequeued, reducing both the overall size of the rep of the queue 
and the cost of dequeuing an item. Such optimizations, however, would add 
nothing to our discussion of verification, so we ignore them in this paper. 

The first difficulty arises when trying to define a rep invariant for this 
implementation. For sequential objects, the rep invariant must be satisfied at the 
start and tinish of each abstract operation, but it may be violated temporarily 
while an operation is in progress. For concurrent objects, however, it no longer 
makes sense to view the object’s representation as assuming meaningful values 
only between abstract operations. For example, our queue implementation per- 
mits operations to be in progress at every instant, thus the object may never be 
“between operations.” When implementing a queue operation, one must be 
prepared to encounter a rep value that reflects the incomplete effects of concur- 
rent operations, a problem that has no analog in the sequential domain. To 
assign a meaning to such transient values, the abstraction function must be 
defined continually, not just between abstract operations. As a consequence, the 
rep invariant must be preserved by each rep operation in the sequence imple- 
menting each abstract operation. 

Another, more subtle difficulty arises when attempting to define an abstraction 
function. One natural approach is the following, proposed by Lamport [32]. A 
(continually defined) abstraction function A is chosen so that each abstract 
operation “takes effect” instantaneously at some step in its execution. In our 
queue example, when a process enqueues an item X, exactly one of the opera- 
tions implementing the Enq would carry the rep from r to r’, where A(r’) = 
ins(A(r), x). Surprisingly, perhaps, this technique fails to work for our queue 
implementation. To see why, we assume that such a function A exists, and we 
derive a contradiction. Consider the following scenario. Processes A and B invoke 
concurrent Enq operations, respectively enqueuing x and y. By incrementing the 
back counter, A reserves array position 1 and B reserves array position 2. B stores 
y in the array and returns. This computation is represented by the following 
history, where rep operations are indented and shown in upper-case. 

End4 A 
EnqW B 

INC(q.back) A 
OK(l) A 
INC(q.back) B 
OK(2) B 
STORE(q.items[2], y) B 
OK( 1 B 

ON 1 B 
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Let r be the rep value after this history. Because B’s Enq operation has 
returned, A(r) must reflect B’s Enq. Because A’s Enq operation is still in progress, 
A(r) may or may not reflect A’s Enq, depending on how A is defined. Thus, since 
no other operations have occurred, A(r) must be one of [y], [y, n], or [x, y], where 
the leftmost item is at the head of the queue. 

We now derive a contradiction by showing that each of these values is 
contradicted by some future computation. First, assume A(r) is [x, y]. If we now 
suspend A and allow a third process C to execute a Deq, C’s Deq will return y, 
contradicting our assumption. 

De4 1 C 
READ(q.back) C 
OK(2) C 
SWAP(q.items[l], y) C 
OK(nul1) C 
SWAP(q.items[B],y) C 
OK(Y) C 

Ok(y) C 

Second, assume A(r) is [y] or [y, x]. Allow A to complete its Enq, leaving a rep 
value r’. Now x must be in the queue, since its Enq is complete, and moreover it 
must follow y in the queue since, by hypothesis, A’s enqueue appears to take 
effect after B’s. It follows that A(r’) must be [y, x]. If C then executes a Deq, 
however, it will return x, a contradiction. 

STORE(q.items[l], x) A 
OK( 1 A 

Ok( ) A 
Ded 1 C 

READ(q.back) C 
OK(2) C 
SWAP(q.items[l], y) C 
OK(x) C 

Ok(x) C 

The problem here is that the linearization order depends on a race condition: 
A’s Enq will appear to occur before B’s if A stores into location 1 before C reads 
from it, otherwise the order is reversed. Such nondeterminism is perfectly 
acceptable, however, because all resulting histories are linearizable. We circum- 
vent this difficulty by redefining the abstraction function to map a rep value to 
a set of abstract values. This set represents the possible set of linearizations 
permitted by the current value of the rep. For objects that permit low levels of 
concurrrency, the value of the abstraction function might be a singleton set. 

In conclusion, the rep invariant I must be continually satisfied and the 
abstraction function continually defined, not only between abstract operations, 
but also between rep operations implementing abstract operations. The abstrac- 
tion function maps each rep value to a nonempty set of abstract values: 

A: REP + 2ABS 

The nondeterminism inherent in a concurrent computation thus gives our notions 
of abstraction function and rep invariant a different flavor from their sequential 
counterparts. 

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 3, July 1990. 



478 l M. Herlihy and J. Wing 

4.3 Verification Method 

In the next three sections we show how we use our new interpretation of 
representation invariant and abstraction function for proofs of correctness. We 
illustrate these ideas on the queue example presented in the previous section, as 
well as for an alternative implementation that uses critical sections. 

4.3.1 Linearized Values. So far, linearizability is discussed in terms of histo- 
ries. This characterization is useful for motivating the property, and for demon- 
strating properties such as locality, but it is awkward for verification. For 
linearizable histories, however, assertions about interleaved histories can be 
transformed into assertions about sets of sequential histories, and thus, sets of 
values. The transformed assertions can be stated and proved with the help of 
familiar axiomatic methods developed for sequential programs. 

For a given history H, we call the value of an object at the end of a linearization 
of H a linearized value. Since a given history may have more than one lineariza- 
tion, an object may have more than one linearized value at the end of a history. 
We let Lin(H) denote the set of all linearized values of H. Informally, a history’s 
linearized values represent the object’s possible values from the point of view of 
an external observer. Figure 4 shows a queue history with its set of linearized 
values after each event. Initially, only the empty queue is associated with the 
empty history. After the invocation of Enq(x), there are two linearized values, 
since the enqueue may or may not have taken effect. After the invocation of 
Enq(y), there are five linearized values: either Enq may or may not have occurred, 
and if both have occurred, either ordering is possible. After the response to 
Enq(y), y is known to have been enqueued, and after the response to Enq(x), 
both x and y must have been enqueued, although their order remains ambiguous 
until x is dequeued. 

4.3.2 Proof Method. To show correctness, the verification technique for se- 
quential implementations is generalized as follows. Assume that the implemen- 
tation of r is correct, hence H 1 REP is linearizable for all H in the implementation. 
Our verification technique focuses on showing the following property: 

For all r in Lin(H 1 REP), I(r) holds and A(r) G Lin(H 1 ABS) 

This condition implies that Lin(H 1 ABS) is nonempty, hence that H 1 ABS is 
linearizable. Note that the set inclusion is necessary in one direction only; there 
may be linearized abstract values that have no corresponding representation 
values. Such a situation arises when the representation “chooses” to linearize 
concurrent operations in one of several permissible ways. 

4.3.3 The Queue Example. Returning to our queue example, our verification 
method is applied as follows. Let H I REP be a complete history for a queue 
representation, REP. If r is a linearized value for H I REP, define items(r) to be 
the set of non-null items in the array r.items. Let cr be the partial order such 
that x cr y if the STORE operation for x precedes the INC operation for y in 
H 1 REP. We can encode the partial order cr as auxiliary data. For a queue q, let 
c4 denote the total order on its items, and items(q), the set of its items. 
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History 

Et-W) A 
W(y) 13 
Ok0 6 
Ok0 A 
DeqO C 
Ok(x) C 

Fig. 4. Linearized values. 

The implementation has the following rep invariant: 

I(r) = (r.back L 1) 
A (Vi. i 2 r.back + r.items[i] = null) 
A (lbound(r.items) = 1) 

where Ibound is the lowest array index, and the following abstraction function: 

A(r) = 14 ] items(r) = items(q) A cr C <J 

In other words, a queue representation value corresponds to the set of queues 
whose items are the items in the array, sorted in some order consistent with the 
precedence order of their Enq operations. Thus, our implementation allows for 
an item with a higher index to be removed from the array before an item with a 
lower index, but only if the items were enqueued concurrently. 

Figure 5 shows a sequence of abstract operations of Figure 4 along with their 
implementing sequence of rep operations. Column two is the set of abstracted 
linearized rep values. Column three is the set of linearized abstract values. Our 
correctness criterion requires showing that each set in column two is a subset of 
the corresponding set in column three. 

Appendix II outlines a complete formal proof of correctness (see also [45]). It 
relies on two key facts: (1) Enq enqueues an item x that is maximal with respect 
to <,., and (2) Deq removes and returns an item x that is minimal with 
respect to Cr. 

4.3.4 Critical Sections. So far our method for proving the correctness of an 
implementation assumes there exists a continually defined abstraction function. 
If the object’s implementation includes critical sections, however, it may not 
always be possible to define such a function. Within the critical section, the rep 
invariant may be temporarily violated, leaving the abstraction function unde- 
fined. We show here how to overcome this difficulty relying on the standard trick 
of using (auxiliary) hidden data [37], thereby permitting us to reintroduce a 
continually defined abstraction function with the extended representation as its 
domain. 

Both the problem and the solution are best illustrated by a simple example. 
Let us replace the atomic SWAP operation with a sequence of rotations executed 
within a critical section. Items are represented by 32-bit quantities, and the 
queue representation is expanded to associate a lock with each item: 

rep = recordtback: int, items: array[item], 
locks: array[mutex]) 
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ROT& y) atomically rotates the 64-bit quantity by one bit. The Deq operation 
is implemented as follows: 

Deq = proc(q: queue) returns (item) 
while true do 

range: int := READ(q.back)-1 
x: item := null 
for i: int in l..range do 

LOCK(q.locks[i] ) % start critical section 
for k: int in 1..32 do 

ROT(q.items[i], x) 
end 

UNLOCK(q.items[i]) % end critical section 
if x -= null then return(x) end 
end 

end Deq 

Although it is clear that this implementation is linearizable, its correctness 
cannot be proved directly using the method outlined so far. While the rotation is 
in progress, the abstraction function is undefined because necessary state infor- 
mation is encoded in the process’s program counter and local variables, not in 
the representation itself. Thus, we introduce an auxiliary array of items to hold 
the value being shifted out of the queue, shown here as an additional field in the 
representation. Auxiliary data and statements are shown in italics. Statements 
enclosed in angle brackets are executed atomically. 

rep = record(back: int 
items: array[item] , 
aux: array[item], 
locks: array[mutex] 

Enq = proc(q: queue, x: item) 
i: int := INC(q.back) 
(STORE(q.items[i], x) 
STORE(q.aux[i], x)) % Make a redundant copy. 
end Enq 

Deq = proc(q: queue) returns (item) 
while true do 

range: int := READ(q.back)-1 
x: item := null 
for i: int in l..range do 

LOCK(q.locks[i]) % start critical section 
for k: int in 1..32 do 

ROT(q.items[i], x) 
end 

STURE(q.aux[i], null) % Update auxiliary array. 
UNLOCK(q.items[i]) % end critical section 
if x -= null then return(x) end 
end 

end Deq 

By embedding the representation object in an extended representation, we can 
give a continually defined abstraction function, one that agrees with the original 
abstraction function when the object is quiescent. We can use our proof method 
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History A(Lin(H 1 REP)) Lin(H I AM) 

EnW A 
INC(q.back) A 
OK(l) A 
STORE(q.items[l], x) A 
OK0 A 

EnW B 
INC(q.back) B 
OK(Z) B 
STORE(q.items[P], y) B 
OK0 B 

Ok0 B 
Ok0 A 
DeqO C 

READ(q.back) C 
OK(2) C 
SWAP(q.items[l], null) C 
OK(x) C 

Ok(x) C 

Fig. 5. A queue history. 

to show the correctness of the extended representation, which then implies the 
correctness of the original. 

The implementation has the following rep invariant: 

I(r) = (r.back > 1) 
A (Vi. i 2 r.back + (r.items[i] = null A r.aux[i] = null)) 
A (Vi. (i < r.back A r.locks[i] = FREE) + r.items[i] = r.aux[i]) 
A (lbound(r.items) = 1 A lbound(r.aux) = 1) 

The third conjunct is the most interesting since it states that the auxiliary array 
and the “real” array agree on all unlocked items. 

Below, let A’ be the extended abstraction function defined on the object r 
of the original rep type, and z, the auxiliary data. As before, we define cr to be 
the partial order on items in the r.items array, and similarly define <= to be the 
partial order on items in the r.aux array. The abstraction function is: 

A’(r, z) = (q ] (3i. (i < r.back A r.locks[i] # FREE)) 
+ (items(q) = items(z) A <* C c4) 

A (Vi. (i < r.back A r.locks[i] = FREE)) 
4 (items(q) = items(r) A cr C <,)I 

If a rotation is in progress the extended abstraction function simply uses the 
auxiliary value. When the object is quiescent, each lock is free, and A’ agrees 
with the original A. 

5. REASONING ABOUT LINEARIZABLE OBJECTS 

In the previous section we showed how to reason about the correctness of an 
implementation, given that linearizability is our correctness condition. In this 
section we show how we reason about properties of concurrent objects given just 
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their (sequential) specifications and the assumption that they are implemented 
correctly, i.e., that they are linearizable. 

5.1 Concurrent Registers 

Here are axioms for Read and Write operations for all concurrent register 
objects, r: 

(true) 
Read( )/Ok(u) 

(r.val = r’.val = u) 
(true] 

Write(u)/Ok( ) 
(r’.val = u) 

These sequential axioms can be combined with our linearizability condition to 
prove assertions about the interleavings permitted by concurrent registers. Below, 
in a linearization H of a register history, let ui denote the value of the register 
after the ith (complete) operation of H. 

Every value read was written, but not overwritten. 

THEOREM 3. If r is a Read( )/Ok(u) operation in H, then there exists a 
Write(u)/Ok( ) operation w such that r does not precede w, and there is no other 
Write operation w ’ such that w precedes w ’ and w ’ precedes r. 

PROOF. Let r be the kth operation in a linearization of H, and let i < k be 
the greatest index such that ai = u. By construction, the ith operation in H is the 
Write(u) operation. If w ’ exists, then there exists j such that i < j < k and 
uj # u, a contradiction. 0 

Register values are persistent in the absence of Write operations. 

THEOREM 4. An interval in a history is a sequence of contiguous euents. If I is 
an interval that does not overlap any Write operations, then all Read operations 
that lie within I return the same ualue. 

PROOF. Pick two Read operations ei and ej, i < j, that lie within the interval 
I. If ui # uj, then a Write operation must be linearized after e; and before ej, 
contradicting the assumption that no Writes overlap 1. Cl 

5.2 Concurrent Queues 

The proofs of the following properties of concurrent queues use the following 
fact, which follows from Axioms E and D in Figure 3. For simplicity, we assume 
all values of items in a queue are unique. 

LEMMA 5. In any sequential queue history where x is enqueued before y, x is 
not dequeued after y. 

THEOREM 6. If the Enq of x, Enq of y, Deq of x, and Deq of y are complete 
operations of H such that x’s Enq precedes y’s Enq, then y’s Deq does not precede 
x’s Deq (i.e., either x’s Deq precedes y’s, or they are concurrent). 
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PROOF. Suppose not, i.e., y’s Deq precedes x’s Deq. Pick a linearization, and 
let qi and qj be queue values following the Deq operations of x and y respectively. 
From the assumption that j < i, qj-1 = [y, . . . , X, . . .I, which implies that y is 
enqueued before x, a contradiction. 0 

Gottlieb, Lubachevsky, and Rudolph [15] adopt the property proved in Theo- 
rem 6 as the (informal) correctness property for a linearizable queue implemen- 
tation. The difficulty of reasoning informally about concurrent histories is 
illustrated by observing that Theorem 6 by itself is incomplete as a concurrent 
queue specification, since it does not prohibit implementations in which enqueued 
items spontaneously disappear from the queue, or new items spontaneously 
appear. Such behavior is easily ruled out by the following two theorems: 

Items do not spontaneously vanish from the queue. 

THEOREM 7. If the Enq of x precedes the Enq of y, and if y has been dequeued, 
then either x has been dequeued or there is a pending Deq concurrent with the 
Deq of Y. 

PROOF. Pick a linearization. Suppose x has not been dequeued. Let qj be the 
value of the queue following the Deq of y, If y has been dequeued, but x has not, 
qj-1 = [Yt * * - 9 X9 * * -19 contradicting the assumption that the Enq of x precedes 
the Enq of y. 0 

Items do not spontaneously appear in the queue. 

THEOREM 8. If x has been dequeued, then it was enqueued, and the Deq 
operation does not precede the Enq. 

PROOF. Suppose not. Pick a linearization, and let qi and qj be the queue values 
after the Enq and Deq operations respectively. From our assumption, j < i. Then 
qj-1 = [X, e a .] and qi = [. . . , x], implying by the uniqueness of the values of the 
items, that i I j - 1 < j, a contradiction. 0 

6. DISCUSSION 

6.1 Related Work 

The axiomatic approach to specifying sequential programs has its origins in 
Hoare’s early work on verification [ 241. Owicki and Gries extended Hoare’s work 
to handle concurrent programs [37] by including axioms for general concurrent 
programming language constructs such as the parallel operator. Apt et al. [3] use 
an axiomatic approach for CSP [27]. Many researchers have also developed proof 
techniques for concurrent programs using conditional critical regions and moni- 
tors [7, 14,28,44]. We appeal to this past work when we perform syntax-directed 
reasoning about our implementations. In particular, we rely on standard tech- 
niques to deal with noninterference, using auxiliary data to encode both the 
program counters of other processes (e.g., the auxiliary array of Section 4.3.4) 
and history information (e.g., the cr partial order on items). All of this work, 
however, differs from ours by focusing on control structures. Data are either left 
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completely uninterpreted or assumed to be of simple primitive types like booleans 
and integers. In contrast, our work on specifying and verifying concurrent objects 
focuses on data entirely, exploiting the semantics of the data type to increase the 
degree of concurrency. Our work builds upon, not replaces, older verification 
technology. 

Related axiomatic work in abstract data types deals with proofs of correctness 
of their implementations [25], where, typically, first-order predicate logic pre- 
and post conditions are used for the specification of each operation of the type. 
Standish [43] and Nakajima [36] use a similar approach. The algebraic approach, 
which defines data types to be heterogeneous algebras [5], uses axioms to specify 
properties of programs and abstract data types, but the axioms are restricted to 
equations. Much work has been done on algebraic specifications for abstract data 
types [2,8, 10,171. Any one of these approaches would be adequate for specifying 
the sequential behavior of a data type as required by our definition of when a 
sequential history is legal. In practice, we use Larch [19, 201. Our contribution to 
the area of specifying abstract data types is that we can work with data in a 
concurrent, not just sequential, domain. 

In short, whereas verification of concurrent programs focused on control, we 
focus on data; whereas past verification of abstract data types is applicable for 
sequential programs, ours is applicable for concurrent ones. 

One notable exception is Lamport’s work [32] in which he proposed a model 
and assertion language for specifying safety and liveness properties of concurrent 
objects. His approach is more general than ours, as it addresses liveness as well 
as safety properties, and nonlinearizable as well as linearizable behavior. Our 
approach, however, focuses exclusively on a subset of concurrent computations 
that we believe to be the most interesting and useful. In place of a specification 
language powerful enough to specify all conceivable concurrent behaviors, we 
re-interpret assertions about “well-behaved” concurrent computations as asser- 
tions about their equivalent sequential computations. 

Moreover, Lamport’s technique is based on a continually defined abstraction 
function (called a state function) that maps the representation to a single 
abstract value. This abstraction function defines the instant at which each 
operation appears to take effect: each primitive step of each operation either 
leaves the function’s value unchanged, or it instantaneously causes the operation 
to take effect. This technique is not powerful enough to verify highly concurrent 
objects such as the queue implementation given in Section 4. Indeed, our 
linearizable queue example has since inspired Abadi and Lamport to extend 
Lamport’s original technique to include not only history variables, but prophecy 
variables [ 11. Prophecy variables are related to hidden variables called possibilities 
which we use in our proofs in the Appendices. 

Our notion of linearizability generalizes and unifies similar notions found 
in specific examples in the literature. The use of concurrency control 
mechanisms such as monitors [26] or Ada tasks [9] is usually illustrated by 
simple implementations of linearizable objects such as bounded FIFO queues. 
These implementations permit very little concurrency, since operations exe- 
cute one at a time. A more interesting example is due to Lamport 1321, who 
verifies linearizability and liveness for a queue implementation that permits one 
ACM Transactions on Programming Languages and Systems, Vol. 12, No. 3, July 1990. 



Linearizability: A Correctness Condition for Concurrent Objects l 485 

enqueuing process to execute concurrently with one dequeuing process. There 
exists extensive literature on concurrent B-trees [4, 33, 421 and related search 
structures [6, 11, 13, 16, 291. Although the correctness properties for these data 
structures are often stated in ad hoc terms, it is clear that they are meant to be 
linearizable. The algorithms cited above provide excellent additional examples of 
nontrivial techniques for implementing linearizable objects. 

Misra [35] has proposed an axiomatic treatment of concurrent hardware 
registers in which the register’s value is expressed as a function of time. Restricted 
to registers, our axiomatic treatment is equivalent to his in the sense that both 
characterize the full set of linearizable register histories. Theorems 3 and 4 
capture two properties of Misra’s registers. Misra’s explicit use of time in axioms 
is appropriate for hardware, where reasoning in terms of the register’s hypothet- 
ical value is useful as a guide to hardware designers. Our approach, however, is 
also appropriate for objects implemented in software, as we have found that 
reasoning directly in terms of partial orders generalizes more effectively to data 
types having a richer set of operations. 

Gottlieb et al. [15] have investigated architectural support for implementing 
concurrent objects without critical sections, an approach illustrated by our 
linearizable implementation of a FIFO queue. They present a linearizable imple- 
mentation of a concurrent queue (different from ours). The correctness condition 
asserted for their queue, however, is the property stated in Theorem 6, which by 
itself is incomplete as a concurrent queue specification since it does not prohibit 
implementations in which enqueued items spontaneously disappear from the 
queue, or new items spontaneously appear. As shown by Theorems 7 and 8, such 
anomalous behavior is easily ruled out by our queue axioms and the assumption 
of linearizability. 

6.2 Final Remarks 

Without linearizability, the meaning of an operation may depend on how it is 
interleaved with concurrent operations. Specifying such behavior would require 
a more complex specification language, as well as producing more complex 
specifications. Linearizability provides the illusion that each operation takes 
effect instantaneously at some point between its invocation and its response, 
implying that the meaning of a concurrent object’s operations can still be given 
by pre- and post conditions. 

The role of linearizability for concurrent objects is analogous to the role of 
linearizability for database theory: it facilitates certain kinds of formal (and 
informal) reasoning by transforming assertions about complex concurrent behav- 
ior into assertions about simpler sequential behavior. Like serializability, linear- 
izability is a safety property; it states that certain interleavings cannot occur, but 
makes no guarantees about what must occur. Other techniques, such as temporal 
logic [32,34,39], must be used to reason about liveness properties such as fairness 
or priority. 

An implementation of a concurrent object need not realize all interleavings 
permitted by linearizability, but all interleavings it does realize must be linear- 
izable. The actual set of interleavings permitted by a particular implementation 
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may be quite difficult to specify at the abstract level, being the result of 
engineering trade-offs at lower levels. As long as the object’s client relies only on 
linearizability to reason about safety properties, the object’s implementor is free 
to support any level of concurrency that appears to be cost-effective. 

In conclusion, linearizability provides benefits for specifying, implementing, 
and verifying concurrent objects in multiprocessor systems. Rather than intro- 
ducing complex new formalisms to reason directly about concurrent computa- 
tions, we feel it is more effective to transform problems in the concurrent domain 
into simpler problems in the sequential domain. 

I. GENERAL PROOFS OF CORRECTNESS 

The proofs of the lemmas in this section are given elsewhere [45]. 

1.1 Possibilities and Linearized Values 

For each linearized value, it is sometimes useful to keep track of which invocations 
were completed in the linearization that yielded that value, and what their 
responses were. A possibility for a history H is a triple (v, P, R), where v is 
a linearized value of H, P is the subset of pending invocations in H not com- 
pleted when forming the linearization that yielded u, and R is the set 
of responses appended to H to form u. We let Pass(H) denote the set of 
possibilities of a history H. The relationship between the set of possibilities 
and set of linearized values for a given history H is the following: for each 
(u, P, R) u E Pass(H), u E Lin(H). For the example in Figure 4, the possibilities 
([ I, 1Ensb4 AJ,Q9 and ([xl, 0, VW ) 4) are in Poss((Enq(x) A)). In the first 
case, the linearization is the empty history: the queue is empty, the pending Enq 
invocation was not completed, and no responses were appended. In the second 
case, the linearization is a single Enq operation: the queue holds x, no pending 
invocations were left incomplete, and A’s Enq was completed normally. Similarly, 
(ix, ~1, 0, VW 1 A, W 1 Bl) and ([Y, 4, 0, 04 1 A, W 1 W) are two of the 
possibilities (among many others) in Poss( (Enq(x) A) . (Enq(y) B)). 

1.2 Four Generic Axioms 

In order to carry out a formal proof of correctness for our queue example, it helps 
to appeal to the following four type-independent axioms. These axioms are used 
to derive a history’s set of possibilities, and hence its set of linearized values. 

Let x be the object whose operations appear in H. The following closure axiom 
states that if u is in Lin(H) and (inv A) is a pending invocation in H that is not 
completed to form u, but could be completed with a response (res A) to yield a 
legal value u ’ for X, then u ’ is also in Lin(H): 

Axiom C: 

(u, P, R) E Pass(H) A (inv A) E P A (x = u) inv/res (X = u’l 
- (v’, P - (inv A}, R U {res A}) E Pass(H) 
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We write “(x = u) inv/res (x = ~‘1” to indicate that the condition must be 
derivable from the sequential axioms for X. 

The following invocation axiom states that any linearization of H is also a 
linearization of H . (inv A): 

Axiom I: 

(u, P, R) E Pass(H) 
4 (u, P U (inv A], R) E Poss(H . (inv A)) 

The following response axiom states that any linearization of H in which the 
pending (inv A) is completed with (res A) is also a linearization of H . (res A): 

Axiom R: 

(u, P, R) E Pass(H) and (res A) E R 
+ (u, P, R - (res A]) E Poss(H a (res A)) 

The following initialization axiom states that the possibility for the initial value 
ug of an object corresponds to the empty history. 

Axiom S: 

((uo, 0, @>I = Pass(A) 

For each operation of a typed object, Axioms C, I, R, and S are instantiated to 
yield type-specific axioms. 

For a given history H with m events, we use Possi(H) to denote the set of 
possibilities for the ith prefix of H, for 0 I i 5 m. A derivation that shows that 
(u, P, R) E Pass,(H) is a sequence of implications of the form: 

(uo, PO, Ro) E Posse(H) 
. . . 

f (Uj, Pit Rj) E POSS,(H) 

*... 

where u, = u, P, = P, R, = R, and each implication is justified by Axiom C, I, 
or R. 

Intuitively, a derivation is like a history. Each implication in a derivation is 
like a step in a proof, and each such step is justified by an axiom. 

The axioms C, I, R, and S are sound: 

THEOREM 9. If there exists a deriuation showing that (u, P, R) is a possibility 
for H, then u is a linearized value for H. 

Axioms C, I, R, and S are complete. 

THEOREM 10. If u E Lin(H), then there exists a deriuation that (u, P, R) E 
Pass(H). 
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II. PROOF OF CORRECTNESS FOR THE QUEUE 

11.1 Two Lemmas About Concurrent Queues 

In a derivation, an Enq inference for x is an instantiation of Axiom C of the 
form: 

(qj, Pi, Rj) E PoSSk 
3 (ins(qj, x), Pj - {Ens(x) A), Rj U (Ok( ) A)) E POSSE 

A Deq inference is defined analogously. 
Two inferences commute in a derivation if their order can be reversed without 

invalidating the derivation. A derivation showing (q, P, R) E Poss, is in canonical 
form if each Enq inference for an item in q occurs “as late as possible,” i.e., it 
does not commute with the next inference in the derivation. 

Lemma 11 implies that if x is in q, the event following the Enq inference for x 
is either the return event for x, or the return event for an item that follows x 
in q. 

LEMMA 11. If 6 is a canonical derivation showing that (q, P, R) E Poss,,,, and 
x is an item in q, then the inference following the Enq inference for x is either 
the Enq inference for the item following x in q, or an application of Axiom R for 
the matching response to Enq(x). 

Lemma 12 states that we can consider equivalence classes of queues rather 
than individual queues. 

LEMMA 12. If (q, P, R) E Pass,, and q* is a queue value constructed by 
rearranging the items of q in an order consistent with the partial precedence order 
of their Enq operations, then (q *, P, R) E Poss,,, . 

11.2 Main Proof 

Figure 6 shows the Enq and Deq implementation annotated with assertions that 
are true before and after each abstract invocation and response and each rep 
operation. To avoid distraction, we assume queue values are unique. It is conven- 
ient to keep as implicit auxiliary data the partial order, cr, on items in the array, 
defined in Section 4.3.3. The set of possibilities, Poss, referred to in the annota- 
tions can also be encoded as auxiliary data in terms of the sets, P (pending 
invocations) and R (possible responses), which are components of a possibility. 

If I is a set of items partially ordered by <, define: 

and 

(I, <) = (q 1 I = items(q) and < 5 c,J 

((1, <), P, RI = ((4, P, R) I 4 E (I, 41. 
The partially ordered set of queue items (I, <), captures the nonquiescent 

abstract state of the queue, i.e., the possible values of the queue while there are 
concurrent Enq and Deq operations or pending invocations. Notice that we can 
rewrite the abstraction function as A(r) = (items(r), <,). The set [(I, <), P, R] 
identifies each of the possible sets of queue values with a set of pending 
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lS(q, P, R) E Possl 
Enq = proc (q: queue, x: item) 
(3(q’, P’, R’) E Poss’ . q’ = q A P’ U (Enq(x) A) A R’ = R) 

{3(q, P, R) E Poss . (En&) A) E PI 
: int := INC(q.back) 

;Posd = Poss) 
(3(q, P, R) E Poss. (Enq(x) A) E Pj 
STORE(q.items[i], x) 
{3(q’, P’, R’) E Poss’ .P’ = P - (Enq(r) A} A R’ = R U (Ok() A} 

A index(q.items’, x) = i A z E max(items(q’)) A q.back 5 q.back’) 

(3(q, P, R) E Poss . (Ok() A) E RJ 
end Enq 
(3(q’, P’, R’) E Poss’.q’ = q A P’ = P A R’ = R - {Ok( ) A)) 

13(q, P, R) E Possl 
Deq = Proc (q: queue) returns (item) 
(3(q’, P’, R’) E Poss’ . q’ = q A P’ = P U {Deq( ) A) A R’ = R) 

(3(q, P, R) E Poss . (Deq() A) E PJ 
while true do 

range : int := READ(q.back) - 1 
(Poss’ = POSSJ 

for i: int in 1 . . range do 

(3(q, P, R) E Poss . (Deq() A) E P) 
x: item := SWAP(q.items[i], null) 
[3(q’, P’, R’) E Poss’ .P’ = P - (Deq( ) A) A R’ = R U {Ok(r) A) A 

(z = null V z E min(items(q’)))l 

if x -= null then return(x) end 
end 

end 
end 

(3(q, P, R) E Pass. (Ok(r) A) E R] 
end Deq 
(3(q’, P’, R’) E Poss’ . q’ = q A P’ = P A R’ = R - (Ok(x) A)] 

Fig. 6. Annotated queue implementation. 

invocations and a set of possible responses, thereby forming a set of (queue) 
possibilities. The following two lemmas make use of Lemma 12, stated in the 
previous section. 

LEMMA 13. If x is a maximal element with respect to <, x 4 I, (Enq(x) A) B P, 
(Ok() A) E R, and [(I, <), P U iEnq(x) A], R - (Ok() Al] C_ Pass, then 
[(I U (xl, c), P, R] G Poss. 

LEMMA 14. If (Deq( ) A) 4 P, (Ok(x) A) E R, and [(I, <), P U {Deq( ) Al, 
R - (Ok(x) A]] C Poss, then for all x such that x is a minimal element of I, 
[(I - (x), 4, P, R] C Pass. 

Lemma 13 will allow us to show that the set of linearized queue values does not 
change over a STORE operation and similarly, Lemma 14, for a SWAP operation, 
by using cr for < and by recalling that for each (u, P, R) E Poss, u is a linearized 
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value. We use the next two lemmas to satisfy the conditions of the previous two 
lemmas. 

LEMMA 15. Enq enqueues an item x that is maximal with respect to c,.. 

LEMMA 16. Deq removes and returns an item x that is minimal with respect 
to -cr. 

Here is a proof of correctness. 

THEOREM 17. The queue implementation is correct. 

PROOF. Assuming every rep history is linearizable, we need to show that every 
queue history, H 1 q, is linearizable. It suffices to show that the “subset” property, 
UrELin(H ( r) A(r) C Lin(H 1 q), remains invariant over abstract invocation and 
responses and over complete rep operations. Thus, it can be conjoined to the pre- 
and post conditions of Figure 6 as justified by the Owicki-Gries proof method 
[38]. Axioms I and R give us the result for abstract invocation and response 
events. INC and READ leave the abstraction function the same. Thus, we are 
left with two cases, STORE and SWAP. By Lemma 15 we know that STORE 
adds a maximal item and thus, we can apply Lemma 13 to show that the subset 
property is preserved. Similarly, by Lemma 16 we know that SWAP removes a 
minimal item and thus, we can apply Lemma 14 to show that the subset property 
is preserved. 0 
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