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A replicated object is a typed data object that is stored redundantly at multiple locations to enhance 
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level, a replica-control protocol reconstructs the object’s state from its distributed components, and 
at the lower level, a standard concurrency-control protocol synchronizes accesses to the individual 
components. This paper explores an alternative approach to managing replicated data by presenting 
two replication methods in which concurrency control and replica management are handled by a 
single integrated protocol. These integrated protocols permit more concurrency than independent 
protocols, and they allow availability and concurrency to be traded off: Constraints on concurrency 
may be relaxed if constraints on availability are tightened, and vice versa. In general, constraints on 
concurrency and availability cannot be minimized simultaneously. 
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1. INTRODUCTION 

A replicated object is a typed data object whose state is stored redundantly at 
multiple locations to enhance availability. A replication method is an algorithm 
for managing the object’s distributed components so that its functional behavior 
is equivalent to that of a single-site object; this property is known as one-copy 
serializability [Z]. A replication method must address two problems: concurrency 
control and replica management. A concurrency-control protocol ensures that 
incorrect behavior cannot occur as a result of concurrent access by multiple 
clients, and a replica-management protocol ensures that incorrect behavior cannot 
occur as a result of site crashes, network partitions, or timing anomalies. Many 
replication methods address these problems with independent mechanisms: At 
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the lower level, a standard concurrency-control protocol synchronizes access to 
the individual components, and at the higher level, a replica-management pro- 
tocol reconstructs the object’s state from its distributed components without 
concern for concurrency. 

In this paper, we explore an alternative way to manage replicated data. We 
propose two new replication methods in which concurrency control and replica 
management are handled by a single integrated protocol. These integrated 
protocols permit more concurrency than independent protocols, and they allow 
availability and concurrency to be traded off: Constraints on concurrency may 
be relaxed by tightening constraints on availability, and vice versa. We give a 
complete formal characterization of this interdependence, presenting examples 
where the constraints on concurrency and availability cannot be minimized 
simultaneously. These protocols also exploit type information to impose fewer 
constraints on concurrency and availability than techniques that rely on the 
conventional read/write classification of operations. 

Section 2 presents a brief overview of related work, and Section 3 presents our 
model of computation. In Section 4, we introduce consensus locking, a replication 
method in which concurrency control is based on predefined lock conflicts. 
Consensus locking minimizes constraints on availability but not on concurrency. 
In Section 5, we introduce consensus scheduling, a more general protocol in which 
concurrency control may use arbitrary state information. Consensus scheduling 
can realize more concurrency than consensus locking, but this additional concur- 
rency may incur a cost in reduced availability. We conclude with a discussion in 
Section 6. Formal models and correctness arguments are given in the Appendix. 

2. RELATED WORK 

Early file replication methods did not attempt to preserve one-copy serializability; 
the value read from a file is not necessarily the value most recently written 
[l, 22, 321. Nonserializable replication methods for directories have also been 
proposed [6, 13, 291. 

In the available copies replication method [3], failed sites are dynamically 
detected and configured out of the system, and recovered sites are detected and 
configured back in. Activities may read from any available copy and must write 
to all available copies. Systems based on variants of this method include SDD-1 
[16], ISIS [5], and Circus [8]. Unlike the methods proposed in this paper, these 
methods do not preserve one-copy serializability in the presence of network 
partitions. 

In the true-copy token scheme [27], a replicated file is represented by a 
collection of copies. Copies that reflect the file’s current state are called true 
copies and are marked by true-copy tokens. True copies can be moved to permit 
activities to operate on local data. This method preserves serializability in the 
presence of crashes and partitions, but the availability of a replicated file is 
limited by the availability of the sites containing its true copies. 

The earliest use of quorum consensus is a tile replication method due to Gifford 
[14]. A quorum-consensus replication method for directories has been proposed 
by Bloch, Daniels, and Spector [7]. These methods can be viewed as specially 
optimized instances of general quorum consensus, a replication method for 
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arbitrary data types [18]. Like the methods proposed in this paper, general 
quorum consensus systematically exploits type-specific properties to enhance 
availability. Unlike the methods proposed here, it relies on a concurrency control 
mechanism provided by a lower level of the system. General quorum consensus 
includes a reconfiguration technique that can readily be extended to the replica- 
tion methods proposed in this paper. 

Extensions to quorum consensus that further enhance availability in the 
presence of partitions have been proposed for files by Eager and Sevcik [9], 
El-Abbadi et al. [lo], and for arbitrary data types by this author [20]. 

3. ASSUMPTIONS AND TERMINOLOGY 

Distributed systems are subject to two kinds of faults: Sites may crash and 
communication links may be interrupted. When a site crashes, its resident data 
become temporarily or permanently inaccessible. Communication link failures 
result in lost messages; garbled and out-of-order messages can be detected (with 
high probability) and discarded. Transient communication failures may be hidden 
by lower level protocols, but longer-lived failures can cause partitions, in which 
functioning sites are unable to communicate. A failure is detected when a site 
that has sent a message fails to receive a response after a certain duration. The 
absence of a response may indicate that the original message was lost, that the 
reply was lost, that the recipient has crashed, or simply that the recipient is slow 
to respond. 

A widely accepted technique for preserving consistency in the presence of 
failures and concurrency is to organize computations as sequential processes 
called transactions. Transactions are atomic, that is, serializable and recoverable. 
Serializability [30] means the execution of one transaction never appears to 
overlap (or contain) the execution of another, and recoverability means that a 
transaction either succeeds completely or has no effect. A transaction’s effects 
become permanent when it commits, its effects are discarded if it ubsorts, and a 
transaction that has neither committed nor aborted is uctiue. A standard com- 
mitment protocol (e.g., [15, 311) aborts transactions interrupted by failures, and 
stable storage [26] ensures that the effects of committed transactions are not 
undone by later failures. 

Our model for atomic objects borrows from that of Weihl [33]. The basic 
containers for data are called objects. Each object has a type, which defines a set 
of possible states and a set of primitive operations that provide the only means 
for creating and manipulating objects of that type. For example, a (FIFO) queue 
might be represented by an object of type Queue providing Enq and Deq 
operations. 

Enq = Operation(Item) 
Deq = Operation( ) Returns(Item) 

Enq places an item at the end of the queue, and Deq returns the item at the head 
of the queue. Deq ispartial: It is undefined when the queue is empty. A transaction 
invoking a partial operation is blocked until the operation can return a response. 

In the absence of failures and concurrency, a computation is modeled as a 
history, which is a finite sequence of operations. Histories are denoted by 
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lowercase letters (g, h). An operation is written as (x op(args*)/term(res*)), 
where x is an object name, op is an operation name, args* denotes a sequence of 
argument values, term is a termination condition, and res* is a sequence of 
results. The operation name and argument values constitute the invocation, and 
the termination condition and result values constitute the response. We use “Ok” 
for normal termination. The object name is omitted when it is clear from the 
context. For example, 

Enqb)lW ) 
Enq(b)lW 1 
Ded )/OH4 

is a Queue history in which items a and b are enqueued and a is dequeued. 
An object subhistory, h 1 x (h at x), is the subsequence of operations in h whose 

object names are x. Each object has a serial specification, which defines a set of 
legal histories for that object. For example, the specification of a Queue includes 
all and only histories in which items are enqueued and dequeued in FIFO order. 
Specifications are prefix closed: Any prefix of a legal history is legal. A history h 
involving multiple objects is legal if each object subhistory h 1 x belongs to the 
serial specification for x. 

In the presence of concurrency and failures, an object’s behavior is modeled by 
a schedule, which is a sequence of steps of the form (X 4 Q), (X Commit Q), or 
(X Abort Q), where x is an object, q an operation, and Q a transaction name. The 
object name is omitted when it is clear from the context. Schedules are denoted 
by uppercase letters (G, H). If H is a schedule, x an object, Q a transaction, and 
S a set of transactions, define H 1 x, H 1 Q, and H 1 S by analogy with object 
subhistories. 

A schedule is well formed if transaction names are unique, no transaction 
executes an operation after it commits, and no transaction both commits and 
aborts. All schedules are assumed to be well formed. For example, the following 
is a well-formed schedule for a Queue: 

EnddlW ) P 
Ew(b)lW 1 Q 

Commit P 
Deq( )/Ok(u) Q 

Commit Q 

Here, transaction P enqueues a, Q enqueues b, P commits, and Q dequeues a 
and commits. The ordering of operation executions in a schedule reflects the 
order in which the responses are returned, not necessarily the order in which the 
invocations occurred. 

Each object has a concurrent specification, which defines a set of legal schedules 
for that object. All concurrent specifications are assumed to be prefix closed and 
on-line: An active transaction can choose to commit or abort at any time. 

Serial and concurrent specifications are related by the notion of atomicity. Let 
< denote a total order on committed and active transactions, and let H be a 
schedule. The serialization of H in the order << is the history h constructed by 
reordering the operations in H, so that for all transactions P and Q, if P < Q, 
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the subsequence of operations associated with P precedes the subsequence 
associated with Q. H is serializable in the order << if h is a legal history; H is 
serializable if it is serializable in some order; and H is atomic if the subschedule 
associated with committed transactions is serializable. An object is atomic if 
every schedule in its concurrent specification is atomic. All objects considered in 
this paper are atomic. 

4. CONSENSUS LOCKING 

4.1 Introduction 

Consensus locking is the first of two integrated replication methods presented in 
this paper. Consensus locking ensures atomicity through predefined conflicts 
between pairs of operations. Conflict-based synchronization uses only some of 
the information available for scheduling: It does not consider interactions among 
more than two operations, and it does not take the object’s state into account. 
Nevertheless, it is likely to be adequate for many applications, and it can be 
implemented efficiently by locking mechanisms. 

4.2 The Protocol 

Replicated objects are implemented by two kinds of sites: repositories and front 
ends. Repositories provide long-term storage for the object’s state, and front ends 
carry out operations for clients. A client applies an operation to a replicated 
object by sending an invocation to one of the object’s front ends. The front end 
reads data from some collection of repositories, carries out a local computation, 
sends updates to some collection of repositories, and returns the response to the 
client. The client must locate an available front end for the object, and the front 
end must in turn locate enough available repositories to carry out the operation. 
Front ends can be replicated to an arbitrary extent, perhaps placing one at each 
client’s site, implying that the availability of the replicated object is dominated 
by the availability of its repositories. 

A quorum for an operation is any set of repositories whose cooperation suffices 
to execute that operation. It is convenient to divide a quorum into two parts: a 
front end executing an operation reads from an initial quorum and writes to a 
final quorum. (Either the initial or final quorum may be empty.) A quorum 
assignment associates each invocation with a set of valid initial quorums and 
each operation with a set of valid final quorums. An object’s quorum assignment 
determines the availability of its operations; thus the constraints governing 
quorum assignment are the basic constraints governing the availability realizable 
by a replication method. 

Quorum assignments are constrained by a quorum intersection relation: Certain 
initial and final quorums are required to have nonempty intersections. For 
example, any quorum assignment for a replicated file must ensure that each 
initial Read quorum intersects each final Write quorum; otherwise it would be 
impossible to guarantee that each value read is the value most recently written. 
If two operations are related by the quorum intersection relation, then their 
levels of availability can be traded off: If one operation’s quorums are made 
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Rl R2 R3 

1:00 Enq(o)/Ok( ) 1:00 Enq(a)/Ok( ) 
1:15 Enq(b)/Ok( ) 1:15 Enq(b)/Ok( ) 

1:30 Enq(c)/Ok( ) I:30 Enq(c)/Ok( ) 

Fig. 1. Three items have been enqueued, although no repository has an entry 
for all three. 

smaller (rendering it more available), then the other’s quorums must be made 
correspondingly larger (rendering it less available). 

At each repository, the operations of committed transactions are recorded in a 
log, which is a sequence of entries, where an entry is the timestamped record of 
an operation. For example, Figure 1 is a schematic representation of a Queue 
replicated among three repositories. For readability, a missing entry is marked 
by a blank. 

Each log entry has a two-part timestamp: 

(1) The low-order bits are occupied by an operation field that defines how this 
operation is serialized relative to other operations executed by the same 
transaction. This field is filled in when the operation is executed. 

(2) The high-order bits are occupied by a transaction field that defines how the 
transaction is serialized relative to other transactions. This field is filled in 
when the transaction commits. 

In our examples, a timestamp is represented as a single-digit transaction field 
separated by a colon from a two-digit operation field, and new timestamp values 
are generated sequentially. In practice, each field would be much longer, and 
successive values would be separated by arbitrary gaps. 

Each active transaction’s operations are recorded in an intentions log, one per 
transaction, also partially replicated among the repositories. When a transaction 
appends an entry to its intentions log, the operation field is filled in, but the 
transaction field is left empty. When the transaction commits, the coordinator 
for the commitment protocol [15, 311 generates a logical timestamp, which it 
distributes to the participating repositories [25]. When the protocol is complete, 
each repository inserts that timestamp in the transaction fields of the committing 
transaction’s entries and merges its intentions log into the committed log. 

To model the timestamp assignment protocol, we extend our notation as 
follows. Each commit step includes a timestamp argument: (Commit(t) Q), where 
t is the timestamp assigned to transaction Q. Timestamps are governed by an 
additional well-formedness constraint: If Q executes an operation after P com- 
mits, then Q’s commit timestamp must be later than P’s. 

For concurrency control, consensus locking employs a form of strict two-phase 
locking [4, 12, 241. Each repository maintains an initial lock for each invocation 
and a final lock for each operation. A repository grants a transaction an initial 
lock when the repository agrees to participate in an initial quorum for that 
invocation, and it grants a final lock when it agrees to participate in a final 
quorum for that operation. Certain initial and final locks conflict: A repository 
will not grant an initial (final) lock while a conflicting final (initial) lock is held 
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by a different transaction. Informally, the initial locks ensure that the operation 
cannot be invalidated by a concurrent operation, and the final locks ensure that 
the operation cannot invalidate any concurrent operations. Each transaction 
holds its locks until it commits or aborts. Like most locking protocols, consensus 
locking is subject to deadlock, which can be handled by standard techniques such 
as timeouts or deadlock detection [23]. 

An operation is executed in the following steps: 

(1) The client sends the invocation and transaction identifier to a front end, 
which consults an internal table of initial and final quorums and forwards 
the client’s request to an initial quorum for the invocation. 

(2) Each repository in the initial quorum checks whether another transaction 
holds a conflicting final lock. If so, the call is delayed until the conflicting 
locks are released. When the initial lock is granted, the repository sends its 
committed log and the client transaction’s intentions log to the front end. 

(3) The front end merges the logs from the initial quorum by using the times- 
tamps to discard duplicate entries. It constructs a history called the view by 
appending the client transaction’s intentions to the history of committed 
operations, and it chooses a response consistent with the view. The front end 
generates an entry for the new operation, filling in the operation field by 
reading its local logical clock, and sends the view and the new entry to a final 
quorum of repositories. 

(4) Each repository in the final quorum checks whether another transaction 
holds a conflicting initial lock. If so, the call is delayed until the conflicting 
locks are released. When the final lock is granted, the repository merges the 
logs and returns an acknowledgment to the front end. 

(5) The front end returns the response to the client when a final quorum has 
acknowledged the update. 

To illustrate this protocol, we trace a brief history for a Queue replicated 
among three repositories. In the example shown in Figures 2-4 any two out of 
three repositories constitute an initial quorum for Deq and a final quorum for 
both Enq and Deq. Initial Deq locks conflict with final Enq and Deq locks, but 
initial and final Enq locks do not conflict. Initially, the queue is empty. Trans- 
action B enqueues item c at Rl and R3, and transaction A enqueues item a at 
Rl and R2 and item b at R2 and R3. Both transactions proceed without 
interference. Locks are shown at the top of each column. 

Transaction C now attempts a Deq operation by choosing Rl and R2 as its 
initial quorum. Since initial Deq locks conflict with final Enq locks, C is delayed. 
Eventually, A commits with timestamp 1, B commits with timestamp 2, and 
each repository fills in its transaction fields and merges the intentions logs with 
the log of committed operations. C acquires initial Deq locks at R2 and R3 and 
constructs a view by merging their logs, thereby revealing that a is the first item 
in the queue. C appends a Deq entry to its view and sends its log to R2 and R3 
(shown in Figure 4). Eventually, C commits with timestamp 3. 

The principal benefit of a replication model based on partially replicated logs 
is generality: The same model can be used to analyze the availability and 
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Rl R2 R3 

Final(Enq) = (A, B 1 
B:OO Enq(c)/Ok( ) 
A:00 Enq(a)/Ok( ) 

Final(Enq) = (A} 

A:00 Enq(a)/Ok( ) 
A:01 Enq(b)/Ok( ) 

Final(Enq) = (A, Bj 
J3:OO Enq(c)/Ok( ) 

A:01 Enq(b)/Ok( ) 

Fig. 2. “A:OO” denotes a time stamp with an empty transaction field (to be tilled 
when A commits) and an operation field of 0. 

Rl 

1:00 Enq(a)/Ok( ) 

2:00 Enq(c)/Ok( ) 

R2 

1:00 Enq(a)/Ok( ) 
1:Ol Enq(b)/Ok( ) 

Figure 3 

R3 

1:Ol Enq(b)/Ok( ) 
2:00 Enq(c)/Ok( ) 

Rl R2 R3 

1:00 Enq(o)/Ok( ) 

2:00 Enq(c)/Ok( ) 

Initial(Deq) = IC) 
Final(Deq) = IC) 
1:00 Enq(a)/Ok( ) 
I:01 Enq(b)/Ok( ) 
2:00 Enq(c)/Ok( ) 
C:OO Deq( )/Ok(a) 

Initial(Deq) = {Cl 
Final(Deq) = (C] 
1:00 Enq(a)/Ok( ) 
1:Ol Enq(b)/Ok( ) 
2:00 Enq(c)/Ok( ) 
C:OO Deq( )/Ok(a) 

Figure 4 

concurrency of queues, stacks, directories, or any other data type of interest. We 
can reason abstractly about the fundamental constraints governing availability 
and concurrency without having to consider type-specific techniques for data 
representation. Nevertheless, it is worth emphasizing that this protocol is an 
idealized model for replication, not a literal design for an implementation. In 
practice, logs are too large and inefficient to be practical. Instead, an implemen- 
tation must address the problem of log compaction, that is, replacing a log with a 
more compact and efficient data structure. 

For example, Bloch et al. [7] give a type-specific compaction technique for 
replicated directories. A complementary approach is the following: Whenever a 
repository’s committed log includes a prefix of the object’s history, that prefix 
can be replaced by a timestamped version, which is a compact single-site repre- 
sentation for the object. For example, a Queue version could be a list or array of 
items present in the queue. A repository might take active measures to assemble 
such a prefix, such as running periodic “garbage-collection” transactions, or it 
might respond to prefixes that arise naturally in the course of executing certain 
operations. 

In the example shown in Figure 5, when C commits with timestamp 3, R2 and 
R3 may replace their committed logs with a single timestamped version, since 
the view assembled for the Deq included all earlier Enq and Deq entries, and 
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Rl 

1:00 Enq(a)/Ok( ) 

2:00 Enq(c)/Ok( ) 

R2 

3:00 [b, c] 

Figure 5 

R3 

3:00 [b, c] 

the lock conflicts ensure that no active transaction will be serialized before C. 
Rl cannot compact its entries, however, because it may be missing Enq entries 
whose timestamps lie between 1:00 and 2:O0. 

4.3 Correctness 

As mentioned above, each transaction is issued a logical timestamp when it 
commits. A consensus-locking implementation is correct if transactions are 
serializable in the order of their commit timestamps, a property known as hybrid 
atomicity [33]. Weihl has shown that hybrid atomicity is a local property: If H is 
a schedule such that H 1 n is hybrid atomic for all objects X, then N is atomic. 
Consensus locking is thus compatible with other protocols that guarantee hybrid 
atomicity, including the two-phase locking protocols cited above. 

In this section we characterize the constraints on concurrency and availability 
necessary to ensure correctness. Let inu(p) denote the invocation part of opera- 
tionp. Constraints on quorum assignment and lock conflict for consensus locking 
are expressed in terms of the following relations between operations: 

-The quorum intersection relation > Q: inv(q) >Qp = each initial quorum for 
inv(q) intersects each final quorum for p. 

-The lock conflict relation >L: inv(q) >Lp = initial locks for inv(q) conflict with 
final locks for p. 

It is easy to see that >L and >Q cannot be chosen independently. For example, 
to ensure that two operations never execute concurrently, it is not enough for 
their locks to conflict; their quorums must also intersect to ensure that the 
conflict is detected at some repository. We define the effective conflict relation to 
be the intersection of the lock conflict and quorum intersection relations: 

inv(q) > LQp = inv(q) tLp A inv(q) >Qp 

In this section, we characterize the constraints on tg, SL, and >LQ that ensure 
the correctness of consensus locking. 

Let > be an arbitrary relation between invocations and operations. 

Definition 1. A subhistory g of h is >-closed if, whenever g contains an operation 
q of h it also contains every earlier operation p such that inv(q) > p. 

Definition 2. A subhistory g of h is a >-view of h for inv(q) if g is >-closed and 
if it includes every p in h such that inv(q) > p. 
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Enq/Ok Deq/Ok 

Fig. 6. First serial dependency relation for Queue. Ew 
Deq X X 

E&Ok Deq/Ok 

Ew X Fig. 7. Second serial dependency relation for Queue. 

Deq X 

Informally, > is a serial dependency relation if, whenever an operation is legal 
for a >-view, it is legal for the complete history. More precisely, let “*” denote 
concatenation: 

Definition 3. A relation > is a serial dependency relation if, for all operations 
p and all legal histories g and h such that g is a >-view of h for inv(p), g l p is 
legal implies that h l p is legal. 

Of primary interest are minimal relations having the property that no smaller 
relation is also a serial dependency relation. In Appendix A, we show that 
consensus locking ensures hybrid atomicity if the effective confliction relation 
>LQ is a serial dependency relation, and also that no weaker constraint ensures 
correctness. 

4.4 Examples 

The Queue data type has two distinct minimal serial dependency relations, shown 
in Figures 6 and 7. Each relation permits interleavings and quorum assignments 
not permitted by the other. In Figure 6, Deq invocations depend on both Enq 
and Deq operations, thereby implying that initial Deq quorums must intersect 
final Enq and Deq quorums, and that initial Deq locks must conflict with final 
Enq and Deq locks. Initial and final Enq quorums need not intersect, and their 
locks need not conflict. As a practical matter, it may sometimes be useful to 
introduce additional lock conflicts not strictly required for correctness. For 
example, if initial Deq locks conflict, then it would not be possible for concurrent 
Deq operations to deadlock by attempting to dequeue the same item. 

In Figure 7, Enq invocations depend on earlier Enq operations, and Deq 
invocations depend on earlier Deq operations, but Deq invocations do not depend 
on Enq operations, and vice versa. To see why this relation is a serial dependency 
relation, observe that if the view assembled for a Deq includes an Enq entry for 
an undequeued item, then because the view is closed it also includes the entry 
for the earliest undequeued item. A Deq invocation may block unnecessarily if it 
fails to observe any enqueued items, but it will never return an incorrect item.’ 
Here, Enq quorums must intersect, and Deq quorums must intersect, but Enq 
quorums need not intersect Deq quorums. An enqueuing transaction can execute 
concurrently with a dequeuing transaction as long as the queue contains items 
enqueued by committed transactions. 

1 As discussed elsewhere [18], this relation would not be a serial dependency relation if a Deq applied 
to an empty queue were to signal an exception instead of blocking. 
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Ins/Ok Rem/Ok 

Ins Fig.& Serial dependency relation for SemiQueue. 
Rem X 

The queue example illustrates why constraints on quorum assignment and lock 
conflict cannot be specified independently: A replicated queue would not be one- 
copy serializable if, for example, quorum intersection were governed by the 
relation in Figure 6 and lock conflicts by the relation in Figure 7, because the 
effective conflict relation would not be a serial dependency relation. 

Constraints on concurrency and availability can often be relaxed by introducing 
nondeterminism into data type specifications. A Semiqueue provides the following 
Ins and Rem operations: 

Ins = Operation(Item) 

Rem = Operation( ) Returns(Item) 

Ins inserts an item in the Semiqueue, and Rem nondeterministically removes 
and returns an item from the Semiqueue. Like Deq, Rem returns only when there 
is an item to remove. There may be an additional probabilistic guarantee (not 
captured by our functional specifications) that the item removed is likely to be 
the oldest one. The Semiqueue data type has a unique minimal serial dependency 
relation shown in Figure 8. To ensure that no item is removed twice, initial and 
final Rem quorums must intersect and Rem operations cannot execute concur- 
rently. Ins operations may execute concurrently with Rem operations and with 
one another. If a Semiqueue is intended to approximate a FIFO Queue, each 
front end could remove the oldest item in its view. To increase the likelihood 
that a Rem operation will choose older items, a background process could 
propagate Ins entries among the repositories, effectively causing their final 
quorums to grow asynchronously. 

The notion of serial dependency can be extended to hold between pairs of 
operations instead of between operations and invocations. Such an extension can 
provide a slight increase in concurrency and availability at the cost of a less 
efficient implementation. For example, an Account provides the following Credit 
and Debit operations: 

Credit = Operation(Dollar) 
Debit = Operation(Dollar) Signals (No) 

Credit increments the account balance by a specified amount, and Debit attempts 
to decrement the balance. If the balance cannot cover the debit, the operation 
returns with an exception, leaving the balance unchanged. If we allow serial 
dependency to take the invocation’s results into account, then successful debits 
may be treated differently from attempted overdrafts, as illustrated by the 
relation shown in Figure 9. Here, transactions executing successful debits cannot 
execute concurrently, but a successful debit can execute concurrently with any 
number of overdrafts. 

Nevertheless, it may be difficult to exploit this additional concurrency in 
practice. How can a front end executing a Debit predict whether it should acquire 
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Credit/Ok Debit/Ok Debit/No 

Fig. 9. Serial dependency relation for Account. Credit/Ok 
Debit/Ok X X 
Debit/No X 

locks for a successful debit or an overdraft? An optimistic strategy is to “guess” 
that the debit will succeed by requesting locks for a successful debit. If the 
balance fails to cover the debit, the front end releases its locks and restarts the 
operation (but not the entire transaction), “guessing” this time that the debit 
will fail. A pessimistic strategy is to acquire locks for both operations, which is 
equivalent to an initial lock on the invocation, but to release the superfluous lock 
when the response becomes known. (Similar considerations arise if an operation’s 
choice of initial quorums may depend on its anticipated result.) Either approach 
may require additional message traffic, and it remains unclear whether such 
refinements are cost-effective for replicated data. 

4.5 Remarks 

By exploiting type information, consensus locking places fewer constraints on 
quorum assignment than replication methods based on the conventional 
read/write classification of operations [14]. Each operation of the example data 
types reviewed above would be classified as a read followed by a write, since each 
modifies the object state in a way that depends on the operations’ arguments and 
the object’s current state. Since read and write quorums must intersect, all 
quorums for all operations must intersect, which rules out many of the quorum 
assignments permitted by consensus locking. 

Consensus locking is a generalization of general quorum consensus [ 181, a type- 
specific replication method that relies on an underlying concurrency control 
protocol to ensure atomicity. Consensus locking permits more concurrency be- 
cause it exploits information about the data type specification and about the 
quorum assignment. For example, if transactions synchronize through two-phase 
read/write locks at repositories [ 121, it would be impossible to distinguish between 
real synchronization conflicts (e.g., Enq/Deq conflicts in Figure 6 or Enq/Enq 
conflicts in Figure 7) and spurious conflicts (e.g., Enq/Enq conflicts in Figure 6 
or Enq/Deq conflicts in Figure 7). 

The two methods place identical constraints on quorum assignment: The 
quorum intersection relation must be a serial dependency relation. Clearly, no 
integrated replication method can permit more quorum assignments than general 
quorum consensus, simply because any quorum assignment that ensures one- 
copy serializability in the presence of concurrency must also work if transactions 
appear to execute serially. Nevertheless, because consensus locking is no worse 
than the general quorum consensus, it places the weakest possible constraints on 
quorum assignments. By contrast, the next section describes an integrated 
mechanism that permits more concurrency than consensus locking, but fewer 
quorum assignments. 

Consensus locking compares favorably to several locking protocols in the 
literature, even in the absence of replication. Korth [24] and Bernstein et al. [4] 
have proposed type-specific two-phase locking protocols for single-site objects 
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whose operations are total and deterministic. In both protocols operations that 
do not commute have conflicting locks. (Informally, two invocations commute if 
they can occur in either order and both orders yield the same final state.) It can 
be shown that failure to commute is a serial dependency relation, but not 
necessarily a minimal relation. Consequently, consensus locking can realize any 
level of concurrency permitted by commutativity-based locking schemes, but not 
vice versa. For example, Enq operations do not commute, but Enq locks need not 
conflict (Figure 6). 

The notion of serial dependency also arises in a variety of conflict-based 
synchronization mechanisms, including optimistic techniques [ 191, multiversion 
timestamping techniques [21], and techniques in which quorum assignments 
change dynamically in response to failures [20]. Although we do not address the 
issue here, consensus locking can be extended to nested transaction systems by 
introducing lock inheritance rules similar to those proposed by Moss [28]. 

5. CONSENSUS SCHEDULING 

5.1 Introduction 

Consensus locking has two limitations: It makes scheduling decisions exclusively 
on the basis of pair-wise lock conflicts, and it cannot be used in systems based 
on local atomicity properties other than hybrid atomicity. This section introduces 
consensus scheduling, a generalization of consensus locking that can be used to 
construct replicated objects satisfying arbitrary concurrent specifications. This 
additional power comes at a cost: Relaxing constraints on concurrency may 
require strengthening constraints on quorum assignment. In general, constraints 
on availability and concurrency cannot be minimized simultaneously. 

The limitations of conflict-based scheduling can be illustrated by the following 
example in Figure 10. Committed transaction A has credited $10 to a replicated 
account in two separate $5 credits at different final quorums. Transaction B has 
tentatively credited another $5. If transaction C attempts to debit $10, it will be 
delayed by conflicts with B’s Credit locks. This delay is unnecessary, however, 
because the account balance covers the debit, regardless of the order in which B 
and C commit. If, instead, C had attempted to debit $15, it would indeed have to 
wait until B commits or aborts, because B’s outcome will determine whether the 
balance covers the debit. Consensus locking cannot distinguish between these 
scenarios, and therefore C must be delayed in both cases. 

An inability to take full advantage of state information for scheduling is a 
characteristic of any concurrency control scheme implemented at the individual 
repositories. In the example above, no single repository has enough information 
to recognize that the committed balance covers the attempted debit. In general, 
no information about the account balance can be ascertained from the entries 
residing at any single repository because there may be unobserved Credit and 
Debit entries recorded elsewhere. 

5.2 The Protocol 

The basic idea behind consensus scheduling is the following: Instead of 
using partially replicated logs to represent serialized histories, we use the logs 
to represent concurrent schedules, explicitly representing information about 
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Rl 

Final(Credit) = {B 1 

1:Ol Credit($5)/0k( ) 
B:OO Credit($5)/0k( ) 

R2 

Final(Credit) = (BJ 
1:00 Credit($5)/0k( ) 

BOO Credit($5)/0k( ) 

R3 

1:00 Credit($5)/0k( ) 
1:Ol Credit($5)/0k( ) 

Figure 10 

Rl R2 R3 

0:Ol Credit($5)/0k( ) A 

0~03 Credit($5)/0k( ) B 

0:OO Credit($5)/0k( ) A 

0:02 Commit(a) A 
0:03 Credit($B)/Ok( ) B 

0:OO Credit($5)/0k( ) A 
0:Ol Credit($5)/0k( ) A 
0~02 Commit(2) A 

Figure 11 

interleavings, commit and abort steps, and steps of active transactions. Sched- 
uling decisions are made at front ends, rather than repositories, using information 
merged from an initial quorum. Timestamps need no longer be split into trans- 
action fields and operation fields, since commit orderings can be reconstructed 
by inspecting the commit steps directly. 

For example, the replicated Account in Figure 10 might be represented in 
Figure 11. The absence of a transaction field is indicated by a leading zero in 
each timestamp. All the information used by the consensus-locking protocol 
(such as commit timestamps and locks) can be reconstructed from this schedule. 

An operation is executed in the following steps: 

(1) The client sends the invocation and transaction identifier to a front end, 
which forwards them to an initial quorum of repositories. 

(2) Each repository in the initial quorum responds by sending its entire log to 
the front end. 

(3) The front end merges the logs from the initial quorum to construct a view. 
Note that the view is a schedule, not a history. It chooses a response 
consistent with the object’s state as reconstructed from the view. The front 
end generates an entry for the new operation, appends it to the view, and 
sends the view to a final quorum of repositories. If the front end cannot 
choose a response, perhaps because it must await the outcome of another 
transaction, it waits for the object’s state to change and restarts the protocol. 

(4) Each repository in the final quorum merges the view with its log and returns 
an acknowledgment to the front end. 

(5) As soon as the front end receives acknowledgments from a final quorum, the 
response is returned to the client. 

When a transaction commits or aborts, an appropriate entry is inserted in the 
log of each repository visited by that transaction. 

Some form of short-term synchronization is needed to ensure that the steps of 
the protocol are executed atomically. One solution is to place at each repository 
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Rl R2 R3 

0~01 Credit($5)/0k( ) A 

0103 Credit($B)/Ok( ) B 

0~00 Credit($5)/0k( ) A 
0~01 Credit($5)/0k( ) A 
0~02 Commit(2) A 
0~03 Credit($S)/Ok( ) B 
0~04 Debit($lO)/Ok( ) C 

0~00 Credit( $5)/0k( ) A 
0~01 Credit($5)/0k( ) A 
0:02 Commit(a) A 
0:03 Credit($5)/0k( ) B 
0:04 Debit($lO)/Ok( ) C 

Figure 12 

a short-term mutual exclusion lock. The front end acquires a short-term lock at 
each repository in its initial quorum in step 1 and at its final quorum at step 3. 
The front end releases its short-term locks in step 4. Repositories may break 
short-term locks in response to suspected deadlocks, but the interrupted opera- 
tion must be restarted. Returning to our example in Figure 10, let us trace how 
transaction C could debit $10 from the replicated account. Under consensus 
locking, C would be unable to acquire initial Debit locks until B releases its final 
Credit locks. Under consensus scheduling, however, when Rl and R2 receive the 
request, they grant short-term locks to the front end and respond with their logs. 
Merging these logs yields the following view: 

0:OO Credit($g)/Ok( ) A 
0:Ol Credit($5)/0k( ) A 
0:02 Commit(2) A 
0:03 Credit(@)/Ok( ) B 

The view indicates that the $10 deposited by A will cover the debit, regardless of 
B’s outcome, so the front end appends the entries for the new Debit operation to 
its view and sends the view to R2 and R3. When the front end confirms that the 
view has been merged with the repositories’ logs, it releases all its short-term 
locks. The account’s final state is shown in Figure 12. 

If C had attempted to debit, $15 dollars, however, the front end, unable to 
choose a response, could have released its short-term locks and waited for B to 
commit or abort. 

5.3 Constraints on Availability 

Let > be an arbitrary relation between invocations and operations. We extend 
the notion of >-closed and >-view to schedules. 

Definition 4. G is a >-closed subschedule of H if, whenever G contains an 
operation step (q Q) of H it also contains every preceding operation step (p P), 
such that inv(q) > p and neither P nor Q is aborted. 

Definition 5. G is a >-view of H for inv(q) if G is S-closed and if it includes 
every (p P) in H, such that inv(q) > p, and P is not aborted. 

These definitions are intended to avoid constraining the behavior of aborted 
transactions. 

Let Concur be an arbitrary concurrent specification. 
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Definition 6. Let G be a >-view of H for inv(q). > is an atomic dependency 
relation for Concur if G l (q Q) is in Concur implies H . (q Q) is in Concur. 

In Appendix A, we show that a replicated atomic object implemented by 
consensus scheduling satisfies the concurrent specification Concur if and only if 
the quorum intersection relation is an atomic dependency relation for Concur. 

The formal similarity between serial and atomic dependency belies some 
interesting differences. If T is a serial specification, let Hybrid(T) be the 
concurrent specification consisting of all hybrid atomic schedules for T. Let >H 
be a minimal atomic dependency relation for Hybrid(T). Clearly, >H must be a 
serial dependency relation, since it must ensure hybrid atomicity even when all 
operations are executed serially by a single transaction. It follows that every 
quorum assignment permitted by a consensus-scheduling implementation of 
Hybrid(T) is permitted by a consensus-locking implementation of T. The con- 
verse, however, is false. For example, let ts be the minimal serial dependency 
relation for the Account data type shown in Figure 9. Let H be the following 
hybrid atomic schedule: 

Debit($ZO)/No( ) C 
Credit($lO)/Ok( ) B, 

and let G be the subschedule consisting of the first step. Recall that Credit 
operations are unrelated by >s; thus G is a >s-view of H for Credit. Now suppose 
A attempts to credit $10 to the account. G l (Credit($lO)/Ok( ) A) is hybrid 
atomic, but H l (Credit($lO)/Ok( ) A) is not, because an illegal serialization 
results if the transactions commit in the order A, B, and C. It follows that a 
consensus-scheduling implementation of Hybrid(Account) requires initial and 
final Credit quorums to intersect, whereas consensus-locking implementation of 
Account, which permits less concurrency, does not. 

For an account replicated among n identical repositories, consensus locking 
permits rn/21 distinct minimal quorum assignments: Credit and Debit quorums 
must respectively encompass m and n - m + 1 repositories, where m ranges 
between 1 and [n/21. By contrast, a consensus-scheduling implementation of 
Hybrid(Account) permits exactly one minimal quorum assignment: Both Credit 
and Debit require a majority. A similar argument shows that if Static(Account) 
is the full set of static atomic schedules, a consensus-scheduling implementation 
of Static(Account) also permits only a single quorum assignment. Curiously, it 
can be shown that for any data type T, any quorum assignment permitted by 
Static(T) is also permitted by Hybrid(T), but not vice versa [17]. 

5.4 Remarks 

Consensus scheduling may require more message traffic than consensus locking. 
Under consensus locking, any operation that is not partial can be executed in a 
fixed number of messages. Under consensus scheduling, however, additional 
messages may be needed to manage short-term locks and to retry operations 
blocked by synchronization conflicts. Consensus locking can be viewed as a 
specially optimized instance of consensus scheduling in which message traffic 
has been reduced by moving scheduling decisions from the front ends to the 
repositories, and by synchronizing operations in two phases instead of one. 
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Although we do not address the issue here, the consensus-scheduling algorithm 
and the notion of atomic dependency can be extended to a nested transaction 
model by introducing additional well-formedness conditions. 

6. CONCLUSION 

Replication methods in which concurrency control and replica management are 
handled by distinct protocols at different levels have an appealing simplicity. 
Each protocol can be designed and understood in isolation, and a variety of 
replication methods can be constructed by combining different techniques. Nev- 
ertheless, we have argued here that combining concurrency control and replica 
management in a single protocol permits greater concurrency, as well as more 
flexibility in trading concurrency against availability. 

Consensus locking is a replication method that relies on predefined lock 
conflicts derived from the object’s type specification and its quorum assignment. 
Consensus locking minimizes constraints on availability and concurrency: No 
replication method, integrated or not, can impose weaker constraints on quorum 
assignment, and no conflict-based concurrency control protocol permits more 
operations to execute concurrently. Consensus locking also supports more con- 
currency than a number of locking schemes in the literature, even in the absence 
of replication. Nevertheless, the concurrency realizable by consensus locking is 
limited by an inability to take the object’s state into account. 

Consensus scheduling is a generalization of consensus locking that can be used 
to construct replicated objects satisfying arbitrary concurrent specifications, 
including specifications that satisfy local atomicity properties other than hybrid 
atomicity and specifications in which scheduling decisions take the object’s state 
into account. This additional power may come at the cost of additional message 
traffic and tighter constraints on quorum assignment. 

Availability and concurrency are not independent properties: The availability 
and concurrency realizable by replication are governed by a common set of 
constraints, formally characterized by the notion of an atomic dependency 
relation. In particular, there exist data types for which the constraints on 
availability and concurrency cannot be minimized simultaneously: The more 
interleaving permitted by the concurrent specification, the more restrictive the 
constraints on quorum assignment. 

APPENDIX A FORMAL DEFINITIONS AND PROOFS 

A.1 Consensus-Locking Automata 

For consensus locking, a replicated object is modeled by a nondeterministic 
consensus-locking automaton that accepts certain schedules. The automaton’s 
state is defined using the following primitive domains: REPOS is the set of 
repositories, TRANS the set of transaction identifiers, INV the set of invocations, 
RES the set of responses, and TIMESTAMP a totally ordered set of timestamps. 
X + Y denotes the set of partial maps from X to Y. We use the following derived 
domains: OP = INV x RES is the set of operations, QUORUM = 2REPoS the set 
of quorums, and a log is a map from a finite set of timestamps to operations: 
LOG = TIMESTAMP + OP. 

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987. 



266 l Maurice Herlihy 

Two logs L and M are coherent if they agree for every timestamp where they 
are both defined. The merge operation U is defined on pairs of coherent logs by 

(L U M)(t) = if L(t) is defined then L(t) else M(t). 

Every log corresponds to a history in the obvious way. For brevity, we sometimes 
refer to a log L in place of its history, that is, “L is legal” instead of “the history 
represented by L is legal.” 

A consensus-locking automaton has the following state components: 

Intent: REPOS + (TRANS + LOG) 
I-Lock: REPOS + (INV + 2TRANS) 

F-Lock: REPOS + (OP + 2TRANS) 

Clock: TIMESTAMP 

Committed: TRANS + TIMESTAMP 

Let R be a repository and Q a transaction. Intent(R, Q) is the log of entries for 
Q recorded at R, initially none. I-Lock(R, inu) and F-Lock(R, q) are, respectively, 
the sets of transactions holding initial and final locks for inv and q at R, initially 
none. Clock models a system of logical clocks, and Committed maps committed 
transactions to their timestamps. 

If S is a set of repositories, and Q a transaction, let Intent(S, Q) = UREA 
Intent(R, Q), and similarly for I-Lock(S, inv) and F-Lock@, q). Let (Pi, . . . , Pkj 
be the sequence of committed transactions sorted in the order of their commit 
timestamps. Define 

Perm(S) = Intent@, Pi) l . . . l Intent(S, Pk), 

as the history constructed by appending the intentions in timestamp order. If Q 
is an active transaction, define 

View(S, Q) = Perm(S) l Intent(S, Q), 

as the history constructed by serializing committed transactions in timestamp 
order, followed by Q. 

The automaton’s transaction relation is defined using the following sets: 

-A serial specification Serial. 

-A lock-conflict relation >L C INV X OP. 
-Initial: INV + 2QUoRUM assigns initial quorums to invocations. 
-Final: OP -+ 2QUoRUM assigns final quorums to operations. 

Initial, Final, and >t induce the relations >Q and >LQ defined above. 
For brevity, we assume that all input schedules are well formed. (Well- 

formedness could be checked explicitly by adding more state components and 
preconditions.) 

The precondition for accepting an operation step (q Q) is the following. There 
must exist IQ in Initial(inv(q)) and FQ in Final(q) such that 

If inv(q) >L p, then F-Lock(lQ, p) - (&I = 0, 
If inv’ >L q, then I-Lock(FQ, inv’) - (Q] = 0, and 
View(lQ, Q) l q is in Serial. 
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No repository in the initial quorum has granted a conflicting final lock, no 
repository in the final quorum has granted a conflicting initial lock, and append- 
ing the operation to the transaction’s view yields a legal history. 

Let View’ be the result of appending the new step to the view: 

View’(S, Q)(t) = if (t = Clock) then q else View(S, Q)(t) 

Following the operation execution, the automaton’s new state satisfies the 
following postconditions, where x’ denotes the new value of component X: 

Clock’ > Clock 
For all R in IQ, I-Lock’(R, inv(q)) = I-Lock(R, inv(q)) U (Q). 
For all R in FQ, F-Lock’(R, q) = F-Lock(R, q) U(Q). 
For all R in FQ and P in TRANS, Intent’(R, P) 

= Intent(R, P) U View’(IQ, Q) 1 P. 

The clock is advanced, the transaction is granted locks, and the view is merged 
with the logs in the final quorum. 

The precondition for accepting a commit step (Commit(t)Q) is true. After 
accepting the commit step, the following postcondition holds: 

Clock’ > max(Clock, t), 
Committed’(P) = if (P = Q) then t else Committed(P), 
For all inv in INV and R in REPOS, 

I-Lock’(R, inv) = I-Lock(R, inv) - (Q), and 
For all p in OP and R in REPOS, F-Lock’(R, p) = F-Lock(R, p) - (Q]. 

The commit advances the clock beyond the commit time, the transaction is 
marked as committed, and its locks are released. The precondition for an abort 
step is true, and the postcondition advances the clock and releases locks. 

A.2 Correctness Arguments 

A schedule is hybrid atomic [33] if transactions are serializable in commit 
timestamp order. A schedule is on-line hybrid atomic if the result of committing 
any set of active transactions yields a hybrid atomic schedule. Henceforth, we 
say simply “hybrid atomic” for “on-line hybrid atomic.” A hybrid serialization of 
H is a history constructed by committing some set of active transactions and 
serializing them in commit timestamp order. A sdhedule is hybrid atomic if all 
its hybrid serializations are legal. We will show that the schedules accepted by a 
consensus-locking automaton are hybrid atomic if the effective conflict relation 
is a serial dependency relation, and that no weaker constraints on quorum 
intersection and lock conflict preserve hybrid atomicity. 

We use the following technical lemma: 

LEMMA 7. If > is an arbitrary relation between invocations and operations, the 
result of merging >-closed sublogs of a particular log is itself a >-closed sublog. 

The following lemma is proved elsewhere [19]. 

LEMMA 8. If > is a serial dependency relation, g and h histories, and q an 
operation such that g l q and g l h are legal, and there is no p in h such that 
inu(p) > q, then g l q l h is legal. 
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The locks ensure that conflicting operations cannot execute concurrently. 

LEMMA 9. If a consensus-locking automaton has accepted a schedule H contain- 
ing operations p and q executed by distinct active transactions, then inv(q) $~o p 
and inu(p) ~LQ q. 

PROOF. If not, some repository in the intersection of the quorums for p and q 
has granted conflicting locks. 0 

LEMMA 10. Let h be a hybrid serialization of the accepted schedule H, S a set of 
repositories, and Q an active transaction. The following property is invariant: 
View(S, Q) is a >Lo-closed subhistory of h. 

PROOF. By Lemma 7, it is enough to show that View(R, Q) is >Lo-closed for a 
single repository R. We argue by induction on the length of the accepted schedule. 
The base case is immediate. Assume the automaton has accepted the schedule 
H, and let h be a hybrid serialization of H. By induction, h is legal. 

Suppose the automaton accepts the operation step (q Q). If h is a hybrid 
serialization of H in which Q aborts, then h is also a legal hybrid serialization of 
H l (q Q). Otherwise, h can be written as hI l hz and the corresponding hybrid 
serialization h’ of H l (q Q) as hI l q l h2. Let P be an active transaction 
distinct from Q. By induction, View(S, P) is tLg-closed in h. If View’(S, P) 
is not tlB-closed in h’, then it includes an operation p in h2 such that 
inv( p) >LQ q. If P executed p, then p and q contradict Lemma 9. If a committed 
transaction executed p, the well-formedness constraints on commit timestamps 
ensure it is serialized before Q in every hybrid serialization; thus p cannot appear 
in h2. Therefore, View’(S, P) must be >Lo-closed in h’. 

The commit step for Q shrinks the set of hybrid serializations. If R is not part 
of a final quorum for Q, View’(R, P) = View(R, P), which remains tlo-closed. 
Otherwise, 

View’(R, P) = View(R, P) U View(R, Q) 

which is closed by Lemma 7. 
The abort step (Abort Q) shrinks the set of hybrid serializations but leaves 

View(S, P) unchanged. 0 

LEMMA 11. Let h be a hybrid serialization of the accepted schedule H in which 
Q commits. If Q has acquired initial locks for inv(q) at IQ in initiaZ(inv(q)), then 
View(lQ, Q) is a >LQ-view of h for inv(q). 

PROOF. View(lQ, Q) is a tlQ-closed subhistory of h (Lemma 10). 
If inv(q) >LQ p and transaction P executed p, then either P is committed 
or P is the same transaction as Q (Lemma 9). In either case, p appears in 
View(lQ, Q) because the initial quorum for inv(q) intersects the final quorum 
forp. q 

We are now ready for the basic correctness result. 

THEOREM 12. If h,Q is a serial dependency relation, then every schedule accepted 
by a consensus-locking automaton is hybrid atomic. 
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PROOF. We argue by induction that every hybrid serialization of every schedule 
accepted by the automaton is legal. The property is immediate after accepting 
the empty schedule, and it is clearly preserved after accepting a commit or abort 
step. 

Assume the automaton has accepted the schedule H, and let h be a hybrid 
serialization of H. By induction, h is legal. Suppose the automaton accepts 
the operation step (q Q) with initial quorum IQ. If h is a hybrid serialization 
of H in which Q aborts, then h is also a legal hybrid serialization of H l (q Q). 
Otherwise, h can be written as hI l hz and the corresponding hybrid serialization 
h’ of H l (q Q) as hI l q l hz. View(lQ, Q) is a >Lg-view of hI l hp for inv(q) 
(Lemma ll), but since every operation in View(lQ, Q) is serialized before q, it is 
also a >LQ-view of hI. The precondition for accepting an operation step ensures 
that View(lQ, Q) l q is legal, and because >L~ is a serial dependency relation, 
hI l q is also legal (Definition 3). There is no p in hp such that inv(p) >LQ q 
(Lemma 9); thus hi l q l hz is legal (Lemma 8). q . 

We now show that no weaker set of constraints on lock conflicts and quorum 
intersection can guarantee correctness. Our argument relies on the following 
lemma, proved in [ 191: 

LEMMA 13. Let > be a relation between invocations and operations. If > is not 
a serial dependency relation, then there exist histories g and h and an operation q 
such that (1) g is a >-view of h for inv(q), (2) g l q is legal, (3) h l q is illegal, and 
g is missing exactly one operation of h. 

No quorum-consensus method can place weaker constraints on quorum 
assignment. 

THEOREM 14. If > is not a serial dependency relation, there exists a consensus- 
locking automaton with quorum-intersection relation > that accepts a schedule 
that is not hybrid atomic. 

PROOF. Let h, g, and q satisfy the conditions of Lemma 13 and 
let h = gl l p l g2, and g = gl l g2. Consider an automaton with two repositories, 
Rl and R2. Transaction Q executes the operations in g,, choosing (Rl, R2) for 
initial and final quorums. It then executes p, choosing (R2) for initial and final 
quorums, and executes g2, choosing (Rl] for initial and final quorums. Q executes 
q and commits, choosing an initial quorum of (Rl), and assembling the view g. 
These quorum intersections satisfy >, but the automaton has accepted an illegal 
schedule. Cl 

A natural way to compare the concurrency permitted by locking schemes is to 
compare which operations may execute concurrently. For consensus locking, this 
set is determined by the symmetric conflict relation: 

p - q = inv(p) >.LQ q V inv(q) >LQ p. 

If p - q, the two operations cannot execute concurrently because one operation’s 
initial locks will conflict with the other’s final locks. By a minor abuse of notation, 
we say that - is a serial dependency relation, if the relation -’ is a serial 
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dependency relation, where inv(q) -’ p if q - p. If >LQ is a serial dependency 
relation, so is -. Moreover, any such - can be generated by some serial depend- 
ency relation >LQ; thus any scheme for choosing an effective conflict relation 
permitting more concurrency than our scheme must induce a symmetric conflict 
relation that is not a serial dependency relation. We now show that no such 
scheme is possible. 

THEOREM 15. Let - be a symmetric relation between operations. If - is not a 
serial dependency relation, there exists a consensus-locking automaton with effec- 
tive conflict relation - that accepts a schedule that is not hybrid atomic. 

PROOF. Since -’ is not a serial dependency relation, pick h, g, and q to satisfy 
the conditions of Lemma 13, and let h = gl l p l gz, g = g, l g2. Consider an 
automaton with two repositories, Rl and R2. Transaction A executes each of the 
operations in gl and commits, choosing both Rl and R2 as initial and final 
quorums for each operation. Transaction B executes p, choosing R2 as its initial 
and final quorums. Let g2 l q = q1 l . . . l qk. Transaction C executes g2 l q, 
choosing the following quorums. If inv(qi) >Q p, choose the initial quorum 
(Rl, R2), otherwise choose (Rl). If inv(p) >Q qi, choose the final quorum 
(Rl, R2), otherwise choose (Rl). These quorums satisfy >Q, and no lock conflicts 
arise because if inv(qJ sL p, then the initial quorum for qi does not intersect the 
final quorum for p, and similarly if inv(p) >L qi. The accepted schedule is not 
hybrid atomic because it has the illegal hybrid serialization h l q. Cl 

A.3 Consensus Scheduling 

For consensus scheduling, a replicated object is modeled by a nondetermi- 
nistic consensus scheduling automaton, having the following components. Let 
STEP = OP U “Commit” U “Abort.” It is convenient to redefine LOG to be 
TIMESTAMP + STEP. 

State: REPOS + LOG 

Clock: TIMESTAMP 
Visited: TRANS + 2REPoS 

Visited (Q) is the set of repositories that participated in a quorum for Q, and 
State(R) is the log at R. If S is a set of repositories, define State(S) in the usual 
way. 

The automaton’s state transition relation is defined using the following sets: 

-The concurrent specification Concur, 
-Initial: INV + 2QUoRUM, and 
-Final: OP + 2QUoRUM. 

As before, Initial and Final define a quorum intersection relation >Q. 

The precondition for accepting an operation step (q Q) is the following. There 
must exist an initial quorum IQ in Initial(inv(q)) such that 

State(lQ) l (q Q) is in Concur. 

The schedule constructed by merging the logs from an initial quorum and 
appending the new step must lie within the concurrent specification. The 
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postcondition is the following. There must exist a final quorum FQ in Final(q) 
such that 

Clock’ > Clock 
For all R in FQ, State(R)(t) = if (t = Clock) then (q Q) 

else (State(R) U State(lQ))(t) 

The front end’s log is merged with the logs at a final quorum, and the clock is 
advanced. 

Commits and aborts are treated as operations with dummy invocations: The 
clock is advanced, and a commit or abort entry is appended to the log at each 
repository visited by the transaction. 

A.4 Correctness Arguments 

We first show that the view assembled for each operation is a >o-closed subsched- 
ule of the schedule accepted by the automaton. 

LEMMA 16. The result of merging logs from any set of repositories is +-closed. 

PROOF. It suffices to show that the property holds for any single repository R; 
the more general result follows from Lemma 7. The argument is by induction on 
the length of the accepted schedule. The base case is immediate, and the result 
is clearly preserved when a commit or abort step is accepted. 

Let (q Q) be an operation step accepted in a state satisfying the lemma. 
If R is outside the final quorum for q, then State(R) = State’(R), which 
remains >c-closed. Othe,rwise, 

State’(R) = State(R) U State(lQ) l (q Q), 

where “*” is shorthand for appending the new entry to the log as defined above. 
State(lQ) is so-closed because it is the merger of closed logs (induction hypothesis 
and Lemma 7). State(lQ) l (q Q) is +closed by construction, and State(R) 
is >o-closed by the induction hypothesis; therefore State’(R) is >g-closed by 
Lemma 7. Cl 

Constraints on quorum intersection yield: 

COROLLARY 17. If the automaton has accepted the schedule H, and IQ is in 
InitiaZ(inu(q)), then State(IQ) is a +-mew of H for inu(q). 

We are now ready to present the basic correctness result: 

THEOREM 18. If the quorum intersection relation >Q is an atomic dependency 
relation for Concur, every schedule accepted by a quorum-consensus automaton is 
in concur. 

PROOF. The proof is by induction on the length of the accepted schedule H. 
The base case is immediate. Because Concur is on-line, the result holds when 
the automaton accepts commit or abort steps. Suppose the automaton accepts 
the operation step (q Q). State (IQ) is a >Q-view of H for inv(q) (Corollary 17), 
StaWQ) l (4 Q> is in Concur, and >Q is an atomic dependency relation for 
Concur; hence H l (q Q) is also in Concur (Definition 6). 0 
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No set of constraints on quorum intersection weaker than atomic dependency 
guarantees that all schedules accepted by a consensus-scheduling automaton are 
in Concur. 

THEOREM 19. If > is not an atomic dependency relation for Concur, there exists 
a consensus-scheduling automaton for which >Q = > that accepts a schedule that 
is not in Concur. 

PROOF. By Definition 6, if >Q is not a serial dependency relation, there exist 
schedules G and H in Concur and an operation q, such that G is a >-view of H 
for inv(q), G l (4 Q> is in Concur, but H l (q Q) is not. We construct a consensus- 
scheduling automaton with quorum-intersection relation >Q that accepts 

I-I* (9 Q>- 
The automaton has two repositories: Rl and R2. It accepts H and chooses the 

following quorums for each operation. For each operation in G, choose an initial 
quorum of (RlJ and a final quorum of (Rl, R2). For operations in H but not in 
G, choose an initial quorum of (Rl, R2) and a final quorum of (R2). The view 
assembled for each operation in G contains all and only the prior steps in G, and 
the view assembled for every other operation contains all prior steps. 

These quorums satisfy >Q because all initial and final quorums intersect, 
except the initial quorums for operations in G and the final quorums for opera- 
tions not in G. If any of these quorums were required to intersect, then G would 
not be >g-closed, a contradiction. 

The automaton then accepts (q Q), choosing an initial quorum of (Rl] and a 
final quorum of (Rl, RB).This transition is legal because the automaton assembles 
the view G, and G l (q Q) is in Concur. The accepted schedule H l (q Q) is not 
in Concur: thus the automaton is incorrect. 

REFERENCES 

1. ALSBERG, P. A., AND DAY, J. D. A principle for resilient sharing of distributed resources. 
In Proceedings of 2d Annual Conference on Software Engineering (San Francisco, Calif., 
Oct. 13-15, 1976). IEEE, New York, 1976. 

2. BERNSTEIN, P. A., AND GOODMAN, N. The failure and recovery problem for replicated data- 
bases. In Proceedings of the 2d ACM SZGACT-SZGOPS Symposium on Principles of Distributed 
Computing (Montreal, Quebec, Aug. 17-19,1983). ACM, New York, 1983, 114-122. 

3. BERNSTEIN, P. A., AND GOODMAN, N. An algorithm for concurrency control and recovery in 
replicated distributed databases. ACM Trans. Database Syst. 9,4 (Dec. 1984), 596-615. 

4. BERNSTEIN, P. A., GOODMAN, N., AND LAI, M. Y. Two-part proof schema for database 
concurrency control. In Proceedings of 5th Berkeley Workshop on Distributed Data Management 
and Computer Networks (Berkeley, Calif., Feb. 1981). Lawrence Berkeley Laboratory, 1981, 
71-84. 

5. BIRMAN, K. P. Replication and fault-tolerance in the ISIS system. In Proceedings of 10th 
Symposium on Operating Systems Principles. (Orcas Island, Wash., Dec. l-4, 1985). ACM, New 
York, 1985, 79-86. Also published as Tech. Rep. 85-668, Cornell University, Computer Science 
Dept., Ithaca, N.Y. 

6. BIRRELL, A. D., LEVIN, R., NEEDHAM, R., AND SCHROEDER, M. Grapevine: an exercise in 
distributed computing. Commun. ACM 25,14 (Apr. 1982), 260-274. 

7. BLOCH, J. J., DANIELS, D. S., AND SPECTOR, A. Z. A weighted voting algorithm for replicated 
directories. 1987. To appear, J. ACM. 

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987. 



Concurrency versus Availability l 273 

8. COOPER, E. C. Circus: a replicated procedure call facility. In Proceedings of the 4th Symposium 
on Reliability in Distributed Software and Database Systems (Oct. 1984), 11-24. 

9. EAGER, D. L., AND SEVCIK, K.C. Achieving robustness in distributed database systems. ACM 
Trans. Database Syst. 8,3 (Sept. 1983), 354-381. 

10. EL-ABBADI, A., AND TOUENG, S. Availability in partitioned replicated databases. Tech. Rep. 
85-721, Dept. of Computer Science, Cornell University, Ithaca, N.Y., Dec. 1985. 

11. EL-ABBADI, A., SKEEN, D., AND CRISTIAN, F. An efficient, fault-tolerant protocol for replicated 
data management. In Proceedings of the 4th ACM SIGACTfSZGMOD Symposium on Principles 
of Database Systems (Portland, Ore., Mar. 25-27,1985). ACM, New York, 1985,215-229. 

12. ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND TRAIGER, I. L. The notion of consistency and 
predicate locks in a database system. Commun. ACM 19,ll (Nov. 1976), 624-633. 

13. FISCHER, M. J., AND MICHAEL, A. Sacrificing serializability to attain high availability of 
data in an unreliable network. In Proceedings of ACM SZGACT-SZGMOD Symposium on Prin- 
ciples of Database Systems (Los Angeles, Calif., Mar. 29-31, 1982). ACM, New York, 1982, 
70-75. 

14. GIFFORD, D. K. Weighted voting for replicated data. In Proceedings of the 7th Symposium on 
Operating Systems Principles (Pacific Grove, Calif., Dec. 10-12, 1979). ACM, New York, 1979, 
150-162. 

15. GRAY, J. N. Notes on Database Operating Systems, Lecture Notes in Computer Science Vol. 60. 
Springer-Verlag, Berlin, 1978, pp. 393-481. 

16. HAMMER, M. M., AND SHIPMAN, D. W. Reliability mechanisms in SDD-1, a system for 
distributed databases. ACM Trans. Database Syst. 5, 4 (Dec. 1980), 431-466. 

17. HERLIHY, M. P. Comparing how atomicity mechanisms support replication. In Proceedings of 

the 4th Annual ACM Symposium on Principles of Distributed Computing (Minaki, Ontario, 
Canada, Aug. 5-7, 1985). ACM, New York, 1985,102-110. 

18. HERLIHY, M. P. A quorum-consensus replication method for abstract data types. ACM 
TransComput. Syst. 4, 1 (Feb. 1986), 32-53. 

19. HERLIHY, M. P. Optimistic concurrency control for abstract data types. In Proceedings of the 
5th Annual Symposium on Principles of Distributed Computing (Calgary, Alberta, Canada, 
Aug. ll-13,1986). ACM, New York, 1986,206-217. 

20. HERLIHY, M. P. Dynamic quorum adjustment for partitioned data. ACM Trans. Database Syst. 
122 (June 1987), 170-194. 

21. HERLIHY, M. P. Extending multiversion timestamping protocols to exploit type information. 
IEEE Trans. Comput. C-35, 4 (Apr. 1987), 443-449. Special issue on parallel and distributed 
computing. 

22. JOHNSON, P. R., AND THOMAS, R. H. The maintenance of duplicate databases. Tech. Rep. 
RFC 677 NIC 31507, Network Working Group (Jan. 1975). 

23. KOHLER, W. H. A survey of techniques for synchronization and recovery in decentralized 
computer systems. ACM Comput. Suru. 13,2 (June 1981), 149-185. 

24. KORTH, H. F. Locking primitives in a database system. J. ACM 30, 1 (Jan. 1983), 55-79. 
25. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM 

21, 7 (July 1978), 558-565. 
26. LAMPSON, B. Atomic Transactions. Lecture Notes in Computer Science Vol. 105: Distributed 

Systems: Architecture and Implementation. Springer-Verlag, Berlin, 1981, 246-265. 
27. MINOURA, T., AND WIEDERHOLD, G. Resilient extended true-copy token scheme for a distrib- 

uted database system. IEEE Trans. Softw. Eng. 8,3 (May 1982), 173-188. 
28. MOSS, J. E. B. Nested transactions: an approach to reliable distributed computing. Tech. Rep. 

MIT/LCS/TR-260, Massachusetts Institute of Technology, Laboratory for Computer Science, 
Cambridge, Mass. Apr. 1981. 

29. OPPEN, D., AND DALAL, Y. K. The clearinghouse: a decentralized agent for locating named 
objects in a distributed environment. Tech. Rep. OPD-T8103, Xerox Corporation, Palo Alto, 
Calif. (Oct. 1981). 

30. PAPADIMITRIOU, C. H. The serializability of concurrent database updates. J. ACM 26, 4 
(Oct. 1979), 631-653. 

31. SKEEN, M. D. Crash recovery in a distributed database system. Ph.D. dissertation, Dept. of 
Electrical Engineering and Computer Science, University of California, Berkeley, May 1982. 

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987. 



274 - Maurice Herlihy 

32. THOMAS, R. H. Consensus approach to concurrency control for multiple-copy databases. ACM 
Tram. Database Syst. 4,2 (June 1979), 180-209. 

33. WEIHL, W. E. Specification and implementation of atomic data types. Tech. Rep. 314, Massa- 
chusetts Institute of Technology, Laboratory for Computer Science, Cambridge, Mass. 
(Mar. 1984). 

Received February 1985; revised March 1987; accepted April 1987 

ACM Transactions on Computer Systems, Vol. 5, No. 3, August 1987. 


