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A b s t r a c t  

We present a novel greedy hot-potato routing algorithm for 
the 2-dimensional n × n mesh or torus. This algorithm uses 
randomization to adjust packet priorities. For any permuta- 
tion problem or random destination problem, it ensures that 
each packet reaches its destination in asymptotically optimal 
expected O(n) steps, and all packets reach their destina- 
tions in O(n In n) steps with high probability, an improve- 
ment over the previously-known deterministic upper bound 
of O(n 2) for greedy algorithms. For a general batch prob- 
lem, with high probability all packets reach their destination 
nodes in at most O(m In n) steps, where m = min(mr, me), 
where mr and rne are respectively the maximum number of 
packets targeted to a single row or column. 

1 I n t r o d u c t i o n  

A hot-potato (or deflection) routing algorithm is a 
packet routing algorithm in which nodes are unable to 
buffer packets in transit: any packet that  arrives at a 
node other than  its destination must immediately be 
forwarded to another node. Hot-potato routing algo- 
rithms are interesting because they have been observed 
to work well in practice: hot-potato routing algorithms 
have been used in parallel machines such as the HEP 
multiprocessor [20], the Connection machine [12], and 
the Caltech Mosaic C [19], as well as high speed commu- 
nication networks [16]. Hot-potato routing algorithms 
are well-suited for optical networks [1, 10, 16, 22, 23] 
because it is difficult to buffer optical messages. 

A hot-potato routing algorithm is greedy [3, 6] if 
each node forwards each packet closer to its destination 
whenever possible (that is, whenever the desired links 
are not already assigned to other advancing packets). A 
packet tha t  does not advance toward its destination is 
said to be deflected. Greedy algorithms are particularly 
attractive because they tend to be simple, admitt ing 
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efficient hardware implementations. Greedy algorithms 
are also adaptive - -  when contention is low, packets 
follow the shortest routes to their destinations. Because 
greedy algorithms are locM, they are well-suited to 
problems in which packets are injected dynamically. 

This paper presents a new greedy hot-potato rout- 
ing algori thm for the 2-dimensional n x n mesh or torus. 
Like some earlier algorithms [6, 11], we assign prior- 
ities to packets. Each packet is divided into an im- 
mutable message part, and a mutable header containing 
the packet's priority (three bits suffice). A novel aspect 
of our algorithm is the way it exploits randomization to 
adjust priorities. Each t ime a packet is deflected, there 
is a small probability it will a t tempt  a home run: it in- 
creases its priority and a t tempts  to travel by a one-bend 
path directly to its destination 1. 

Ben-Dot et al. [6, Section 1.1] remark: 

Although fairly simple greedy hot-potato al- 
gorithms perform very well in practice, they 
resist formal analysis attacks. 

The paper makes the following contributions. Bo th  the 
home run technique and its analysis are novel. The 
algorithm is simple, relying on a fixed number of prior- 
ities. For any permutation problem or random destina- 
tion problem, it ensures tha t  each packet reaches its des- 
t ination in asymptotically optimal expected O(n) steps, 
and all packets reach their destinations in O(nlnn)  
steps with high probability, an improvement over the 
previously-known deterministic upper bound of O(n 2) 
for greedy algorithms [6]. 

An important  characteristic of a general batch 
problem is the maximum number of packets addressed 
to any single row or column. More precisely, 

DEFINITION 1.1. Given a routing problem, let mr and 
me be respectively the maximum number of packets 

American author insists on pointing out that to baseball 
purists, this action may appear closer to stealing a base than to 
hitting a home run. 
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targeted to a single row or column. Define 

m := max(n, min(mr, me)). 

Many of our complexity results are expressed in terms 
of m (and n). The value m is a rough reflection of a 
problem's inherent difficulty: high values of m imply 
high potential levels of congestion, and vice-versa. 

Our algorithm guarantees that  all packets reach 
their destination nodes in at most O(m In n) steps, with 
high probability, even when nodes do not know the value 
of m. Our algorithm applies to both the 2-dimensional 
mesh and torus. 

2 R e l a t e d  W o r k  

Hot-potato routing was first proposed by Baran [3]. 
There are several results for the mesh and torus net- 
works for greedy and non-greedy hot-potato routing al- 
gorithms. (For a more complete review of hot-potato 
algorithms, see [18].) 

For greedy hot-potato routing, Ben-Dor et al. [6] 
give a potential function analysis and they provide a 
simple algorithm for the 2-dimensional n x n mesh with 
O(n~/'k) steps, where k is the total number of pack- 
ets to be routed. They generalized their techniques 
for the d-dimensional mesh to obtain O(ednd- lk  l/d) 
steps. Borodin et al. [7] present a complicated de- 
terministic greedy hot-potato routing algorithm for the 
d-dimensional mesh and the 2-dimensional torus where 
any packet p finishes in at most dist(p) + 2(k - 1) steps, 
where dist(p) is the initial distance of p from its desti- 
nation (they also present a simple non-greedy algorithm 
with similar results). For the 2-dimensional mesh and 
torus this algorithm preserves the O(n 1"5) bound given 
by Bar-Noy et al. [2]. For the 2-dimensional case a sim- 
ilar result was independently obtained by Ben-Aroya et 
al. [4]. For a single destination or a small set of desti- 
nations Ben-Aroya et al. [5] present a randomized algo- 
ri thm on the d-dimensional mesh that  finishes in O(k/d)  
steps, with high probability. 

For non-greedy hot-potato routing, Feige and 
Raghavan [9] present an algorithm for the n x n torus 
that  routes any random destination problem in 2n + 
O(ln n) steps with high probability. They also give an 
alternative algorithm that  routes any permutation prob- 
lem in 9n steps with high probability. Newman and 
Schuster [17] give a deterministic algorithm for permu- 
tation routing on the n×n  mesh that  finishes in 7n+o(n) 
steps and is based on sorting. This result was improved 
by Kaufmann et al. [14] to 3.5n + o(n) steps. Kak- 
lamanis et al. [13] present an algorithm that  routes 
most of the permutations in the d-dimensional torus in 
dn/2  + O(ln 2 n) steps and in the 2-dimensional mesh in 
2n + O(ln" n) steps. Bar-Noy et al. [2] present a simple 

deterministic algorithm for the n × n mesh and torus 
that  routes any permutation problem in O(n l's) steps. 
Specifically, their algorithm routes any batch problem 
in O(nv/--me) steps where me is the maximum number 
of packets destined to any column. They also give a 
more complicated algorithm that  runs in O(n TM) steps 
for every constant e > 0. Spirakis and Triantafillou 
[21] describe a routing algorithm for the random des- 
tination problem on the two-dimensional mesh. In this 
algorithm, the average time to deliver all packets, where 
the average is taken over all possible destination assign- 
ments, is O(n log n). Broder and Upfal [8] give a dy- 
namic analysis of a non-greedy algorithm for the torus. 

3 P r e l i m i n a r i e s  

We consider an n x n rectangular mesh of nodes, for 
n > 2. Each node has coordinates (x, 9), for 0 < x, 9 < 
n, where x is a column and y a row. The lower-left 
corner has coordinates (0, 0) and tJ~e upper-right corner 
(n -1 ,  n - 1 ) .  Each node (except at the edge of the mesh) 
is connected to its neighbors by four bidirectional links, 
denoted up, down, left and right. 

Nodes take steps synchronously. At each step, a 
node receives at most one packet on each incoming link, 
routes them, and sends at most one packet on each 
outgoing link. The distance between nodes (xo, go) and 
(xx, Yl) is the quantity 

- + l y o  - y l l .  

This distance measures how long it takes an undeflected 
packet to travel from (z0, go) to (Zl, Yl). This distance 
is sometimes called the Manhattan metric or L2 norm. 

Our algorithm also applies to the n x n torus, 
in which each node with row (or column) coordinate 
n -  1 has a link to the node with row (or column) 
coordinate 0. For brevity, we will focus here on the 
mesh, postponing discussion about the torus to the 
discussion section below. 

Every packet has a destination node. A packet 
is restricted if it is on the same row or column as its 
destination. A good link for a packet is one that  brings 
it closer to its destination, and a bad link is one that  
does not. A packet is deflected if it is forwarded along a 
bad link. A node that  receives a packet can tell whether 
it was just  deflected by comparing its destination and 
its link. Good row links and column links are defined 
in the obvious way. 

The algorithm introduced here is greedy: a packet 
fails to follow a good link only if some other packet 
already occupies that  link. Our algorithm makes use 
of priorities: each node routes higher-priority packets 
before routing lower-priority packets. As a result, a 
packet is deflected only if its good links are already 
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taken by packets of greater or equal priority. 
In a batch problem, each node sends at  most o n e  

packet at t ime zero. In the batch permutation problem, 
each node sends a packet, and no two packets have the 
same destination. In the random destination problem, 
each node sends a packet and the destinations are 
chosen uniformly at random. For these problems, we 
are interested in the number of steps needed to deliver 
every packet. 

4 The Algorithm 

We start  with a highly simplified, informal overview 
of our algorithm, intended to convey the intuition 
underlying the technical details. Initially, all packets are 
routed greedily with equal (low) priority. Each time a 
packet is deflected, however, there is a small probabili ty 
that  it will become excited, causing its priori ty to jump 
higher. When a packet becomes excited, it tries to 
take one of the two shortest "one-bend" paths to its 
destination, a strategy we call a home run. The  home 
run succeeds if the packet arrives at its destination 
without further deflection. 

As described below, a packet assumes several dif- 
ferent priorities at  different stages of a home run. For 
now, it is enough to say that  a packet a t tempt ing  a 
home run will be deflected only if it encounters certain 
other packets a t tempt ing "conflicting" home runs. An 
essential aspect of our algorithm is that  any packet that  
a t tempts  a home run will succeed with constant proba- 
bility ( that  is, probability independent of  n). We exploit 
this property to analyze both the expected and "with 
high probability" behavior of the algorithm. 

• A randomized algorithm is often best understood as 
a game against an adversary who a t tempts  to frustrate 
the algorithm's goals. In our model, an adversary can 
disrupt a home run by packet rr only by "launching" 
other excited packets on a collision course with rr. The 
adversary launches a packet by deflecting it in the hope 
it will become excited and proceed to collide with lr. 
If that  packet fails to become excited, however, then it 
will have priority lower than ~r, and cannot  deflect ~r. 
The key insight underlying this part of the analysis is 
that  the adversary has at most one chance to launch 
any particular packet against rr. Suppose the adversary 
deflects a packet (r with the intent of disrupting a home 
run by ~r. If the deflection fails to excite (r, then 
no subsequent action by the adversary can cause (r to 
disrupt ~r's current home run. Our analysis exploits this 
observation by bounding the adversary's "ammunit ion" 
against any particular a t tempted  home run. 

The algorithm assigns every packet one or more 
preferred links, and tries to forward each packet along 
a preferred link. A preferred link is always a good 

State Priority 

running highest 

ezcited 

walking 

turning 

normal lowest 

Figure 1: States and Priori ty 

link (taking the packet closer to its destination), but  
not every good link is preferred. A packet can occupy 
the following states, where each state corresponds to a 
priority (see Figure 1). 

normal: A packet starts out in the normal state. 
In this state, t h e  good links are preferred: each 
node forwards a normal packet along one of its good 
links, unless those links are already occupied by 
other packets. 

excited: When a packet is deflected, it enters the 
excited state with probabili ty p (given below), and 
remains normal with probabili ty (1 - p ) .  When a 
packet becomes excited, it tries to follow a one-bend 
path to its destination (a home run). It  flips a coin 
to choose whether to traverse the row or the column 
first, and this choice determines its preferred link. 

running: If a packet start ing a home run chooses 
to traverse the column first, it is in the running c 
state on the column part of its one-bend path. In 
this state, the good column link is preferred. If it 
chooses the row first, the packet is in the running r 
state on the row, and the good row link is preferred. 

turning: If a packet starting a home run chooses 
to traverse the column first, it enters the turning r 
state when it reaches its destination row, and its 
preferred link is along the row. If it chooses the row 
first, it enters the turning c state, and its preferred 
link is along the column. 

walking: If a packet starting a home run chooses 
to traverse the column first, it is in the walking r 
state as it traverses the destination row, and the 
preferred link is the good row link. If it chooses the 
row, it is in the walking c state as it traverses the 
column, and the preferred link is the good column 
link. 
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Figure 2: A Home Run: column-first and row-first traversals 

If, at  any point, the packet is unable to follow its one- 
bend path,  it re-enters the normal state, and the node 
a t t empts  to forward it along a good link. If  a re- 
stricted packet becomes excited, it enters the walking r 
or walking c state directly. Figure 2(a) shows the pro- 
gression of states for a packet that  chooses to traverse 
the column first, and Figure 2(b) the row first. 

If  an excited packet were always to choose to 
traverse its row first, then the problem complexity 
would be determined by me. By choosing its row 
or column at  random, the complexity is determined 
by min(mc, mr) ,  performing better  for problems where 
rows are congested but columns are not, and vice versa. 

We use running to denote either the running¢ or 
running r states when the distinction is unimportant ,  
and similarly for the other dual states. 

At each step, a node greedily routes up to four 
arriving packets. Each deflected incoming packet is 
marked excited with probabil i ty p. The node then 
routes each of the packets in priority order. I f  the packet 
can take its preferred link, it is forwarded along tha t  
link. Otherwise the packet 's  priority is either reduced 
to normal, or if it is already normal, it is forwarded 
along any unoccupied link. 

Two packets with the same preferred link are said to 
conflict. Conflicts between packets in the same states 
are resolved arbitrarily. Note that  some states never 
conflict: for example,  a packet in the running r state  
will never conflict with a packet in the running c state. 
This  a lgori thm is greedy because a packet fails to follow 

any of its good links only if other packets are traversing 
these links. 

Our a lgor i thm is parameterized by p, the probabil-  
ity tha t  a deflected packet becomes excited. Different 
values of  p yield different behaviors. In the next sec- 
tion, we analyze the behavior of a single packet leaving 
p unbound.  In Section 6, we compute  the expected t ime 
needed for a single packet to reach its dest ination.  With 
a proper choice of p, we can achieve an O(n)  expected 
time. In Section 7, we turn our a t tent ion to the t ime 
needed to solve a batch problem. With  a proper  (time- 
dependent) choice of p, we can achieve O(rn In n) t ime 
with high probability. 

5 S i n g l e - P a c k e t  A n a l y s i s  

We now analyze the probabil i ty that  a packet ~r will 
complete a home run. When analyzing the behavior  of 
~r, we make  use of the following adversary. Each t ime 
Ir becomes excited, the adversary is allowed to place 
the other packets at nodes in the mesh, and to choose 
their destinations, subject only to the constraint  that  no 
more than  mr  or mc packets can have dest inat ions in 
the same row or column as zr. The probabi l i ty  that  an 
excited packet will complete a home run against  such an 
adversary is a lower bound for that  probabi l i ty  in any 
actual execution. 

Wi thout  loss of generality, assume the paeket 's  
destination is down and left from the packet ' s  current 
position. Also without loss of generality, assume the 
packet chooses the running e state (the running r state 
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is symmetric).  The  case where the packet is restricted 
(already on its destination row or column) is considered 
below as a special case. 

Recall that  a deflected packet becomes excited with 
probability p. We will derive lower bounds on the 
probability for "good things" happening in terms of p, 
and then use these bounds to motivate our choice for p. 

LEMMA 5.1. The probability that a particular node con- 
tains no excited packet is at least p' := (1 - p ) 4 .  

Proof. A packet becomes excited only if it was deflected 
in the preceding step, with probability p. It  will fail to 
become excited with probabil i ty at least 1 - p .  Since a 
node contains at most four packets, all four will fail to 
become excited with probabil i ty at least (1 - p ) 4 .  

LEMMA 5.2. An excited packet follows its preferred link 
and enters the running state with probability at least 
( 1  - p)4n. 

Proof. Consider node (x, y) at  t ime t. Our priority as- 
signment guarantees tha t  an excited packet can be de- 
flected only by another  excited packet, or by a running 
packet. 

• By Lemma 5.1, the probabili ty that  node (x, y) has 
no excited packet at  t ime t is at least p~. 

Recall that  we assume (WLOG) the packet's pre- 
ferred link is in the down direction.. A conflict- 
ing packet in the running¢ state must have become 
excited at node (z, y + d) at  t ime t - d for it to be 
in the running¢ state  at  node (z, y) at t ime t, for 
1 < d < n - y - 1. By Lemma 5.1, the probability 
that  no packet became excited at those nodes and 
times is at least pm-X. 

In total, the probabili ty the packet will enter the 
running state is at  least p~. p i n - 1  . -  (1 - p)4n. 

LEMMA 5.3. A packet in the running state will always 
proceed along its preferred link. 

Proof. Our priority rules ensure that  a packet in the 
running state can be deflected only by another  packet in 
the running state. Any running packet whose preferred 
link is (say) down, must have arrived from the up link. 
At most one packet could have arrived on the up link, so 
at most one running packet prefers to exit on the down 
link, and no deflection can occur. 

LEMMA 5.4. A packet 7r in the turning state success- 
fully enters the walking state with probability at least 
(1 - p)4n+mr. 

Proof. Consider node (x, y) at time t. Assume (WLOG) 
the packet arrived from the up link, and prefers the left 
link. Our priority rules ensure that  this packet can be 
deflected only by an excited packet, a running r packet 
arriving from the right link, a walking~ packet arriving 
from the right link, or by a turning~ packet arriving 
from the down link. 

• By Lemma 5.1, there is no excited packet at node 
(x, y) at t ime t with probability at least p~. 

• A conflicting packet in the running~ state must 
have become excited at node (x +d ,  y) at  t ime t -  d 
for it to be in the running~ state at node (z, y) and 
t i m e r ,  for 1 < d <  n - x - l .  As in the proof of 
Lemma 5.2 the adversary will fail to excite all such 
packets with probabili ty at least pro-1. 

• Suppose packet o- conflicts with 7r at t ime t while 
cr is in the turning r or walking r states. Packet 
~r must have become excited at some time t - d, 
and traversed d links to collide with 7r, all without 
being deflected. Packet ~r was deflected at t ime 
t - d at distance d from rr. The key observation 
is tha t  if ~r failed to become excited at  that  step, 
then it will never catch up to rr in t ime to deflect 
it. From the adversary's point of view, cr had only 
one chance to become excited in a way that  can 
threaten rr. If it fails to become excited, then tr 
is no longer a threat  to rr. Because rr is already 
on its destination row, there are at most mr - 1 
potentially conflicting packets. Therefore, with 
probabili ty at  least (1 __p)mr, there is no conflicting 
packet in either the turning r or walking r state at 
node (z, y) a t  t ime t. 

In total,  the probabil i ty a turning packet will success- 
fully become walking is at least p~. p~n-1. (1 - p)mr = 
(1 - p ) ' " + m r .  

The symmetric  lemma holds for me. 

LEMMA 5.5. A packet in the walking state arrives at its 
destination with probability at least (1 - p ) 4 n .  

Proof. Consider node (x, y) at time t. Assume (WLOG) 
that  the packet 's preferred link is the left link. Our 
priority rules imply that  the packet can be deflected 
only by a packet in the walking, running, or excited 
states. 

• The walking packet arrives from the right link and 
prefers to exit on the left. A conflicting packet 
in the running or walking state must also have 
come from the right link, which cannot happen. 
Therefore, the packet will not conflict with another 
running or walking packet. 
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• By Lemma 5.2, there is no excited packet at node 
(x, y) at t ime t with probabili ty at least p'. 

The packet will remain in the walking state for at 
most n - 2 nodes before reaching its destination node. 
Therefore it will complete a home run with probability 
at least p,n-2 > (1 - p)4n. 

LEMMA 5.6. I f  the excited packet ~ chooses to follow 
its good column link, it will complete a home run to its 
destination with probability at least (1 -p)12n+mr.  

Proof. The result follows from combining Lemmas 5.2, 
5.3, 5.4, and 5.5: 

(1 - p)4n. 1. (1 - p )4 ,+mr .  (1 -- p)4n = (1 -- p)12,~+m~. 

The symmetric lemma holds for me. 
If a packet is restricted (already in its destination 

row or column) when it becomes excited, it immediately 
tries to enter the walking state. The proof of the next 
Lemma follows the proof of Lemma 5.2. 

LEMMA 5.7. I f  a restricted packet becomes excited, it 
succeeds in following the good column (or row) link 
and entering the walking state with probability at least 
(1 - p)4n. 

THEOREM 5.1. An excited packet will complete its 
home run with probability at least 1(1 -p)12n+m. 

Proof. For unrestricted packets, the proof follows di- 
rectly from Lemma 5.6, and the fact that  the packet 
chooses each alternative (row-first or column-first) with 
probability 1/2. For restricted packets, it follows from 
Lemmas 5.5 and 5.7. 

6 Expected Case A n a l y s i s  

We now analyze the expected number of steps for a 
specific packet ~r to arrive at  its destination. For now, 
we assume that the expected number of packets with the 
same destination row or column is n. This assumption 
applies, for example, to the batch permutat ion and 
random destination problems. 

We make frequent use of the following inequalities. 
For all n, t, such that  n > 1 and It[ < n, 

(6.1) et ( 1 - - ~ )  <_ ( 1 - t - t ) n < _ e  t. 

For al lp,  k, such that  0 < p < 1 and k > 1, 

(6.2) l - p _ <  ( X - k )  k. 

We now consider the behavior of the algorithm 
when p, the probabili ty of becoming excited after a 
deflection, is 1/13n. 

LEMMA 6.1. I f  the packet ~r is in the  excited state, it 
will complete a home run with probability at least 1/4e. 

Proof. B y  Theorem 5.1, the probability of a home run 
is at least 1(1 - p)12n+m. With p = 1/13n and m = n, 
and by applying Equation 6.1 we have 

1 ~ 13n 
(1 --p)12n+rn 1 1 -  

= 1- n] 

1 1 ( 1  1 )  
- 

1 1  

- 22e" 

LEMMA 6.2. Each time a packet is deflected, it com- 
pletes a home run to its destination with probability at 
least 1/52en. 

Proof. Let lr be a deflected packet that  gets excited 
with probability p. According to Lemma 6.1 it will 
complete a home run with probability at least 1/4e. 
Therefore, the probabili ty for completing a home run 
after a deflection is p .  1/4e = 1/52en. 

LEMMA 6.3. I f  a packet ~r is deflected x times, then it 
will reach its destination in at most 2x + 2n - 2 steps. 

Proof. Initially, the distance from ~r to its destination 
is no more than 2n - 2. Each time ~r is deflected, the 
distance increases, and each time it follows a good link, 
it decreases. 

We now show that  the expected number of steps for 
a single packet to reach its destination is optimal. 

THEOREM 6.1. The expected number of steps for  a 
packet to arrive at its destination is O(n) .  

Proof. Let q = 1/52en be the probability to do a home 
run after a deflection, such as calculated in Lemma 6.2. 
The expected number of deflections is given by 

CO Oo 

E z -P r [exac t ly  x deflections] = E x - q .  (1 _ q)~-I  
.~=1 x = l  

q 

(1  - (1  - 

1 

q 

Therefore, the expected number of deflections is 52en. 
By Lemma 6.3, we have an expected number of 
2(52en) + 2n - 2 steps. 
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7 A n a l y s i s  " w i t h  H i g h  P r o b a b i l i t y "  

In this section we show that  with a proper choice of 
p, all packets will be delivered within time O(mln  n) 
wi thhigh  probabUity (meaning with probability at  least 
1 - 1/n) .  The challenge here is that  we assume that  
nodes do not know m, the instance-specific measure of 
congestion. The key technique here is to allow p to 
vary with time, ensuring that  p lies within the "right ~ 
range sufficiently long to guarantee timely delivery. If 
the value of m were known to the algorithm, p could be 
constant (and approximately l / m ) .  

We will use the following constants. 

c = 36e c I : 39c 

to = c'm In n + 2n t l  = 3c'm In n 

Let the probability p tha t  a deflected normal packet 
becomes excited be the following function of time: 

p(t) :=  e In t / t .  

Notice that  when t lies in the range to to t l ,  the value 
of p(t) is approximately l / m ,  the desired value. 

LEMMA 7.1. I f  packet 7r becomes excited at time t > to, 
then the probability of completing a home run is at least 
1/4e. 

Proof. Any packet conflicting with ~r must have started 
its home run a t tempt  at  most 2n steps before rr. The 
probability that  such a packet became excited was p' < 
p(to - 2n) = c ln(c'm In n)/(e~m In n). By Theorem 5.1, 
the probability of a home run is at least ½(1 _p,)X2n+,~. 
Since n < m < 4n 2, by taking n to be sufficiently large 
that  4d In n < n, and by applying Equation 6.1 we have 

1 (1 c l n ( d m l n n )  ~ 13m 

(1 _p,)12n+,~ > 2 d---m-~nnn ] 

1 { 3 c l n n  ~ 13rn 

> ~ \1  c ' m l n n ]  

1 ( 1  - 1 ~13rn 
> 

11(1- l ~ - - ~ ) -  
---Te 

1 1 
- 22e 

LEMMA 7.2• Each time t (with to <__ t <_ t l )  a packet is 
deflected, it will complete a home run with probability at 
least c/12eelm. 

Proof. The probability of getting excited is at least 

p(t,) = cln(3e 'rnln n ) /3e 'mln  n 

> c In n/3c~rn Inn  

= c/3c 'm.  

The probability of completing a home run when getting 
excited is according to Lemma 7.1 at least 1/4e. There- 
fore, the probability of having a home run when being 
deflected is at  least c /3c 'm .  1/4e = c/12ec'm. 

LEMMA 7.3. With probability at least 1 - 1 I n  3, a packet 
will reach its destination in t l  steps. 

Proof. By Lemma 7.2, each time that  a packet rr is de- 
flected in the time interval [to, tl], packet rr will complete 
a home run with probability at least c/12ec'm. Because 
the adversary is allowed to redistribute the other pack- 
ets at each deflection, successive probabilities are in- 
dependent. By Lemma 6.3, the number of deflections 
that  can fit in the time interval to ~ t ~ t l  is at  least 
z = (tl - to - 2n)/2 = mlnn(3c '  - c ') /2 = c ' m l n n .  
Therefore, ~r will fail to reach its destination after x de- 
flections with probability at most (1 - c/12ec'm) ~:. By 
Equation 6.1 we have 

(1 12e~m)~<_ ( 1 -  3 - - ~  e 'm 'nnc ,m)  

__< e - 3 1 n n  

= 1In 3. 

THEOREM 7.1. With high probability, all packets reach 
their destination nodes in at most O(mln n) steps• 

Proof. By Lemma 7.3, a packet will arrive at  its desti- 
nation in t l  steps with probability at least 1 - 1In 3. 

Since we have made a worst case analysis for each 
packet by assuming that  the adversary can reorganize 
all other packets whenever one is deflected, we can safely 
assume that  the packets are independent of each other 
in the analysis. 

Therefore, the probability that  all packets (at most 
n 2) will arrive at their destinations within tx steps is at 
least (by applying Equation 6.2) 

(1 (1 j 
1 

> l - -  
n 

8 Applications 
For the batch permutation problem, m = n, and for 
the random destination problem, it can be shown that  
m = O(n)  with high probability• From Theorem 7.1, 
we have the following corollary. 

COROLLARY 8.1. For the batch permutation or random 
destination problem, with high probability, all packets 
reach their destination nodes in at most O(n  In n) steps. 
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Consider the following rectangle routing problem. 
There are n 2 packets whose destinations are distributed 
uniformly within a w x h rectangle, and all packets 
originate outside the rectangle. Uniform distribution 
means tha t  every node within the rectangle is the 
destination of O(n2/wh) packets. Assume (WLOG) 
tha t  w > h. Theorem 7.1 says tha t  our algorithm 
finishes in O(h • n 2 / w h .  In n) = O(n2/w • In n) steps 
with high probability. 

Mansour and Pa t t -Shamir  [15] have noted tha t  
there is a trivial lower bound for problems of this kind: 
f~(dmaz + W),  where dma~ is the m a x i m u m  distance any 
packet must  traverse, and W is the network bandwidth 
lower bound (defined as the maximum,  over all node 
subsets S, of the number  of  packets with destination 
in S divided by the number  of links leading to S from 
nodes not in S. For our w x h size rectangle routing 
problem, W = n2/(2w + 2h) = O(n2/w). Thus with 
high probabil i ty our a lgor i thm is O(lnn)-compet i t ive  
with the trivial lower bound for this class of problems. 

9 D i s c u s s i o n  

Our results apply almost  verba t im to the n x n toms.  
The only difference is tha t  distances are smaller on a 
torus: any two nodes are a t  most  n links apar t  instead 
of 2n. As a result, some of the constants are smaller 
for the torus, reducing the complexity measures by a 
constant factor. 

One impor tan t  open problem is how to analyze 
dynamic problems, where packets are inserted into the 
network at  a steady rate (not jus t  at  t ime zero). We 
think tha t  techniques similar  to those proposed by 
Broder and Upfal [8] are promising. 

An interesting issue related to the rectangle routing 
problem concerns problems in which destinations are 
assigned in a non-uniform way. 

We have been using the value m as an estimator for 
the inherent difficulty of a batch routing problem. The 
relation of m with the known lower bound f2(dma, + W) 
remains imperfectly understood. It  would be interesting 
to derive an algori thm whose complexity was expressed 
directly in terms of the lower bound instead of m. 
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