
458

Randomized Greedy Hot-Potato Routing

C o s t a s Busch , M a u r i c e Her l ihy , a n d R o g e r W a t t e n h o f e r

C o m p u t e r Sc ience D e p a r t m e n t ,
B r o w n U n i v e r s i t y ,

P r o v i d e n c e , R I 02912

{cb ,he r l i hy , r o g e r } @ c s . b r o w n . e d u *

A b s t r a c t

We present a novel greedy hot-potato routing algorithm for
the 2-dimensional n × n mesh or torus. This algorithm uses
randomization to adjust packet priorities. For any permuta-
tion problem or random destination problem, it ensures that
each packet reaches its destination in asymptotically optimal
expected O(n) steps, and all packets reach their destina-
tions in O(n In n) steps with high probability, an improve-
ment over the previously-known deterministic upper bound
of O(n 2) for greedy algorithms. For a general batch prob-
lem, with high probability all packets reach their destination
nodes in at most O(m In n) steps, where m = min(mr, me),
where mr and rne are respectively the maximum number of
packets targeted to a single row or column.

1 I n t r o d u c t i o n

A hot-potato (or deflection) routing algorithm is a
packet routing algorithm in which nodes are unable to
buffer packets in transit: any packet that arrives at a
node other than its destination must immediately be
forwarded to another node. Hot-potato routing algo-
rithms are interesting because they have been observed
to work well in practice: hot-potato routing algorithms
have been used in parallel machines such as the HEP
multiprocessor [20], the Connection machine [12], and
the Caltech Mosaic C [19], as well as high speed commu-
nication networks [16]. Hot-potato routing algorithms
are well-suited for optical networks [1, 10, 16, 22, 23]
because it is difficult to buffer optical messages.

A hot-potato routing algorithm is greedy [3, 6] if
each node forwards each packet closer to its destination
whenever possible (that is, whenever the desired links
are not already assigned to other advancing packets). A
packet tha t does not advance toward its destination is
said to be deflected. Greedy algorithms are particularly
attractive because they tend to be simple, admitt ing

first and second authors were supported by NSF grant
DMS-9505949, and the third by the Swiss National Science
Foundation.

efficient hardware implementations. Greedy algorithms
are also adaptive - - when contention is low, packets
follow the shortest routes to their destinations. Because
greedy algorithms are locM, they are well-suited to
problems in which packets are injected dynamically.

This paper presents a new greedy hot-potato rout-
ing algori thm for the 2-dimensional n x n mesh or torus.
Like some earlier algorithms [6, 11], we assign prior-
ities to packets. Each packet is divided into an im-
mutable message part, and a mutable header containing
the packet's priority (three bits suffice). A novel aspect
of our algorithm is the way it exploits randomization to
adjust priorities. Each t ime a packet is deflected, there
is a small probability it will a t tempt a home run: it in-
creases its priority and a t tempts to travel by a one-bend
path directly to its destination 1.

Ben-Dot et al. [6, Section 1.1] remark:

Although fairly simple greedy hot-potato al-
gorithms perform very well in practice, they
resist formal analysis attacks.

The paper makes the following contributions. Bo th the
home run technique and its analysis are novel. The
algorithm is simple, relying on a fixed number of prior-
ities. For any permutation problem or random destina-
tion problem, it ensures tha t each packet reaches its des-
t ination in asymptotically optimal expected O(n) steps,
and all packets reach their destinations in O(nlnn)
steps with high probability, an improvement over the
previously-known deterministic upper bound of O(n 2)
for greedy algorithms [6].

An important characteristic of a general batch
problem is the maximum number of packets addressed
to any single row or column. More precisely,

DEFINITION 1.1. Given a routing problem, let mr and
me be respectively the maximum number of packets

American author insists on pointing out that to baseball
purists, this action may appear closer to stealing a base than to
hitting a home run.

459

targeted to a single row or column. Define

m := max(n, min(mr, me)).

Many of our complexity results are expressed in terms
of m (and n). The value m is a rough reflection of a
problem's inherent difficulty: high values of m imply
high potential levels of congestion, and vice-versa.

Our algorithm guarantees that all packets reach
their destination nodes in at most O(m In n) steps, with
high probability, even when nodes do not know the value
of m. Our algorithm applies to both the 2-dimensional
mesh and torus.

2 R e l a t e d W o r k

Hot-potato routing was first proposed by Baran [3].
There are several results for the mesh and torus net-
works for greedy and non-greedy hot-potato routing al-
gorithms. (For a more complete review of hot-potato
algorithms, see [18].)

For greedy hot-potato routing, Ben-Dor et al. [6]
give a potential function analysis and they provide a
simple algorithm for the 2-dimensional n x n mesh with
O(n~/'k) steps, where k is the total number of pack-
ets to be routed. They generalized their techniques
for the d-dimensional mesh to obtain O(ednd- lk l/d)
steps. Borodin et al. [7] present a complicated de-
terministic greedy hot-potato routing algorithm for the
d-dimensional mesh and the 2-dimensional torus where
any packet p finishes in at most dist(p) + 2(k - 1) steps,
where dist(p) is the initial distance of p from its desti-
nation (they also present a simple non-greedy algorithm
with similar results). For the 2-dimensional mesh and
torus this algorithm preserves the O(n 1"5) bound given
by Bar-Noy et al. [2]. For the 2-dimensional case a sim-
ilar result was independently obtained by Ben-Aroya et
al. [4]. For a single destination or a small set of desti-
nations Ben-Aroya et al. [5] present a randomized algo-
ri thm on the d-dimensional mesh that finishes in O(k/d)
steps, with high probability.

For non-greedy hot-potato routing, Feige and
Raghavan [9] present an algorithm for the n x n torus
that routes any random destination problem in 2n +
O(ln n) steps with high probability. They also give an
alternative algorithm that routes any permutation prob-
lem in 9n steps with high probability. Newman and
Schuster [17] give a deterministic algorithm for permu-
tation routing on the n×n mesh that finishes in 7n+o(n)
steps and is based on sorting. This result was improved
by Kaufmann et al. [14] to 3.5n + o(n) steps. Kak-
lamanis et al. [13] present an algorithm that routes
most of the permutations in the d-dimensional torus in
dn/2 + O(ln 2 n) steps and in the 2-dimensional mesh in
2n + O(ln" n) steps. Bar-Noy et al. [2] present a simple

deterministic algorithm for the n × n mesh and torus
that routes any permutation problem in O(n l's) steps.
Specifically, their algorithm routes any batch problem
in O(nv/--me) steps where me is the maximum number
of packets destined to any column. They also give a
more complicated algorithm that runs in O(n TM) steps
for every constant e > 0. Spirakis and Triantafillou
[21] describe a routing algorithm for the random des-
tination problem on the two-dimensional mesh. In this
algorithm, the average time to deliver all packets, where
the average is taken over all possible destination assign-
ments, is O(n log n). Broder and Upfal [8] give a dy-
namic analysis of a non-greedy algorithm for the torus.

3 P r e l i m i n a r i e s

We consider an n x n rectangular mesh of nodes, for
n > 2. Each node has coordinates (x, 9), for 0 < x, 9 <
n, where x is a column and y a row. The lower-left
corner has coordinates (0, 0) and tJ~e upper-right corner
(n -1 , n - 1) . Each node (except at the edge of the mesh)
is connected to its neighbors by four bidirectional links,
denoted up, down, left and right.

Nodes take steps synchronously. At each step, a
node receives at most one packet on each incoming link,
routes them, and sends at most one packet on each
outgoing link. The distance between nodes (xo, go) and
(xx, Yl) is the quantity

- + l y o - y l l .

This distance measures how long it takes an undeflected
packet to travel from (z0, go) to (Zl, Yl). This distance
is sometimes called the Manhattan metric or L2 norm.

Our algorithm also applies to the n x n torus,
in which each node with row (or column) coordinate
n - 1 has a link to the node with row (or column)
coordinate 0. For brevity, we will focus here on the
mesh, postponing discussion about the torus to the
discussion section below.

Every packet has a destination node. A packet
is restricted if it is on the same row or column as its
destination. A good link for a packet is one that brings
it closer to its destination, and a bad link is one that
does not. A packet is deflected if it is forwarded along a
bad link. A node that receives a packet can tell whether
it was just deflected by comparing its destination and
its link. Good row links and column links are defined
in the obvious way.

The algorithm introduced here is greedy: a packet
fails to follow a good link only if some other packet
already occupies that link. Our algorithm makes use
of priorities: each node routes higher-priority packets
before routing lower-priority packets. As a result, a
packet is deflected only if its good links are already

460

taken by packets of greater or equal priority.
In a batch problem, each node sends at most o n e

packet at t ime zero. In the batch permutation problem,
each node sends a packet, and no two packets have the
same destination. In the random destination problem,
each node sends a packet and the destinations are
chosen uniformly at random. For these problems, we
are interested in the number of steps needed to deliver
every packet.

4 The Algorithm

We start with a highly simplified, informal overview
of our algorithm, intended to convey the intuition
underlying the technical details. Initially, all packets are
routed greedily with equal (low) priority. Each time a
packet is deflected, however, there is a small probabili ty
that it will become excited, causing its priori ty to jump
higher. When a packet becomes excited, it tries to
take one of the two shortest "one-bend" paths to its
destination, a strategy we call a home run. The home
run succeeds if the packet arrives at its destination
without further deflection.

As described below, a packet assumes several dif-
ferent priorities at different stages of a home run. For
now, it is enough to say that a packet a t tempt ing a
home run will be deflected only if it encounters certain
other packets a t tempt ing "conflicting" home runs. An
essential aspect of our algorithm is that any packet that
a t tempts a home run will succeed with constant proba-
bility (that is, probability independent of n). We exploit
this property to analyze both the expected and "with
high probability" behavior of the algorithm.

• A randomized algorithm is often best understood as
a game against an adversary who a t tempts to frustrate
the algorithm's goals. In our model, an adversary can
disrupt a home run by packet rr only by "launching"
other excited packets on a collision course with rr. The
adversary launches a packet by deflecting it in the hope
it will become excited and proceed to collide with lr.
If that packet fails to become excited, however, then it
will have priority lower than ~r, and cannot deflect ~r.
The key insight underlying this part of the analysis is
that the adversary has at most one chance to launch
any particular packet against rr. Suppose the adversary
deflects a packet (r with the intent of disrupting a home
run by ~r. If the deflection fails to excite (r, then
no subsequent action by the adversary can cause (r to
disrupt ~r's current home run. Our analysis exploits this
observation by bounding the adversary's "ammunit ion"
against any particular a t tempted home run.

The algorithm assigns every packet one or more
preferred links, and tries to forward each packet along
a preferred link. A preferred link is always a good

State Priority

running highest

ezcited

walking

turning

normal lowest

Figure 1: States and Priori ty

link (taking the packet closer to its destination), but
not every good link is preferred. A packet can occupy
the following states, where each state corresponds to a
priority (see Figure 1).

normal: A packet starts out in the normal state.
In this state, t h e good links are preferred: each
node forwards a normal packet along one of its good
links, unless those links are already occupied by
other packets.

excited: When a packet is deflected, it enters the
excited state with probabili ty p (given below), and
remains normal with probabili ty (1 - p) . When a
packet becomes excited, it tries to follow a one-bend
path to its destination (a home run). It flips a coin
to choose whether to traverse the row or the column
first, and this choice determines its preferred link.

running: If a packet start ing a home run chooses
to traverse the column first, it is in the running c
state on the column part of its one-bend path. In
this state, the good column link is preferred. If it
chooses the row first, the packet is in the running r
state on the row, and the good row link is preferred.

turning: If a packet starting a home run chooses
to traverse the column first, it enters the turning r
state when it reaches its destination row, and its
preferred link is along the row. If it chooses the row
first, it enters the turning c state, and its preferred
link is along the column.

walking: If a packet starting a home run chooses
to traverse the column first, it is in the walking r
state as it traverses the destination row, and the
preferred link is the good row link. If it chooses the
row, it is in the walking c state as it traverses the
column, and the preferred link is the good column
link.

461

• • a 4 , , * 4 , *~. 4*

~ :

i :

d~flected

destinatiofi
................. Q < ,

• .wal~ngr i "

ezc~ted

runn ing c
. 4 , 4*

. 4 , •

turning~
, ~ ~ ~ o

• 4 ,

• ¢ ? • ? * ? ~

• i ; :~ ~ 4 :* i *

turningi : i i - ~ ~unningri ~exc~ed: :
~ :

. • 4 ~ 4 4 , 4 , •

wa~ing~
. 4 ~ 4 , • ~ 4 , 4

......... ~ • ..

destinatior

(a) (b)

Figure 2: A Home Run: column-first and row-first traversals

If, at any point, the packet is unable to follow its one-
bend path, it re-enters the normal state, and the node
a t t empts to forward it along a good link. If a re-
stricted packet becomes excited, it enters the walking r
or walking c state directly. Figure 2(a) shows the pro-
gression of states for a packet that chooses to traverse
the column first, and Figure 2(b) the row first.

If an excited packet were always to choose to
traverse its row first, then the problem complexity
would be determined by me. By choosing its row
or column at random, the complexity is determined
by min(mc, mr) , performing better for problems where
rows are congested but columns are not, and vice versa.

We use running to denote either the running¢ or
running r states when the distinction is unimportant ,
and similarly for the other dual states.

At each step, a node greedily routes up to four
arriving packets. Each deflected incoming packet is
marked excited with probabil i ty p. The node then
routes each of the packets in priority order. I f the packet
can take its preferred link, it is forwarded along tha t
link. Otherwise the packet 's priority is either reduced
to normal, or if it is already normal, it is forwarded
along any unoccupied link.

Two packets with the same preferred link are said to
conflict. Conflicts between packets in the same states
are resolved arbitrarily. Note that some states never
conflict: for example, a packet in the running r state
will never conflict with a packet in the running c state.
This a lgori thm is greedy because a packet fails to follow

any of its good links only if other packets are traversing
these links.

Our a lgor i thm is parameterized by p, the probabil-
ity tha t a deflected packet becomes excited. Different
values of p yield different behaviors. In the next sec-
tion, we analyze the behavior of a single packet leaving
p unbound. In Section 6, we compute the expected t ime
needed for a single packet to reach its dest ination. With
a proper choice of p, we can achieve an O(n) expected
time. In Section 7, we turn our a t tent ion to the t ime
needed to solve a batch problem. With a proper (time-
dependent) choice of p, we can achieve O(rn In n) t ime
with high probability.

5 S i n g l e - P a c k e t A n a l y s i s

We now analyze the probabil i ty that a packet ~r will
complete a home run. When analyzing the behavior of
~r, we make use of the following adversary. Each t ime
Ir becomes excited, the adversary is allowed to place
the other packets at nodes in the mesh, and to choose
their destinations, subject only to the constraint that no
more than mr or mc packets can have dest inat ions in
the same row or column as zr. The probabi l i ty that an
excited packet will complete a home run against such an
adversary is a lower bound for that probabi l i ty in any
actual execution.

Wi thout loss of generality, assume the paeket 's
destination is down and left from the packet ' s current
position. Also without loss of generality, assume the
packet chooses the running e state (the running r state

4 6 2

is symmetric). The case where the packet is restricted
(already on its destination row or column) is considered
below as a special case.

Recall that a deflected packet becomes excited with
probability p. We will derive lower bounds on the
probability for "good things" happening in terms of p,
and then use these bounds to motivate our choice for p.

LEMMA 5.1. The probability that a particular node con-
tains no excited packet is at least p' := (1 - p) 4 .

Proof. A packet becomes excited only if it was deflected
in the preceding step, with probability p. It will fail to
become excited with probabil i ty at least 1 - p . Since a
node contains at most four packets, all four will fail to
become excited with probabil i ty at least (1 - p) 4 .

LEMMA 5.2. An excited packet follows its preferred link
and enters the running state with probability at least
(1 - p)4n.

Proof. Consider node (x, y) at t ime t. Our priority as-
signment guarantees tha t an excited packet can be de-
flected only by another excited packet, or by a running
packet.

• By Lemma 5.1, the probabili ty that node (x, y) has
no excited packet at t ime t is at least p~.

Recall that we assume (WLOG) the packet's pre-
ferred link is in the down direction.. A conflict-
ing packet in the running¢ state must have become
excited at node (z, y + d) at t ime t - d for it to be
in the running¢ state at node (z, y) at t ime t, for
1 < d < n - y - 1. By Lemma 5.1, the probability
that no packet became excited at those nodes and
times is at least pm-X.

In total, the probabili ty the packet will enter the
running state is at least p~. p i n - 1 . - (1 - p)4n.

LEMMA 5.3. A packet in the running state will always
proceed along its preferred link.

Proof. Our priority rules ensure that a packet in the
running state can be deflected only by another packet in
the running state. Any running packet whose preferred
link is (say) down, must have arrived from the up link.
At most one packet could have arrived on the up link, so
at most one running packet prefers to exit on the down
link, and no deflection can occur.

LEMMA 5.4. A packet 7r in the turning state success-
fully enters the walking state with probability at least
(1 - p)4n+mr.

Proof. Consider node (x, y) at time t. Assume (WLOG)
the packet arrived from the up link, and prefers the left
link. Our priority rules ensure that this packet can be
deflected only by an excited packet, a running r packet
arriving from the right link, a walking~ packet arriving
from the right link, or by a turning~ packet arriving
from the down link.

• By Lemma 5.1, there is no excited packet at node
(x, y) at t ime t with probability at least p~.

• A conflicting packet in the running~ state must
have become excited at node (x +d , y) at t ime t - d
for it to be in the running~ state at node (z, y) and
t i m e r , for 1 < d < n - x - l . As in the proof of
Lemma 5.2 the adversary will fail to excite all such
packets with probabili ty at least pro-1.

• Suppose packet o- conflicts with 7r at t ime t while
cr is in the turning r or walking r states. Packet
~r must have become excited at some time t - d,
and traversed d links to collide with 7r, all without
being deflected. Packet ~r was deflected at t ime
t - d at distance d from rr. The key observation
is tha t if ~r failed to become excited at that step,
then it will never catch up to rr in t ime to deflect
it. From the adversary's point of view, cr had only
one chance to become excited in a way that can
threaten rr. If it fails to become excited, then tr
is no longer a threat to rr. Because rr is already
on its destination row, there are at most mr - 1
potentially conflicting packets. Therefore, with
probabili ty at least (1 __p)mr, there is no conflicting
packet in either the turning r or walking r state at
node (z, y) a t t ime t.

In total, the probabil i ty a turning packet will success-
fully become walking is at least p~. p~n-1. (1 - p)mr =
(1 - p) ' " + m r .

The symmetric lemma holds for me.

LEMMA 5.5. A packet in the walking state arrives at its
destination with probability at least (1 - p) 4 n .

Proof. Consider node (x, y) at time t. Assume (WLOG)
that the packet 's preferred link is the left link. Our
priority rules imply that the packet can be deflected
only by a packet in the walking, running, or excited
states.

• The walking packet arrives from the right link and
prefers to exit on the left. A conflicting packet
in the running or walking state must also have
come from the right link, which cannot happen.
Therefore, the packet will not conflict with another
running or walking packet.

463

• By Lemma 5.2, there is no excited packet at node
(x, y) at t ime t with probabili ty at least p'.

The packet will remain in the walking state for at
most n - 2 nodes before reaching its destination node.
Therefore it will complete a home run with probability
at least p,n-2 > (1 - p)4n.

LEMMA 5.6. I f the excited packet ~ chooses to follow
its good column link, it will complete a home run to its
destination with probability at least (1 -p)12n+mr.

Proof. The result follows from combining Lemmas 5.2,
5.3, 5.4, and 5.5:

(1 - p)4n. 1. (1 - p)4 ,+mr . (1 -- p)4n = (1 -- p)12,~+m~.

The symmetric lemma holds for me.
If a packet is restricted (already in its destination

row or column) when it becomes excited, it immediately
tries to enter the walking state. The proof of the next
Lemma follows the proof of Lemma 5.2.

LEMMA 5.7. I f a restricted packet becomes excited, it
succeeds in following the good column (or row) link
and entering the walking state with probability at least
(1 - p)4n.

THEOREM 5.1. An excited packet will complete its
home run with probability at least 1(1 -p)12n+m.

Proof. For unrestricted packets, the proof follows di-
rectly from Lemma 5.6, and the fact that the packet
chooses each alternative (row-first or column-first) with
probability 1/2. For restricted packets, it follows from
Lemmas 5.5 and 5.7.

6 Expected Case A n a l y s i s

We now analyze the expected number of steps for a
specific packet ~r to arrive at its destination. For now,
we assume that the expected number of packets with the
same destination row or column is n. This assumption
applies, for example, to the batch permutat ion and
random destination problems.

We make frequent use of the following inequalities.
For all n, t, such that n > 1 and It[< n,

(6.1) et (1 - - ~) <_ (1 - t - t) n < _ e t.

For al lp, k, such that 0 < p < 1 and k > 1,

(6.2) l - p _ < (X - k) k.

We now consider the behavior of the algorithm
when p, the probabili ty of becoming excited after a
deflection, is 1/13n.

LEMMA 6.1. I f the packet ~r is in the excited state, it
will complete a home run with probability at least 1/4e.

Proof. B y Theorem 5.1, the probability of a home run
is at least 1(1 - p)12n+m. With p = 1/13n and m = n,
and by applying Equation 6.1 we have

1 ~ 13n
(1 --p)12n+rn 1 1 -

= 1- n]

1 1 (1 1)
-

1 1

- 22e"

LEMMA 6.2. Each time a packet is deflected, it com-
pletes a home run to its destination with probability at
least 1/52en.

Proof. Let lr be a deflected packet that gets excited
with probability p. According to Lemma 6.1 it will
complete a home run with probability at least 1/4e.
Therefore, the probabili ty for completing a home run
after a deflection is p . 1/4e = 1/52en.

LEMMA 6.3. I f a packet ~r is deflected x times, then it
will reach its destination in at most 2x + 2n - 2 steps.

Proof. Initially, the distance from ~r to its destination
is no more than 2n - 2. Each time ~r is deflected, the
distance increases, and each time it follows a good link,
it decreases.

We now show that the expected number of steps for
a single packet to reach its destination is optimal.

THEOREM 6.1. The expected number of steps for a
packet to arrive at its destination is O(n) .

Proof. Let q = 1/52en be the probability to do a home
run after a deflection, such as calculated in Lemma 6.2.
The expected number of deflections is given by

CO Oo

E z -P r [exac t ly x deflections] = E x - q . (1 _ q)~-I
.~=1 x = l

q

(1 - (1 -

1

q

Therefore, the expected number of deflections is 52en.
By Lemma 6.3, we have an expected number of
2(52en) + 2n - 2 steps.

464

7 A n a l y s i s " w i t h H i g h P r o b a b i l i t y "

In this section we show that with a proper choice of
p, all packets will be delivered within time O(mln n)
wi thhigh probabUity (meaning with probability at least
1 - 1/n) . The challenge here is that we assume that
nodes do not know m, the instance-specific measure of
congestion. The key technique here is to allow p to
vary with time, ensuring that p lies within the "right ~
range sufficiently long to guarantee timely delivery. If
the value of m were known to the algorithm, p could be
constant (and approximately l / m) .

We will use the following constants.

c = 36e c I : 39c

to = c'm In n + 2n t l = 3c'm In n

Let the probability p tha t a deflected normal packet
becomes excited be the following function of time:

p(t) := e In t / t .

Notice that when t lies in the range to to t l , the value
of p(t) is approximately l / m , the desired value.

LEMMA 7.1. I f packet 7r becomes excited at time t > to,
then the probability of completing a home run is at least
1/4e.

Proof. Any packet conflicting with ~r must have started
its home run a t tempt at most 2n steps before rr. The
probability that such a packet became excited was p' <
p(to - 2n) = c ln(c'm In n)/(e~m In n). By Theorem 5.1,
the probability of a home run is at least ½(1 _p,)X2n+,~.
Since n < m < 4n 2, by taking n to be sufficiently large
that 4d In n < n, and by applying Equation 6.1 we have

1 (1 c l n (d m l n n) ~ 13m

(1 _p,)12n+,~ > 2 d---m-~nnn]

1 { 3 c l n n ~ 13rn

> ~ \1 c ' m l n n]

1 (1 - 1 ~13rn
>

11(1- l ~ - - ~) -
---Te

1 1
- 22e

LEMMA 7.2• Each time t (with to <__ t <_ t l) a packet is
deflected, it will complete a home run with probability at
least c/12eelm.

Proof. The probability of getting excited is at least

p(t,) = cln(3e 'rnln n) /3e 'mln n

> c In n/3c~rn Inn

= c/3c 'm.

The probability of completing a home run when getting
excited is according to Lemma 7.1 at least 1/4e. There-
fore, the probability of having a home run when being
deflected is at least c /3c 'm . 1/4e = c/12ec'm.

LEMMA 7.3. With probability at least 1 - 1 I n 3, a packet
will reach its destination in t l steps.

Proof. By Lemma 7.2, each time that a packet rr is de-
flected in the time interval [to, tl], packet rr will complete
a home run with probability at least c/12ec'm. Because
the adversary is allowed to redistribute the other pack-
ets at each deflection, successive probabilities are in-
dependent. By Lemma 6.3, the number of deflections
that can fit in the time interval to ~ t ~ t l is at least
z = (tl - to - 2n)/2 = mlnn(3c ' - c ') /2 = c ' m l n n .
Therefore, ~r will fail to reach its destination after x de-
flections with probability at most (1 - c/12ec'm) ~:. By
Equation 6.1 we have

(1 12e~m)~<_ (1 - 3 - - ~ e 'm 'nnc ,m)

__< e - 3 1 n n

= 1In 3.

THEOREM 7.1. With high probability, all packets reach
their destination nodes in at most O(mln n) steps•

Proof. By Lemma 7.3, a packet will arrive at its desti-
nation in t l steps with probability at least 1 - 1In 3.

Since we have made a worst case analysis for each
packet by assuming that the adversary can reorganize
all other packets whenever one is deflected, we can safely
assume that the packets are independent of each other
in the analysis.

Therefore, the probability that all packets (at most
n 2) will arrive at their destinations within tx steps is at
least (by applying Equation 6.2)

(1 (1 j
1

> l - -
n

8 Applications
For the batch permutation problem, m = n, and for
the random destination problem, it can be shown that
m = O(n) with high probability• From Theorem 7.1,
we have the following corollary.

COROLLARY 8.1. For the batch permutation or random
destination problem, with high probability, all packets
reach their destination nodes in at most O(n In n) steps.

465

Consider the following rectangle routing problem.
There are n 2 packets whose destinations are distributed
uniformly within a w x h rectangle, and all packets
originate outside the rectangle. Uniform distribution
means tha t every node within the rectangle is the
destination of O(n2/wh) packets. Assume (WLOG)
tha t w > h. Theorem 7.1 says tha t our algorithm
finishes in O(h • n 2 / w h . In n) = O(n2/w • In n) steps
with high probability.

Mansour and Pa t t -Shamir [15] have noted tha t
there is a trivial lower bound for problems of this kind:
f~(dmaz + W), where dma~ is the m a x i m u m distance any
packet must traverse, and W is the network bandwidth
lower bound (defined as the maximum, over all node
subsets S, of the number of packets with destination
in S divided by the number of links leading to S from
nodes not in S. For our w x h size rectangle routing
problem, W = n2/(2w + 2h) = O(n2/w). Thus with
high probabil i ty our a lgor i thm is O(lnn)-compet i t ive
with the trivial lower bound for this class of problems.

9 D i s c u s s i o n

Our results apply almost verba t im to the n x n toms.
The only difference is tha t distances are smaller on a
torus: any two nodes are a t most n links apar t instead
of 2n. As a result, some of the constants are smaller
for the torus, reducing the complexity measures by a
constant factor.

One impor tan t open problem is how to analyze
dynamic problems, where packets are inserted into the
network at a steady rate (not jus t at t ime zero). We
think tha t techniques similar to those proposed by
Broder and Upfal [8] are promising.

An interesting issue related to the rectangle routing
problem concerns problems in which destinations are
assigned in a non-uniform way.

We have been using the value m as an estimator for
the inherent difficulty of a batch routing problem. The
relation of m with the known lower bound f2(dma, + W)
remains imperfectly understood. It would be interesting
to derive an algori thm whose complexity was expressed
directly in terms of the lower bound instead of m.

Acknowledgments

We are grateful to Gopal Panduragan, Eli Upfal, and
the referees.

References

[1] A. S. Acampora and S. I. A. Shah. Multihop lightwave
networks: a comparison of store-and-forward and hot-
potato routing. In Proc. IEEE INFOCOM, pages 100
19, 1991.

[2] A. Bar-Noy, P. Raghavan, B. Schieber, and H. Tamaki.
Fast deflection routing for packets and worms. In
Proceedings of the Twelth Annual ACM Symposium
on Principles of Distributed Computing, pages 75-86,
Ithaca, New York, USA, August 1993.

[3] P. Baran. On distributed communications networks.
IEEE Transactions on Communications, pages 1-9,
1964.

[4] I. Ben-Aroya, T. Eilam, and A. Schuster. Greedy
hot-potato routing on the two-dimensional mesh. Dis-
tributed Computing, 9(1):3-19, 1995.

[5] I. Ben-Aroya, I. Newman, and A. Schuster. Random-
ized single-target hot-potato routing. Journal of Algo-
rithms, 23(1):101-120, April 1997.

[6] A. Ben-Dor, S. Halevi, and A. Schuster. Potential
function analysis of greedy hot-potato routing. Theory
of Computing Systems, 31(1):41-61, January/February
1998.

[7] A. Borodin, Y. Rabani, and B. Schieber. Deterministic
many-to-many hot potato routing. IEEE Transactions
on Parallel and Distributed Systems, 8(6):587-596,
June 1997.

[8] A. Broder and E. Upfal. Dynamic deflection routing
on arrays. In Proceedings of the Twenty-Eighth Annual
A CM Symposium on the Theory of Computing, pages
348--358, May 1996.

[9] U. Feige and P. Raghavan. Exact analysis of hot-
potato routing. In IEEE, editor, Proceedings of the
33rd Annual Symposium on Foundations of Computer
Science, pages 553-562, Pittsburgh, PN, October 1992.
IEEE Computer Society Press.

[10] A. G. Greenberg and J. Goodman. Sharp approximate
models of deflection routing. IEEE Transactions on
Communications, 41(1):2100223, January 1993.

[11] B. Hajek. Bounds on evacutation time for deflection
routing. Distributed Computing, 1:1-6, 1991.

[12] W. D. Hillis. The Connection Machine. MIT press,
1985.

[13] Ch. Kaklamanis, D. Krizanc, and S. Rao. Hot-potato
routing on processor arrays. In Proceedings o/the 5th
Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 273-282, Velen, Germany, June
300July 2, 1993. SIGACT and SIGARCH.

[14] M. Kaufmarm, H. Lauer, and H. Schroder. Fast de-
terministic hot-potato routing on meshes. In Springer-
Verlag, editor, Proc. o/ the 5th International Sympo-
sium on Algorithms and Computation (ISAAC}, Lec-
ture Notes in Computer Science, volume 834, pages
333-341, 1994.

[15] Y. Mansour and B. Patt-Shamir. Many-to-one packet
routing on grids. In Proceedings o/the Twenty-Seventh
Annual A CM Symposium on the Theory of Computing,
pages 258-267, 29 May-1 June 1995.

[16] N. F. Maxemchuk. Comparison of deflection and store
and forward techniuques in the Manhattan street and
shuffle exchange networks. In Proc. IEEE INFOCOM,
pages 800-809, 1989.

[17] I. Newman and A. Schuster. Hot-potato algorithms for

466

permutation routing. IEEE Transactions on Parallel
and Distributed Systems, 6(11):1168-1176, November
1995.

[18] A. Schuster. Bounds and Analysis Techniques for
Greedy Hot-Potato Routing, chapter 11, pages 283-354.
Optical Interconnections and Parallel Processing: The
Interface. Kluwer Academic Publishers, 1997.

[19] C. L. Seitz. The caltech mosaic C: An experimental,
fine-grain multicomputer. In gth syrup, on Parallel
Algorithms and Architectures, June 1992. Keynote
Speech.

[20] B. Smith. Architecture and applications of the HEP
multiprocessor computer system. In Proc. Fourth
Syrup. Real Time Signal Processing IV, pages 241-248.
SPIE, 1981.

[21] P. Spirakis and V. Triantafillou. Pure greedy hot-
potato routing in the 2-D mesh with random des-
tinations. Parallel Processing Letters, 7(3):249-258,
September 1997.

[22] T. Szymanski. An analysis of "hot potato" routing in a
fiber optic packet switched hypereube. In Proc. IEEE
INFOCOM, pages 918-925, 1990.

[23] Z. Zhang and A. S. Aeampora. Performance analysis of
multihop lightwave networks with hot potato routing
and distance age priorities. In Proc. 1EEE INFOCOM,
pages 1012-1021, 1991.

