July7-10,2019 ;i University
Montréal, QC, Canada

4th Multidisciplinary Conference on
Reinforcement Learning and Decision Making

e

#rldm2019

EXTENDED ABSTRACTS

WWW.RLDM.ORG

TABLE OF CONTENTS

Paper # 6: Model-free and model-based learning processes in the
updating of explicit and implicit evaluations

Paper # 10: Thompson Sampling for a Fatigue-aware Online
Recommendation System

Paper # 11: Privacy-preserving Q-Learning with Functional Noise in
Continuous State Spaces

Paper # 12: Count-Based Exploration with the Successor
Representation

Paper # 14: The detour problem in a stochastic environment: Tolman
revisited

Paper # 20: An empirical evaluation of Reinforcement Learning
Algorithms for Time Series Based Decision Making

Paper # 27: Measuring how people learn how to plan

Paper # 30: Efficient Count-Based Exploration Methods for
Model-Based Reinforcement Learning

Paper # 33: Performance metrics for a physically-situated stimulus
response task

Paper # 37: Making Meaning: Semiotics Within Predictive
Knowledge Architectures

Paper # 38: Hyperbolic Discounting and Learning over Multiple
Horizons

Paper # 40: Rethinking Expected Cumulative Reward Formalism of
Reinforcement Learning: A Micro-Objective Perspective

Paper # 43: Momentum and mood in policy-gradient reinforcement
learning

Paper # 44: A Bayesian Approach to Robust Reinforcement Learning
Paper # 45: Soft-Robust Actor-Critic Policy-Gradient

Paper # 47: Graph-DQN: Fast generalization to novel objects using
prior relational knowledge

Paper # 49: Learned human-agent decision-making, communication
and joint action in a virtual reality environment

Paper # 52: Hacking Google reCAPTCHA v3 using Reinforcement
Learning

251

465

470

67

72

357

128

47

226

147

282

57

113

118

246

302

ii

Paper # 56: Sparse Imitation Learning for Text Based Games with
Combinatorial Action Spaces

Paper # 58: Action Robust Reinforcement Learning and Applications
in Continuous Control

Paper # 59: Inferring Value by Coherency Maximization of Choices
and Preferences

Paper # 61: A cognitive tutor for helping people overcome present bias
Paper # 63: Model-based Knowledge Representations

Paper # 67: Non-Parametric Off-Policy Policy Gradient

Paper # 70: Learning Curriculum Policies for Reinforcement Learning
Paper # 72: Bandits with Temporal Stochastic Constraints

Paper # 76: Scalable methods for computing state similarity in
deterministic Markov Decision Processes

Paper # 77: Perception as Prediction using General Value Functions in
Autonomous Driving

Paper # 83: An Attractor Neural-Network for Binary Decision Making
Paper # 87: Validation of cognitive bias represented by reinforcement
learning with asymmetric value updates

Paper # 89: Learning Multi-Agent Communication with
Reinforcement Learning

Paper # 90: Skynet: A Top Deep RL Agent in the Inaugural
Pommerman Team Competition

Paper # 96: Constrained Policy Improvement for Safe and Efficient
Reinforcement Learning

Paper # 103: A continuity result for optimal memoryless planning in
POMDPs

Paper # 105: Modeling cooperative and competitive decision-making
in the Tiger Task

Paper # 108: Modeling models of others’ mental states: characterizing
Theory of Mind during cooperative interaction

Paper # 109: Reinforcement Learning in the Acquisition of
Unintuitive Motor Control Patterns

Paper # 113: Learning Temporal Abstractions from Demonstration: A
Probabilistic Approach to Offline Option Discovery

Paper # 116: Rate-Distortion Theory and Computationally Rational
Reinforcement Learning

Paper # 124: Compositional subgoal representations

Paper # 125: Forgetting Process in Model-Free and Model-Based
Reinforcement Learning

Paper # 126: On Inductive Biases in Deep Reinforcement Learning

440

445

322

292

277

450

327

B2

391

172

417

431

62

157

397

362

376

12

17

152

455

186

Paper # 128: Safe Hierarchical Policy Optimization using Constrained
Return Variance in Options

Paper # 133: Unicorn: Continual learning with a universal, off-policy
agent

Paper # 135: Belief space model predictive control for approximately
optimal system identification

Paper # 136: MinAtar: An Atari-inspired Testbed for More Efficient
Reinforcement Learning Experiments

Paper # 138: Autonomous Open-Ended Learning of Interdependent
Tasks

Paper # 141: Learning Powerful Policies by Using Consistent
Dynamics Model

Paper # 149: Habits as a Function of Choice Frequency: A Novel
Experimental Approach to Study Human Habits

Paper # 155: ProtoGE: Prototype Goal Encodings for Multi-goal
Reinforcement Learning

Paper # 159: Does phasic dopamine signalling play a causal role in
reinforcement learning?

Paper # 166: Multi-batch Reinforcement Learning

Paper # 170: When is a Prediction Knowledge?

Paper # 173: Robust Exploration with Tight Bayesian Plausibility Sets
Paper # 174: Event segmentation reveals working memory forgetting
rate

Paper # 178: Self-improving Chatbots based on Reinforcement
Learning

Paper # 179: Value Preserving State-Action Abstractions

Paper # 183: Predicting Human Choice in a Multi-Dimensional
N-Armed Bandit Task Using Actor-Critic Feature Reinforcement
Learning

Paper # 188: Contrasting the effects of prospective attention and
retrospective decay in representation learning

Paper # 189: A Human-Centered Approach to Interactive Machine
Learning

Paper # 193: Searching for Markovian Subproblems to Address
Partially Observable Reinforcement Learning

Paper # 198: Symbolic Planning and Model-Free Reinforcement
Learning: Training Taskable Agents

Paper # 199: Multi-Preference Actor Critic

Paper # 203: DynoPlan: Combining Motion Planning and Deep
Neural Network based Controllers for Safe HRL

221

312

52

483

162

412

332

352

403

262

231

181

216

371

p7

206

103

460

22

191

342

Paper # 208: Optimal nudging

Paper # 209: Discrete off-policy policy gradient using continuous
relaxations

Paper # 213: Learning from Suboptimal Demonstrations: Inverse
Reinforcement Learning from Ranked Observations

Paper # 219: PAC-Bayesian Analysis of Counterfactual Risk in
Stochastic Contextual Bandits

Paper # 222: Investigating Curiosity for Multi-Prediction Learning
Paper # 224: Modeling the development of learning strategies in a
volatile environment

Paper # 225: A Top-down, Bottom-up Attention Model for
Reinforcement Learning

Paper # 226: DeepMellow: Removing the Need for a Target Network
in Deep Q-Learning

Paper # 228: Robust Pest Management Using Reinforcement Learning
Paper # 229: Active Domain Randomization

Paper # 230: Hidden Information, Teamwork, and Prediction in
Trick-Taking Card Games

Paper # 234: Learning Treatment Policies for Mobile Health Using
Randomized Least-Squares Value Iteration

Paper # 237: Variational State Encoding as Intrinsic Motivation in
Reinforcement Learning

Paper # 238: Predicting Periodicity with Temporal Difference
Learning

Paper # 242: Joint Goal and Constraint Inference using Bayesian
Nonparametric Inverse Reinforcement Learning

Paper # 243: Doubly Robust Estimators in Off-Policy Actor-Critic
Algorithms

Paper # 246: Oftf-Policy Policy Gradient Theorem with Logarithmic
Mappings

Paper # 250: Generalization and Regularization in DQN

Paper # 251: Remediating Cognitive Decline with Cognitive Tutors
Paper # 254: Reinforcement learning for mean-field teams

Paper # 257: SPIBB-DQN: Safe Batch Reinforcement Learning with
Function Approximation

Paper # 260: Penalty-Modified Markov Decision Processes: Efficient
Incorporation of Norms into Sequential Decision Making Problems
Paper # 261: A Value Function Basis for Nexting and Multi-step
Prediction

Paper # 264: Improving Generalization over Large Action Sets

381

475

297

123

386

236

409

167

133

287

241

108

347

196

201

142

08

421

267

317

211

B2

Paper # 265: Approximate information state for partially observed
systems

Paper # 267: Temporal Abstraction in Cooperative Multi-Agent
Systems

Paper # 268: Modelling Individual Differences in Exploratory
Strategies: Probing into the human epistemic drive

Paper # 275: Batch Policy Learning under Constraints

Paper # 277: Posterior Sampling Networks

Paper # 285: Pseudo-Learning Rate Modulation by the Forgetting of
Action Value when Environmental Volatility Changes

Paper # 288: Inverse Reinforcement Learning from a Learning Agent
Paper # 289: A Comparison of Non-human Primate and Deep
Reinforcement Learning Agent Performance in a Virtual
Pursuit-Avoidance Task

426

77

272

366

337

436

256

Paper # 105 7

Modeling cooperative and competitive decision-making in the Tiger
Task

Saurabh Kumar Tessa Rusch
Institute of Systems Neuroscience Institute of Systems Neuroscience
University Medical Center Hamburg, Germany University Medical Center Hamburg, Germany
s.kumar@uke.de t.ruschluke.de
Prashant Doshi Michael Spezio Jan Glascher
Department of Computer Science Psychology & Neuroscience Institute of Systems Neuroscience
University of Georgia, GA, USA Scripps College, CA, USA; University Medical Center
pdoshi@cs.uga.edu Institute of Systems Neuroscience Hamburg, Germany
University Medical Center glaescher@uke.de

Hamburg, Germany
mspeziolscrippscollege.edu

Abstract

The mathematical models underlying reinforcement learning help us understand how agents navigate the
world and maximize future reward. Partially observable Markov Decision Processes (POMDPs) - an
extension of classic RL - allow for action planning in uncertain environments. In this study we set out to
investigate human decision-making under these circumstances in the context of cooperation and competition
using the iconic Tiger Task (TT) in single-player and cooperative and competitive multi-player versions. The
task mimics the setting of a game show, in which the participant has to choose between two doors hiding
either a tiger (-100 points) or a treasure (+10 points) or taking a probabilistic hint about the tiger location (-1
point). In addition to the probabilistic location hints, the multi-player TT also includes probabilistic
information about the other player's actions. POMDPs have been successfully used in simulations of the
single-player TT. A critical feature are the beliefs (probability distributions) about current position in the state
space. However, here we leverage interactive POMDPs (I-POMDPs) for the modeling choice data from the
cooperative and competitive multi-player TT. I-POMDPs construct a model of the other player’s beliefs,
which are incorporated into the own valuation process. We demonstrate using hierarchical logistic regression
modeling that the cooperative context elicits better choices and more accurate predictions of the other player's
actions. Furthermore, we show that participants generate Bayesian beliefs to guide their actions. Critically,
including the social information in the belief updating improves model performance underlining that
participants use this information in their belief computations. In the next step we will use I-POMDPs that
explicitly model other players as an intentional agents to investigate the generation of mental models and
Theory of Mind in cooperative and competitive decision-making in humans.

Keywords: Theory of Mind, Tiger-task, Cooperation, Competition, Bayesian modeling, -POMDP
Acknowledgements

J. G. was supported by the Bernstein Award for Computational Neuroscience (BMBF 01GQ1006) and J.G. and
M.S. were supported by a Collaborative Research in Computational Neuroscience (CRCNS) grant (BMBF
01GQ1603; NSF 1608278). T.R. was supported by a PhD scholarship from the German National Merit
Foundation.

Paper # 105 8
Extended Abstract

1 Introduction

Reinforcement learning (RL) has its roots in artificial intelligence, control theory, operation research and has
proven to be a powerful framework for cognitive neuroscience decision-making under uncertainty. Markov
decision processes (MDPs) - the mathematical model underlying RL - help robots to pursue the goal of
maximized total future reward by guiding their decisions when the state space is fully known. The real world,
however, is imperfect with noisy observations and unexpected environment changes, where the current state
of the world is often uncertain. The partially observable Markov decision processes (POMDPs) extend MDPs for
situations of state uncertainty by proposing a belief distribution over possible states and using Bayesian belief
updating for estimating this belief distribution in each moment (Kaelbling, Littman and Cassandra 1998).

The iconic Tiger Task played a crucial role in developing this computational framework by providing a
test bed for simulating decision-making of a single agent in an uncertain world. The task mimics the setting
of a game-show, in which the agent is presented with two doors, one of which hides a tiger (incurring a large
loss) and the other one hides a pot of gold (incurring small win). The POMDP framework has been
subsequently extended for multi-agent settings resulting in interactive partially observable Markov decision
process (I-POMDP) (Gmytrasiewicz und Doshi 2005), in which two or more agent interact in an uncertain
world. A crucial element of this framework is that agent build models of the other players and use them to
predict others’ choices and make better decisions themselves. The Tiger Task was again used in initial
simulations of agents an their mental contents in this interactive setting.

Given the crucial role of the Tiger Task in formulating POMDPs and I-POMDPs it is surprising that
little empirical data exist on this this task. Here, we set out to fill this gap by collecting choice data from human
participants engaging in the single- and multi-agent Tiger Task, the latter being the focus of this paper.
Furthermore, following Doshi (Doshi 2005) we devised a cooperative and a competitive version of the multi-
agent Tiger Task and exposed two groups of subjects to them. In a series of model-free and model-based
analyses of behavioural choice patterns we demonstrate a cooperative context elicits better choices and
accurate predictions of the other player’s actions and that subjects generate Bayesian beliefs to guide their
actions. Critically, including the social information from the other player in the belief updating improves
model performance, which underlines that participants pay attention to the other player and use it in
formulating beliefs about the state of the world.

2 Task and hypothesis

The goal of the Tiger Task is to maximize the reward by opening the door hiding the gold (+10 point) and to
avoid opening the door with the tiger (-100 points). In each step there are 3 actions available to the participant:
open left door (OL), open right door (OR), or listen (L), which results in a probabilistic hint about the location
of the tiger (growl left (GL), or growl right (GR)), but also costs 1 point. Thus, participant can accumulate
evidence about the tiger location through repeated L actions. After each open action the position of the tiger
is reset randomly to one of the two doors (tiger left (TL) or tiger right (TR)).

In the multi-player version the participants receive an additional probabilistic hint about the actions of
the other player: creak left, or creak right (indicating that the other player might have opened one of the
doors), or silence (S) indicating that the other player probably listened. Creaks suggest that the location of the
tiger might have reset and that currently accumulated beliefs about the tiger location are void. Opening the
door reveals the correct location of the tiger and the participant get the associated reward with additional
knowledge of the tiger reset. In our implementation of the Tiger Task participant were also asked to predict
the other player’s actions at each step before choosing their own action (see Figure 1A for task sequence).

The competitive and cooperative versions differ in the structure of the payoff matrix: while the
cooperative version incentivizes concurrent open actions by both players (see Figure 1C bold marking), the
competitive version provides the maximum reward, if the correct door hiding the gold is opened, while the
other player opens the wrong door hiding the tiger (see Figure 1B bold marking). Comparing the two versions,

Paper # 105 9

we expected that participants will take more hints to come to a consensus in cooperative context to avoid
confusing the other player and generate a more predictable behavior. We also expected more identical actions
and more accurate predictions of the other player’s actions during cooperation.

3 Results

We invited 58 participants (30 cooperate, 28 compete) to play the multi-player version of the game. In the
model-free analysis we observed that the participants in the cooperative context took more hints than in the
competitive context. In addition, prediction accuracy was higher during cooperation. These outcomes were
both in line with our expectations. Participants in the competitive version exhibited fewer identical actions
when compared to cooperation (Figure 2A-C).

Participants in the Tiger Task form beliefs about the states of the game (TL or TR) based on the
probabilistic hints (GL or GR) and - in the multi-agent Tiger Task - the information from the other player (CR
or CL). Because there are 3 distinct actions (OL, OR, L) available, we decided to model the action a(t) at each

step t as an ordered logistic regression model: a(t) = §o + 81 * b(t), where b(t) is the belief about the location of
the tiger.

The Tiger Task has only 2 states (TL and TR), which implies a unidimensional belief distribution with
both states at the end of the range of possible beliefs. This belief distribution is updated on every step with
the observations following the current action. We compared two version of belief updating: a simple “beta-
belief” model, which uses the mode of a beta distribution as the point estimate of the belief and is updated by
adjusting the parameters of the beta distribution with the observations (the probabilistic hints following L
actions). The second model is a Bayesian belief updating model with take the previous belief as the prior and
calculates the likelihood based on the observation and transition function. We also tested two versions of the
Bayesian updating model (Eq 1) without and Eq 2) with the inclusion of the social information (also see Figure
3A-B as an example):

_ p(ge)xb(t-1) (1)
b(t) p(ge)*b(t-1)+(1-p(ge))*(1-b(t-1)))

Where, p(gc) is the probability of the hint being correct and b(t-1) is the previous belief about the tiger
location.

b(t) = p(cc)*p(00)

_ p(cc)*p(00) _ 2)
P (e p00)+ A-p(cey-(-ploay * P(Teset) + 1 b(t=1)

p(cc)*p(00)+(1-p(cc))+(1-p(00)) *

Where, p(cc) is the probability of the hint about the partners' action being correct and p(oo) is the
probability of the partner opening the door, while reset is the probability of the tiger being placed after a door
is opened (0.5 for a random placement).

Models were estimated using the Stan software package that implements and hierarchical Bayesian
workflow. Formal model comparison using LOOIC (Leave-one-out information criterion) revealed that the
Bayesian belief update model resulted in a better fit than the beta-belief model (LOOIC (Bayesian belief) =
5107.75, LOOIC (Beta belief) = 8530.70). In control analysis, we expanded the set of predictors in the ordered-
logistic model with additional task variables like the number of hints taken, previous outcome and an
interaction between them (Model 2-5), but found the simpler model with just the belief as a predictor (Model
1) outperforms these more comprehensive predictor sets (Figure 4A-B). Furthermore, we compared the
Bayesian belief update without the social information (Eq 1) to the update with the social information added

(Eq 2) and concluded that the social information adds a significant improvement in the model prediction (see
the scales of LOOIC values in Figure 4A and 4B).

4 Outlook

Paper # 105 10

We used an ordered logistic discrete choice model with Bayesian belief updating and demonstrated that
including the social information is providing a much better model fit to the data. This suggests that
participants in the multi-agent Tiger Task do incorporate the information from the other player into their
valuation process. However, our Bayesian belief model falls short of an important feature that is likely
shaping strategic social decisions: it treats the information from the other players as just another piece of
information from the environment and not as an intentional agent that processes the information in a similar
way.

I-POMDPs are a computational framework that explicitly computes the beliefs of the other player as an
intentional agent as part of the model of the first player. Thus, it is an ideal framework for modeling Theory
of Mind of another player in a quantitative way (his goals, intentions, and beliefs). Following our Bayesian
belief model, we will also model the Tiger Task within the I-POMDP framework and compare belief
computations of the other player in the competitive and cooperative version of the task.

5 References

Doshi, Prashant. ,Optimal sequential planning in partially observable multiagent settings.” Ph.D.
dissertation, University of Illinois at Chicago, 2005.

Gmytrasiewicz, Piotr J., und Prashant Doshi. ,,A framework for sequential planning in multi-agent
settings.” Journal of Artificial Intelligence Research, 2005.

Kaelbling, Leslie Pack, Michael L. Littman, und Anthony R. Cassandra. , Planning and acting in partially
observable stochastic domains.” Artificial Intelligence, 1998.

6 Figures
Prediction of Own Listen action Figure 1: (A) An example of
other player's action (observation: GL/GR) sequence for the multi-player
version of the task. The player
Ownaction | ———— predicts the action of the other player
OLORD) || e players . 7 (indicated by the blue fixation dot)
?;Ez:mﬁm: 47 o followed by the players own action
CL/CR) choice (indicted by the yellow

fixation dot). This is followed by the
probabilistic evidence about the
other player's action (CL/CR). The
next screen is either the probabilistic
hint about the tiger location (GL/GR
if L was chosen) or the door is
opened (for OL or OR actions)

Own open door action
(outcome tiger (-100)/gold)) -
(+10)) revealing the tiger location. (B) The

ﬂ Competition ﬂ Coopesation joint payout matrix in the

competitive context is shown for the

Tiger left Tiger left tiger being on the left side. The bold

L OL OR L OL OR numbers show the best and worst
NN L \23 N3 [\ choice indicating that the best own
SEANS ELTN I 05N | 49\ | 6 outcome is achieved if the correct

or I\ 51\ 150\ -0 MNENENE door (with the gold) is opened, while
oo\ |-150\ |95 so . | -so™ |-105 the other player open the wrong
NN = NN - door (:Vlth ttlr‘le t‘lge?}.l (C) The]i).mt
o\ | o\ | 15 o | e - payout matrix in the cooperative
context is shown when the tiger is on

Paper # 105 11

the left side. The bold numbers showing the best choice indicating that the maximum payoff is achieved,
when both players open the correct door at the same time.

& |
4.5

(2] 2] Figure 2: (A) In the multi-player
version of the task the participants
i i significantly took more hints in the
cooperative context when
compared to the competitive
context. Participants also had
significantly = higher prediction
accuracy and identical actions
(showing coordination) in the
cooperative context compared to

Number of hints

T
Predicton accuracy percentage
Identical actions percentage

the competitive one in (B) and (C)
respectively.
250 — - 0.6 0.6
competitive cooperative competitive cooperative competitive cooperative
2] ; 12 5 5 Figure 3: (A) An example

o fes - i oL 5 ’ model behavior of the
| : % : multi-player version of
the tiger task without the
social information (see Eq
1) is shown here. The bold
red line is the model
prediction while the blue

Action choice
=

Action choice
=

OR| A so OR il

0 1 022 0.78 triangles are the actual
Let Belief of tiger location Right Left Belief of tiger location Right | participant action choices

given their computed
beliefs. Green dots, which always lie on the red model curve show the model predictions of the data (blue
triangles). The light-blue area shows the belief region where the ordered logistic model predicts the listen
action. In the red and green areas the ordered logistic model predicts Open Left and Open Right action
respectively. The absence of these areas in this model suggests that the model without the social information
fails to predict the observed open left/right actions. (B) This model behavior shows the prediction made with
the social information (Eq 2). This model predicts most of the OL actions (red area) and OR actions (green
area) correctly demonstrating the importance of the social information (CR/CL) for correctly predicting the
observed data.

Al Modell: Discrete action <- 3(0) + (1) * belief Figure 4: (A) Different
Model 2 : Discrete action <- B(0) + B(1) * belief + B(2)* previous-otutcome models Compared of the
Model3: Discrete action <- B(0) + p(1) * belief + B(2)* previous-outcome+ (3(3)*hints-taken mlﬂti—playel‘ version of the

Discrete action <- B(0) + B(1) * belief + B(2)* previous-outcome+ B(3)*hints-taken + task. All the models in (B)

Model 4 : B(4)*(previous-outcome*hints-taken) without the social
Model 5 : Discrete action <- 3(0) + B(1) * belief + 3(2)*hints-taken information perform worse
B el ' ' compared with the LOOIC

values of the models with
the social information
added in (C) (see different
scales in (B) and (C)). The
| simplest model with just the
4950 LOOIC values 5150 4760 LOOIC values 4775 belief update (model
number 1) in (C) performed better when compared to extensions of number of hints taken, previous outcome
and an interaction of them.

P W

i
v
0
g
=
fr}
o]
o
o]
=

Model number

1

Paper # 109 12

Reinforcement Learning in the Acquisition of Unintuitive Motor
Control Patterns

Sarah A. Wilterson Samuel D. McDougle
Department of Psychology Department of Psychology
Princeton Neuroscience Institute University of California — Berkeley
Princeton University mcdougle@berkeley.edu
shutter@prineton.edu

Jordan A. Taylor
Department of Psychology
Princeton Neuroscience Institute
Princeton University
jordanat@princeton.edu

Abstract

Development of a mapping between goals and actions (i.e. learning a motor controller) has been shown to
rely on processes previously associated with decision-making and reinforcement learning. However, the link
between reinforcement learning and motor skill has not been thoroughly explored. Here, we sought to probe
this potential link by biasing learning in a motor task toward model-free and model-based processes to
determine if doing so would shape the eventual motor controller. Subjects were trained to navigate a cursor
across a grid using an arbitrary and unintuitive mapping. We hypothesized that knowledge of the correct
sequence would tip the balance between the reinforcement learning processes, which would be revealed in a
transfer test. When subjects were tasked with navigating to a novel set of start-end locations, those who
learned the sequence without the benefit of explicit instruction far outperformed subjects given the correct
key-press sequence. Consistent with learning arising from a model-free process, the group given additional
information in training did not fully learn the mapping between their finger-presses and the resultant on-
screen movement. In the next experiment, we call into question the ability to use this newly learned controller
to plan future states; however, this may depend on the expertise with the novel mapping. In a follow-up
experiment, the complexity of the newly trained mapping interacted with the amount of prior learning to
determine how far into the future subjects could plan. Additionally, we found that reaction time increased as
a function of the number of planned states, indicative of a computationally-demanding process typically
associated with model-based planning. We conclude that flexibility of a new controller is at least partially
determined by initial learning conditions, and that the ability to plan ahead requires extensive training.

Keywords: Motor Control, Skill Learning, Transfer of Learning
Acknowledgements
This work was supported by the National Institute of Neurological Disorders and Stroke (R01 NS-084948)

Paper # 109 13

1. Introduction

Humans complete a wide variety of motor tasks on a daily basis. Some tasks are relatively simple and familiar,
such as climbing a flight of stairs, while others require learning a complicated set of novel movements, like
learning to play a new piano piece. The effective control of movement is itself a challenging task, and the
challenge only increases as our goals become progressively more variable or complex. The job of specifying
how to coordinate the muscles and limbs in order to achieve a goal is given to the motor controller - a
computational module that takes as its input a desired goal or physical state and returns a plan for realizing
that goal. The complexity of this computation has inspired debate surrounding the rules for establishing and
modifying a feedback controller. Much investigation of motor controllers is predicated on system
identification techniques borrowed from engineering. With these techniques, a system is characterized by
recording its responses to systematic perturbations [1]. This research has been entrenched in showing when
and how an established controller, particularly that responsible for reaching and grasping, adapts in the face
of perturbations (e.g. [2, 3, 4]).

Unlike the adaptation paradigms, tasks which develop a new motor controller must require a novel mapping
of actions onto desirable goal states. This is sometimes referred to as “skill learning,” and has received
relatively little attention from a control theory prospective [5, 6]. It has been proposed that skill learning
begins with effortful, carefully evaluated movements and continues until action sequences are accomplished
without the express need of an agent’s attention [7]. Historically, this has been thought of as a progression,
with early, effortful processing giving way to fast, automatic processes [5]. Although this idea has been
around for over 50 years, we have no real mechanistic understanding for the progression of skill learning.

A parallel to this motor learning progression has been carefully studied in the field of reinforcement learning.
The terminology here is different, but the description of this progression is familiar, with early, goal-directed
behavior consolidating into habitual actions after practice [8, 9, 10]. Indeed, the model-based stage of learning
is often characterized as slow and effortful, requiring a computationally intensive tree search of action choices
[11], echoing the attention-demanding effort of early skill learning. On the other hand, once learning becomes
model-free, it is no longer able to search the decision tree for the best solution. This results in characteristically
rigid performance. Nonetheless, the response is quickly and automatically accessible without need for
effortful processing or attention [11]. We recognize this as a close description of a learned skill, which can be
completed rapidly without effortful control.

There is some experimental evidence suggesting that model-free and model-based learning also underlie
learning of a motor controller. Particularly, imposing time pressure on subjects when they are learning an
unintuitive keyboard-to-cursor mapping results in suppression of their ability to generalize the learning to
new target locations [12]. However, these participants were able to generalize to new target locations when
provided sufficient time to prepare. This suggests that normal use of a motor controller relies on a time-
consuming computation, such as a model-based process. A model-based controller could afford
generalization by rolling out the consequences of various choices using learned action-outcome associations.
However, imposing a time-limit on the motor controller may have forced reliance on faster, but less flexible,
model-free learning.

Over three experiments, we sought to determine parallels between established features of reinforcement
learning and acquisition of a novel controller. We began by biasing learning toward either model-free or
model-based processes and measuring the flexibility of the newly learned controller. In the second and third
experiments, we investigate the ability of the motor system to use a newly learned controller to plan out future
states.

2. Experiments and Results

We modified a task developed by Fermin and colleagues (2010), in which subjects navigate a cursor across a
virtual grid using a keyboard [12]. The mapping between key-presses and movement of the cursor was
arbitrary and unintuitive, which is thought to require learning de novo. In our variant of this task, subjects
navigated a cursor across a grid by pressing keys on a keyboard. The mapping between key-presses and
movement of the cursor was arbitrary and differed across subjects. Subjects practiced navigating between a
single start-end pair (training phase) and were tested on multiple, novel start-end pairings (test phase). The
exact process and number of these tests varied by experiment.

Paper # 109 14

2.1 Experiment 1 - Instruction Biases Learning to Model-Based Processes
. . . . Training Performance A
In Experiment 1, subjects trained on an arbitrary key-response
mapping deterministically tied to three keyboard keys (e.g. ‘D’ 90+
=up, ‘F’ =right, ‘T =left). All twenty training trails featured the
same start and end position, which was always a six key-press
path and pseudorandomized across participants. To bias 60
learning toward model-free or model-based processes, we
manipulated the instruction that subjects were given about how
to solve the task. In the Instruction group, subjects were given 30 :
the exact sequence of key-presses which would lead them to the / — Y
target (e.g. “Press J-J-J-D-F-F”). In contrast, subjects in the No
Instruction group were not provided with specific instructions
for executing the path, forcing them to explore the mapping
between key-presses and cursor movement during training. We
hypothesized that knowledge of the correct sequence would tip
the balance between different learning processes, which would 751 |
be revealed with a transfer test where subjects navigated to a un
novel set of start-end locations. 60 -

Y

75¢

45+

5 10 15 20
Training Trial

Test Performance B

90 - 1

Calculated Performance

On the transfer test, subjects were given seven novel start/end 45
location pairs to navigate. One trial with the trained start/end
location was mixed randomly into the transfer test. % .

We found that providing full knowledge of the required key- 151

press sequence greatly speeded initial learning (Figure 1A). 0 : : :
However, on the transfer test, subjects who learned the Last 5 of Training ~ Trained Transfer

sequence by trial and error far (Instruction Group) Figure 1. Average points out of a hundred for fifty
outperformed subjects given prior knowledge (No Instruction subjects; points were lost for not hitting the target
Group, Figure 1B). We take this as evidence that the No (-100) and taking additional steps past what was
Instruction group produced a more flexible, model-based necessary (-5/per). Shaded regions/error bars
controller. Several control experiments confirmed that Tepresent standard error. Horizontal line represents
differences between the groups were not attributable to chance. (A) Time course of learning during

variability of experience in training, working memory, or training. B) Last five training trials, the start/end

.. location that was trained, and the novel, transfer,
explicit knowledge of the controller. .
start/end locations.

2.2 Experiment 2 — The Newly Learned Controller Requires State-Space Feedback

Next, we sought to determine how well a newly learned controller could be used to plan out a set of future
states (i.e., a route between novel start-end locations) by removing continuous feedback of the cursor. The
training phase was identical to that of Experiment 1, again with two groups: Instruction and No Instruction.
The only difference from the test phase of Experiment 1 was the

absence of continuous positional feedback. Subjects were able to see Test Performance
their position at the beginning of each trial, but once they began 90! e

moving their curser disappeared and they had to complete the trail g —— No Instruction
“in the dark”. Positive feedback was given if the subject hit the § 7°

target space. E 60

With feedback removed in the test phase, performance on transfer & 45

trials dramatically declined to at or just-above chance (Figure 3). 3

This finding calls into question the ability to use a novel, feedback & 30

controller to plan future states. This is true of both the group biased g 45

to be model-free and the group biased to be model-based. We © - —
hypothesized that subjects are unable to plan out future states using 0- — _I — =
the newly learned controller because each blind movement greatly Last5 of Training Trained Transfer

increases the number of possibilities for one’s current location. Even Figure 2. Average points out of a hundred for
a subject with 80% confidence in any given movement would fifty subjects on the last five training trials,
quickly face an unmanageable level of uncertainty five movements the start/end location that was trained, and
into the task. the novel, transfer, start/end locations.

Paper # 109 15

2.3 Experiment 3 — Extended Practice allows for Greater Flexibility without Feedback

In Experiment 3, we tested whether the ability to plan without state-space feedback would depend on the
complexity of the mapping and the degree of expertise. Unlike Experiments 1 and 2, the test trials in
Experiment 3 were interleaved through-out training. Subjects would complete five training trails, again with
the same start/end pair, and then be given a single, no-feedback transfer trial. Each transfer trial consisted of
a set of start-end locations pseudorandomly chosen to be 1, 2, 3, or 4 key-presses apart. This was repeated for
140 training trials, with subjects receiving one transfer trial of each length at least once every 20 training trials.
Each subject completed the full experiment once with a 3-key mapping and once with a more difficult 6-key

mapping.

The complexity of the mapping and degree of learning interacted to determine how far in advance subjects
could plan (Figure 4A). What's more, we found that subjects’ reaction times increased with the number of
planned future states (Figure 4B). We conducted an additional experiment to control for the presence of test
trials during training. This follow-up experiment provided the same results as shown above. These results
suggest that with extended practice a feedback controller can be co-opted to plan ahead, but doing so is
computationally demanding.

A Accuracy on Test by Target Distance B . RT on Test by Target Distance

1L = - .

3-Key Controller
6-Key Controller

351

0.75

Figure 3. Test-trial accuracy
plotted as proportion of hits (A)
and reaction time in seconds (B)
for each target distance. Error
bars represent standard error. In
panel (A) the horizontal lines
represent approximate chance
One Two Three Four One Two Three Four of hit with random guessing.

0.5r

Accuracy (Hit Rate)
Reaction Time (s)

0.25

3 Discussion

The goal of this study was to determine the extent of the analog between reinforcement learning in decision
making and motor skill acquisition. Across three experiments, we found that participants can leverage both
model-free and model-based processes to improve performance in a novel motor task. In the first experiment,
we reveal that prior knowledge when learning a new motor controller determines behavioral flexibility when
conditions change. Use of the new controller to navigate novel start/ end locations was impaired when explicit
knowledge of the correct training sequence was provided. We interpret this inability to transfer knowledge
as the consequence of biasing early learning toward a model-free process, which resulted in weakened
acquisition of the underlying motor controller. In Experiment Two we show that the model-based learning
that allowed transfer in Experiment One is insufficient for a complete tree search of future movements.
However, in Experiment Three we find that the ability to roll-out a complete motor plan is possible, and
dependent on sufficient experience with the motor controller. Completing the full tree search necessary to
formulate this motor plan is computationally taxing, as evidenced by increased reaction times when the
number of planned steps increases. Planning with a controller requires extensive training, which reflects the
commonly arduous experience of mastering a new motor skill. Our results, and a preliminary modeling
analysis, are consistent with the idea that a model-based process underlies effective learning of a motor
controller.

To be entirely consistent with reinforcement learning theory, model-based processes should eventually give-
way to model-free processes in development of a motor controller. We anticipate the next evolution of the
controller to include some caching of responses, such that there isn’t a reaction time cost for its use. This
would represent the highest level of skill in motor control.

Paper # 109 16

References

(1]

Thoroughman, K. A., & Shadmehr, R. (2000). Learning of action through adaptive combination of motor
primitives. Nature, 407(6805), 742.

Pine, Z. M., Krakauer, J. W., Gordon, J., & Claude, G. C. (1996). Learning of scaling factors and reference
axes for reaching. NeuroReport, 7, 2357-2361.

Fine, M. S., & Thoroughman, K. A. (2006). Motor adaptation to single force pulses: sensitive to direction but
insensitive to within-movement pulse placement and magnitude. Journal of neurophysiology, 96(2), 710-720.

Fine, M. S., & Thoroughman, K. A. (2007). Trial-by-trial transformation of error into sensorimotor
adaptation changes with environmental dynamics. Journal of Neurophysiology, 98(3), 1392-1404.

Fitts, P. M., & Posner, M. L (1967). Human performance. Wadsworth Publishing Co. Belmont, CA.

Haith, A. M., & Krakauer, J. W. (2013). Model-based and model-free mechanisms of human motor learning.
In Progress in motor control (pp. 1-21). Springer, New York, NY.

Crossman, E. R. F. W. (1959). A theory of the acquisition of speed-skill. Ergonomics, 2(2), 153-166.

Adams, C. D. (1982). Variations in the sensitivity of instrumental responding to reinforcer devaluation. The
Quarterly Journal of Experimental Psychology Section B, 34(2b), 77-98.

Dickinson, A. (1985). Actions and habits: the development of behavioural autonomy. Phil. Trans. R. Soc.
Lond. B, 308(1135), 67-78.

Killcross, S., & Coutureau, E. (2003). Coordination of actions and habits in the medial prefrontal cortex of
rats. Cerebral cortex, 13(4), 400-408.

Daw, N.D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and
dorsolateral striatal systems for behavioral control. Nature neuroscience, 8(12), 1704.

Fermin, A., Yoshida, T., Ito, M., Yoshimoto, J., & Doya, K. (2010). Evidence for model-based action planning
in a sequential finger movement task. Journal of motor behavior, 42(6), 371-379.

Paper # 116 17

Rate-Distortion Theory and Computationally Rational
Reinforcement Learning

Rachel A. Lerch & Chris R. Sims
Department of Cognitive Science
Rensselaer Polytechnic University
Troy, NY 12180
lerchr2@rpi.edu—simsc3@rpi.edu

Abstract

We examine reinforcement learning (RL) in settings where there are information-theoretic constraints placed on the
learner’s ability to encode and represent a behavioral policy. This situation corresponds to a challenge faced by both
biological and artificial intelligent systems that must seek to act in a near-optimal fashion while facing constraints on the
ability to process information. We show that the problem of optimizing expected utility within capacity-limited learning
agents maps naturally to the mathematical field of rate-distortion (RD) theory. RD theory is the branch of information
theory that provides theoretical bounds on the performance of lossy compression. By applying the RD framework to
the RL setting, we develop a new online RL algorithm, Capacity-Limited Actor-Critic (CL-AC), that optimizes a tradeoff
between utility maximization and information processing costs. Using this algorithm in a discrete gridworld environment,
we first demonstrate that agents with capacity-limited policy representations naturally avoid “policy overfitting” and
exhibit superior transfer to modified environments, compared to policies learned by agents with unlimited information
processing resources. Second, we introduce a capacity-limited policy gradient theorem that enables the extension of our
approach to large-scale or continuous state spaces utilizing function approximation. We demonstrate our approach using
the continuous Mountain Car task.

Keywords: Reinforcement Learning, Information Theory,
Rate-Distortion Theory, Computational Rationality

Acknowledgements

This research was supported by NSF grant DRL-1560829 and a grant from the RPI-IBM Artificial Intelligence Research
Collaboration (AIRC). We would like to thank Matt Reimer, Tim Klinger, Miao Lui & Gerald Tesauro at IBM TJ] Watson
Research Center for their helpful comments and feedback on this work.

Paper # 116 18

1 Introduction

We consider the problem of capacity-limited RL, in which learning agents lack the ability to store or represent behavioral
policies with perfect fidelity. This work is motivated by the framework of computational rationality [1], an emerging
paradigm for understanding biological and artificial intelligence as optimizing performance subject to constraints on infor-
mation processing. Previous research has identified fundamental information processing limits on human reinforcement
learning [2]. Building on this work, we examine constraints on the policy representation of the learner, formally defined in
the information theoretic sense, and demonstrate the implications of such constraints on self-guided learning.

In the standard RL setting [3], the agent’s goal is to learn an optimal policy, 7*(a | s). In the present work, we consider
this policy function as an information channel, that takes as input a current state, and produces an action to be followed
(e.g., § = A). To limit the amount of information stored about the policy or environment, we apply the framework of
rate-distortion (RD) theory [4]. Within RD theory, an information channel is abstractly modeled as a conditional probability
distribution p(y | x), which describes the probability of an input signal z, drawn from a source distribution p(z), producing
an output signal y. Optimal performance for this channel is defined by a loss function, £(z, y) that quantifies the cost of a
signal « € X being transmitted as the value y € Y. The goal for the channel is to minimize the cost of communication error
specified by the expected loss, E [£(z,y)]. Lastly, for a given source p(z) and channel distribution p(y | z), information
theory provides a measure of the amount of information communicated (on average) by the channel in terms of its mutual
information, I(X,Y).

Any physical communication channel is necessarily limited to transmitting information at a finite rate. Consequently, an
optimally efficient communication channel is one that minimizes expected loss subject to this constraint:

Goal: Minimize E [£(z,y)] w.r.t. p(y |), subject to I(X,Y) < C. 1)

In [5], Blahut developed an efficient iterative algorithm for solving this problem for channels with discrete input and
output alphabets. The Blahut algorithm minimizes the combined performance objective I(X,Y") + SE [L(z, y)] with respect
to p(y |), where the parameter 5 > 0 controls the tradeoff between the expected loss and information rate of the channel.

Rather than being concerned with the mapping of abstract communication signals = and y, in the RL setting we are
interested in a channel that is concerned with the mapping from states to actions (policy mapping). In the present work,
we limit our attention to exploring the impact of capacity limits on the policy mapping, although in principle the same
approach could be extended to the value function as well. A critical component in the application of RD theory to RL
is the specification of an appropriate loss function for a capacity limited policy channel. To that end, we introduce the
Bellman loss function:

£*(s,a) = maxq*(s,a’) — ¢*(s,a) @)
— 0 (s) = Sp(s7 | ,a)(r + 30 (s)). 6)

This quantity is, by definition, the loss in expected utility associated with starting in state s and following action a, relative
to the best possible action for that state. Intuitively, the Bellman loss function says that when there is little difference
between the long-term cost of actions in a given state, there is no need to precisely encode a policy that distinguishes
between them. As we will demonstrate, minimizing the Bellman loss subject to an information constraint also motivates
exploratory behavior, without requiring an added intrinsic curiosity-based reward signal.

2 Properties of Capacity-Limited Policies

In this section, we demonstrate the implications of adopting a capacity limited policy in a simple 2D gridworld (Figure 1A).
The goal in this task is to navigate from a starting state to a terminal goal position. The states (S) are defined by the current
location of the agent within a 12x12 maze. The available actions (A) correspond to taking a step in one of four cardinal
directions (north, south, east, west). The agent incurs a 1-point penalty per step, and a 10-point penalty for colliding with
walls. Hence the objective is finding a least-cost path to the target.

The Bellman loss function defined in the previous section requires knowledge of the optimal value function. We start
by assuming that V*(s) is known (solved via dynamic programming). The goal of the demonstration is to explore the
resulting changes in behavior as capacity limits are varied on the policy function 7(a | s).

As an intuitive example, one can consider two kinds of behavioral policies for a gridworld environment. In one case, there
are no information constraints, and the agent simply remembers the optimal action associated with each state. As the
size of the state or action space grows, or for physical agents with limited computational resources, such a policy may be
infeasible to store with perfect fidelity. In the case of information constraints, a ‘compressed’ policy might consist of a
general plan (with high probability, move north or east) while storing more detailed instructions for key states where
there are high costs for error.

To explore this idea, we apply the Blahut algorithm to obtain compressed policy channels at various levels of channel
capacity. Figure 1B illustrates the fundamental tradeoff between channel capacity and performance. In this gridworld

Paper # 116 19

A Ba EEEEEEE=
(o [o I * (PP 7P [T)
[[0 " Kl N
5
dn <
[| g
B N 2
n w
ke ke kel 0
BIEIEIES “
n T[T e = \ g]
HEEEEEMNUUKI C = 0.5 bits/state C = 1.0 bits/state
B & i i
3 D n=fllm > =
T | [| -y 2o
£ | g] 0.04
g] =
° H S
2] £
B ' 3
® ‘ 8 0.00
=)
8 T 1 I ((/)‘9
-) e -)
0.0 05 1.0 15 20 C = 0.1 bits/state C = 0.5 bits/state C = 1.0 bits/state

Information Rate (bits/state)

Figure 1: A) Optimal deterministic policy for each state. B) Each point along the curve represents an optimal policy that
achieves the maximal expected value at a given rate of information. C) 3 policies illustrated at different points along the
information rate distortion tradeoff curve (i-iii). Colors in the plots illustrate the entropy of the policy in each state of
the maze D) Average probability of occupying each state for learned policies (online) using 3 different information rate
constraints for a similar maze (averaged over 1,000 episodes).

environment, specifying an optimal deterministic policy requires 2 bits per state (the maximum entropy with 4 possible
actions). The results illustrate that behavioral policies can be substantially compressed (by over half) without incurring
significant cost to the agent.

Figure 1C illustrates three different capacity-limited policies (C = 0.1,0.5, 1.0 bits per state, on average), indicated by
the labeled plot markers in the bottom left plot. The colors for each state indicate the entropy of the policy in that state.
With very limited capacity the agent’s policy is near-random. With increasing capacity, the agent focuses its limited
computational resources on representing important features of the environment with high fidelity (e.g. learning how to
navigate key corridors), while using a stochastic policy in open areas of the maze. Notably, Figure 1C also illustrates that a
form of exploration/exploitation tradeoff also emerges automatically from capacity-limited policies: behavior is naturally
more stochastic (exploratory) in states where the costs of error are unknown, or known to be small. Lastly, Figure 1D
illustrates the probability of occupying each state according to each of the three policies. At very low information rates, a
policy encodes little more than “move up and right”, and consequently becomes trapped in corners of the maze with high
probability (Figure 1D(i)).

3 On-line Learning via Capacity-Limited Actor-Critic (CL-AC)

In this section, we consider the problem of simultaneously learning a value function online, and from it gradually
improving a capacity-limited policy. We develop our algorithm using the Actor-Critic (AC) framework in RL. Because of
the recursive dynamics between an agent’s current policy, future exploration, and updated policy, it is not a priori obvious
that a capacity-limited agent will be able to discover or learn an effective policy.

Computing the Bellman loss function requires knowledge of the optimal value function for the task, v*(s). The approach
we adopt is simply to substitute an estimate of the value function, v(s), which is learned in an on-line manner using
standard temporal difference (TD) learning. The estimated loss function £(s, a) is updated via the same temporal difference
error. The required elements for learning are a starting state and action, (s, a), the observed sample reward r and resulting
state s’, along with the current estimate of the value function. This yields:

L(s,a) < L(s,a) +n[v(s) = (r+ yv(s) = L(s,a)].)

Note that the first two terms inside the square brackets are online samples of the Bellman loss function (Eq. 3), substituting
the estimated value function in place of the optimal value function. In the current work a common learning rate parameter
is adopted for both the value and loss function. With an estimated loss function (Eq. 4), it is possible to obtain an optimal
capacity-limited channel for that loss function using the Blahut algorithm [5].

The CL-AC algorithm was tested on the gridworld environment introduced previously, with varying values of the
parameter 3. For each, performance was averaged across 2,500 randomly generated maze environments. The learning
rate was fixed at » = 0.1, and no temporal discounting was assumed. The results are shown in Figure 2, left panel. As

Paper # 116 20

Trained maze

0
0
I

-100

Mean reward on altered maze

Mean total reward (100 episodes)

-100000
L
-200

T T T T T T T T T T T T T T T T
0 02 04 06 08 10 12 14 0 02 04 06 08 10 12 14

Information rate (bits / state) Information rate (bits / state)

Figure 2: Left: Average accumulated reward for CL-AC across 100 training episodes. Middle: Example training and
generalization environments. Added walls are highlighted in red. Right: Average generalization performance for CL-AC,
as a function of the trade-off parameter 5.

before, we demonstrate that the representation of a behavioral policy can be extremely low-fidelity while still allowing
near-optimal performance.

In machine learning, it is commonly understood that complex models run the risk of overfitting: good performance on
a training set, but generalizing poorly to new environments. This raises the question of whether RL agents also suffer
from overfitting in terms of their learned policies, and whether capacity-limited RL could alleviate this problem. To
test this idea, we trained RL agents in randomly constructed gridworlds for 100 episodes. At the end of training, we
modified the maze by adding 8 additional walls placed in random locations, subject to the constraint that a viable path
from the start state to terminal state existed (2, middle). We compared the performance of the CL-AC algorithm using 100
different values of the capacity tradeoff parameter 3, averaged across 2,500 random maze environments. Generalization
performance was evaluated in terms of the expected value of the learned policy, as applied to the altered gridworld maze.

Intuitively, one might think that capacity-limited agents should always be outperformed by higher capacity agents that
are able able to represent their policies with greater fidelity. Our results demonstrate that this is not the case. Figure 2,
right panel, illustrates that generalization performance is highest at intermediate levels of channel capacity (0.5 bits per
state). An intuitive account for this result lies in the concept of policy overfitting. Capacity limits force learning agents to
concentrate representational resources on critical states, at the expense of increasing stochasticity in states where the costs
for error are less critical. Consequently, when particular paths are blocked, the capacity-limited agents retain exploratory
policies that are likely to be viable alternative solutions. These results reiterate the benefits imparted by capacity-limited
policies, as they naturally impart regularization in learning systems towards policies that are robust, and more effectively
generalize past experiences to new environments.

4 Extension to Continuous State Spaces

In continuous or complex environments, modern RL approaches require some form of function approximation (such
as a neural network) to represent value functions and policies [3]. In order to extend CL-AC to this setting, we have
developed a novel stochastic gradient descent (SGD) version of the Blahut algorithm. Following the derivation of the
standard policy gradient theorem [3], we introduce a parameterized policy, mg(a | s), and define a performance objective
that our policy should seek to optimize with respect to §. The objective function reflects the fundamental RD tradeoff
between information rate and expected loss associated with following the policy: J(6) = (1 — 8)I(s,a) + BE [L(s, a)].

Note that we have re-parameterized (3, such that when 8 = 1 the objective is equivalent to unconstrained utility
maximization. Whereas Blahut developed an efficient coordinate descent algorithm for minimizing this objective in the
discrete setting, we instead adjust the continuous parameters of the policy ¢ via gradient descent: 6 < 6 — a VyJ(6).
As computing the mutual information requires summing or integrating over the full state space, we instead perform
stochastic gradient descent by sampling states according to the on-policy distribution, and computing the local gradient at
each state. Mathematical analysis (manuscript in preparation) shows that our approach converges in expectation to a
minimum of the objective, corresponding to an optimal, but capacity-limited policy.

7

In the present paper, we offer an empirical demonstration of the approach using the OpenAI Gym “Mountain Car’
environment!. In this environment, an underpowered car must climb a hill by rocking back and forth in order to build up
sufficient momentum (Fig. 3A). The state space corresponds to the continuous position and velocity of the car. The agent
has three available actions: move left, neutral, or move right. On each time step the agent incurs a cost of —1 until the car
reaches the goal at the top of the hill on the right.

'https:/ /gym.openai.com/envs/MountainCar-v0/

Paper # 116 21

A c B =0.25 B =05 B=0.75
1.00.
£ o07s. 0.04. f ! | 7m(a = ‘right’ | s)
k=] > 1.00
:‘,‘:’ 050 5 - - ¢ . 075
O o000, ! |
025. L . Ad 0.50
0.25
-0.04 ! |
1.0 05 0.0 05
B Position -0 -05 00 05 -0 -05 00 05 -0 -05 00 05 -0 -05 00 05
o D Position Position Position Position
e
o -
7]
a 0.04
[9)
= 2
> =
§ § 0.00
(@)
[>
S -0.04.
>
<<

0.25 0.50 0.75 1.00 -0 -05 00 05 -0 -05 00 05 -0 -05 00 05 -10 -05 00 05
ﬁ Position Position Position Position

Figure 3: A: The Mountain Car task environment. B: Policy performance (expected reward per episode) after 500 training
episodes with varying levels of 8. C: Learned policies (shown as the probability of selecting the action ‘right’ in each state)
at 4 levels of the parameter 5. D: 100 sample episode trajectories generated from the policies illustrated in C.

Our model for the Mountain Car task used a radial basis function (RBF) network to encode the state, with a grid of
50 x 50 Gaussian units uniformly tiling the state space. A state-action value function ¢(s, a) was represented using a
linear combination of these features, with feature weights learned using the standard SARSA learning rule [3]. The
policy mp(a | s) was implemented as a softmax layer with three output units corresponding to the three actions, receiving
input from the same underlying RBF feature representation. Paralleling the standard Actor-Critic framework, the policy
parameters were updated via gradient descent on each time step to minimize the (capacity-limited) performance objective.

Figure 3B illustrates the expected reward associated with varying levels of the parameter 5 after completing 500 training
episodes. As with the gridworld environment, the results show that the fidelity of an agent’s policy can be substantially
reduced without incurring excessive cost. We believe this may reflect a common property of natural environments, where
there are often large regions of the state space where optimal policies are either irrelevant or no better than random
choice. Computationally rational agents can capitalize on and exploit these natural task statistics, analogous to the idea of
efficient coding in perception. Figure 3C illustrates four different policies, for agents with 8 = {0.25,0.5,0.75,1.0}, the
latter corresponding to an unlimited capacity agent. Panel D, below, illustrates 100 trajectories through the state space
generated by each of these policies. Much as in the gridworld environment, higher information rates yield increasingly
deterministic policies, but without an accompanying increase in utility to the agent. In future work we plan to explore the
generalization ability of capacity-limited policies in the mountain car environment, as well as in larger scale environments.

5 Summary

This paper describes the application of RD theory to the learning of limited yet efficient behavioral policies. We show that
such policies enable superior generalization, and naturally impart principled exploratory behavior. RD theory enforces
a budget on deterministic (exploitative) policies, and channels exploration intelligently. We further demonstrate the
extension of our approach to continuous state spaces. In aggregate, this body of work demonstrates the value of a
principled framework for the development and specification of computationally rational learning agents.

References
[1] S.]. Gershman, E.]J. Horvitz, and J. B. Tenenbaum, “Computational rationality: A converging paradigm for intelligence
in brains, minds, and machines,” Science, vol. 349, no. 6245, pp. 273-278, 2015.

[2] A.G. Collins and M. J. Frank, “How much of reinforcement learning is working memory, not reinforcement learning?
A behavioral, computational, and neurogenetic analysis,” European |. of Neuroscience, vol. 35, no. 7, pp. 1024-1035, 2012.

[3] R.S.Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press, 2nd ed., 2018.
[4] T. Berger, Rate distortion theory: A mathematical basis for data compression. Prentice-Hall, 1971.

[5] R. Blahut, “Computation of channel capacity and rate-distortion functions,” IEEE transactions on Information Theory,
vol. 18, no. 4, pp. 460-473, 1972.

Paper # 193 22

Searching for Markovian Subproblems
to Address Partially Observable Reinforcement Learning

Rodrigo Toro Icarte Ethan Waldie
Department of Computer Science Department of Computer Science
University of Toronto & Vector Institute University of Toronto
Toronto, Ontario, Canada Toronto, Ontario, Canada
rntoro@cs.toronto.edu ethan.waldie@mail.utoronto.ca
Toryn Q. Klassen Richard Valenzano
Department of Computer Science Element Al
University of Toronto Toronto, Ontario, Canada
Toronto, Ontario, Canada rick.valenzano@elementai.com

toryn@cs.toronto.edu

Margarita P. Castro Sheila A. Mcllraith
Department of Mechanical and Industrial Engineering Department of Computer Science
University of Toronto University of Toronto & Vector Institute
Toronto, Ontario, Canada Toronto, Ontario, Canada
mpcastro@mie.utoronto.ca sheila@cs.toronto.edu
Abstract

In partially observable environments, an agent’s policy should often be a function of the history of its interaction with the
environment. This contradicts the Markovian assumption that underlies most reinforcement learning (RL) approaches.
Recent efforts to address this issue have focused on training Recurrent Neural Networks using policy gradient methods.
In this work, we propose an alternative — and possibly complementary — approach. We exploit the fact that in many
cases a partially observable problem can be decomposed into a small set of individually Markovian subproblems that
collectively preserve the optimal policy. Given such a decomposition, any RL method can be used to learn policies for
the subproblems. We pose the task of learning the decomposition as a discrete optimization problem that learns a form
of Finite State Machine from traces. In doing so, our method learns a high-level representation of a partially observable
problem that summarizes the history of the agent’s interaction with the environment, and then uses that representation
to quickly learn a policy from low-level observations to actions. Our approach is shown to significantly outperform
standard Deep RL approaches, including A3C, PPO, and ACER, on three partially observable grid domains.

Keywords: Partial Observability
Reinforcement Learning
Automata Learning
Reward Machines

Acknowledgements

We gratefully acknowledge funding from CONICYT (Becas Chile), the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC), and Microsoft Research.

Paper # 193 23

1 Introduction

Partially observable environments remain very challenging for RL agents because they break the Markovian assumption
with respect to the agent’s observations. As a result, agents in these environments require some form of memory to
summarize past observations. Recent approaches either encode the observation history using recurrent neural networks
[5, 10, 7] or use memory-augmented neural networks to provide the agent access to external memory [6]. We propose an
alternative approach that searches for a decomposition of the task into a small set of individually Markovian subtasks.

For example, consider the 2-keys domain shown in Figure 1c. The agent (purple triangle) receives a reward of +1 when it
reaches the coffee machine, which is always in the yellow room. To do so, it must open the two doors (shown in brown).
Each door requires a different key to open it, and the agent can only carry one key at the time. At the beginning of each
episode, the two keys are randomly located in either the blue room, the red room, or split between them. Since the agent
can only see what is in the current room, this problem is partially observable.

This problem is quite difficult for current RL approaches: A2C, ACER, and PPO performed poorly on this task even after
5 million training steps (Section 4). However, it is decomposable into a small set of Markovian subproblems. The first
involves searching for the keys. Notice that if the agent finds only one key in the red room, then (if it has learned enough
about the domain) it can deduce that the second key is in the blue room. The next subproblem is to pick up a key. This
is followed by a subproblem involving opening a door and retrieving the other key. Crucially, this last subproblem is
Markovian because the agent already knows which room the key is in based on which key they previously picked up.

Main contributions: We propose a discrete optimization-based approach that finds a high-level decomposition of a
partially observable RL problem. This decomposition splits the problem into a set of Markovian subproblems and takes
the form of a reward machine (RM) [8]. We also extend an existing method for exploiting RMs to the partially observable
case, so that we can use a found RM to quickly learn a policy from low-level observations to actions. Finally, we show that
our approach significantly outperforms several well-known policy gradient methods on three challenging grid domains.

Related work includes some early attempts to tackle partially observability in RL based on automata learning, e.g. [3, 4].
Both works rely on learning finite state machines at a low-level (over the environment observations). In contrast, our
approach relies on learning a decomposition of the problem at the abstract level given by a labelling function. This allows
our approach to also work over problems with continuous (or very large) observation spaces.

2 Preliminaries

A Markov Decision Process (MDP) is a tuple M = (S, A, r,p,~y), where S is a finite set of states, A is a finite set of actions,
r: S x A — Ris the reward function, p(s,a,s’) is the transition probability distribution, and -y is the discount factor. The
objective of M is to find a policy 7* : § — Pr(A) that maximizes the expected discounted reward for every state s € S.
When r or p are unknown but can be sampled, an optimal policy can be found using RL approaches like g-learning. This
off-policy method uses sampled experience of the form (s, a, s’,r) to update (s, a), an estimate of the optimal g-function.

A Partially Observable Markov Decision Process (POMDP) is a tuple Po = (S,0, A,r,p,w,), where S, A, r, p, and ~y are
defined as in an MDP, O is a finite set of observations, and w(s, o) is the observation probability distribution. At every time
step t, the agent is in exactly one state s, € S, executes an action a; € A, receives an immediate reward r,11 = (s, ar),
and moves to the next state s, according to p(s;, as, s;+1). However, the agent does not observe s,41, and only receives
an observation 0,11 € O via w, where w(sy41, 044+1) is the probability of observing 0,11 from state s;11 [1]. As such, many
RL methods cannot be immediately applied to POMDPs because the transition probabilities and reward function are not
necessarily Markovian w.r.t. O.

3 Learning to Decompose Partially Observable Problems

Our approach to RL in a partially observable environment has two stages. In the first, the agent solves an optimization
problem over a set of traces to find a “good” reward machine (RM)-based [8] decomposition of the environment. In
particular, we look for an RM R that can be used to make accurate one-step Markovian predictions over the traces in
the training set. In the second stage, the agent uses any standard RL algorithm to learn a policy directly from low-level
observations to actions for each subtask identified in R. If at some point R is found to make incorrect predictions,
additional traces are added to the training set and a new RM is learned. This process continues for as long as is desired.

Reward Machines under Partial Observability

Let us begin by defining RMs and identifying how a given RM can be used by an RL agent in a partially observable
environment. RMs are finite state machines that give reward on every transition, and were recently proposed as a way to
expose the structure of a reward function to an RL agent [8]. In the case of partial observability, RMs are defined over a
set of propositional symbols P that correspond to a set of high-level features the agent can detect using a labelling function

Paper # 193 24

L: Oy x Ag x O — 27 where Xy = X U {0}. L assigns truth values to symbols in P given an environment experience
e = (0,a,0") where o is the next observation after executing action a from observation o. We use L((,?, 0) to assign
truth values to the initial observation. We call a truth value assignment over P an abstract observation since it provides a
high-level view of the low-level observations via L. We now formally define an RM as follows:

Definition 3.1 (reward machine). Given a set of propositional symbols P, a set of (environment) observations O, and a
set of actions A, a Reward Machine is a tuple Rpoa = (U, uo, 6y, 0,) where U is a finite set of states, ug € U is an initial
state, &, is the state-transition function, 6, : U x 2P — U, and §, is the reward-transition function, §, : U x 27 — R.

RMs decompose problems into high-level states U and define transitions using conditions defined by §,,. These con-
ditions are over a set of binary properties P that the agent can detect using L. For example, consider the RM for the
2-keys domain shown in Figure 1d. We assume that the agent can use L to detect the room color (, 0, 0, and [), the
objects in the current room (&, s, and @, where @ represents a locked door), and whether it is carrying a key (A). Each
of these symbols is in P. In the figure, we use “(, A)” to denote that 0 and A are true in the current state, and all other
propositions (e.g. [J) are false. We also use “(0, A); (E, A)” to say that the transition is taken if either of these sets of
propositions is satisfied. Finally, we note the figure only shows propositions sets that induce RM state changes. For all
other sets, the RM simply remains in the same state it was in the last step.

The agent starts at the initial RM state u(and stays there until it observes the red room with no keys (0), one key (%) or
two keys OX,%), or similarly for the blue room. Each of these conditions is associated with a unique arrow indicating
the state to which the RM transitions. If the agent enters the blue room and there is one key (%), then the RM state
changes from u to u;. The transitions in the RM are also associated with a reward via d,.

When learning policies given an RM, one simple approach is to learn a policy 7 (o, z) that considers the current observa-
tion o € O and the current RM state © € U. While a partially observable problem might be non-Markovian over O, it
can be Markovian over O x U for some RM Rpp4. We call such an RM a perfect RM. For example, Figure 1d shows a
perfect RM for the 2-keys domain given a labelling function that detects events O, 0, &, and A. It is perfect because it can
correctly keep track of the locations of the keys once this is determined, which is all that the agent needs to remember in
order to decompose the problem in a Markovian way. Formally, we define a perfect RM for POMDP Py as follows:

Definition 3.2. AnRM Rpoa = (U, ug, 4y, ;) is considered perfect for a POMDP Py = (S, 0, A, r, p, w,~y) with respect to
a labelling function L if and only if for every trace oy, ao, . . ., 0+, a; generated by any policy over Pp, the following holds:
Pr(oi41,7e41/00, a0, - .., 0¢,a¢) = Pr(osy1,7¢41]0¢, ¢, ar) Where zg = ug and 2y = 6, (241, L(0i—1,a:-1,0¢)) .

Interestingly, we can formally show that if the set of belief states [1] for the POMDP Py is finite, then there exists a perfect
RM for Pp. In addition, we can show that the optimal policies for perfect RMs are also optimal for Pp.

From Traces to Reward Machines

We now consider the problem of learning a perfect RM from traces, assuming one exists w.r.t. the given labelling function
L. Since a perfect RM transforms the original problem into a Markovian problem over O x U, we prefer RMs that
accurately predict the next observation o' and the immediate reward r from the current observation o, the RM state
z, and the action a. Instead of trying to predict the observations themselves, we propose a low-cost alternative which
focuses on a necessary condition for a perfect RM: the RM must correctly predict what is possible and impossible at the
abstract level given by L. It is impossible, for instance, to be at u3 in the RM from Figure 1d and observe (%), because
the RM is at ug iff the agent saw that the red room was empty or that both keys were in the blue room.

This idea is formalized in our optimization model (Figure le). Let 7 = {7y, ..., 7} be a set of traces, where each trace
7; is a sequence of observations, actions, and rewards: 7; = {0;.0, .0, 75,05 - - -, 0it;s @i t;s Tit; }- We now look for an RM
(U, uo, 6y, 0,) that can be used to predict L(e; 1+1) from L(e; ;) and the current RM state z; ;, where e; ;41 is the experience
(0it, @it 0i041) and e; o is (0,0, 0;0) by definition. The model parameters are the set of traces 7, the set of propositional
symbols P, the labelling function L, and a maximum number of states in the RM umax. The model also uses the sets
I'={0...n}and T; = {0...t; — 1}, where I contains the index of the traces and T; their time steps. The model has two
auxiliary variables z; ; and N, ;. Variable x;+ € U represents the state of the RM after observing trace 7; up to time ¢.
Variable N,,; C 27 is the set of all the next abstract observations seen from the RM state u and the abstract observations
I at some point in 7. In other words, I’ € N, ; iff u = x;4,1 = L(e;), and I’ = L(e; 14+1) for some trace 7; and time ¢.

Constraints (2) and (3) ensure that we find a well-formed RM, while constraints (4) to (6) ensure that the found RM
satisfies the current set of traces. Constraint (7) and (8) ensure that the N,,; sets contain at least every L(e; ;+1) that has
been seen right after [and « in P. The objective function (1) comes from maximizing the log-likelihood for predicting
L(e; 1+1) using a uniform distribution over all the possible options given by N,, ;. A key property of this formulation is
that any perfect RM is optimal with respect to the objective function in equation (1) when the number of traces (and their
lengths) tends to infinity, if the traces are collected by a policy 7 such that w(a|o) > e forallo € O and a € A.

For solving this optimization problem, we found the local search algorithm Tabu search [2] to be effective. This method
starts from an arbitrary feasible solution. It then iteratively examines all feasible “neighbouring” solutions, and moves

Paper # 193 25

YY) ® & minimize >, > 10g(|Nu, ;L) (1)
icl teT;
N %Y st (U,u0,6.,6,) € Rpoa %)
| | - U] < tmax ®)
4 * .
>] >] ° >] HAR DA zie €U Viel,teT;4)
| | * | | | | Tq,0 = UO Vi € 1(5)
|| || || Tit+1 = 571.(177;,157 L(ei,t+1)) VZ S I,t S Tl (6)
N, C2” vu € U,l € 27 (7)
YY) 2 L(eit1) € Ny L(e;) Vi€t €T (8)
(a) Symbol domain. (b) Cookie domain. (c)2-keys domain. (d) A perfect RM. (e) Optimization model for learning RMs.

Figure 1: Our domains, a perfect RM for the keys domain, and our optimization model.

to the neighbour with the best evaluation according to the objective function. For us, neighbouring RMs are defined as
those that differ by exactly one transition. When a time limit is hit, the best seen solution is returned. Tabu search also
maintains a set of states, the Tabu list, and prunes them from the “neighbouring” solutions to avoid revisiting them.

Finding Policies For Learned Reward Machines

Once we have learned an RM, we can use any RL algorithm to learn a policy 7 (o,), by treating the combination of o
and u as the current state. However, doing so does not exploit the problem structure that is exposed by the RM. To this
end, an approach called Q-Learning for RMs (QRM) was proposed [8]. QRM learns one g-function ¢, (i.e., policy) per RM
state v € U. Then, given any sample transition, the RM can be used to emulate how much reward each g-value would
receive from every RM state. Formally, experience e = (o, a, o) is transformed into a valid experience ({0, u), a, (o', u'),)
for training ¢, for each v € U, where v’ = §,(u, L(e)) and r = §,(u, L(e)). Hence, any off-policy learning method can
take advantage of these “synthetically” generated experiences to train every g-function g,. When g-learning is used to
learn each policy, QRM is guaranteed to converge to an optimal policy when the problem is fully-observable.

To apply QRM on a learned RM in a partially observable environment, we must first learn values for the RM’s reward
function §, from the set of training traces 7. We do so by setting d,(u,) as its empirical expectation over 7. In addition,
we must handle an issue related to importance sampling. An experience (o, a, 0o’) might be more or less likely depending
on the RM state that the agent was in when the experience was collected. For example, experience (o, a,0’) might be
possible in one RM state u; but not in «;. Updating the policy for u; using (o, a, 0’) would then introduce an unwanted
bias to g,,. We handle this issue by only “transferring” an experience (o0, a,0’) from u; to u;, if the current RM indicates
that experience is possible in u;. For example, if some experience in Figure 1c consists of entering the red room and
seeing only one key, then this experience will not be used to update the policies for states us, u3, u4, and ug of the perfect
RM in Figure 1d. While this approach will not address the problem in all environments, we leave that as future work.

Simultaneously Learning a Reward Machine and a Policy

We now describe our overall approach for simultaneously finding an RM and exploiting that RM to learn a policy. Our
approach starts by collecting a training set of traces 7 generated by a random policy during t,, “warmup” steps. This set
of traces is used to find an initial RM R using Tabu search. The algorithm then initializes policy =, sets the RM state to the
initial state ug, and sets the current label [to the initial abstract observation L(0), (), 0). The standard RL learning loop is
then followed: an action a is selected following 7 (0,), and the agent receives the next observation o’ and the immediate
reward r. The RM state is then updated to 2’ = d,,(z, L(0, a, 0')) and the policy 7 is improved using whatever RL method
is being deployed using the last experience ({0, x),a,r, (o', z')). Note that in an episodic task, the environment and RM
are reset whenever a terminal state is reached.

If on any step, there is evidence that the current RM might not be the best one, our approach will attempt to find a new
one. Recall that the RM R was selected using the cardinality of its prediction sets N (1). Hence, if the current abstract
observation !’ is not in N, ;, adding the current trace to 7 will increase the size of N, ; for R. As such, the cost of R will
increase and it may no longer be the best RM. Thus, if I’ ¢ N, ;, we add the current trace to 7 and search for a new RM.
Recall that we use Tabu search, though any discrete optimization method could be applied. Our method only uses the
new RM if its cost is lower than R’s. If the RM is updated, a new policy is learned from scratch.

4 Evaluation and Discussion

We tested our approach on three partially observable grid domains, each with the same layout of three rooms with a con-
necting hallway. The agent can move in the four cardinal directions and can only see what is in the current room. These
are stochastic domains where the outcome of an action randomly changes with a 5% probability. The first environment is

Paper # 193 26

Symbol domain Cookie domain 2-keys domain Symbol domain Cookie domain 2-keys domain
200 - 0% T — 1042
100 8 8 i 8 1l
- - 150 o S S S H
5 E | 2 s 3 w2 e
E3 200 = 00 = & I~ g I~)
&) & & 3 3 él 3.8 3 -
0 2 L8 A 10 g ¢ s
0 5 0% g s e
0 " iednk bt leh il — = 1037 = iox
0 1-10° 2109 0 1-100 2-10° 3-10° 0 2108 4-10° 10%7 10%8 10%9 10%7 1% 10%0 10! 0% 100 102
Training steps Training steps Training steps Perfect RM cost Perfect RM cost Perfect RM cost
Legend: —— DDQN A2C —PPO ACER —LRM+DDQN ——LRM + DQRM

Figure 2: Left: Total reward collected every 10, 000 training steps. It shows the median performance over 30 runs and percentile 25 to
75 in the shadowed area for LRM approaches. The maximum performance is reported for the other approaches. Right: Comparison
between the cost of the perfect RM and the cost of RMs found by Tabu search.

the symbol domain (Figure 1la). It has three symbols &, #, and ¢ in the red and blue rooms. One symbol from {&, &, 4} and
possibly an up or down arrow are randomly placed at the yellow room. Intuitively, that symbol and arrow tell the agent
where to go (e.g., & and 1 tell the agent to go to & in the north room). If there is no arrow, the agent can go to the target
symbol in either room. An episode ends when the agent reaches any symbol in the red or blue room, at which point they
receive a reward of +1 if they reached the correct symbol and —1 for an incorrect symbol. The second environment is
the cookie domain (Figure 1b). It has a button in the yellow room that, when pressed, makes a cookie randomly appear in
the red or blue room. The agent receives reward +1 for reaching the cookie and may then go back to the button to make
another one appear. Each episode is 5, 000 steps long, during which the agent should attempt to get as many cookies as
possible. The final environment is the 2-keys domain (Figure 1c) that was described in Section 1.

We tested two versions of our Learned Reward Machine (LRM) approach: LRM+DDQN and LRM+DQRM. Both learn
an RM from experience as described in Section 3, but LRM+DDQN learns a policy using DDQN [9] while LRM+DQRM
uses the modified version of QRM. In all domains, we used umax = 10, t,w = 200,000, an epsilon greedy policy with
e = 0.1, and a discount factor v = 0.9. The size of the Tabu list and the number of steps that the Tabu search performs
before returning the best RM found is 100. We compared against 4 baselines: DDQN [9], A2C [5], ACER [10], and PPO
[7]. To provide DDQN some memory, its input is set as the concatenation of the last 10 observations, as commonly done
by Atari playing agents. In contrast, A2C, ACER, and PPO already use an LSTM to summarize the observation history.

The left side of Figure 2 shows the total reward that each approach gets every 10, 000 training steps. The figure shows that
the LRM approaches largely outperform all the baselines. We also note that LRM+DQRM learns faster than LRM+DDQN,
but is more unstable. In particular, LRM+DQRM converged to a considerably better policy than LRM+DDQN in the 2-
keys domain. We believe this is due to QRM’s experience sharing mechanism that allows for propagating sparse reward
backwards faster. In contrast, all the baselines outperformed a random policy, but none make much progress on any of
the domains, even when run much longer (5, 000, 000 steps).

A key factor in the strong performance of the LRM approaches is that Tabu search finds high-quality RMs in less than
100 search steps (Figure 2, right side). In each plot, a point compares the cost of a handcrafted perfect RM with that of
an RM R that was found by Tabu search while running our LRM approaches, where the costs are evaluated relative to
the training set used to find R. Being on or under the diagonal line (as in most of the points in the figure) means that
Tabu search is finding RMs whose values are at least as good as the handcrafted RM. Hence, Tabu search is either finding
perfect reward machines or discovering that our training set is incomplete and our agent will eventually fill those gaps.

For future work, we plan on exploring the use of recurrent neural networks for finding policies for each RM subtask.
Doing so would mean that we might not have to find a perfectly Markovian high-level decomposition. We expect this
will allow us to solve problems with less informative labelling functions, and using RMs with fewer states.

References

[1] A.R.Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable stochastic domains. In AAAI, pages 1023-1028, 1994.

[2] E Glover and M. Laguna. Tabu search. In Handbook of combinatorial optimization, pages 2093-2229. Springer, 1998.

[3] M. Mahmud. Constructing states for reinforcement learning. In ICML, pages 727-734, 2010.

[4] N.Meuleau, L. Peshkin, K.-E. Kim, and L. P. Kaelbling. Learning finite-state controllers for partially observable environments. In UAI, pages 427-436, 1999.

[5] V.Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In ICML,
pages 1928-1937, 2016.

[6] J.Oh, V. Chockalingam, S. Singh, and H. Lee. Control of memory, active perception, and action in minecraft. In ICML, pages 2790-2799, 2016.
[7] J.Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[8] R.Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. Mcllraith. Using reward machines for high-level task specification and decomposition in reinforcement learning.
In ICML, pages 2112-2121, 2018.

[9] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. In AAAI, pages 2094-2100, 2016.

[10] Z.Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas. Sample efficient actor-critic with experience replay. arXiv preprint arXiv:1611.01224,
2016.

Paper # 179 27

Value Preserving State-Action Abstractions

David Abel Nate Umbanhowar
Department of Computer Science Department of Computer Science
Brown University Brown University
david_abel@brown.edu umbanhowar@brown.edu

Khimya Khetarpal Dilip Arumugam
Department of Computer Science Department of Computer Science
McGill University Stanford University
khimya.khetarpal@mail.mcgill.ca dilip@stanford.edu
Doina Precup Michael L. Littman
Department of Computer Science Department of Computer Science
McGill University Brown University
dprecup@cs.mcgill.ca mlittman@cs.brown.edu
Abstract

We here introduce combinations of state abstractions and options that preserve representation of near-
optimal policies. We define ¢-relative options, a general formalism for analyzing the value loss of options
paired with a state abstraction, and prove that there exist classes of ¢-relative options that preserve near-
optimal behavior in any MDP.

Keywords: State Abstraction, Options, Hierarchical Reinforcement Learning
Acknowledgements

We would like to thank Silviu Pitis and Philip Amortila for helpful discussions. This work was supported
by a grant from the DARPA L2M program and an ONR MURI grant.

Paper # 179

28

T DP
’ Vo, 1S A
a .
7T¢,0¢ . _>
¢ To
S 5¢E$¢ 7T¢’O¢ 0€ Oy a
g 3] |-
Agent f
o€ O
(a) State and Action Abstraction in RL. (b) Forming a ground policy from a policy over abstract

states and ¢-relative options.

Figure 1: Reinforcement Learning with state abstraction and options: (a) an augmentation of the traditional
RL loop wherein an agent reasons in terms of abstract states and chooses among options, and (b) the process

for inducing 71'(%’ o0, @ Markov policy in the ground MDP, from a (¢, Oy, 7¢,0,,) triple.

1 Introduction

We here explore the role of state and action abstractions in the context of Reinforcement Learning (RL) [24],
as pictured in Figure 1a. Our main objective is to clarify which combinations of state and action abstractions
support representation of near-optimal policies in Markov Decision Processes (MDPs) [22].

A state abstraction defines an aggregation function that translates the environmental state space S into S,
where usually |S,| < |S|. With a smaller state space, learning algorithms can learn with less computation,
space, and even samples [10, 3, 23, 13, 14]. However, throwing away information about the state space
might destroy representation of good policies. An important direction for research is to clarify which state
abstractions can preserve near-optimal behavior [9, 17, 14, 1, 2].

We take an action abstraction to be a replacement of the actions of an MDP, A, with a set of options [25], O,
which encode long-horizon sequences of actions. Options are known to aid in transfer [16, 6, 28], encourage
better exploration [4, 12, 18, 27], and make planning more efficient [20, 21].

The primary contribution of this work introduces combinations of state abstractions and options that pre-
serve representation of near-optimal behavior. We define ¢-relative options, a general formalism for ana-
lyzing the value loss of pairs (¢, O,), and prove there are classes of ¢-relative options that preserve near-
optimal behavior in any MDP.

1.1 Background
We first provide brief background on state abstractions and options.

Definition 1 (State Abstraction): A state abstraction ¢ : S — Sy maps each ground state, s € S into an abstract
state, sy € Sy. We denote policies over abstract states as my, defined as a mapping Sy — A.

Critically, a policy over abstract states induces a unique policy over ground states:

Remark 1. Any deterministic policy defined over abstract states, 7y : Sy — A induces a unique policy in the
original MDP. We denote this ground policy as wi (s), and the space of all policies representable in this manner as Hi.

For each s € S, we may pass it through the abstraction to yield sy = ¢(s). To specify an action, we then
query my(s4). Using this mapping process we can evaluate a given abstract policy, 7y, by the value of its

induced ground policy, wg. We now define the sub-optimality induced by a given state abstraction ¢.

Definition 2 (¢-Value Loss): The value loss associated with a state abstraction ¢ denotes the degree of sub-optimality
attained by applying the best abstract policy. More formally:

L(¢) := min maxV™(s) — V’Ti(s). 1)
T

Paper # 179

29

Next we introduce options, a popular formalism for empowering the action space of an agent.

Definition 3 (Option [25]): An option o € O is a triple (Z,, 5o, 7o), where I, C S is a subset of the state space
denoting where the option initiates; B, C S, is a subset of the state space denoting where the option terminates; and
o+ S = Ais a deterministic policy prescribed by the option o.

Options define abstract actions; the three components indicate where the option o can be executed (Z,),
where the option finishes (5,), and what to do in between these two conditions (7).

2 State-Action Abstractions

Together, state and action abstractions can distill complex problems into simple ones [15, 8, 5]. Our treat-
ment of state-action abstraction is related to generating options from a bisimulation metric [11] as pro-
posed by Castro and Precup [7], but distinct from state-action homomorphisms, as explored by Ravindran
[23], Taylor et al. [26] and Majeed and Hutter [19]. We here introduce a novel means of combining state
abstractions with options, defined as follows:

Definition 4 (¢-Relative Option): For a given ¢, an option is said to be ¢-relative if and only if there is some
s € Sg such that, forall s € S:

T,(s) =s €545, Pols)=s¢sg, moe€ll,, (2)

where I1,, : {s | ¢(s) = s¢} — A s the set of ground policies defined over states in sy. We denote Oy as any non-
empty set that 1) contains only ¢-relative options, and 2) contains at least one option that initiates in each s4 € Sy.

Intuitively, this means we define options that initiate in each abstract state and terminate once the option
leaves the abstract state. For example, in the classical Four Rooms domain, if the state abstraction turns each
room into an abstract state, then any ¢-relative option in this domain would be one that initiates anywhere
in one of the rooms and terminates as soon as the option leaves that room. This gives us a powerful
formalism for seamlessly combining state abstractions and options.

We henceforth denote (¢, Oy) as a state abstraction paired with a set of ¢-relative options. We first show
that, similar to Remark 1, any (¢, O,) gives rise to an abstract policy over Sy and Oy that also induces a
unique policy in the ground MDP (over the entire ground state space). We do not here present proofs due
to space constraints.

Theorem 1. Every deterministic policy defined over abstract states and ¢-relative options, 4.0, : Sy — Oy,
induces a unique Markov policy over the original MDP, Wﬁ,% : S — A. Wedenote Hﬁ,@, as the set of policies in the
ground MDP representable by the pair (¢, O,) via this mapping.

This theorem gives us a means of translating a policy over ¢-relative options into a ground policy over S
and A (this process is visualized in Figure 1b). Consequently, we can define the value loss associated with a
set of options paired with a state abstraction: every (¢, O4) pair yields a set of policies in the ground MDP,

Hi o0, The value loss of ¢, Oy, then, is just the value loss of the best policy in this set.
Definition 5 ((¢, O,)-Value Loss): The value loss of (¢, Og) is the smallest degree of suboptimality achievable:

o
L(¢p,0y) := min max V*(s) =V % (s). 3)
7 o €N o 9€S

To characterize the loss of various options, we require a final definition that clarifies what is meant by
an option class. We adopt a new formalism that characterizes sets of options as containing representative
options, defined as follows.

Definition 6 (Option Class): Let Og” denote the set of all possible ¢ relative options for a given ¢. For every sg,
consider a two-place predicate on options of this set, ps, : Og” X (’)g” — {0, 1}. A set of ¢-relative options is said to
belong to the class defined by p,,,, which we denote Oy ,, if and only if:

vs(pes{pvol GO;” 302€O¢,p : ps¢ (01; 02)' (4)

2

Paper # 179

30

Intuitively, a class of options consists of choosing a small set of representative options from the set of all
possible options, where the other options that the representatives are intended to account for are defined
by the predicate. In the trivial case, the predicate defines equivalence; if the two options are the same, it is
true. In this case, we just recover the set of all options. Instead, we might describe a class of options as those
that transition to the same next abstract state from the given s4; then, we need only retain one such option
to adhere to this class. Shortly, we will define two classes that possess desirable theoretical properties.

With our definitions in place, we now pose the central question of this work:

Central Question: Are there classes of options that, when paired with well-behaved state abstractions
(thatis, L(¢) = €4), yield a relatively small L(¢, O4)?

Our main result answers this question in the affirmative; the following two option classes preserve near-
optimality. The option classes we introduce guarantee ¢ closeness of values or models, building off of state
abstraction classes from prior work [9, 17, 1]. More concretely:

1. Similar Q*-Functions (O q=): The e-similar Q* predicate defines an option class where, for all s4:

Pey(01,02) = max Q% (5,01) — Q3 (5,02)] < e (5)
where:
Q3 (5,0) 1= Ris,mo(5)) +7 30 T(' | 5,70(5)) (105" € 5)Q1, (', 0) + 15" &)V () . (6)
s'eS

2. Similar Models (O, 1.): The e-similar T'and R predicate defines an option class where, for all s4:
Pse (01,02) = ||T€S,,01 - TsS/oQHoo <er AND HRS,m - R5702H00 < €R, (7)
where R; , and Tj:o are shorthand for the reward model and multi-time model of Sutton et al. [25].

Our main result establishes the bounded value loss of these two classes.
Theorem 2. (Main Result) For any ¢ such that L(¢) < ey, the two introduced classes of ¢-relative options satisfy:

er + |Sler VMAX

£
L(¢7O¢7Q;) SE¢+7Q7 L(¢7O¢,M5) S5¢>+ 1_’)/

T (®)

2.1 Discussion

We introduce ¢-relative options, a simple but expressive formalism for combining state aggregation func-
tions with options. These offer analysis of the quantity L(¢, O4), a coherent notion of value loss extended
to capture the value loss of joint state-action abstractions. We introduce two classes of ¢-relative options
that are guaranteed to preserve near-optimality in any MDP. We take this to serve as a concrete path toward
principled option discovery and use; our main direction for future work is to develop a practical option dis-
covery algorithm that 1) offers synergy with state abstraction, and 2) is guaranteed to retain near-optimal
behavior.

References
[1] David Abel, D. Ellis Hershkowitz, and Michael L. Littman. Near optimal behavior via approximate
state abstraction. In ICML, pages 2915-2923, 2016.

[2] David Abel, Dilip Arumugam, Kavosh Asadi, Yuu Jinnai, Michael L. Littman, and Lawson L.S. Wong.
State abstraction as compression in apprenticeship learning. In AAAI 2019.

[3] David Andre and Stuart] Russell. State abstraction for programmable reinforcement learning agents.
In AAAI pages 119-125, 2002.

[4] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI, 2017.

Paper # 179

31

[5] Aijun Bai and Stuart Russell. Efficient reinforcement learning with hierarchies of machines by lever-
aging internal transitions. In IJCAI, 2017.

[6] Emma Brunskill and Lihong Li. PAC-inspired option discovery in lifelong reinforcement learning. In
ICML, pages 316-324, 2014.

[7] Pablo Samuel Castro and Doina Precup. Automatic construction of temporally extended actions for
MDPs using bisimulation metrics. In EWRL, 2011.

[8] Kamil Ciosek and David Silver. Value iteration with options and state aggregation. arXiv:1501.03959,
2015.

[9] Thomas Dean and Robert Givan. Model minimization in Markov decision processes. In AAAI, 1997.

[10] Thomas G Dietterich. Hierarchical reinforcement learning with the MAXQ value function decompo-
sition. Journal of Artificial Intelligence Research, 2000.

[11] Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov decision processes.
In UAI 2004.

[12] Ronan Fruit and Alessandro Lazaric. Exploration—exploitation in MDPs with options. AISTATS, 2017.
[13] Jesse Hostetler, Alan Fern, and Tom Dietterich. State aggregation in MCTS. In AAAI, 2014.

[14] Nan Jiang, Alex Kulesza, and Satinder Singh. Abstraction selection in model-based reinforcement
learning. In ICML, pages 179-188, 2015.

[15] Anders Jonsson and Andrew G Barto. Automated state abstraction for options using the U-tree algo-
rithm. In NeurIPS, pages 1054-1060, 2001.

[16] George Konidaris and Andrew G Barto. Building portable options: Skill transfer in reinforcement
learning. In IJCAI, 2007.

[17] Lihong Li, Thomas] Walsh, and Michael L Littman. Towards a unified theory of state abstraction for
MDPs. In ISAIM, 2006.

[18] Marlos C Machado, Marc G Bellemare, and Michael Bowling. A Laplacian framework for option
discovery in reinforcement learning. In ICML, 2018.

[19] Sultan Javed Majeed and Marcus Hutter. Performance guarantees for homomorphisms beyond
Markov decision processes. AAAI 2019.

[20] Timothy Mann and Shie Mannor. Scaling up approximate value iteration with options: Better policies
with fewer iterations. In ICML, pages 127-135, 2014.

[21] Timothy A Mann, Shie Mannor, and Doina Precup. Approximate value iteration with temporally
extended actions. Journal of Artificial Intelligence Research, 2015.

[22] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

[23] Balaraman Ravindran. SMDP homomorphisms: An algebraic approach to abstraction in semi Markov
decision processes. 2003.

[24] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[25] Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 1999.

[26] Jonathan Taylor, Doina Precup, and Prakash Panagaden. Bounding performance loss in approximate
MDP homomorphisms. In NeurIPS, 2008.

[27] Saket Tiwari and Philip S Thomas. Natural option critic. AAAI 2019.

[28] Nicholay Topin, Nicholas Haltmeyer, Shawn Squire, John Winder, James MacGlashan, et al. Portable
option discovery for automated learning transfer in object-oriented Markov decision processes. In
IJCAI, 2015.

Paper # 72 32

Bandits with Temporal Stochastic Constraints

Priyank Agrawal* Theja Tulabandhula
Indian Institute of Science University of Illinois at Chicago
Bangalore, India Chicago, IL 60607
priyank.93.agrawal@gmail.com thejaluic.edu
Abstract

We study the effect of impairment on stochastic multi-armed bandits and develop new ways to mitigate it. Impairment
effect is the phenomena where an agent only accrues reward for an action if they have played it at least a few times in the
recent past. It is practically motivated by repetition and recency effects in domains such as advertising (here consumer
behavior may require repeat actions by advertisers) and vocational training (here actions are complex skills that can only
be mastered with repetition to get a payoff). Impairment can be naturally modelled as a temporal constraint on the
strategy space, we provide a learning algorithm that achieves sublinear regret. Our regret bounds explicitly capture the
cost of impairment and show that it scales (sub-)linearly with the degree of impairment. Beyond the primary objective
of calculating theoretical regret guarantees, we also provide experimental evidence supporting our claims.

In Summary, our contributions are three-folds: Modeling arm pull history dependent impairment effect; designing a
sublinear regret learning algorithm and showing its relevance in the past literature of reward corruption and delay and
finally, supporting our theoretical guarantees with experimental validation.

Keywords: Multi-armed-bandits, Stochastic Impairments, Stochastic History,
Doob’s Martingale

*Additional details can be found in the full version of this work, Bandits with Temporal Stochastic Constraints available at
https:/ /arxiv.org/abs/1811.09026

Paper # 72 33

New Rewards

Reward
Observed

Has A been
repeated in the
recent past?

Choose Action A

No Reward

Observed E—

Figure 1: Bandit learning with stochastic impairment.

1 Introduction

In the space of advertising and consumer behavior models, repetition effect [Machleit and Wilson, 1988, Campbell and
Keller, 2003] has been well studied, under which, an advertiser’s payoff (for instance, click through rate) depends on
how frequently they have presented the same ad to the same audience in the recent past. If the advertiser presents a
specific ad sporadically, then the aggregated payoff is much lower. If this ad is the best among a collection of ads, then
the advertiser will not be able to deduce this from their observations. Further, different ads may need different levels
of repetition to obtain payoffs, and this may not be known a priori to the advertiser. This phenomenon also translates
to recommendations, such as for products and movies, where repeated display of item(s) can cause positive reinforce-
ment to build over time, culminating in a conversion. And since conversions depend on the past recommendations, they
interfere with learning the true underlying (mean) payoffs of different recommendations. In the domain of skill acquisi-
tion [DeKeyser, 2007], especially those which are complex [Bosse et al., 2015], a learner may have to repeatedly try each
action several times to advance or acquire a reward. Further, they may have to repeat these actions frequently enough so
as to not lose the acquired skill [Kang, 2016].

Motivated by the above discussion, we define a new class of problems, which we call bandit learning with stochastic
impairment, to address the need for repetitions. The defining characteristic here is that a learning algorithm can only
accrue rewards if it has played the same arm enough number of times in the recent past. The amount by which the
algorithm needs to replay the same arm is a measure of impairment. The reward for playing that arm at the current time
is instantaneous. A diagram illustrating this is shown in Figure 1.

As the impairment effect is based on the history of arm pulls which is stochastic, usual multi-armed-bandits (MAB)
algorithms such as UCB1, SE, MOSS or Thompson Sampling are ineffective because one cannot directly control the
number of times an arm is played in a given time window. In fact, if we have an instance in which a couple of arms
have almost equal mean payoffs, then the aforementioned algorithms may switch between these very frequently (see
Section 4), potentially causing linear regret. We also observe that impairment setting is closely related to delay [Pike-
Burke et al., 2018, Cesa-Bianchi et al., 2018] and corruption [Lykouris et al., 2018, Gajane et al., 2017] in the reward
accrual process. As an unifying view, in all three works one can assume that there is a intermediate function that allows
an MAB algorithm to accrue some transformation of the rewards instead of the rewards themselves.

Owing to the nature of impairment effect, learning algorithms necessarily have to ensure that the arms still under con-
sideration are played frequently, perhaps in batches. In particular, if one plays an arm for a sufficiently long period of
time, then they can ensure that the instantaneous rewards are always accrued (except some at the beginning). Phase
based algorithms are a natural choice given these considerations. This family of algorithms date back to [Agrawal et al.,
1988], who considered arm switching costs. To address these issues, we develop UCB-REVISITED+, which expands on
the phase-based algorithmic template to mitigate impairments in reward accrual. In particular, UCB-REVISITED+ is
based on UCB-REVISITED [Auer and Ortner, 2010] and works under the setting when the expected impairment effect is
known. Naturally, the algorithm also works when the impairment is deterministic.

To analyze regret upper bounds for our proposed algorithm, UCB-REVISITED+, we rely on its phased operation to
distill reward sequences for each of its arm. We first consider zero-mean sequences by subtracting the mean from each
reward, then we segregate portions of the sequence corresponding to the impairment effect. Further, we construct a
version of Doob’s martingales with the associated filtration set being the entire history of rewards and arm pulls on
these sequences. Following the analysis techniques of [Auer and Ortner, 2010] and [Pike-Burke et al., 2018],where the
latter uses Freedman’s inequality and the Azuma-Hoeffding inequality based Doob’s optimal skipping theorem (see
Section 3), we finally calculate high probability bounds on the regret and show that the influence of impairment is at
best only additive. While our analysis partially overlaps with these two previous works, the random variables related to
impairment in our setting do need a qualitatively different treatment.

Paper # 72 34

2 Problem Definition

There are K > 1 arms in the set K. Each arm j € K is associated with a reward distribution ¢;, which has support [0, 1].
The mean reward for arm j is ;. p* is the maximum of all ;; and corresponds to the arm j*. Define A; = p* — ;.

One of the key aspects of this work is a novel modeling of impairment that temporally correlates the rewards accrued by
any algorithm with its past sequence of actions. Let R; ; be the reward that would be generated if the j'* arm is played
at time ¢. Further, let J; € K represents the arm that is played at time ¢. Each arm j is associated with an i.i.d. stochastic
process (impairment process) {dy ;} that controls reward accrual in the following way: the learner can only observe the
reward R; ; if the arm j was pulled at least d; ; times in the N-most recent time steps, as:

t
Xt = Byl o Ik=4] = duyl,
k=max(t—N,0)
where I[] is the indicator function. For simplicity, we demonstrate our solution assuming the mean of each random
variable d, ; is equal to E[d]. The tuple (K, &;,{d: ;}, N) completely defines a problem instance.

With this context, the learning goal is to design an online algorithm that minimizes (pseudo-) regret for a given time

horizon T, as:
T
zxt] . zxm]. <1>
t=1

Unlike the standard setting, the above terms cannot be further simplified because here the accrued rewards, {X; ;}
depends both on the reward distribution and stochastic history of the arm pulls.

Rt = max E
ke[K]

3 Algorithm and Analysis

Notation: Let m index phases. Let Tj(m) refer to the collection of times when the j'* arm is played up to phase m. X;
is the reward accrued at time ¢ and R; ; is the reward observed for playing arm j at time ¢. The sequence of parameters
{nm|m =0,1,2,...} determine the number of consecutive rounds each active arm is played in the phase m, where active

arms belong to the set Ky;,. The estimated mean reward for arm j at the end of phase m is denoted by X, ;.

In the myj, phase, every arm in the set of active arms is played consecutively for a certain number of times, say n,, times.
We creatively design n,, such that the confidence gap (A,,) of the active arms decreases exponentially with each phase,
while eliminating the arms with A;/2 > A,,. Our main idea is that the intelligently designed repetition strategy helps to
negate impairment effects. As n,, also depends on the impairment statistics, E[d], we can also incorporate arm specific
impairment parameters by considering a suitable n,, ; for the specific arm j. Here, we assume that the algorithm can
distinguish between the two possibilities: zero valued rewards and no rewards received due to impairment.

We give a constructive proof for the choice of n,, such that the estimated mean reward for an arm j is atmost A,, from
its true mean with high probability.
Lemma 3.1. [For details refer Lemma 4.3 in Agrawal and Tulabandhula [2018]] There exists a positive n,, for which the
estimates X, ;, calculated by the Algorithm 1 for the active arm j (j € K,,) and phase m, satisfy the following with
probability > (1 —)

Xonj =y < Am/z

Proof. We provide a proof sketch here. For any active arm j and phase m , let S,, ; denote the time in this phase
when the algorithm starts playing this arm. Similarly let U,, ; denote the time in this phase when the algorithm stops
playing this arm. We define a filtration {G;}52, by setting {Go} = {Q, ¢} and defining {G;} to be the o-algebra over
(X1, Xo...Xy, J1, Jouo dLJl,d27J2....dt7Jt7RLJ1 ,R2.7,...Ry.1,). Then, it follows that for each arm j:

m Um,g m Ui-,y m Uq,,j

S Xi—p) Swm=> > (Reg, =)=, >, ResJ{t < Sij+dis}. 2

i=11t=8; ; i=11t=8; j i=11t=8; ;

Define A; ; := Ry ;,I{t < S, ; +d; s, } and also M; := >""" | A; ,J{S; ; <t < U, ,}. We rewrite (2) in terms of M, as:
m Ui m Ui Unm,j Unm,j
(Xt —) Swp, = Z Z Ry g, — 1) + Z([M;|Gi—1] ZEMt‘gt 1] 3)
i=1 f:S7J i=1t= S7J t=1
Term 1 Term 2 Term 3

Paper # 72 35

Input: A set of arms K, time horizon T', and parameters {n,,|m =0,1,2,...}.
Initialization: phase indexm =1, K,, =K, A1 =1, T;(m) = ¢ Vj € K, and time index t = 1.
while ¢t < T do
Play arms:
for each active arm j in K,,, do
SetTj(m) =T;(m—1)ifm > 1.
Play j for n,, — n,_1 consecutive rounds. In each round ¢:

if (Zhomani-n0) Ik = 1) = di then
\ Observe reward X, ; and add ¢ to T;(m).
end
end
Eliminate Suboptimal Arms:
for each active arm j in KC,,, do
Xmj = n%n ZtGTj(m) X
end
Construct ICm+1 by eliminating arms j in ICm for which
ij+A /2 < maxjek,, Xm] 7,,/2
Update the confidence bound:

Set Am-‘,—l = ATm

Increment phase index m by 1.
end

Algorithm 1: UCB-REVISITED+

Now we calculate high probability expression for w,, in terms n,,, T' and impairment statistics, E[d]. In the Term 1,
(R¢,7, — pj) is a random variable measurable on the filtration {G;} with E[R; ;, — p;] = 0. We apply a version of
Azuma-Hoefdding for Doob’s Martingales (refer Lemma 4.2 in Agrawal and Tulabandhula [2018] or Lemma 11 in Pike-

Burke et al. [2018] for details) to obtain 327, 370" 4, (Reg, — p1j) < y/nm log(T). Secondly, for the Term 2, we prove

that Zgz’"lj (E[M;|Gi—1] — M,) is a martingale. Then, we use Bernstein Inequality for Martingales (refer Lemma 4.1
in Agrawal and Tulabandhula [2018] or Theorem 10 in Pike-Burke et al. [2018]) and obtain Zg:’”l’j (E[M{|Gi—1] — My) <

2log(T) + \/ 41°g) 1 4mE[d] log(T) with high probability. Term 3 has a trivial non-negative upper bound. Finally, we

impose the Condltlon wm < A, /2, ensuring the elimination condition of the Algorithm 1 holds good and obtain:
4 lo~g(T) n 16 1o~g(T) n 8 mE~[d] log(T") .

A2 3A,, A,
This completes the proof. O

m <1+ 4)

Having accomplished the difficult task of calculating the phase duration, n,,, we turn our attention to the regret upper
bounds which are stated in the following theorem:

Theorem 3.1. [Proof follows that of Theorem 4.1 in Agrawal and Tulabandhula [2018]] The expected (pseudo-)regret of
UCB-REVISITED+ (Algorithm 1) is bounded as:

64 log() 64log(T) 4 2A; 32
< . J— — .
Ry E < A, + 3 + 324 /log Z_ E[d] log(T) + E + + z'eKq’l:aAXi@\AlT’

€K’ IEK A >A i€k’
where K = {i € K|A; > 0} and K’ = {i € K|A; > A\}.

Corollary 3.1. For all T > K and choosing A = 4/ %g(ﬂ, the expected (pseudo-)regret of UCB-REVISITED+- is upper
bounded as:

Ry <0 («/KTlogTJr K\/log? TE[d]) .

We note that the effect of impairment only appears as an additive term to the “usual” regret bounds of O(\/ KT logT),
the magnitude of which depends gracefully on /E[d]. The primary objective of this work is obtain tractable theoretical
regret upper bounds for effective learning in impairment setting. In the following section we reinforce our result with
relevant simulations.

Paper # 72 36

#Optimal Arms vs Switching Impairment vs Regret

—— #Optimal Arm =1 150
—— #Optimal Arms = 3
—— #Optimal Arms =7

8
=3
=

100
2000

Regret

50

Unnormalized Counts

3
S
S

o

0 2 4 6 8 0 5000 10000 15000

#Selections in 15 round history Time horizon

Figure 2: Left: Plot of unnormalized counts versus number of same arm plays in the past 15 rounds by UCB1 for three
different settings. Right: Performance (cumulative regret) of UCB-REVISITED+ as the impairment level is varied.

4 Experiments and Conclusion

We use a simple setup of K = 30 arms and set the reward distributions to be the Bernoulli with randomly chosen
biases. The horizon length 7" = 5000. We then run UCB1 under three different configurations (1, 3 and 7 optimal arms
respectively). Figure 2(left) shows the unnormalized counts of same arm plays in the past 15 plays. This was computed by
checking how many times the current arm was also played in the past 15 rounds. As expected, as the number of optimal
arms increases, the counts of same arm plays decreases rapidly. This indicates that UCB1 and other related algorithms
may perform poorly in settings with impairment.

We also show the performance of UCB-REVISITED+ (Algorithm 1) for varying levels of impairment. The number of arms
in this experiment is 10. Impairment is stochastic and is simulated using the absolute value normal distribution with
means = {2,6, 10, 14} and the standard deviation being proportional to the arm index. The fixed impairment parameter
is N = 20, and the time horizon is 10000. From Figure 2(right), we can observe that as the cumulative regret increases as

E[d] is increased. It can also be shown that the regret of UCB-REVISITED+ grows as O(y/E[d]).

To conclude, we propose a model of impairment and develop new bandit algorithms whose worst case regret depends
(sub)linearly on the impairment level. Some future directions include lower bounds and modelling similar impairment
setting with Contextual Bandits and MDPs. Also, modeling of contrasting “wearing-out” effects together with the rein-
forcing ones due to repetition, is an open problem.

References
Priyank Agrawal and Theja Tulabandhula. Bandits with temporal stochastic constraints. arXiv preprint arXiv:1811.09026,
2018.

Rajeev Agrawal, MV Hedge, and Demosthenis Teneketzis. Asymptotically efficient adaptive allocation rules for the
multiarmed bandit problem with switching cost. IEEE Transactions on Automatic Control, 33(10):899-906, 1988.

Peter Auer and Ronald Ortner. UCB revisited: Improved regret bounds for the stochastic multi-armed bandit problem.
Periodica Mathematica Hungarica, 61(1-2):55-65, 2010.

Hans Martin Bosse, Jonathan Mohr, Beate Buss, Markus Krautter, Peter Weyrich, Wolfgang Herzog, Jana Jiinger, and
Christoph Nikendei. The benefit of repetitive skills training and frequency of expert feedback in the early acquisition
of procedural skills. BMC medical education, 15(1):22, 2015.

Margaret C Campbell and Kevin Lane Keller. Brand familiarity and advertising repetition effects. Journal of consumer
research, 30(2):292-304, 2003.

Nicolo Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. Nonstochastic bandits with composite anonymous feedback.
In Conference on Learning Theory, pages 750773, 2018.

Robert DeKeyser. Skill acquisition theory. Theories in second language acquisition: An introduction, 97113, 2007.

Pratik Gajane, Tanguy Urvoy, and Emilie Kaufmann. Corrupt bandits for privacy preserving input. ArXiv preprint
arXiv:1708.05033, 2017.

Sean HK Kang. Spaced repetition promotes efficient and effective learning: Policy implications for instruction. Policy
Insights from the Behavioral and Brain Sciences, 3(1):12-19, 2016.

Thodoris Lykouris, Vahab Mirrokni, and Renato Paes Leme. Stochastic bandits robust to adversarial corruptions. In
ACM SIGACT Symposium on Theory of Computing, pages 114-122. ACM, 2018.

Karen A Machleit and R Dale Wilson. Emotional feelings and attitude toward the advertisement: The roles of brand
familarity and repetition. Journal of Advertising, 17(3):27-35, 1988.

Ciara Pike-Burke, Shipra Agrawal, Csaba Szepesvari, and Steffen Grunewalder. Bandits with delayed, aggregated anony-
mous feedback. In International Conference on Machine Learning, pages 4102-4110, 2018.

Paper # 52 37

Hacking Google reCAPTCHA v3 using Reinforcement Learning

Ismail Akrout* Amal Feriani*
Télécom ParisTech Ankor Al
akrout.ismail@gmail.com amal.feriani@gmail.com
Mohamed Akrout

University of Toronto
makrout@cs.toronto.edu

Abstract

We present a Reinforcement Learning (RL) methodology to bypass Google reCAPTCHA v3. We formulate the problem as
a grid world where the agent learns how to move the mouse and click on the reCAPTCHA button to receive a high score.
We study the performance of the agent when we vary the cell size of the grid world and show that the performance drops
when the agent takes big steps toward the goal. Finally, we use a divide and conquer strategy to defeat the reCAPTCHA
system for any grid resolution. Our proposed method achieves a success rate of 97.4% on a 100 x 100 grid and 96.7% on
a 1000 x 1000 screen resolution.

Keywords: Reinforcement Learning, reCAPTCHA, Security, Artificial Intelli-
gence, Machine Learning

Acknowledgements

We thank Douglas Tweed for his valuable feedback and helpful discussions.

*equal contribution

Paper # 52 38

1 Introduction

Artificial Intelligence (AI) has been experiencing unprecedented success in the recent years thanks to the progress
accomplished in Machine Learning (ML), and more specifically Deep Learning (DL). These advances raise several
questions about Al safety and ethics [1]. In this work, we do not provide an answer to these questions but we show
that Al systems based on ML algorithms such as reCAPTCHA v3 [2] are still vulnerable to automated attacks. Google’s
reCAPTCHA system, for detecting bots from humans, is the most used defense mechanism in websites. Its purpose is
to protect against automated agents and bots, attacks and spams. Previous versions of Google’s reCAPTCHA (v1 and
v2) present tasks (images, letters, audio) easily solved by humans but challenging for computers. The reCAPTCHA v1
presented a distorted text that the user had to type correctly to pass the test. This version was defeated by Bursztein
et al. [3] with 98% accuracy using ML-based system to segment and recognize the text. As a result, image-based and
audio-based reCAPTCHAs were introduced as a second version. Researchers have also succeeded in hacking these
versions using ML and more specifically DL. For example, the authors in [4] designed an Al-based system called
UnCAPTCHA to break Google’s most challenging audio reCAPTCHAs. On 29 October 2018, the official third version
was published [5] and removed any user interface. Google’s reCAPTCHA v3 uses ML to return a risk assessment score
between 0.0 and 1.0. This score characterize the trustability of the user. A score close to 1.0 means that the user is human.

In this work, we introduce an RL formulation to solve this reCAPTCHA version. Our approach is programmatic: first,
we propose a plausible formalization of the problem as a Markov Decision Process (MDP) solvable by state-of-the-art
RL algorithms; then, we introduce a new environment for interacting with the reCAPTCHA system; finally, we analyze
how the RL agent learns or fails to defeat Google reCAPTCHA. Experiment results show that the RL agent passes the
reCAPTCHA test with 97.4 accuracy. To our knowledge, this is the first attempt to defeat the reCAPTCHA v3 using RL .

2 Method

2.1 Preliminaries

An agent interacting with an environment is modeled as a Markov Decision Process (MDP) [6]. A MDP is defined as

a tuple (S, A, P,r) where S and A are the sets of possible states and actions respectively. P(s,a, s/) is the transition
probabilities between states and r is the reward function. Our objective is to find an optimal policy 7* that maximizes
the future expected rewards. Policy-based methods directly learn 7*. Let’s assume that the policy is parameterized by a

set of weights w such as m = 7(s, w). Then, the objective is defined as: J(w) = E, [ZtT—o ~try | where v is the discount
factor and r; is the reward at time ¢.

Thanks to the policy gradient theorem and the gradient trick [7], the Reinforce algorithm [8] estimates gradients using
1.

T T
VE, [Z vtrt} =E, [Z V log 7(ay |st)Rt} 1)
t=0 t=0

R; is the future discounted return at time ¢ defined as R; = E{:t ~#=t) .y, where T marks the end of an episode.

Usually the equation (1) is formulated as the gradient of a loss function L(w) defined as follows: L(w) =
— LS SoE, Viegw(ai|si)R: where N is the a number of collected episodes.

2.2 Settings

To pass the reCAPTCHA test, a human user will move his mouse starting from an initial position, perform a sequence
of steps until reaching the reCAPTCHA check-box and clicking on it. Depending on this interaction, the reCAPTCHA
system will reward the user with a score. In this work, we modeled this process as a MDP where the state space S is the
possible mouse positions on the web page and the action space is A = {up, left,right,down}. Using these settings, the
task becomes similar to a grid world problem.

As shown in Figure 1, the starting point is the initial mouse position and the goal is the position of the reCAPTCHA is
the web page. For each episode, the starting point is randomly chosen from a top right or a top left region representing
2.5% of the browser window’s area (5% on the x-Axis and 5% on the y-Axis). A grid is then constructed where each pixel
between the initial and final points is a possible position for the mouse. We assume that a normal user will not necessary
move the mouse pixel by pixel. Therefore, we defined a cell size ¢ which is the number of pixels between two consecutive
positions. For example, if the agent is at the position (z, yo) and takes the action left, the next position is then (z¢ — ¢, y).

Paper # 52 39

I'm not a robot

Figure 1: The agent’s mouse movement in a MDP

One of our technical contributions consists in our ability to simulate the same user experience as any normal reCAPTCHA
user. This was challenging since reCAPTCHA system uses different methods to distinguish fake or headless browsers,
inorganic behaviors of the mouse, etc. Our environment overcomes all these problems. For more details about the
environment implementation, refer to section 6. At each episode, a browser page will open up with the user mouse at a
random position, the agent will take a sequence of actions until reaching the reCAPTCHA or the horizon limit 7" defined
as twice the grid diagonal i.e. T = 2 x va? + b where a and b are the grid’s height and width respectively. Once the
episode ends, the user will receive the feedback of the reCAPTCHA algorithm as would any normal user.

3 Experiments and Results

We trained a Reinforce agent on a grid world of a specific size. Our approach simply applies the trained policy to
choose optimal actions in the reCAPTCHA environment. Our results presented are the success rates across 1000 runs.
We consider that the agent successfully defeated the reCAPTCHA if it obtained a score of 0.9. In our experiments, the
discount factor was v = 0.99. The policy network was a vanilla two fully connected layer network. The parameters were
learned with a learning rate of 10~2 and a batch size of 2000. Figure 3 shows the results for a 100 x 100 grid. Our method
successfully passed the reCAPTCHA test with a success rate of 97.4%.

Next, we consider testing our method on bigger grid sizes. If we increase the size of the grid, the state space dimension
|S| increases exponentially and it is not feasible to train a Reinforce algorithm with a very high dimensional state space.
For example, if we set the grid size to 1000 x 1000 pixels, the state space becomes 10¢ versus 10* for a 100 x 100. This is
another challenge that we address in this paper: how to attack the reCAPTCHA system for different resolutions without
training an agent for each resolution?

4 An efficient solution to any grid size

In this section, we propose a divide and conquer technique to defeat the reCAPTCHA system for any grid size without
retraining the RL agent. The idea consists in dividing the grid into sub-grids of size 100 x 100 and then applying our
trained agent on these sub-grids to find the optimal strategy for the bigger screen (see Figure 2). Figure 3 shows that this
approach is effective and the success rates for the different tested sizes exceed 90%.

.rl

Figure 2: Illustration of the divide and conquer approach: the agent runs sequentially on the diagonal grid worlds in
purple. The grid worlds in red are not explored.

Paper # 52 40

100

80
— B r=0
X 60 == r=0.1
'{gu I r=0.3
b = =07
< 40 Bl r=09

20

o

300x300 600x600 1000x1000
Grid world dimension (pixel)

Figure 3: Reward distribution of the RL agent on different grid resolutions over 1000 episodes

5 Effect of cell size

Here, we study the sensitivity of our approach to the cell size as illustrated in Figure 4.

(a) cell size 1x1 pixel (b) cell size 3x3 pixel

Figure 4: Illustration of the effect of the cell size on the state space

Figure 5 illustrates the obtained performance. We observe that when the cell size increases, the success rate of the agent
decreases. For, cell size of 10, the RL agent is detected as a bot in more than 20% of the test runs. We believe that this
decline is explained by the fact, with a big cell size, the agent scheme will contain more jumps which may be considered
as non-human behavior by the reCAPTCHA system.

6 Details of the reCAPTCHA environment

Most previous works (e.g [4]) used the browser automation software Selenium [9] to simulate interactions with the re-
CAPTCHA system. At the beginning, we adopted the same approach but we observed that the reCAPTCHA system
always returned low scores suggesting that the browser was detected as fake. After investigating the headers of the
HTTP queries, we found an automated header in the webdriver and some additional variables that are not defined in
a normal browser, indicating that the browser is controlled by a script. This was confirmed when we observed that the
reCAPTCHA system with Selenium and a human user always returns a low score.

It is possible to solve this problem in two different ways. The first consists in creating a proxy to remove the automated
header while the second alternative is to launch a browser from the command line and control the mouse using dedicated
Python packages such as the PyAutoGUI library [10]. We adopted the second option since we cannot control the mouse
using Selenium. Hence, unlike previous approches, our environment does not use browser automation tools.

Paper # 52 41

100
80
~ =0
8 60 = r=0.1
e . =03
H BN r=07
< 40 . =009
20
ol
1x1 3x3 6x6 10x10

Cell size (pixel)

Figure 5: Reward distribution for different cell sizes over 1000 episodes

Another attempt to use Tor [11] to change the IP address did not pass the reCAPTCHA test and resulted in low scores
(i.e 0.3). It is possible that the reCAPTCHA system uses an API services such as ExoneraTor [12] to determine if the IP
address is part of the Tor network or not on a specific date.

We also discovered that simulations running on a browser with a connected Google account receive higher scores com-
pared when no Google account is associated to the browser.

To summarize, in order to simulate a human-like experience, our reCAPTCHA environment (1) does not use browser
automation tools (2) is not connected using a proxy or VPN (3) is not logged in with a Google account.

7 Conclusion

This paper proposes a RL formulation to successfully defeat the most recent version of Google’s reCAPTCHA. The main
idea consists in modeling the reCAPTCHA test as finding an optimal path in a grid. We show how our approach achieves
more than 90% success rate on various resolutions using a divide and conquer strategy. This paper should be considered
as the first attempt to pass the reCAPTCHA test using RL techniques. Next, we will deploy our approach on multiple
pages and verify if the reCAPTCHA adaptive risk analysis engine can detect the pattern of attacks more accurately by
looking at the activities across different pages on the website.

References
[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and Dan Mané. Concrete problems
in ai safety. CoRR, 2016.

[2] Google. reCAPTCHA v3’s website. https://developers.google.com/recaptcha/docs/v3, 2018. [Online; accessed
15-February-2019].

[3] Elie Bursztein, Jonathan Aigrain, Angelika Moscicki, and John.C Mitchell. The end is nigh: Generic solving of
text-based captchas. USENIX Workshop on Offensive Technologies, 2014.

[4] Kevin Bock, Daven Patel, George Hughey, and Dave Levin. uncaptcha: A low-resource defeat of recaptcha’s audio
challenge. USENIX Workshop on Offensive Technologies, 2017.

[5] Google. reCAPTCHA v3’s official announcement. https:/ /webmasters.googleblog.com /2018 /10/
introducing-recaptcha-v3-new-way-to.html, 2018. [Online; accessed 15-February-2019].

[6] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.
[7] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[8] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach.
Learn., 8(3-4):229-256, May 1992.

[9] Selenium. https://www.seleniumhgq.org/. [Online; accessed 15-February-2019].
[10] PyAutoGUI. https:/ /pyautogui.readthedocs.io/en/latest/. [Online; accessed 15-February-2019].
[11] Tor. https://www.torproject.org/. [Online; accessed 15-February-2019].
[12] ExoneraTor. https://metrics.torproject.org/exonerator.html. [Online; accessed 15-February-2019].

Paper # 203 42

DynoPlan: Combining Motion Planning and Deep Neural
Network based Controllers for Safe HRL

Daniel Angelov Yordan Hristov Subramanian Ramamoorthy
School of Informatics School of Informatics School of Informatics
University of Edinburgh University of Edinburgh University of Edinburgh
d.angelov@ed.ac.uk y.hristov@ed.ac.uk s.ramamoorthy@ed.ac.uk
Abstract

Many realistic robotics tasks are best solved compositionally, through control architectures that sequentially invoke prim-
itives and achieve error correction through the use of loops and conditionals taking the system back to alternative earlier
states. Recent end-to-end approaches to task learning attempt to directly learn a single controller that solves an entire
task, but this has been difficult for complex control tasks that would have otherwise required a diversity of local primi-
tive moves, and the resulting solutions are also not easy to inspect for plan monitoring purposes. In this work, we aim to
bridge the gap between hand designed and learned controllers, by representing each as an option in a hybrid hierarchical
Reinforcement Learning framework - DynoPlan. We extend the options framework by adding a dynamics model and
the use of a nearness-to-goal heuristic, derived from demonstrations. This translates the optimization of a hierarchical
policy controller to a problem of planning with a model predictive controller. By unrolling the dynamics of each option
and assessing the expected value of each future state, we can create a simple switching controller for choosing the opti-
mal policy within a constrained time horizon similarly to hill climbing heuristic search. The individual dynamics model
allows each option to iterate and be activated independently of the specific underlying instantiation, thus allowing for a
mix of motion planning and deep neural network based primitives. We can assess the safety regions of the resulting hy-
brid controller by investigating the initiation sets of the different options, and also by reasoning about the completeness
and performance guarantees of the underpinning motion planners.

Keywords: hierarchical options learning; safe motion planning; dynamics
model
Acknowledgements

This research is supported by the Engineering and Physical Sciences Research Council (EPSRC), as part of the CDT
in Robotics and Autonomous Systems at Heriot-Watt University and The University of Edinburgh. Grant reference
EP/L016834/1., and by an Alan Turing Institute sponsored project on Safe Al for Surgical Assistance.

Paper # 203 43

1 Introduction

Open world tasks often involve sequential plans. The individual steps in the sequence are usually quite independent
from each other, hence can be solved through a number of different methods, such as motion planning approaches for
reaching, grasping, picking and placing, or through the use of end-to-end neural network based controllers for a similar
variety of tasks. In many practical applications, we wish to combine such a diversity of controllers. This requires them
to share a common domain representation. For instance the problem of assembly can be represented as motion planning
a mechanical part in proximity to an assembly and subsequently the use of a variety of wiggle policies to fit together
the parts. Alternatively, an end-to-end policy can be warm-started by using samples from the motion planner, which
informs how to bring the two pieces together and the alignment sub-policy needed, as in [1]. The resulting policy is
robust in the sense that the task of bringing together the assembly can be achieved from a large set of initial conditions
and perturbations.

A hybrid hierarchical control strategy, in this sense, allows for different capabilities to be independently learned and
composed into a task solution with multiple sequential steps. We propose a method that allows for these individual
steps to consist of commonly used motion planning techniques as well as deep neural network based policies that are
represented very differently from their sampling based motion planning counterparts. We rely on these controllers
to have a dynamic model of the active part of their state space, and a sense of how close they are to completing the
overall task. This allows the options based controller to predict the future using any of the available methods and then
determine which one would bring the world state to one closest to achieving the desired solution - in the spirit of model
based planning.

—

(a) Gear Assembly (b) Option 4 of inserting a gear on a peg
Figure 1: The gear assembly problem executed by the robot. The execution of option 4, (Section.5) is shown on the right.

Modern Deep Reinforcement Learning (DRL) approaches focus on generating small policies that solve individual prob-
lems (pick up/grasp/push) [2], or longer range end to end solutions illustrated in modern games. Typically, in order to
provide a good initialization for the optimization algorithm, expert demonstrations are provided either through human
demonstration [3] or through the use of a motion planner as an initial approximation to the solution [1]. In problems
that allow for a simulator to be used as part of the inference and learning procedure, DNN & tree based approaches have
shown great promise in solving Chess, Go, Poker. To extend these methods to more general domains, a world dynamics
model is required to approximate the environment as in [4].

DynoPlan aims at extending the options framework in the following ways:

e We learn a dynamics model s;11 ~ D(s, a;) for each option that predicts the next state of the world given the
current action; and

e We learn a goal heuristic G(s;) that gives a distribution as an estimate of how close the state is to completing the
task, based on the demonstrations.

This allows for the higher level controller to perform reasoning about sequentially applying controllers in overlapping
initiation sets for completing a task.

We aim to show that we can use off-the-shelf model-based controllers in parts of the state space, where their performance
is already optimized, and model-free methods for states without correspondingly robust or easily scriptd solutions,
combining these two categories of controllers into a hybrid solution.

2 Related Work

Our method sits between learning policies over options as in [5]; and computing solutions using learning from demon-
stration such as through inverse reinforcement learning [6]. Reinforcement Learning is intrinsically based on the forward
search of good states through experience. The update of the quality of an action at a particular state is performed by the
iterative application of the Bellman equation. Performing updates in a model-free method must overcome the problems
of sparse reward and credit assignment. Introducing a learned model that summarizes the dynamics of the problem can
alleviate some scaling issues as in [4]. However, searching for a general world model remains hard and we are not aware

Paper # 203 44

of methods that can achieve the desired performance levels in physical real world tasks. Such problems usually exhibit
a hierarchical sequential structure - e.g. the waking up routine is a sequence of actions, some of which are conditioned on
the previous state of the system.

The options framework provides a formal way to work with hierarchically structured sequences of decisions made by
a set of RL controllers. An option consists of a policy m,,(a:|s;), an initiation set Z and termination criteria 3, (s;) -
probability of terminating the option or reaching the terminal state for the option. A policy over options mq (w¢|s;) is
available to select the next option when the previous one terminates as shown by [7, 8].

Temporal abstractions have been extensively researched by [9, 7]. The hierarchical structure helps to simplify the control,
allows an observer to disambiguate the state of the agent, and encapsulates a control policy and termination of the policy
within a subset of the state space of the problem. This split in the state space allows us to verify the individual controller
within the domain of operation - [10], deliberate the cost of an option and increase the interpretability - [11]. Our method
borrows this view of temporally abstracting trajectories and extends it by enforcing a dynamics model for each of the
options allowing out agent to incorporate hindsight in its actions.

To expedite the learning process, we can provide example solution trajectories by demonstrating solutions to the prob-
lem. This can be used to learn safe policies [12]. Alternatively, it can be used to calculate the relative value of each
state by Inverse Reinforcement Learning [6]. For instance, we can expect that agents would be approximately rational in
achieving their goal, allowing [13] to infer them. Exploring the space of options may force us to consider ones that are
unsafe for the agent. [14] rephrases the active inverse reinforcement learning to optimize the agents policy in a risk-aware
method. Our work partitions the space of operation of each option, allowing that area to inherit the safety constraints
that come associated with the corresponding policy.

3 Problem Definition

We assume there exists an already learned set of options O = {01,029, ...,on} and a set of tasks K = {K,K»,...,Kp}.
Each option o, is independently defined by a policy 7, (s) = a, s € S, a € Ay, an initiation set Z,,Z,, C S,, where
the policy can be started, and a termination criteria 3,. We extend the options formulation by introducing a forward
dynamics model s;41 ~ Dy, (s¢), which is a stochastic mapping, and a goal metric g ~ Gk, (s¢),0 < g < 1, that estimates
the progress of the state s; with respect to the desired world configuration. We aim for Gx; to change monotonically
through the demonstrated trajectories. The state space of different options S = {51, Sz, .., Sy} can be different, as long
as there exists a direct or learnable mapping between S; and S; for some part of the space.

We aim to answer the question whether we can construct a hybrid hierarchical policy mq(w¢|s;) that can plan the next
option o, that needs to be executed to bring the current state s; to some desired s ;4 by using the forward dynamics
model D, in an n-step MPC look-ahead using a goal metric G that evaluates how close s;4, is to s finai-

4 Method

At a particular point s; when o,, is active, we can compute how successful is following the policy given these conditions
up to a particular time horizon. The action given by the policy is a; = 7, (s;), and following the dynamics model we can
write that s;+1 = Dy (st, 1) = Dw(se, mw(st)). As the dynamics model is conditioned on the policy, we can simplify the
notation to s;41 = Dy (s;). Chaining it for n steps in the future we obtain s;4, = D, 0 D, 0 --- 0 Dy(s;) = Dl(s¢). Thus, a
policy over policies can sequentially optimize

mo(we|s:) = argmax (E[1z,(s¢) - G o D(s¢)]) 1)

After choosing and evaluating the optimal 7 with respect the above criterion, another controller can be selected until
the goal is reached.

5 Experimental Setup

We perform two sets of experiments to showcase the capability of using the structured hierarchical policy by performing
MPC future predictions at each step on a simulated MDP problem and on a gear assembly task on the PR2 robot.

Simulated MDP In the first we use the standard 19-state random walk task as defined in [15] and seen on Figure. 2(a).
The goal of the agent is to reach past the 19" state and obtain the +1 reward. The action space of the agent is to go “left”
or “right”. There also exist 5 options defined as in Section. 3, with the following policies: (1-3) policies that go “right”
with a different termination probabilities 3 = {0.9,0.5,0.2}; (4) random action; (5) policy with action to go “’left” with
B8 = 0.5. We assume that there exists a noisy dynamics model D,, and the goal evaluation model G;pp, obtained from
demonstrations, that have probability of mispredicting the current state or its value of 0.2.

Gear Assembly In this task the PR2 robot needs to assemble a part of the Siemens Challenge!, which involves grasping
a compound gear from a table, and placing it on a peg module held in the other hand of the robot. A human operator

!The challenge can be seen https:/ /new.siemens.com/us/en/company/fairs-events/robot-learning.html

Paper # 203 45

can come in proximity to the robot, interfering with the policy plan. We have received expert demonstrations of the task
being performed, as well as access to a set of option that (1) picks the gear from the table; (2) quickly moves the left
PR2 arm in proximity to the other arm; (3) cautiously navigates the left PR2 arm to the other avoiding proximity with
humans; (4) inserts the gear on the peg module. Policy (2) relies exclusively on path planning techniques, (4) is fully
neural networks learned and (1, 3) are a mixture between a neural recognition module recognizing termination criteria
and motion planning for the policy. The options share a common state space of the robots’ joint angles. The initiation set
of all policies is R'2. The terminal criteria /3 for oy » is inversely proportional to the closeness to a human to the robot; for
024 is the proximity to a desired offset from the other robot hand.

The dynamics model for each option is independent and is represented either as part of the motion planner, or similarly
to the goal estimator - a neural networks working on the joint angle states of both arms of the robot.

In cases of options with overlapping initiation sets (i.e. options 1, 2, 3 all work within R'?), we can softly partition the
space of expected operation by fitting a Gaussian Mixture Model Fj; on the trajectories of the demonstrations, where
8,8 ~ Fp is a sample state from the trajectory. F is a set of M Gaussian Mixtures F = {N;(u;, X;)|i=1..m}, and Ji is a
subset of s, where samples from .J;, correspond to samples from trajectory of option k,1 < k < N. We can thus assess
the likelihood of a particular option working in a state s ~ 7; by evaluating £(s|m;, Far) = maxy, [p(s|pi,)], 5,5 (5),
This gives us the safety region, in which we expect the policy to work. By using the overlap between these regions, we
can move the state of the system in a way that reaches the desired demonstrated configuration.

6 Results

We aim to demonstrate the viability of using the options dynamics as a method for choosing a satisfactory policy. The
dynamics can be learned independently of the task, and can be used to solve a downstream task.

Simulated MDP The target solution shows the feasibility and compares the possible solutions by using different options.
In Figure. 2(b), we can see that we reach the optimal state in just 4 planning steps, where each planning step is a rollout
of an option. We can see the predicted state under the specified time horizon using different options. This naturally
suggests the use of the policy m; that outperforms the alternatives (7; reaches state 6, 7 - state 4, 7, - state 3, 73 - state
1, m4 - state 1, w5 - state 0). Even though the predicted state differs from the true rollout of the policy, it allows the
hierarchical controller to use the one, which would progress the state the furthest. The execution of some options (i.e.
option 5 in planning steps 1, 2, 3) reverts the state of the world to a less desirable one. By using the forward dynamics,
we can avoid sampling these undesirable options.

= Option 1
= Option 2
= Option 3
= Option 4

Option 5

17 18 19 +1

Planning steps
(a) MDP Problem (b) MDP Solution

Figure 2: (a) The 19-state MDP problem. The action space of the MDP is to move “left” or “right”. The goal of the
MDP problem is to reach past state 19 and obtain the +1 reward, which is equivalent to a termination state 20. (b) MDP
solution. At timestep 0, a rollour of the 5 options is performed with the dynamics model. The expected resulting state
is marked as blue vertical bars. The best performing option is used within the environment to obtain the next state - the
red line at state 5 and planning step 1. This process is iterated until a desired state is reached.

Gear Assembly We obtained 10 demonstrations of the task being performed. In Figure. 3(a), we show the performance
of the goal estimator network on an independent trial. We can observe that the state goal metric estimator closely tracks
the expected ground truth values along the trajectory. This provides reasonable feedback that can be used by 7 to
choose an appropriate next policy.

Similarly, in Figure. 3(b) we show the t-SNE of the trials of the robot trajectories that have no interruptions and some in
which a human enters the scene and interferes with the motion of robot, forcing a change of policy to occur. We see that
there is natural split in the states in which different options have been activated. We can notice that the overlap of the
region of activation for the different policies allows the robot to grasp, navigate to, and insert the gear into the assembly
by following these basins of the policies initiation. By following Eq.5 we can therefore create state space envelope of
action of each option. The corresponding part of the state space, conditioned on the executed option, can have the safety
constraints enforced by the underlying control method for the option.

Paper # 203 46

Goal Score Heuristic

---- target mean
—— joints_mdn_mean 40

20 4

t_predicted

~20 4

0.0+~ | | | | —404
0 20 0 60 80 100 . - . .
t_groundtruth -40 -20 0 20 40

(a) Goal Heuristic (b) t-SNE visuazlization of the controllers states.

Figure 3: (a) The learned heuristics about how close the current state is to the demonstrated goal state. (b) t-SNE plot
of the controllers state during a set of trajectories. Magenta - 0, for grasping the object, Green - 0, and o3 for navigating
to the assembly with and without a human intervention and Blue - o4 for inserting the gear onto the peg. The shaded
regions illustrate the regions of control for the different policies.

7 Conclusion

We present DynoPlan - a hybrid hierarchical controller where by extending the options framework, we can rephrase the
learning of a top level controller to an MPC planning solution. By unrolling the future states of each option, where each
can be assessed on the contribution of furthering the agents intent based on the goal heuristic, we can choose the one best
satisfying the problem requirements. This method of action selection allows to combine motion planning with neural
network control policies in a single system, whilst retaining the completeness and performance guarantees of the work
space of the associated options.

References

[1] Garrett Thomas, Melissa Chien, Aviv Tamar, Juan Aparicio Ojea, and Pieter Abbeel. Learning robotic assembly from
cad. 2018 IEEE International Conference on Robotics and Automation (ICRA), May 2018.

[2] Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. Learnings options end-to-end for continuous
action tasks. arXiv preprint arXiv:1712.00004, 2017.

[3] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning from demon-
stration. Robotics and Autonomous Systems, 57(5):469 — 483, 2009.

[4] David Ha and Jiirgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

[5] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete event
dynamic systems, 13(1-2):41-77, 2003.

[6] Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods and progress.
arXiv preprint arXiv:1806.06877, 2018.

[7] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181-211, 1999.

[8] Doina Precup. Eligibility traces for off-policy policy evaluation. CS Department Faculty Publication Series, 2000.
[9] Glenn A Iba. A heuristic approach to the discovery of macro-operators. Machine Learning, 3(4):285-317, 1989.

[10] P. Rumschinski S. Streif R. Findeisen P. Andonov, A. Savchenko. Controller verification and parametrization subject
to quantitative and qualitative requirements. IFAC-PapersOnLine, 48(8):1174 — 1179, 2015.

[11] Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an option: Learning options
with a deliberation cost. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[12] Jessie Huang, Fa Wu, Doina Precup, and Yang Cai. Learning safe policies with expert guidance. arXiv preprint
arXiv:1805.08313, 2018.

[13] Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum. Action understanding as inverse planning. Cognition,
113(3):329-349, 2009.

[14] Daniel S Brown, Yuchen Cui, and Scott Niekum. Risk-aware active inverse reinforcement learning. arXiv preprint
arXiv:1901.02161, 2019.

[15] Anna Harutyunyan, Peter Vrancx, Pierre-Luc Bacon, Doina Precup, and Ann Nowé. Learning with options that
terminate off-policy. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Paper # 33 47

Performance metrics for a
physically-situated stimulus response task

Paul B. Reverdy*
Department of Aerospace and Mechanical Engineering
University of Arizona
Tucson, AZ 85721
preverdy@mail.arizona.edu

Abstract

Motivated by reactive sensor-based motion control problems that are ubiquitous in robotics, we consider a physically-
situated stimulus response task. The task is analogous to the moving dots task commonly studied in humans, where
subjects are required to determine the sign of a noisy stimulus and respond accordingly. In our physically-situated task,
the robot responds by navigating to one of two predetermined goal locations. Our task is carefully designed to decouple
the robot’s sensory inputs from its physical dynamics. This decoupling greatly facilitates performance analysis of control
strategies designed to perform the task.

We develop two strategies for performing the task: one that attempts to anticipate the correct action and another that
does not. We consider two metrics of task performance; namely, total time required for the robot to reach a goal location
and the total distance traveled in doing so. We derive semi-analytical expressions for the expected values of the two
performance metrics. Using these expressions, we show that the anticipatory strategy reaches the goal location more
quickly but results in the robot traveling a greater average distance, which corresponds to exerting greater physical effort.
We suggest that this tradeoff between reaction time and physical effort is a fundamental tension in physically-situated
stimulus-response tasks.

Keywords: Perceptual decision making, drift-diffusion model, affordance
competition, robotics

Acknowledgements

This work has been supported by US Air Force Research Laboratory grant FA8650-15-D-1845 subcontract 669737-6.

*Web: https://www.paulreverdy.com

Paper # 33 48

X0 X0
%
‘* ‘* .* ES .>l<
X X X X X
2d
(a) (b) (c)

Figure 1: Task geometry. (a) The robot is initially located at =, € R? and needs to travel to either z} or 3 depending on
a noisy signal. (b) In strategy 1, the robot only moves after deciding and follows the trajectory shown. (c) In strategy 2,
the robot moves towards z* at speed v until deciding at time 7, then travels to the chosen goal.

1 Introduction

Robots often need to choose an appropriate behavior in response to some stimulus from the environment. Sensors are
often mounted on the robot itself, so the information gain from sensing depends on the physical state of the robot. This
coupling greatly complicates analysis of the control problem. Here we consider a task with simple sensing that decouples
the sensor from the physical state.

Stimulus response tasks have been extensively studied in the psychology and neuroscience literature. A standard model
with optimality properties is the drift-diffusion model (DDM) [1]. In the psychology literature, studies generally focus
the decision-making process and assume that the action of reporting the decision requires some constant response time
[1, 2]. In contrast, physically-situated tasks require costly movement and different decisions require different physical
actions. The so-called affordance competition hypothesis [3], [4] suggests one mechanism for negotiating decisions in
such physical contexts. In previous work [5], we began to develop a control architecture termed motivation dynamics
for implementing a form of affordance-competition-like decision making in robot systems. In subsequent work [6], we
began to investigate applying the motivation dynamics control architecture to reactive sensor-based motion planning.

2 A physically-situated stimulus response task

Key to developing metrics for physically-situated stimulus response tasks is choosing a task whose analysis is tractable.
We consider a scenario where the robot is a point z in the Euclidean plane R?. The robot is equipped with a sensor which
measures an environmental signal e(?):

e(t) = s(t) + oz(t), 1
with s(t) € R, o > 0, and z(¢) iid Gaussian noise. Thus, e(t) ~ N (s(t), o).
The robot is to perform a stimulus response task. In particular, if s(¢) = p > 0, the robot is to drive to position =z = =7,

while if s(t) = —p < 0, it should drive to « = z3. Essentially, the robot is to carry out a sign test on its observed signal
data and respond according to the perceived sign of the true stimulus s(¢).

We assume that the response locations 7, x5 are separated by a distance 2d and that the robot’s initial physical state
x(0) = ¢ is a distance ¢y away from the midpoint z* = (z} + 23)/2 in the transverse direction, as shown in Figure 1.
Note that we have chosen this symmetric initial condition merely to simplify analysis and presentation.

3 Decision-making apparatus

The optimal decision-making scheme is the DDM, i.e., the continuum limit of the SPRT. Let y € R be the accumulator
state of the DDM. Then y obeys the SDE
dy = Adt + edW, y(0) = yo = 0.)

Decisions are made when the state y crosses one of two thresholds £Z € R. Crossing +Z > 0 means go to location 1;
crossing —Z < 0 implies go to location 2. Let 7 represent the time at which the decision is made.

Let p4 () be the distribution of DT = 7 assuming that the positive boundary is associated with the correct response. It
is well known that this distribution can be derived by solving the appropriate backward Kolmogorov or Fokker-Planck
equation. The solution is usually expressed as a power series [2]:

™

872 > i 22t . km 3
P () = quag (0~ 97/ x 3 ke (-555) (%), ©

Paper # 33 49

where a = Z/A is the scaled threshold and 3 = (A/c)? is the signal-to-noise ratio.
Denote the probability of crossing the correct, positive boundary by 1 — ER, where

1 M 1_ER— exp(2af)

ER= 1+ exp(2a8) 1+ exp(2a0)

)

Analogously, let p_(7) be the distribution of DT = 7 assuming that the accumulator crosses the negative (incorrect)
threshold and produces an erroneous response. The two distributions p; and p_ can be related using ER [2]:

p-(0) = (1257) e 6)

Note that both distributions p4 and p_ have the same mean (DT) = o tanh(a/3) [2].

4 Control strategies

For simplicity in this initial work, we study two explicit strategies: integrate-until-move and integrate-while-hedging.
Whenever the robot chooses to move, it does so at constant speed v. In the first strategy, called integrate-until-move, the
robot performs the task by waiting to move until it has reached a decision. The robot decides by integrating stimulus
information according to the DDM (2) until the accumulator state y crosses a threshold +Z. Upon reaching a decision,
the robot travels directly to the corresponding goal state: if y crosses through the threshold +Z, the robot travels to goal
1located at 7, while if y crosses through the threshold —Z, the robot travels to goal 2 located at x3. See Figure 1(b).

Note that this integrate-until-move control strategy results in the robot traveling the minimal distance required to com-
plete the task. However, the time spent integrating stimulus information is wasted in the sense that the robot does not
move until it has reached its desired level of certainty in its final decision. If the signal-to-noise ratio is low, the decision
time may be significant relative to the the travel time required to carry out the physical action associated with the deci-
sion. In such a scenario, it is likely beneficial to begin moving before a certain decision can be reached. This motivates
the second strategy presented below.

The second strategy we consider, called integrate-while-hedging, seeks to capture the benefit of moving before reaching a
decision in a way that is analytically tractable. Given the geometry of the task shown in Figure 1(a), it is clear that one
can anticipate moving towards either goal location by moving toward the point z* = (z} + z3)/2 that is the midpoint
between the two goals. Therefore, moving towards Z* is a natural way to move while hedging, i.e., without committing
to either decision.

This hedging observation motivates the following integrate-while-hedging control strategy. In this strategy, the robot
performs the hedging action, i.e., moves towards z*, while integrating stimulus information. When the accumulator
variable y crosses a threshold, the robot makes a decision and travels to the corresponding goal. If the robot reaches the
midpoint z* before making a decision, it stops moving until a decision can be reached. See Figure 1(c).

Note that, compared to the integrate-until-move strategy, the integrate-while-hedging strategy is likely to result in the
robot traveling a larger distance. The advantage is that, by moving in such a way as to approach both goals while
gathering information, the integrate-while-hedging strategy may result in a shorter overall response time. Quantifying
this tradeoff between total time and travel distance is the subject of the next section.

5 Performance metrics

We analyze performance in terms of the two quantities: total distance traveled and total response time. Note that the
total response time required to perform the task is the sum of decision time and travel time.

For the purposes of analysis, assume that the initial physical state at time ¢ = 0 is as given in Figure 1(a) and that the
initial accumulator state (cf. (2)) yo = 0. The stimulus e(t) is assumed to be zero for ¢t < 0. At time ¢ = 0, the stimulus
s(t) takes value p and remains constant for the duration of the task. Without loss of generality, we assume that © > 0,
so the correct response is to travel to goal 1 located at «7. Finally, we assume that the robot travels at a constant speed v
whenever it decides to move.

We consider the task to end either a) when the accumulator state crosses the negative threshold and the robot makes
an incorrect decision, or b) when the robot reaches the correct goal state 7. Since the decision-making process is inde-
pendent of the robot’s physical state z, the probability of the task ending due to an incorrect decision is given by the
error rate expression (4) for either of the two control strategies. Note that the error rate can be controlled by selecting
the threshold Z. Therefore, we focus on distance traveled and total response time conditional on the robot selecting the
correct response.

Paper # 33 50

5.1 Travel distance

We first consider the total distance traveled. Let 7 be the random variable denoting the first passage (i.e., decision) time
for the DDM decision process (2). When using the integrate-then-move control strategy, the robot’s motion is the same
for any correct decision, and will result in traveling a total distance

Dy =/d? + (3. (6)

Conditional on making the correct decision, the quantity D, is deterministic.

When using the integrate-while-hedging strategy, the robot first travels towards Z* at speed v until it makes a decision
at time 7. The distance traveled before making a decision is given by min(v, £y), where the minimum operation results
from the robot stopping at z* if it reaches that point before making a decision. After deciding, the robot moves directly
to 7, which requires traveling a distance

V/ (£y — min(v, £9))2 + d2 = \/max({y — vT,0)2 + d2.
The total distance traveled in this scenario is
Dy = min(vr, £o) + /max(y — vT,0)2 + d2. (7)

Note that the quantity D, is a random variable because it depends on the random decision time 7.

5.2 Total time

Now, consider the total time required for the response using the two strategies. Recall that 7 is the random variable
denoting the first passage time of the decision process (2). When using the integrate-then-move strategy, the travel
time is Dy /v, which is deterministic conditional on making the correct decision. Thus, the total response time using the
integrate-then-move strategy is

Ti=7+Di/v=T1+\/d*+ 03)v, (8)

where the only source of randomness is the decision time 7 that appears additively.

When using the integrate-while-hedging strategy, the travel time after making a decision is \/max(¢y — v7,0)2 + d2 /v.
The total response time is

Ty = 7 + /max(fy — v7,0)2 + d2 /v,)
where the randomness from 7 enters in a nonlinear way.

5.3 Expected performance

The total distance and total time metrics evaluated in (7), (8), and (9) are random variables due to their dependence on
the random decision time 7. To facilitate comparison between the two strategies, we consider the expected values of the
various metrics. Consider first the integrate-then-move strategy. Let ED; and ET) be the expected values of Dy and 7.

We have
EDy = Dy = /d? + (2 (10)

since D; is deterministic. As noted above in (5), the expected value of 7 is equal to a tanh(a8) and this expected value
is also equal to the conditional expected value of 7 given that the positive (correct) threshold is the one that is crossed.
Thus, the expected value of T is given by

ETy = atanh(afB) +1/d? + 3 /v. (11)

Now, consider the integrate-while-hedging strategy. Let £ D, and ET5 be the expected values of Dy and T5. The nonlinear
way in which 7 enters in the expressions for D, and T, means that computing their expected values requires evaluating
integrals that do not appear to have analytical solutions. Thus, we resort to numerical approximations. In particular, we
compute the quantities

1 (o)
E Dy = E [Ds]|correct response] = / Dypy (7)dr, and (12)
1—FER Jy
1 oo
ET, = E [Ty|correct response] = ——— / Topy (1)dT, (13)
1—FER J,

where ER is the error rate (4) required to condition on the robot selecting the correct response and p4 (7) is given by (3).

Paper # 33 51

6 T T T T T T 3.0
— Mean Distance, integrate-then-move
5/| e—e Mean Time, integrate-then-move A 2.5
- - Mean Distance, integrate-while-hedging e
4! |e - Mean Time, integrate-while-hedging -] 2.0}
2] (%2}
@ @
@ 3t B 15,
@) @) -
B [2
2t T 1.0 — Mean Distance, integrate-then-move
e—e Mean Time, integrate-then-move
1 0.5 - - Mean Distance, integrate-while-hedgingH
e - Mean Time, integrate-while-hedging
0 0'0 L L L L L
05 205 , : : : : :
© 045 © 04}
0.3} 0.3} 8
8 o02f 8 0.2}]
= 0.1f 5 0.1}
M 0.0 L L n L L I 0.0 1 1 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
@ o
(a) (b)

Figure 2: Error rate (4); expected total distance (10), (12); and expected total time (11), (13) for the two strategies as
a function of normalized threshold «. Panel (a) shows data from a high signal-to-noise ratio environment with 5 =
(A/c)? = 1; (b) a low signal-to-noise ratio environment with 8 = 0.1. Intuitively, the integrate-while-hedging strategy
results in smaller expected total time (i.e., a faster response) at the cost of a larger expected total distance traveled. The
other problem parameters were set to d = {; = 1 and v = 1, respectively.

Figure 2 shows the results of numerically evaluating the error rate (4) and cost metrics (10)-(13) in two different environ-
ments. In both panels, the physical problem parameters were set to d = £y = 1 and v = 1, respectively, and the various
metrics are plotted as functions of the normalized threshold aw = Z/A. Panel (a) shows results for an environment with
high signal-to-noise ratio, 3 = 1, while panel (b) shows results for an environment with low signal-to-noise ratio, 5 = 0.1.
Intuitively, the integrate-while-hedging strategy results in smaller expected total time (i.e., a faster response) at the cost
of a larger expected total distance traveled.

In future work, we intend to study a more complete set of control strategies for this task in order to find a set of optimal
strategies. It is likely that the set of optimal strategies trade off between the two metrics we consider, much as statistical
hypothesis tests trade off between the probability of type I and type Il errors. A single optimal strategy can then be found
by selecting an optimal balance between these two metrics, e.g. in terms of relative costs of movement versus idle time.
We postulate that the motivation dynamics control framework studied in [5, 6] will outperform both the integrate-then-
move and the integrate-while-hedging strategies.

References

[1] R. Bogacz, E. Brown, J. Moehlis, P. Holmes, and J. D. Cohen, “The physics of optimal decision making: a formal
analysis of models of performance in two-alternative forced-choice tasks.” Psychological review, vol. 113, no. 4, p. 700,
2006.

[2] K. F. Wong-Lin, P. Holmes, and T. Broderick, “Closed-Form Approximations of First-Passage Distributions for a
Stochastic Decision-Making Model,” Applied Mathematics Research eXpress, vol. 2009, no. 2, pp. 123-141, 02 2010.
[Online]. Available: https://dx.doi.org/10.1093/amrx/abp008

[3] P. Cisek and J. F. Kalaska, “Neural mechanisms for interacting with a world full of action choices,” Annual review of
neuroscience, vol. 33, pp. 269298, 2010.

[4] N. E Lepora and G. Pezzulo, “Embodied choice: how action influences perceptual decision making,” PLoS computa-
tional biology, vol. 11, no. 4, p. €1004110, 2015.

[5] P. B. Reverdy and D. E. Koditschek, “A dynamical system for prioritizing and coordinating motivations,” SIAM
Journal on Applied Dynamical Systems, vol. 17, no. 2, pp. 1683-1715, 2018.

[6] P.B. Reverdy, V. Vasilopoulos, and D. E. Koditschek, “Motivation dynamics for autonomous composition of naviga-
tion tasks,” In preparation, 2019.

Paper # 135 52

Belief space model predictive control for approximately optimal
system identification

Boris Belousov Hany Abdulsamad
Department of Computer Science Department of Computer Science
Technische Universitdt Darmstadt, Germany Technische Universitdt Darmstadt, Germany
belousov@ias.tu-darmstadt.de abdulsamad@ias.tu-darmstadt.de
Matthias Schultheis Jan Peters
Department of Computer Science Department of Computer Science
Technische Universitdt Darmstadt, Germany Technische Universitidt Darmstadt, Germany
matthias.schultheis@gmail.com Max Planck Institute for Intelligent Systems

peters@ias.tu-darmstadt.de

Abstract

The fundamental problem of reinforcement learning is to control a dynamical system whose properties are not fully
known in advance. Many articles nowadays are addressing the issue of optimal exploration in this setting by investigat-
ing the ideas such as curiosity, intrinsic motivation, empowerment, and others. Interestingly, closely related questions
of optimal input design with the goal of producing the most informative system excitation have been studied in adja-
cent fields grounded in statistical decision theory. In most general terms, the problem faced by a curious reinforcement
learning agent can be stated as a sequential Bayesian optimal experimental design problem. It is well known that finding
an optimal feedback policy for this type of setting is extremely hard and analytically intractable even for linear systems
due to the non-linearity of the Bayesian filtering step. Therefore, approximations are needed. We consider one type
of approximation based on replacing the feedback policy by repeated trajectory optimization in the belief space. By
reasoning about the future uncertainty over the internal world model, the agent can decide what actions to take at ev-
ery moment given its current belief and expected outcomes of future actions. Such approach became computationally
feasible relatively recently, thanks to advances in automatic differentiation. Being straightforward to implement, it can
serve as a strong baseline for exploration algorithms in continuous robotic control tasks. Preliminary evaluations on a
physical pendulum with unknown system parameters indicate that the proposed approach can infer the correct param-
eter values quickly and reliably, outperforming random excitation and naive sinusoidal excitation signals, and matching
the performance of the best manually designed system identification controller based on the knowledge of the system
dynamics.

Keywords: Bayesian experimental design, active exploration, curiosity, belief
space planning, trajectory optimization
Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 640554.

Paper # 135 53

1 Introduction and related work

Adaptation and learning arise as a by-product of optimization in the belief space within the framework of Bayesian
decision theory [Stratonovich, 1968a, Stratonovich, 1968b]. In modern terminology, learning is planning in a partially
observable Markov decision process [Asmuth and Littman, 2011]. We pursue this line of reasoning and frame the prob-
lem of pure exploration (i.e., without any extrinsic reward) as a problem of online belief space trajectory optimization.

Optimal system identification and experimental design [Mehra, 1974, Bombois et al., 2011, Ryan et al., 2016] pursue a
similar objective. They seek an optimal exploration strategy in stochastic sequential decision making problems. Contrary
to the generic solution based on approximate dynamic programming [Feldbaum, 1960, Huan and Marzouk, 2016], we do
not aim to find an optimal parametric policy but instead let a belief space planner choose the most explorative actions.

Approaches to (approximately) optimal system identification based on model predictive control (MPC) have been stud-
ied before [Larsson et al., 2013]. Algorithmically, our method is most closely related to [Kahn et al., 2015], who also used
direct transcription in the belief space for trajectory optimization. However, what is different in our case is the objective
function and its particular decomposition into a sum of terms that facilitates computation. More concretely, since robot
dynamics is linear in the physics parameters [Atkeson, 1989], we can perform Bayesian inference in closed form.

The paper is structured as follows: Section 2 introduces the approach, Section 3 provides evaluations, and Section 4
highlights future directions.

2 Belief space optimization for system identification
Consider a dynamical system of the following form

' = Az + B(x,u)0 (1)

where z € R" is the current state, u € R™ is the current action, ' € R"” is the next state, matrix A € R™"*" is constant
and matrix B(z,u) € R™*™ is dependent on the state and action. Many classical continuous control environments can
be written in this way.

2.1 Example: pendulum dynamics

As a concrete instantiation of (1), consider the dynamics of a pendulum

i=o((4)) o= (smen —i w o @

with mass m, length [, and gravity g. The state of the pendulum x = (¢, ¢) is comprised of the angle ¢ and the angular
velocity ¢. Crucially, the kinematic parameters ¢(z,«) and the dynamic parameters 6 separate. The system can be
discretized using the implicit Euler integration scheme

= ((1)];) T+ (f) oz, u)T. 3)

This representation directly corresponds to the generic form (1), with matrices A and B(z, u) straightforward to identify.

2.2 Propagation of uncertainty

If parameter values 6 are uncertain, they should be characterized by a probability distribution p(6). The full state of the
system should then include it and we have to describe its dynamics. Assuming the initial belief p(6) = N (8|, 2) and the
system dynamics p(a’|x,u; 0) = N(a'| Az + B(z,u)0, Q) are Gaussian, the posterior after observing a transition (z, u, z')
is also Gaussian with parameters given by the standard Kalman filter update equations [Bishop, 2006]

K(z,u,X) = ¥B(x, u)T (Q + B(x,u)ZB(z,u)T)_l , 4)
L(z,u,X) =1 — K(z,u,X)B(z,u), 5)
;U'/:,U'"’_K(xvuvz) (x'—Ax—B(x,u)u), (6)
¥ = L(z,u,)% (7)

Kalman gain K (z, u, ¥) and matrix L(z, u,) are introduced for convenience to simplify Equations (6) and (7) that de-
scribe the dynamics of the sufficient statistics of the belief state.

Paper # 135 54

To plan using the model (6)-(7), future observations =’ need to be integrated out. This results in the maximum likelihood
transition dynamics «’ = Az + By and the constant mean update 1 = . Intuitively, such constancy is a manifestation
of the fact that the mean of the parameter estimate ; cannot be improved before observing any data. Nevertheless, its
variance ¥ can be controlled.

Equation (7) gives the update rule for the covariance matrix and serves as the key to our formulation of the objective
function. Namely, we exploit the fact that the covariance matrix at the next time step is given by a product of matrices.
For example, after two time steps, ¥ = L(2/, v/, ¥')L(z, u, ¥)%.

2.3 Entropy minimization objective

What should the objective function be? A conceptually straightforward approach is to minimize the entropy of the
posterior distribution over the parameters at the end of the planning horizon. This objective essentially asks for the most
informative actions and can be identified with the information gain criterion [Lindley et al., 1956]. It also fits nicely with
the multiplicative form of the covariance matrix, turning the product into a sum. For example, for a two-stage problem,

1
J = 3 log det (2meX") o log det " = log det L(z’, v/, ¥) + log det L(z, u,) + log det X. 8)
Similarly, for an N-step trajectory,
N-1
J o Z log det L(xg, ug, Xg)- 9)
k=0

Thus, the summand L(zy, uk, X)) can be viewed as a running cost. Adding a regularization term u” Ru for smoothness,
we arrive at the following optimization problem

N-1
minimize Y logdet L(wy, ux, Sp) + uf Ruy, (10)

Uo:N—1 P
subjectto zpy1 = Axg + B(zg, up)p, k=0,1,...,N—1, (11)
Ek+1 :L(mk,uk,Zk)Ek, kJ:O,L...,N—l, (12)

where L(z,u,X) = I — £B(z,u)” (Q + B(z,u)LB(z,u)") ~! B(x, u). This problem can be directly plugged into a trajec-
tory optimizer, e.g., CasADi [Andersson et al., 2012]; state and control constraints can be added if needed.

3 Evaluation

Having solved the problem above, we obtain a sequence of actions ug.x_; that should reveal the most about the system.
Note that this sequence of actions depends on our prior belief p(|u, X) because p enters the state dynamics and ¥ figures
in the covariance cost. Thus, the optimal sequence of actions is a function of the prior together with the initial state x,
ie., up.n—1 = P(x0, i, X). We can think of ¢ as a call to the trajectory optimizer.

The main question is whether this sequence of actions is better than any other one given that the true value p* is different
from . One way to evaluate this hypothesis is to execute ug.y—1 on the real system with parameters ;1* and then find the
posterior p(f|xo.n, uo.n—1) given the observed trajectory. An even better solution is to replan after every time step. Such
closed loop control should intuitively speed up convergence to the true parameter value. We call this approach belief
space model predictive control for approximately optimal system identification.

We compare the belief space MPC approach (Figure 1) against random and sinusoidal excitations (Figure 2) on the pen-
dulum environment from OpenAl Gym [Brockman et al., 2016]. Optimal exploration performs well and beats random
actions and a naively chosen excitation signal by a large margin (Figure 3). However, a wisely chosen excitation signal
can be as good as the optimal one (Figure 4). The optimization approach was found quite insensitive to the choice of the
action cost R in a reasonable range, although extremely small values were found to cause instability.

4 Conclusion

Although the preliminary results are encouraging, further investigation is required. First, evaluation on more complex
systems must be performed to demonstrate the scalability of the approach. Second, comparison to other exploration
strategies is needed to better understand the trade-offs between optimality and heuristics. Third, the assumption on
the system dynamics (1) can be relaxed to allow for more flexible models; for example, the feature mapping ¢ can be
learned by exploiting its invariance to dynamics parameters, or a non-parametric model, such as a Gaussian process, can
be employed to represent the system dynamics.

Paper # 135 55

Optimal controls (N=50, n=5, Q=(0.05, 0.1), R=0.1) Optimal controls (N=50, n=5, Q=(0.05, 0.1), R=0.01) Optimal controls (N=50, n=5, Q=(0.05, 0.1), R=0.001)
2 7.5 2 2
I 5.0 Y 50 o e -2 5 I s
0 5 10 0 5 10 ’ 0 5 10 7 S
25 25 1 ‘
5.0 5.0 10
v 25 ’\/\/\/\/\/\E 0.0 T 25 ’\/\/\/\/\/ B 00 %0 ,\/\/\/\/ T o0 !
0 5 10 -25 & 4 5 10 25 0 5 10
o . o -
- 5 50 ‘.t o o 2 0 .'- -'. ° °
S RAVAVAVAVAVARS I S RVAVAVAVAVARRE, M 2§ A/ s
0 5 10 2 4 0 5 10 2 4 6 0 5 10 -5 0 5 10
Time, sec q Time, sec q Time, sec q
(a) high action cost, R = 0.1 (b) medium action cost, R = 0.01 (c) low action cost, R = 0.001

Figure 1: Effects of the action cost R on the closed-loop system performance. Trajectories are executed on Pendulum-v0
using belief-space MPC with horizon N and replanning every n steps. System noise @ is fixed and the action cost R is
varying. Three scenarios are shown. In (a), the action cost is high, therefore the controller quickly pumps the energy into
the system and fades away to observe the oscillations; this is possible because Pendulum-vQ0 is frictionless (although the
controller has a non-zero prior on the friction coefficient). In (b), the cost of actions is lower, therefore the controller can
enjoy taking larger actions a bit longer. In (c), the controller gets unstable, probably because the reward function is quite
flat without action regularization and the action limits are too small to escape the flat region.

Random controls Sinusoidal controls Sinusoidal controls
2 075 . 2 2

-2 0.50 o *® -2 2 5 %)

0 1 2 0 5 10 05 0 5 10 o2 o

0.25 % - & o

3.25 35 10 8 .
T o \/\ g 0.00 30 /\\—\//\,-/ g 00 o g og e
. 025 . ° 0 H K
0. &

0 1 2 R 0 5 10 0 5 10 :.i K

qd
boo
o=
S
a
L]
L]
L]
¢)
L]
L]
(2
L]
qd
boo
=t
qd
o
&
X
o ‘."o

o
N
w
o
w
)
o
o
=)
w
o
w
o
o
o
o
o

Time, sec q Time, sec q Time, sec q
(a) random actions do not explore (b) slow sinusoid — sufficient excitation (c) fast sinusoid — best coverage

Figure 2: Compared to the optimal controls, random actions (a) perform very badly because they fail to explore the state
space. On the other hand, a naive sinusoidal signal (b) works quite well on the pendulum, making it swing in all kinds
of ways. However, the quality of system identification crucially depends on finding the right frequency of the sinusoid.
A more oscillatory signal (c) turns out to be better for system identification (see convergence plots below).

Convergence plots (N=50, n=5, Q=(0.05, 0.1), R=0.1) Convergence plots (N=50, n=5, Q=(0.05, 0.1), R=0.01) Convergence plots (N=50, n=5, Q=(0.05, 0.1), R=0.001)
34 K 34
patl 3 ol
£ £ £
£? £? E?
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
% 0 —— rand % 0 . 0
7 =] T
) —_— t) o -5
-5 op! -5
-10
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Iteration number Iteration number Iteration number
(a) high action cost, R = 0.1 (b) medium action cost, R = 0.01 (c) low action cost, R = 0.001

Figure 3: Convergence plots show how quickly the posterior concentrates around the true parameter value; convergence
in terms of distance from the mean and in terms of entropy of the posterior are shown. The posterior is updated after
every n steps in the environment with the newly obtained data; one iteration on the z-axis corresponds to one posterior
update. Three excitation signals are compared: random actions (blue), slow sinusoid (green), and optimal controls
(red). Three scenarios are displayed from left to right that correspond to different action costs; only the red curve is
different among the subplots, the other two curves are the same and kept for reference. All subplots demonstrate that
the optimal excitation controls are significantly better than random or sinusoidal ones. Subplots (a) and (b) show similar
red curves, which means that optimization is insensitive to the choice of the action cost in a reasonable range. Subplot (c)
demonstrates that extremely low action costs may lead to oscillations; also observe that the final entropy in (c) is lower,
meaning that the controller is more certain in the end.

Paper # 135 56

Convergence plots (N=50, n=5, Q=(0.05, 0.1), R=0.1) Convergence plots (N=50, n=5, Q=(0.05, 0.1), R=0.01) Convergence plots (N=50, n=5, Q=(0.05, 0.1), R=0.001)

|m-m_true|
N &

|m-m_true|
IS

|m-m_true|
N e

— opt

ent(S)
& o
{
535

2
ent(S)
& o
K
2
ent(S)
& o
K
535

2

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Iteration number Iteration number Iteration number
(a) high action cost, R = 0.1 (b) medium action cost, R = 0.01 (c) low action cost, R = 0.001

Figure 4: A properly chosen excitation signal can yield very good results. These plots show that using a faster sinusoid
(green), one can obtain as good parameter estimates as with an optimal signal. In (a), the fast sinusoid discovers the
correct value faster and in the end it is even more certain than the optimal controller. In (b), both the optimal controls
and the sinusoid perform on par. In (c), the posterior mean found with the optimal actions is further away from the true
value and at the same time the controller is more confident about it; this shows the importance of the choice of costs.

References

[Andersson et al., 2012] Andersson, J., Akesson, J., and Diehl, M. (2012). Casadi: A symbolic package for automatic
differentiation and optimal control. In Recent advances in algorithmic differentiation, pages 297-307. Springer.

[Asmuth and Littman, 2011] Asmuth, J. and Littman, M. (2011). Learning is planning: near bayes-optimal reinforce-
ment learning via monte-carlo tree search. In Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence, pages 19-26. AUAI Press.

[Atkeson, 1989] Atkeson, C. G. (1989). Learning arm kinematics and dynamics. Annual review of neuroscience, 12(1):157—
183.

[Bishop, 2006] Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

[Bombois et al., 2011] Bombois, X., Gevers, M., Hildebrand, R., and Solari, G. (2011). Optimal experiment design for
open and closed-loop system identification. Communications in Information and Systems, 11(3):197-224.

[Brockman et al., 2016] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman,]J., Tang, J., and Zaremba, W.
(2016). Openai gym. arXiv preprint arXiv:1606.01540.

[Feldbaum, 1960] Feldbaum, A. (1960). Dual control theory. i. Avtomatika i Telemekhanika, 21(9):1240-1249.

[Huan and Marzouk, 2016] Huan, X. and Marzouk, Y. M. (2016). Sequential bayesian optimal experimental design via
approximate dynamic programming. arXiv preprint arXiv:1604.08320.

[Kahn et al., 2015] Kahn, G., Sujan, P, Patil, S., Bopardikar, S., Ryde, J., Goldberg, K., and Abbeel, P. (2015). Active
exploration using trajectory optimization for robotic grasping in the presence of occlusions. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pages 4783-4790. IEEE.

[Larsson et al., 2013] Larsson, C. A., Annergren, M., Hjalmarsson, H., Rojas, C. R., Bombois, X., Mesbah, A., and Modén,
P. E. (2013). Model predictive control with integrated experiment design for output error systems. In 2013 European
Control Conference (ECC), pages 3790-3795. IEEE.

[Lindley et al., 1956] Lindley, D. V. et al. (1956). On a measure of the information provided by an experiment. The Annals
of Mathematical Statistics, 27(4):986-1005.

[Mehra, 1974] Mehra, R. (1974). Optimal input signals for parameter estimation in dynamic systems—survey and new
results. IEEE Transactions on Automatic Control, 19(6):753-768.

[Ryan et al., 2016] Ryan, E. G., Drovandi, C. C., McGree, J. M., and Pettitt, A. N. (2016). A review of modern computa-
tional algorithms for bayesian optimal design. International Statistical Review, 84(1):128-154.

[Stratonovich, 1968a] Stratonovich, R. (1968a). Conditional Markov processes and their application to the theory of optimal
control. Elsevier.

[Stratonovich, 1968b] Stratonovich, R. (1968b). Is there a theory of synthesis of optimal adaptive, self learning and self
adjusting systems? Avtomat. i Telemekh, 29(1):96-107.

Paper # 43 57

Momentum and mood in policy-gradient reinforcement learning

Daniel Bennett Guy Davidson
Princeton Neuroscience Institute College of Computational Sciences
Princeton University Minerva Schools at KGI
Princeton, NJ 08544 San Francisco, CA 94103
daniel.bennett@princeton.edu guy@minerva.kgi.edu
Yael Niv

Princeton Neuroscience Institute and Department of Psychology
Princeton University
Princeton, NJ 08544
yael@princeton.edu

Abstract

Policy-gradient reinforcement learning (RL) algorithms have recently been successfully applied in a number of domains.
In spite of this success, however, relatively little work has explored the implications of policy-gradient RL as a model of
human learning and decision making. In this project, we derive two new policy-gradient algorithms that have implica-
tions as models of human behaviour: TD(\) Actor-Critic with Momentum, and TD()) Actor-Critic with Mood. For the
first algorithm, we review the concept of momentum in stochastic optimization theory, and show that it can be readily
implemented in a policy-gradient RL setting. This is useful because momentum can accelerate policy gradient RL by
filtering out high-frequency noise in parameter updates, and may also confer a degree of robustness against convergence
to local maxima in reward. For the second algorithm, we show that a policy-gradient RL agent can implement an ap-
proximation to momentum in part by maintaining a representation of its own mood. As a proof of concept, we show
that both of these new algorithms outperform a simpler algorithm that has neither momentum nor mood in a standard
RL testbed, the 10-armed bandit problem. We discuss the implications of the mood algorithm as a model of the feedback
between mood and learning in human decision making.

Keywords: actor-critic, policy gradient, momentum, mood

Paper # 43 58

1 Introduction

RL algorithms can be divided into three broad classes: value-based, policy-based, and actor-critic. Algorithms in these
classes are distinguished by whether they learn just a value function, and then use this value function to generate a policy
(value-based algorithms), learn only a policy function and no value function (policy-based algorithms), or learn both a
value function and an independent policy function (actor-critic algorithms). In psychology and neuroscience, recent
studies of learning and decision making have tended to focus on the processes by which humans and other animals
learn a value function. By contrast, comparatively little work has explored the implications for human learning and
decision making of the different methods of policy improvement employed by policy-based and actor-critic algorithms,
despite some evidence that human learning is consistent with policy updating rather than value updating [1].

Policy-gradient RL is a well-studied family of policy improvement methods that uses feedback from the environment
to estimate the gradient of reinforcement with respect to the parameters of a differentiable policy function [2, 3]. This
gradient is then used to adjust the parameters of the policy in the direction of increasing reinforcement. In recent years,
RL algorithms that incorporate a policy-gradient component have been successfully applied to real-time robot control in
a continuous action space [4], to Atari computer games [5], and to the board game Go [6].

Because it uses the gradient of reinforcement to update a policy, policy-gradient RL can be thought of as a form of
stochastic gradient descent (SGD). As a result, theoretical advances in stochastic optimization theory concerning SGD
methods can be applied directly to policy-gradient RL algorithms. For instance, it is known that SGD convergence
can be greatly accelerated by a momentum term [7, 8, 9]. Here, we show that adding a momentum term to policy-
gradient RL improves performance in a standard testbed, the 10-armed bandit problem, and we explore the implications
of momentum as a model of phenomena in human learning and decision making. Specifically, we show that a mood
variable—defined as an exponential moving average of reward prediction errors [10]—can be used to help approximate
a momentum update without ever computing a momentum term explicitly.

2 Theoretical framework and background

2.1 Gradient descent and momentum

Gradient descent tries to find the parameters # that minimize an objective function J() by incrementally updating 6 in
the direction of VJ(8), the gradient of J with respect to 6. The step size is controlled by a learning rate :

Uy = UVQJ(Q)
9t+1 =0 —uy

)

In many cases it may be computationally infeasible to calculate Vy.J(6). Stochastic gradient descent therefore uses an

estimated gradient Vy.J(0), typically calculated as the mean of a mini-batch of training samples. In practice, a momentum
term [7, 8] is often also used to help overcome two distinct but related limitations of SGD. These limitations are, first,
that SGD considers only the the slope of the objective function (first derivative) and not its curvature (second derivative).
This can cause difficulty in the presence of ‘ravines’ in the objective function where the curvature of J differs with respect
to different dimensions of 6 [11]. Second, SGD’s use of an estimated rather than an exact gradient increases the variance

of parameter updates: although V,J(6) is equal to V4J(6) in expectation, at any single time-step unsystematic error in
gradient estimation can lead to suboptimal parameter updates.

Momentum addresses both of these limitations by updating parameters according to both the estimated gradient of J at

the current 6 and a proportion m of the parameter update at the previous timestep: u; = nVyJ(6) + mu,—;. In this way,
momentum effectively implements a low-pass filter on parameter updates. This filtering resolves the limitations of SGD
described above, because both oscillations resulting from differential curvature of J and unsystematic error in gradient
estimation slow SGD by introducing high-frequency noise to parameter updates. For this reason, momentum has long
been used in machine learning, especially in training neural networks by backpropagation [9].

2.2 DPolicy-gradient reinforcement learning

A policy-gradient RL algorithm performs gradient ascent on an objective function that evaluates its policy under current
parameters (e.g., the expected future reward under the current policy). This is achieved by updating the parameters 6 of
a differentiable policy 7y [2, 3] in the direction of the gradient of the objective function with respect to 6.

In this project we sought to explore the consequences of adding a momentum term to a policy-gradient RL algorithm.
Our starting point was TD(\) Actor-Critic, which implements policy-gradient RL via a form of advantage updating [4, 5]:

Paper # 43 59

TD()) Actor-Critic. The critic learns a state-value & =7+ Vi_1(s") — Vi_1(s) Calculate reward prediction error
function V using a learning rate «, and provides a _

scalar reward prediction error § to the actor at each 1(s) = Vica(s) + ady
timestep. In turn, the actor uses this reward predic- €+ = Aet—1 + Vglog, (s, a) Increment eligibility trace
tion error to improve its policy by updating ¢ in the
direction of the product of § and the accumulating eli-
gibﬂity trace e;. 011 = 0 + uy Update parameters

Update state value

U = 776t5t Calculate parameter update

TD()) Actor-Critic makes use of a variable called the score function: Vg log (s, a). This quantity is a vector defined as
the gradient of the log policy with respect to 0. It quantifies how the policy would change with changes in the different
entries in 6. Then, given a positive or a negative reward prediction error, this vector can be used to adjust the policy
appropriately [2, 5]. The score function is aggregated over time into the eligibility vector e, subject to an eligibility decay
parameter A\. When X is greater than 0, this permits the algorithm to assign credit for rewards received at the current
timestep to actions taken at previous timesteps [4].

3 Momentum in policy-gradient reinforcement learning

3.1 TD()) Actor-Critic with Momentum

Since the algorithm described in Section 2.2 implements a form of SGD, it is amenable to improvement using the mo-
mentum principle described in Section 2.1. Specifically, we can add momentum to policy-gradient RL by augmenting the
update u; from TD()) Actor-Critic with a proportion m of the update from the previous timestep u;_1: us = nesde+mus_1.
This produces a new algorithm, TD(X) Actor-Critic with Momentum.

In addition to helping stabilise learning by filtering out high-frequency noise in parameter updates, another potential
advantage of momentum in policy gradient RL is that it may help the algorithm to find global rather than local maxima
of reinforcement, or at least to find better local maxima. A limitation of SGD in general is that it is guaranteed only to
converge to local optima; this can be especially problematic in RL environments, which are often characterised by non-
convex objective functions. In such settings, adding momentum to a policy-gradient RL algorithm might serve to propel
the algorithm past poor local maxima of reward, and thereby help to produce better overall policies at convergence.

3.2 TD()) Actor-Critic with Mood

In animal learning and decision making, one potential impediment to the use of a momentum term is that momentum
requires the algorithm to have access to u;_1, the vector of parameter updates at the previous timestep. We aim to show
here that a reasonable approximation to u;_; can be constructed using a moving average of reward prediction errors. We
are interested in this moving average because of its psychological interpretation as a mood variable [10]. Specifically, we
follow [10] in defining a mood variable h, that is recursively updated via a simple error-correcting rule (delta rule) with
learning rate 7, and the current prediction error ¢, as a target:

t—1

he = hi—1 +nn (e — hi—1) = 1 Z [(1 = 1n)76¢—7] 2
7=0

Next, we can unroll the definition of the momentum term and rewrite it as a sum of the products of eligibility traces and
prediction errors at previous timesteps:

t—1
muy_1 = mnes_10;—1 + m>ne,_o0i_o + m>nes_s6_3 4+ ... +mtne s =1n Z [mTer—r0¢—r) 3)

T=1

We now seek to show that this sum of products can be approximated by a moving average of reward prediction errors
(that is, by the mood variable k). To this end, we first approximate the past eligibility traces e;_, from Equation 3 with
the most recent eligibility trace e;_; and move this term outside the sum. Then, by setting the learning rate 7, from
Equation 2 to 1 — m, the mood variable h becomes proportional to the approximated sum in Equation 3. Consequently,
mood from trial ¢ — 1 can be used to approximate momentum at trial ¢:

t—1
~ T ~
Mmug_1 ~ Nep1 E [m"6:] = mes 1

T=1

m

1-— mht_1 @)

Paper # 43 60

Finally, since the approximate momentum update in Equation 4 depends only on quantities available at trial ¢ — 1, it can
be applied in advance at the end of trial ¢ — 1, rather than waiting until the end of trial ¢ (cf. Nesterov momentum [8]).
This produces the TD(\) Actor-Critic with Mood algorithm, which uses a mood variable to help approximate momentum:

Oy =1+ ‘/;571(8,) —Viza(s) Calculate reward prediction error

TD()) Actor-Critic with Mood. The general structure V¢(s) = Vi-1(s) +ad; Update state value
of TD(\) Actor-Critic is retained, except that a mood hy =hy_1 4+ (1 —=m)(6; — hy_1) Update mood
variable is calculated on each trial and used to bias

. . er = \ey— Vo lo S, a Increment eligibility trace
parameter updates according to the recent history of ¢ i1+ Vology, (3,0) o
reward prediction errors. ug = nes {@ + ; ht] Calculate parameter update
—m
Or 41 = 0 + uy Update parameters

4 Simulation results

Above, we described one extant policy-gradient RL algorithm (TD(\) Actor-Critic), and two novel algorithms (TD())
Actor-Critic with Momentum, and TD()) Actor-Critic with Mood). Here, we assess the simulated performance of these
three algorithms in a standard reinforcment learning testbed: the 10-armed bandit problem. Our goal is to determine
whether either momentum or mood-approximated momentum help to accelerate learning in this setting.

Gaussian Bernoulli

In the 10-armed bandit problem, the agent can choose reward distribution reward distribution
from among 10 choice options (‘arms’), each of which 6 —
. f : . Actor-critic
is characterised by a different mean payout drawn — withmomentum | 0.40
from a unit normal. An agent’s task in this environ- 141 —— withmood
ment is to choose arms that maximise the amount of 035
reward that it receives. 12

= 0.30
We implemented the three algorithms with a softmax EJ) 1.0
policy parameterised by the vector ¢, which has length 3 025
equal to the number of choice options, where the i-th 08 020
entry of 6 denotes strength of preference for the i-th L ‘
choice option. These preferences can be thought of as o0 015
analogous to)-values, in that they denote some mea-
sure of the subjective utility of choosing different op- o4 0.10
tions; unlike)-values, however, preferences for differ- 02
ent options are not interpretable in terms of expected ' 0.0
future return. Each choice option is represented by the 0.0 0.00
feature vector ¢(a), which is a one-hot vector (all 0 ex- 0 200 400 o 200 400
cept for the entry corresponding to a, which is 1). The Time step Time step

exact form of the policy is as below, where A is the set
of bandit arms:
Figure 1: Learning curves (quantified by expected regret av-

ed(a)70 eraged across 2000 simulations of 500 timesteps each) on two
mo(a) = I @ ©) variants of the 10-armed bandit testbed for three algorithms:
dea TD(M) Actor-Critic (green), TD()A) Actor-Critic with Momen-

tum (orange), and TD(A) Actor-Critic with Mood (purple).
Left: testbed with Gaussian payout distribution (payout
standard deviation = 1). Right: testbed with Bernoulli pay-

_ out distribution. In both settings, an algorithm with momen-
Vylogmy(a) = ¢(a) — Ex, [¢(-)] (6) tum performs best, followed by an algorithm with mood,
followed by an algorithm with neither.

With this policy parameterisation, the score function
can be expressed in terms of ¢:

Figure 1 displays the performance of the three algorithms for both Gaussian and Bernoulli payout distributions. Param-
eters for simulation are: A = 0.1,y = 1, « = 0.01, » = 0.1, m = 0.5. From these results, we can make three primary
observations. First, it is clear that a moderate degree of momentum (m = 0.5, orange line) accelerates learning perfor-
mance relative to an equivalent algorithm without momentum (green). Second, TD(A) Actor-Critic with Mood (purple
line), which uses a mood term to approximate momentum, captures much of the benefit of momentum without requiring
an explicit representation of previous parameter updates. Third, the relative benefits of momentum are stronger for a
Bernoulli payout distribution than a Gaussian. This is because Bernoulli payouts have greater variance than Gaussian
payouts, such that individual pieces of feedback are less informative regarding the true gradient of reinforcement. As in
SGD, in this context a momentum term allows the algorithm to reduce the variance of updates to the parameters of its
policy, and therefore to learn more quickly.

Paper # 43 61

5 Conclusions

It is common practice in optimization by SGD to use a momentum term to accelerate convergence [7, 8, 9]. Here, we
provide a proof-of-concept result showing that momentum can also be used to accelerate policy-gradient RL. The under-
lying reason for this is that momentum helps overcome two limitations of steepest-ascent policy-gradient RL methods:
first, momentum can help prevent parameter oscillation in settings where performance is more sensitive to small changes
in some parameters than in others (e.g., driving in an urban environment, performance is much more sensitive to small
differences in the angle of the wheels than small differences in speed). Second, for on-line RL algorithms in stochastic en-
vironments, individual rewards or state transitions may provide very noisy estimates of the true gradient of reinforcment
with respect to the parameters of the policy. For instance, a single reward from a bandit that pays out probabilistically
gives only a high-variance sample of its underlying reward probability. By averaging parameter updates across multiple
points in time, momentum acts as a low-pass filter on this high-variance quantity, and therefore allows parameters to be
updated using a more stable (and more accurate) gradient estimate.

We also show that a momentum term can be reasonably well approximated in the policy-gradient RL setting by a mood
variable, where mood is defined as an exponential moving average of reward prediction errors [10]. This derivation may
shed light upon the role of mood in human and animal learning and decision making. For instance, [10] found evidence
for a mood-congruent interaction between mood and RL in human participants, such that participants who self-reported
high levels of mood instability tended over-value stimuli that they had encountered in a positive mood, and under-value
stimuli encountered in a negative mood. A mood model such as TD()) Actor-Critic with Mood provides one explanation
for this finding, because this algorithm approximates momentum by updating its policy parameters at each timestep in
the direction of the sum of the current reward prediction error and current mood. The effect of this is to boost preferences
for stimuli encountered when mood is positive, as [10] observed in participants high in mood instability.

More broadly, the fact that RL algorithms are improved by the addition of either momentum or mood is a reflection of an
interesting general property of learning: if an agent consistently receives positive reward prediction errors, this can often
be taken as a sign that the policy the agent has lately been following ought to be reinforced. By contrast, the reverse is true
for consistent negative reward prediction errors, which might indicate the necessity of altering the current policy. The two
policy-gradient RL algorithms that we have derived in this project take advantage of this general property of learning.
In the case of TD(A) Actor-Critic with Momentum, this representation is made explicit in the form of a momentum term;
for TD(\) Actor-Critic with Mood, it is accomplished implicitly by the use of mood to help approximate momentum.

References

[1] J. Li and N. D. Daw, “Signals in human striatum are appropriate for policy update rather than value prediction,”
The Journal of Neuroscience, vol. 31, no. 14, pp. 5504-5511, 2011.

[2] R.]. Williams, “Simple statistical gradient-following algorithms for connectionist reinforcement learning,” Machine
Learning, vol. 8, pp. 229-256, 1992.

[3] R.S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient methods for reinforcement learning
with function approximation,” in Advances in Neural Information Processing Systems, pp. 1057-1063, 2000.

[4] T. Degris, P. M. Pilarski, and R. S. Sutton, “Model-free reinforcement learning with continuous action in practice,”
in American Control Conference (ACC), 2012, pp. 2177-2182, IEEE, 2012.

[5] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous
methods for deep reinforcement learning,” in International Conference on Machine Learning, pp. 1928-1937, 2016.

[6] D.Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Pan-
neershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, 1. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks and tree
search,” Nature, vol. 529, pp. 484489, Jan. 2016.

[7] B.T. Polyak, “Some methods of speeding up the convergence of iteration methods,” USSR Computational Mathemat-
ics and Mathematical Physics, vol. 4, no. 5, pp. 1-17, 1964.

[8] Y. E. Nesterov, “A method for solving the convex programming problem with convergence rate O(3z),” Dokl. Akad.
Nauk SSSR, vol. 269, pp. 543-547, 1984.

[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature,
vol. 323, no. 6088, p. 533, 1986.

[10] E. Eldar and Y. Niv, “Interaction between emotional state and learning underlies mood instability,” Nature Commu-
nications, vol. 6, p. 6149, 2015.

[11] R.S. Sutton, “Two problems with back propagation and other steepest descent learning procedures for networks,”
in Proceedings of the 8th Annual Conference of the Cognitive Science Society, 1986, pp. 823-832, 1986.

Paper # 89 62

Learning Multi-Agent Communication with Reinforcement
Learning

Sushrut Bhalla* Sriram Ganapathi Subramanian
Department of Computer Engineering University of Waterloo
University of Waterloo Waterloo, ON N2L 3G1
Waterloo, ON N2L 3G1 s2ganapathisubrmanianQuwaterloo.ca
sushrut .bhalla@uwaterloo.ca

Mark Crowley
University of Waterloo
Waterloo, ON N2L 3G1

mcrowley@uwaterloo.ca

Abstract

Deep Learning and back-propagation have been successfully used to perform centralized training with communication
protocols among multiple agents in a cooperative environment. In this paper, we present techniques for centralized
training of Multi-Agent (Deep) Reinforcement Learning (MARL) using the model-free Deep Q-Network (DQN) as the
baseline model and communication between agents. We present two novel, scalable and centralized MARL training
techniques (MA-MeSN, MA-BoN), which separate the message learning module from the policy module. The separa-
tion of these modules helps in faster convergence in complex domains like autonomous driving simulators. A second
contribution uses a memory module to achieve a decentralized cooperative policy for execution and thus addresses the
challenges of noise and communication bottlenecks in real-time communication channels. This paper theoretically and
empirically compares our centralized and decentralized training algorithms to current research in the field of MARL.
We also present and release a new OpenAI-Gym environment which can be used for multi-agent research as it simu-
lates multiple autonomous cars driving cooperatively on a highway. We compare the performance of our centralized
algorithms to DIAL and IMS based on cumulative reward achieved per episode. MA-MeSN and MA-BoN achieve a
cumulative reward of at-least 263% of the reward achieved by the DIAL and IMS. We also present an ablation study of
the scalability of MA-BoN and see a linear increase in inference time and number of trainable parameters compared to
quadratic increase for DIAL.

Keywords: Multi-Agent Reinforcement Learning; Autonomous Driving;
Deep Reinforcement Learning; Multi-Agent Systems

*Contact Author

Paper # 89 63

1 Introduction

Multi Agent Reinforcement Learning (MARL) deals with the problem of learning optimal policies for multiple inter-
acting agents using RL. MARL algorithms can be applied to cooperative and competitive tasks. The main application for
cooperative MARL algorithms is in safe multi-agent autonomous driving. Training independent agents in multi-agent
cooperative environments leads to instability during training as the environment (consisting of other RL agents) will
exhibit a non-stationary model over time.

To overcome the problem of non-stationarity in the training of MARL agents, the current literature proposes the use of
centralized training using communication, information sharing or unified memory between the agents [7, 2, 4]. Effec-
tive communication between agents in MARL can be trained using backpropagation [7, 2]. Iterative Message Sharing
(IMS) [7] employs a message sharing protocol where an aggregated message is generated by averaging the messages
from all agents. The final policy is computed greedily from the value function which maps the observation z and ag-
gregate message mqq, to the state-action value, given by, 7 = argmaxz,V (2, mqg,). Differentiable Inter-Agent Learning
(DIAL) [2] also trains communication channels, through back-propagation, for sequential multi-agent environments.
However, the messages exchanged between the agents are from the past time-steps. This causes a sub-optimal conver-
gence in dynamic environments as we show in our experiments section. Our work differs from these approaches in
two ways. (a) We remove the iterative network structure of communication protocol and replace it with a feed-forward
neural network, which reduces the complexity during training and increases the expressibility of the message. (b) We
use the centralized structure during training only and train a decentralized policy using a memory module for execution
as the communication among agents in autonomous driving environment is not guaranteed.

In this paper, we propose two centralized training algorithms for MARL environments using DQN [5] as the baseline.
The first approach extends the idea of using communication channels for message sharing as proposed in [2] to multi-
agent same discrete time-step communication, where the communication protocol is trained using back propagation [7].
The second approach introduces a broadcast network which generates a single broadcast message for all agents in the
environment and thus reduces channel bandwidth and memory requirements of the approach. We also propose a novel
method of boostrapping the training of independent memory module alongside our policy network to achieve fully
decentralized cooperative policy for execution. We evaluate our methods against current state of the art techniques in
MARL on multi-agent autonomous driving environment. We have developed an OpenAl Gym environment [1] which
simulates multiple autonomous and adversary cars driving on a highway. We also evaluate our results on two more
multi-agent particle environments with a long time to horizon and a cooperative reward structure [6].

2 Methods

Consider a cooperative multi-agent stochastic game G which is modeled by the tuple G = (X, S, A, T, R, Z,O) with N
agents, z € X, in the game. The game environment presents states s € S, and the agents observe an observation z € Z.
The observation is generated using the function Z = O(s,) which maps the state of each agent to its private observation
z. The game environment is modeled by the joint transition function 7'(s, a;, s") where a; represents the vector of actions
for all agents € X. We use the subscript notation ¢ to represent the properties of a single agent «, a bold subscript
i to represent properties of all agents x € X and —i to represent the properties of all agents other than ;. We use the
superscript ¢ to represent the discrete time-step. The environment provides with a reward function R, which can be a
shared function to enable a cooperative behavior. In Partially Observable Stochastic Games (POSG), the reward function
R : S x A maps each agent’s actions a; to a private reward. In the following paragraphs, we present two methods
for centralized training of cooperative policies in MARL domains, which can be extended to a decentralized execution
paradigm. All the centralized training algorithms exhibit the property of having separate message generation and policy
modules. MA-MeSN and MA-BoN remove the need for iterative message passing, and thus allowing centralized training
with a reduced inference time and still achieving a better cooperative policy than previous approaches.

Multi-Agent Message Sharing Network (MA-MeSN): We present a scalable multi-agent network structure which al-
lows the message generation network f’ to be optimized using gradients from policy networks of all agents and thus
provides better generalization. Evaluation of IMS in [7] mentions that only one agent is communicating in every iteration
of the message sharing loop. To eliminate the iterative communication, we propose a centralized training network with
communication channels inspired by the work of DIAL [2]. Fig. 1(a) shows the architecture of the MA-MeSN network
where agents are sharing messages and computing the final action-value for the same discrete time-step of the environ-
ment. We use 3 way communication where the messages generated by f’; is also conditioned on the communication
from agent z;. The messages m_; are conditioned on the full-state of the observable environment {z!, z* ;}, rather than
the private observation of each agent. A neural network f” is used to evaluate the action-values for agent x; conditioned
on its private observation and messages from other agents in the environment m_; = f'(z%,, f(z})).

This approach has two advantages over DIAL. The messages m" (2" ;, f(z})) are conditioned on the entire observable
state at time ¢, as opposed to DIAL, where messages m® ;(2';") are a function of the previous time-step private observa-

Paper, # 89 . . . 64
© o, @ =, © © [, ©

O1 ¢ o §/<>—> or = Ay O1 I+ {r>—> e oz Aq
& — & T onea” ® ® \ Tk ©)
© 0, © e, [© oo a1 [O

0, It e, Fo— e HiEdf2 o Ti— 1 Irl 3O~ o HEEM A
@ @ Concats” ® ® : C J * @
© 03 @ | | emn. © © / ©

03 :f e e— :f'—‘ 5/\1>—> :f —- 7 A3 03 :f §T>—> :9 - 7 A3
@ @ e [® @ e ®

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, * *

[:S/wilc;}-' @ {éwitc;i}-' @

Figure 1: Architecture for Cooperative MARL Network: (a) MA-MeSN (left), (b) MA-BoN (right) with Memory.

. . . . o . Episode for MA-MeSN-MM, DQN and DQN w/ SER
Cooperative Centralized Training in Multi-Agent Driving Environment (o] 500 1000 1500 2000 2500 3000 3500
1000 MA-MeSN 1000 MA-MeSN-MM

MA-BoN CoDBC

T 800 :?V'I/;L T 800 Bgz WASER

= =

@ @

5 600 5 600

= =

= =

g2 400 g 400

p=l p=l

&) &)

200 W 200 M/
=TT
—— T e Y e e P i,
 n—
00 500 1000 1500 2000 2500 3000 3500 QOOO 4500 5000 5500 6000 6500 7000 7500 8000
Episode Episode Number for CoDBC Training

Figure 2: Cumulative reward for (a) Centralized (left), (b) Decentralized (right) training on the Driving Environment.

tion of each agent z'*. This results in improved stability in training and a better final cooperative policy. Secondly, MA-
MeSN can work with a step-based experience replay buffer with uniform sampling for gradient calculations, whereas,
DIAL trains on the samples of current episode to stay current with changing policies of other agents. To achieve decen-
tralized execution using discrete messages, we use Gumbel-Softmax [3] operation on the continuous message generated
by each agent [6] during training as it allows for differentiability of the network. Gumbel-Softmax generates a continuous
approximation of the categorical distribution by replacing the argmax operation with a Softmax operation. To achieve
fully decentralized execution without message sharing, we also propose a LSTM memory module y associated with each
agent’s policy network. The LST M, learns a mapping from agent’s private observation to the message generated by
agents in the environment which can be used during fully decentralized execution. Thus the individual memory mod-
ules along with their policy network can be independently used for fully decentralized execution of cooperative policy
by the agents (MA-MeSN-MM).

Multi-Agent Broadcast Network (MA-BoN) A drawback of MA-MeSN is that the network needs to be individually
evaluated to compute the action-value for each agent. We note that back-propagation could be used to train a single
message (broadcast = f'(m})) which relays a learned representation of all agent’s private messages m!. The Fig. 1(b)
shows the network architecture for Multi-Agent Broadcast Network (MA-BoN). We deploy a feed-forward broadcast
network f’ surrounded by a symmetric network structure. The NN f/(m!) learns a combined communication message
as the broadcast message. Each agent can now independently evaluate the action-value for their private observation
using the function ¢'(z{, f’(m})) which is a function of the complete observed state of the environment. This network
also allows for parallel action-value evaluations with a single forward pass of the network and avoids the |P| iterations
required by IMS and 2 iterations of MA-MeSN. MA-BoN can also be easily decenetralized using discrete messages or by
the use of a memory module LST M, trained in parallel to the policy network (MA-BoN-MM).

3 Experiments and Results

Centralized Training on Multi-Agent Driving Environment We have developed a multi-vehicle driving simulator
which simulates multiple autonomous and adversary vehicles driving on a highway. The adversary’s objective is to
hit the closest car and all cooperative autonomous cars must avoid crashes. The MARL agents receive a hidden obser-
vation of the environment and a private reward based on distance from the closest agent but don’t know which car is
autonomous or adversary. The agents can communicate using discrete limited bandwidth channel.

Paper # 89 65

Table 1: Comparison of scalability in terms of memory and inference time analysis for MA-BoN (ours), DIAL and IMS.

MA-BoN DIAL IMS
#Cars Time (sec) #Param (M) CRPE Time (sec) #Param (M) CRPE Time (sec) #Param (M) CRPE
2 13.2658 2.826 512.4408 14.5619 1.761 117.1410 21.4447 2.908 194.4888
3 21.1892 3.383 4435566 25.1714 2.572 89.25467 31.1567 2.924 191.4618
4 31.1815 3.940 409.5076 37.8002 3.383 79.10172 39.2954 2.941 160.3807
5 41.8882 4.497 376.4217 50.6050 4.194 70.96123 47.6846 2.957 109.6350
6 55.3998 5.054 342.8269 64.0858 5.005 68.8291 55.0327 2.974 93.84936
7 71.1721 5.611 279.1121 80.4211 5.816 62.41487 63.5499 2.990 83.25440

The results for centralized training of cooperative multi-agents (averaged over 20 runs) are shown in Fig. 2(a). The policy
is approximated using a neural network with 2 layers of size [4096, 64] for MA-MeSN, MA-BoN and IMS; DIAL uses a
neural network of size (6144, 64]. All agents have a linearly decaying exploration strategy over the first 100K steps. We
updated DIAL to sample from a step-based replay buffer with importance sampling which weighs the newer episodes
with a higher probability of being sampled. For the IMS algorithm, we arrived at using P = 5 for communication
iterations through cross-validation. We achieve the highest cumulative reward with MA-MeSN followed by the MA-
BoN algorithm. The IMS and DIAL algorithm are able to improve on the policy achieved by independent DQN, due
to the shared information using trained communication channels. The MA-BoN and MA-MeSN use step-based replay
memory (zf,al,r!) along with m’ ; which provides better indexing of the changing policies of other agents over time and
thus allows for a more stable training algorithm. The intuition for sharing messages in the current time-step is that it
provides other agents with an insight into the future action policy of the environment containing other learning agents.
We thus see a stable learning curve with faster convergence properties than DIAL and IMS. The MA-BoN results show
comparative performance to MA-MeSN and provides us with the benefit of reduction in the number of communication

layers needed from |N| x |N| to | N|; along with reduced inference time for state-value prediction.

Ablation Study of scalability of MA-BoN We demonstrate the scalability of the MA-BoN approach compared to IMS
and DIAL through an ablation study where we increase the number of agents in the environment. The table 1 shows
a comparison of the inference time to complete an episode (Time), the total number of parameters required (#Param)
and the average cumulative reward per episode (CRPE) when the number of agents in the environment is increased.
We see that the number of parameters (#Params) and communication connections between agents for MA-BoN grows
linearly compared to DIAL and thus we also see a slower rate of increase in the number of trainable parameters. The
inference time of MA-BON is comparable to IMS and better than DIAL, while achieving better performance than both
DIAL and IMS. We use CRPE as the measure of performance of the algorithm. CRPE are computed by averaging results
of 5 training runs of 15,000 episodes or 2.5 steps. MA-BoN outperforms DIAL and IMS by a large margin and also
shows better scalability as the message generation network for each agent is optimized using the cumulative gradients
from all agents’ temporal difference loss. Thus, the message is more generalizable in complex settings. DIAL and IMS use
policy gradients to update the current agent’s message and policy joint parameters which leads to reduced robustness of
the message shared between agents.

Decentralized Cooperative Policy on Multi-Agent Driving Environment Decentralized execution could be achieved
by using a discrete channel between agents or by completely removing message sharing between agents. First, we evalu-
ate the performance of MA-MeSN and MA-BoN networks with discrete message sharing. The performance is measured
in terms of cumulative reward achieved in each episode compared to fully centralized training with continuous mes-
sages. MA-MeSN and MA-BoN networks were able to maintain 98.35% and 86.47% of the performance from centralized
policy after 4000 episodes. The distribution of messages in MA-MeSN network varies based on which agent is closer to
an adversary; whereas in the MA-BoN the message varies based on the distance of adversary to the any autonomous
agent. We compare two distributions generated by two different agents using chi-squared distance. We get a value of
0.07457 and 0.00105 for MA-MeSN and MA-BoN respectively. Thus, the generalizability of broadcast messages in MA-
BoN allows us to extend the MA-BoN network to environments with a variable number of agents. We note that the
channels between agents can be unreliable and thus agents must be able to execute a cooperative decentralized policy
without communication.

Centralized Training - Predator Prey All experimental results (Fig 3(a)) for Predator-Prey domain represent the average
over 5 runs and the results were smoothed using a moving average. All algorithms use a linearly decaying exploration
schedule for the first 100K steps from 1.0 to 0.05 and we then use a constant value of 0.05 for the rest of the training. All
experiments are run for 7M steps and 60K episodes. All agents in the environment use parameter sharing of weights
and biases of the neural network with a size of 1 hidden layer with 256 hidden units, with a communication channel
of size 8 units. Our centralized training method MA-MeSN was able to achieve good performance in this environment

Paper # 89 66

1.1 Centralized Training on Predetor Prey Environment (%(?ntralized Training on Cooperative Communication Environment

1.0 10
=l
509 Boo9
E H MA-MeSN
2 oo % 08 MA-BoN
-] = S
So7 To7 g'c';\']

3

£ MA-MeSN E
S0-8 IMS @ 0:6

05 = Bl 05

DQN
0'40 10000 20000 30000 40000 50000 C"40 10000 20000 30000 40000 50000
Episode Episode

Figure 3: Cumulative reward for Centralized training on (a.) Predator Prey (left), (b.) Cooperative Communication.

as well (very close to IMS). DIAL performs poorly in dynamic environments as the message is generated based on old
observations of the environment. The results clearly shows that our algorithms are extendable to environments with
sparse cooperative rewards.

Centralized Training - Cooperative Comm. Results in Fig 3(b) for cooperative communication represents an average
over 5 runs with the same hyper-parameters as the previous section and for 7M steps and 100K episodes. To achieve
discrete 2-bit communication between the speaker and the listener, we apply a softmax on the output of the speaker
before feeding it to the listener. MA-BoN and MA-MeSN don’t use parameter sharing and the communication channel
from the listener is masked with dummy values for this experiment. Again the superior performance of MA-BoN is seen.

4 Conclusion and Future Work

We have proposed two novel scalable centralized training algorithms (MA-MeSN, MA-BoN) for training multiple au-
tonomous agents in an environment. The MA-MeSN uses idea of iterative message sharing and trains messages using
back-propagation. The MA-BoN uses back-propagation to train multiple agents using a single broadcast network which
is representative of the full state of the environment. We also propose a method to achieve discrete message decen-
tralized execution and fully decentralized execution using memory module (MA-MeSN-MM). We note that MA-BoN
messages are generalizable and robust. Thus as a natural next step, we will extend the centralized training algorithms to
environments with varying number of agents.

References

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
Openai gym, 2016.

[2] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon Whiteson. Learning to communicate with
deep multi-agent reinforcement learning. In Advances in Neural Information Processing Systems, pages 2137-2145, 2016.

[3] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

[4] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic for
mixed cooperative-competitive environments. In Advances in Neural Information Processing Systems, pages 6379-6390,
2017.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529, 2015.

[6] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent populations. arXiv
preprint arXiv:1703.04908, 2017.

[7] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent communication with backpropagation.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 2244-2252. Curran Associates, Inc., 2016.

Paper # 12 67

Count-Based Exploration with the Successor Representation”

Marlos C. Machadof Marc G. Bellemare Michael Bowling
Google Brain Google Brain Department of Computing Science
Montreal, QC, Canada Montreal, QC, Canada University of Alberta
marlosm@google.com bellemare@google.com Edmonton, AB, Canada

mbowlingQualberta.ca

Abstract

In this paper we provide empirical evidence showing that the norm of the successor representation (SR), while it is
being learned, can be used to generate effective exploration bonuses for reinforcement learning algorithms. The SR
is a representation that defines state generalization by the similarity of successor states. In our experiments the agent
maximized the reward function R; + Sri,, where R, is the reward signal generated by the environment at time step ¢, § is
a scaling factor, and 7y, is the exploration bonus such that r;,, = m, with 1(S;) being the agent’s estimate of the SR

in state S;. In the tabular case, when augmenting Sarsa with the proposed exploration bonus, we obtained results similar
to those obtained by theoretically sample-efficient approaches. We evaluated our algorithm in traditionally challenging
tasks such as RiverSwim and SixArms. We also evaluated this idea in hard-exploration Atari games where function
approximation is required. We obtained state-of-the-art performance in a low sample-complexity regime, outperforming
pseudo-count-based methods as well as the recently introduced Random Network Distillation (RND). We used a deep
neural network to approximate both the value function and the SR. In the extended version of this paper we also provide
some theoretical justification to the use of the norm of the SR as an exploration bonus by showing how, while it is being
learned, it implicitly keeps track of state visitation counts. We believe this result might lead to a different and fruitful
research path for exploration in reinforcement learning.

Keywords: Computational reinforcement learning, successor representation,
exploration, function approximation, Atari games.

Acknowledgements

The authors would like to thank Jesse Farebrother for the initial implementation of DQN used in this paper, Georg Os-
trovski for the discussions and for kindly providing us the exact results we report for the pseudo-count-based methods,
and Yuri Burda for kindly providing us the data we used to compute the performance we report for RND. We would also
like to thank Carles Gelada, George Tucker and Or Sheffet for useful discussions, as well as the anonymous reviewers for
their feedback. This work was supported by grants from Alberta Innovates Technology Futures and the Alberta Machine
Intelligence Institute (Amii). Computing resources were provided by Compute Canada through CalculQuébec.

*This paper is an extended abstract of the following article: “M. C. Machado, M. G. Bellemare, M. Bowling. Count-Based Explo-
ration with the Successor Representation. CoRR abs/1807.11622, 2018.”

T work performed while at the Department of Computing Science at the University of Alberta.

Paper # 12 68

1 Introduction

Reinforcement learning (RL) tackles sequential decision making problems by formulating them as tasks where an agent
must learn how to act optimally through trial and error interactions with a complex, unknown, stochastic environment.
The goal in these problems is to maximize the discounted sum of the numerical reward signal observed at each time step.
The actions taken by the agent influence not just the immediate reward it observes but also the future states and rewards
it will observe, implicitly requiring the agent to deal with the trade-off between short-term and long-term consequences.
Here we focus on the problem of exploration in reinforcement learning, which is the problem of selecting appropriate
actions to explore the state space to gather information while taking the aforementioned trade-off into consideration.

Surprisingly, the most common approach in the field is to select exploratory actions uniformly at random, with even
high-profile success stories being obtained with this strategy (e.g., [10]). However, random exploration often fails in
environments with sparse rewards. In this paper we introduce a novel approach for exploration in reinforcement learning
based on the successor representation [5]. The successor representation is a representation that generalizes between states
using the similarity between their successors, that is, the states that follow the current state given the agent’s policy.

The main contribution of this paper is to show that the norm of the successor representation can be used as an exploration
bonus. We demonstrate this empirically in both tabular and function-approximation cases. For the latter we design a
deep reinforcement learning algorithm that achieves state-of-the-art performance in hard exploration Atari games when
in a low sample-complexity regime. A more thorough discussion about the proposed idea, as well as theoretical results
suggesting that the successor representation, while it is being learned, might encode some notion of state visitation
counts is available in the extended version of this paper [7].

2 Preliminaries

We consider the traditional reinforcement learning framework. We refer the reader to Sutton and Barto’s textbook for a
detailed presentation of the basic formalism [14]. In this paper we assume the reader is familiar with the basic concepts
in the field of reinforcement learning. The ideas presented here are based on the successor representation (SR) [5]. The
successor representation with respect to a policy 7, ¥, is defined as

U, (s,8)=Erp {i’ytﬂ{& = 5’}‘50 = 5},
t=0

where v € [0,1) and I denotes the indicator function. This expectation can be estimated from samples with TD learning:

(81,) W(S1,7) + (1S = j} + 1 (Seir,) - 1(517))), M

for all j € 8§ and 7 denoting the step-size. The definition of the SR can also be extended to features. Successor features [1]
generalize the SR to the function approximation setting. We use the definition for the uncontrolled case in this paper.

Definition 2.1. For a given 0 < ~y < 1, policy 7, and for a feature representation ¢(s) € RY, the successor features for a state s are:
o0
> 7 (S0)|S0 =] .

t=0
3 The Norm of the Successor Representation as an Exploration Bonus

111171' (S) = Eﬂ'Vp

It is now well-known that the successor representation incorporates diffusion properties of the environment. These
properties can be used to accelerate learning, for example, with options that promote exploration [9]. Inspired by these
results, in this section we argue that the successor representation can be used in a more direct way to promote exploration.

To demonstrate the usefulness of the norm of the successor representation as an exploration bonus we compare the
performance of traditional Sarsa to Sarsa+SR, an algorithm introduced here that incorporates the norm of the successor
representation as an exploration bonus in the Sarsa update. The update equation for Sarsa+SR is

4(St, Ap) < 4(St, Ar) + <Rt + +9G(Sty1, Aty1) — Q(Stht)))

o
19 (S)l2

where f3 is a scaling factor and, at each time step ¢, ¥(S;, -) is updated before G(S;, A;) as per Equation 1.

We evaluted this algorithm in RiverSwim and SixArms [13], traditional domains in the PAC-MDP literature that are used
to evaluate provably sample-efficient algorithms. In these domains it is very likely that an agent will first observe a small

Paper # 12 69

Table 1: Comparison between Sarsa and Sarsa+SR. A 95% confidence interval is reported between parentheses.

Sarsa \ Sarsa + SR
RIVERSWIM | 26,526 (2,350) | 1,080,479 (167,189)

SIXARMS | 284,013 (88,511) | 2,625,132 (516,804)

reward generated in a state that is easy to get to. If the agent does not have a good exploration policy it is likely to
converge to a suboptimal behavior, never observing larger rewards available in states that are difficult to get to.

Our results suggest that the proposed exploration bonus has a profound impact in the algorithm’s performance. When
evaluating the agent for 5,000 time steps, Sarsa obtains an average return of approximately 26,000, while Sarsa+SR
obtains an approximate average return of 2 million! Notice that, in RIVERSWIM, the reward that is “easy to get” has
value 5, implying that, different from Sarsa+SR, Sarsa almost never explores the state space well enough. The actual
numbers, which were averaged over 100 runs, are available in Table 1. Details about the task, parameters used, as well
as the empirical methodology are available in the extended version of this paper [7].

4 Counting Feature Activations with the SR

In large environments, where enumerating all states is not an option, directly using Sarsa+SR as described in the previ-
ous section is not viable. Using neural networks to learn a representation while learning to estimate state-action value
function is the approach that currently often leads to state-of-the-art performance in the field. However, learning the SR
becomes more challenging when the representation, ¢, is also being learned. In this section we describe an algorithm that
uses the same ideas described so far but in the function approximation setting. Our algorithm was inspired by recent
work that have shown that successor features can be learned jointly with the feature representation itself [6, 9].

An overview of the neural network we used to learn the agent’s value function while also learning the feature repre-
sentation and the SR is depicted in Figure 1. The layers used to compute the state-action value function, §(S;,-), are
structured as in DQN [10], but with different numbers of parameters (i..e, filter sizes, stride, and number of nodes). This
was done to match Oh et al.’s architecture, which is known to succeed in the auxiliary task of predicting the agent’s next
observation, which we detail below [11]. From here on, we call the part of our architecture that predicts G(.S;, -) DQN, to
distinguish between the parameters of this network and DQN. It is trained to minimize the mixed Monte-Carlo return
(MMC), which has been used in the past by the algorithms that achieved succesful exploration in deep reinforcement
learning [3, 12]. The reward signal the agent maximizes is R + 7., where R; denotes the reward signal generated by the
environment and 7, denotes the exploration bonus obtained from the successor features of the internal representation,
¢, which will be defined below. Moreover, to ensure all features are in the same range, we normalize the feature vector
so that ||¢(-)||2 = 1. In Figure 1 we highlight with ¢ the layer in which we normalize its output. Notice that the features
are always non-negative due to the use of ReLU gates.

The successor features, ¥(S;), at the bottom of the diagram, are obtained by minimizing the loss
Lsx = Erp| (6(5507) +7(S41:07) = 0(5159))°.

Zero is a fixed point for the SR, which is particularly concerning in settings with sparse rewards. The agent might end
up learning to set ¢(-) = 0 to achieve zero loss. We address this problem by not propagating V L to ¢ (this is depicted
in Figure 1 as an open circle stopping the gradient). The distinction between ¢ and 6~ is standard in the field, with 6~
denoting the parameters of the target network, which is updated less often for stability purposes [10]. We also create an
auxiliary task to encourage a representation to be learned before a non-zero reward is observed. As Machado et al. [9],
we use the auxiliary task of predicting the next observation, learned through the architecture proposed by Oh et al. [11],
which is depicted as the top layers in Figure 1. The loss we minimize for this last part of the network is

A 2
£Recons - (St+1 - St+l) .
The overall loss minimized by the network is £ = wpLrp + Wsg Lsr + Wrecons Lrecons-

The last step in describing our algorithm is to define i, the intrinsic reward we use to encourage exploration. We
choose the exploration bonus to be the inverse of the /,-norm of the vector of successor features of the current state, as
in Sarsa+SR. That is,
B 1

(St 07)ll2"
where 1(S;; 07) denotes the successor features of state S; parametrized by §~. The exploration bonus comes from the

same intuition presented in the previous section (we observed in preliminary experiments not discussed here that DQN
performs better when dealing with positive rewards).

rint(St; 07)

Paper # 12 70

Ay

St+1

[

—q(St)

Conv

St_'

-
)

[aw]

L

Figure 1: Neural network architecture used by our algorithm when learning to play Atari games.

—(5¢)

E

5 Evaluation of Exploration in the Deep Reinforcement Learning Case

We evaluated our algorithm on the Arcade Learning Environment [2]. Following Bellemare et al.’s taxonomy [3], we
focused on the Atari games with sparse rewards that pose hard exploration problems. We used the evaluation protocol
proposed by Machado et al. [8]. We used the game MONTEZUMA’S REVENGE to tune our parameters. The reported
results are the average over 10 seeds after 100 million frames. We evaluated our agents in the stochastic setting (sticky
actions, ¢ = 0.25) using a frame skip of 5 with the full action set. The agent uses the game screen as input.

Our results were obtained with the algorithm described in Section 4. We set 3 = 0.025 after a rough sweep over values in
the game MONTEZUMA’S REVENGE. We annealed e in DQN'’s e-greedy exploration over the first million steps, starting at
1.0 and stopping at 0.1 as done by Bellemare et al. [3]. We trained the network with RMSprop with a step-size of 0.00025,
an ¢ value of 0.01, and a decay of 0.95, which are the standard parameters for training DQN [10]. The discount factor, ~,
is set t0 0.99 and wrp = 1, weg = 1000, Wrecons = 0.001. The weights wrp, we, and wreons Were set so that the loss functions
would be roughly the same scale. All other parameters are the same as those used by Mnih et al. [10].

Table 2 summarizes the results after 100 million frames. The performance of other algorithms is also provided for ref-
erence. Notice we are reporting learning performance for all algorithms instead of the maximum scores achieved by the
algorithm. We use the superscript ™ to distinguish between the algorithms that use MMC from those that do not. When
comparing our algorithm, DQNY"+SR, to DQN we can see how much our approach improves over the most traditional
baseline. By comparing our algorithm’s performance to DQNMV“+CTS [3] and DQNM¥“+PixelCNN [12] we compare
our algorithm to established baselines for exploration that are closer to our method. By comparing our algorithm’s per-
formance to Random Network Distillation (RND) [4] we compare our algorithm to one of the most recent papers in the
field with state-of-the-art performance.

As mentioned in Section 4, the parameters of the network we used are different from those used in the traditional DQN
network, so we also compared the performance of our algorithm to the performance of the same network our algorithm
uses but without the additional modules (next state prediction and SR) by setting wsg = Wgeeons = 0 and without the
intrinsic reward bonus by setting 5 = 0.0. The column labeled DQNYM contains the results for this baseline. This
comparison allows us to explicitly quantify the improvement provided by the proposed exploration bonus.

We can clearly see that our algorithm achieves scores much higher than those achieved by DQN, which struggles in
games that pose hard exploration problems. Moreover, by comparing DQNY“+SR to DQN™ we can see that the pro-
vided exploration bonus has a big impact in the game MONTEZUMA’S REVENGE, which is probably known as the hardest
game among those we used in our evaluation, and the only game where agents do not learn how to achieve scores greater
than zero with random exploration. Interestingly, the change in architecture and the use of MMC leads to a big improve-
ment in games such as GRAVITAR and VENTURE, which we cannot fully explain. However, notice that the change in
architecture does not have any effect in MONTEZUMA’S REVENGE. The proposed exploration bonus seems to be essen-
tial in games with very sparse rewards. We also compared our algorithm to DQN™"“+CTS and DQNMV“+Pixel CNN. We
can observe that, on average, DONY“+SR outperforms these algorithms while being simpler since it does not require a
density model. Instead, our algorithm requires the SR, which is domain-independent as it is already defined for every
problem since it is a component of the value function estimates [5].

Finally, DQNY"C+SR also outperforms RND [4] when it is trained for 100 million frames. Importantly, RND is currently
considered to be the state-of-the-art approach for exploration in Atari games. Burda et al. did not evaluate RND in
FREEWAY, thus we do not report any scores for RND in this game.

A more thorough analysis of the impact of the different components of the proposed algorithm (the importance of the
auxiliary task, the impact of using a different p-norm of the SR, among other things) is available in the extended version
of this paper [7]. It also contains the learning curves of these algorithms and their performance after different amounts
of experience.

Paper # 12 71

Table 2: Performance of the proposed algorithm, DQNY"“+SR, compared to various agents on Atari games. The DQN
results reported are from Machado et al. [8] while the DQN™“+CTS and DQN"M“+PixelCNN results were extracted
from Ostrovski et al.’s work and RND results were extracted from Burda et al.’s work. DQNY™€ is another baseline used
in the comparison. When available, standard deviations are reported between parentheses.

DQN DQNMME | DOQNMMCLCTS | DQNMME L PIXELCNN RND DQNMME SR
FREEWAY 324 (0.3) 295 (0.1) 292 29.4 - - 295 (0.1)
‘GRAVITAR | 1185 (22.0) |1078.3 '(254.1)| 1998 2754 T790.0 (12229 | 430,37 (109.4)
MONT. REV. | 0.0 (0.0) | 0.0 (0.0 | 29419 | 1671.7 | 524.8 (314.0)|1778.6 (903.6)
PRIVATE EYE | 1447.4 (2,567.9)| 1134 (42.3) | 28 | 14386.0 | 61.3 (53.7) | 99.1 (1.8)
SOLARIS | 7834 (55.3) |2244.6 (378.8)| 11471 | 22794 | 1270.3 (291.0) | 2155.7 (398.3)
VENTURE |7 44754 122017510y | o0 85629537 (167.3) |1241.8 (236.0)

6 Conclusion

RL algorithms tend to have high sample complexity, which often prevents them from being used in the real-world. Poor
exploration strategies is one of the main reasons for this high sample-complexity. Despite all of its shortcomings, uniform
random exploration is, to date, the most commonly used approach for exploration. This is mainly due to the fact that
most approaches for tackling the exploration problem still rely on domain-specific knowledge (e.g., density models,
handcrafted features), or on having an agent learn a perfect model of the environment. In this paper we introduced a
general method for exploration in RL that implicitly counts state (or feature) visitation in order to guide the exploration
process. It is compatible to representation learning and the idea can also be adapted to be applied to large domains.

References

[1] André Barreto, Will Dabney, Rémi Munos, Jonathan Hunt, Tom Schaul, David Silver, and Hado van Hasselt. Suc-
cessor Features for Transfer in Reinforcement Learning. In NIPS, 2017.

[2] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning Environment: An
Evaluation Platform for General Agents. Journal of Artificial Intelligence Research, 47:253-279, 2013.

[3] Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi Munos. Unifying
Count-Based Exploration and Intrinsic Motivation. In NIPS, pages 1471-1479, 2016.

[4] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by Random Network Distillation. In
ICLR, 2019.

[5] Peter Dayan. Improving Generalization for Temporal Difference Learning: The Successor Representation. Neural
Computation, 5(4):613-624, 1993.

[6] Tejas D. Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J. Gershman. Deep Successor Reinforcement
Learning. CoRR, abs/1606.02396, 2016.

[7] Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. Count-Based Exploration with the Successor Repre-
sentation. CoRR, abs/1807.11622, 2018.

[8] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael Bowling.
Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents. Journal
of Artificial Intelligence Research, 61:523-562, 2018.

[9] Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray Campbell.
Eigenoption Discovery through the Deep Successor Representation. In ICLR, 2018.

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves,
Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level
Control through Deep Reinforcement Learning. Nature, 518:529-533, 2015.

[11] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder P. Singh. Action-Conditional Video Pre-
diction using Deep Networks in Atari Games. In NIPS, pages 2863-2871, 2015.

[12] Georg Ostrovski, Marc G. Bellemare, Aaron van den Oord, and Rémi Munos. Count-Based Exploration with Neural
Density Models. In ICML, pages 2721-2730, 2017.

[13] Alexander L. Strehl and Michael L. Littman. An Analysis of Model-based Interval Estimation for Markov Decision
Processes. Journal of Computer and System Sciences, 74(8):1309-1331, 2008.

[14] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2 edition, 2018.

Paper # 20 72

An empirical evaluation of Reinforcement Learning Algorithms
for Time Series Based Decision Making

Alberto C. Chapchap Andre Lawson
alberto.chapchap@gscap.com.br andre.lawson@gscap.com.br

Dimas Ramos
dimas.ramos@gscap.com.br

Abstract

In this article, an empirical investigation of several tabular reinforcement learning algorithms is carried out for the prob-
lem of time series decision making with low signal to noise ratio, focusing on the financial domain. Departing from the
empirical finance literature, the main question asked is whether reinforcement learning agents can learn (or hopefully
outperform) the reported heuristics in an online fashion. In this context, the performance of temporal difference meth-
ods (Q-Learning, Sarsa, Expected Sarsa and Value Function prediction based methods) are evaluated and benchmarked
against a widely used strategy from empirical finance. Our contribution is twofold, namely: the empirical evaluation car-
ried out indicates that, when presented with data, the algorithms are able to discover some typical heuristics that have
long been reported in the related literature e.g: momentum and mean reversion but conditioned on the current state;
therefore, an interesting hybrid dynamic behaviour emerges in the value function estimation and the Q values of the
actions. Our second contribution is to note that in this particular setting (small number of discrete actions), the updates
of the Q values at each time step can actually be performed for all the possible actions and not only for the action the
agent took on that state, leading to a full exploitation behaviour. Across the board, the results using a real world data set
suggests that all the tabular methods tested perform better than the strategies reported in the empirical finance literature
as well as long only based strategies.

Keywords: Reinforcement Learning, finance, trading, online learning

Acknowledgements

We are deeply indebted to Google DeepMind and the Weinberg Institute for Cognitive Science for their generous support
of RLDM2019.

Paper # 20 73

1 Introduction

Decision making given a noisy time series turns out to be a very common problem in many areas of research. In the
financial domain, on one hand the efficient market hypothesis (EMH) [1] states that there is no long term structure in
the time series itself. On the other hand, the empirical finance literature has reported evidence of two major anomalies,
namely: momentum [2] and mean reversion (well surveyed in [3] under the follow the loser heuristic). In case some of
these anomalies are present, tabular reinforcement learning agents should be able to learn some of this structure (if any)
from the data in a model free fashion.

Applications of the RL framework to financial time series is not a new subject and the literature is vast. For instance,
in [4] the problem of learning to trade (i.e whether to buy or sell a particular financial instrument) is investigated and
two algorithms, one based on policy search and another based on Q-learning are compared. [5] applied tabular methods
to the problem of finding a policy that leads towards an optimized execution strategy. [6] compares three automated
stock trading agents, one based on SARSA and two others: one based on trend following (or momentum) heuristics
and another based on the combination of momentum and market making. In [7], the work of [4] is extended to a deep
architecture where the problem of learning good representations via autoencoders and act optimally is tackled from
an end to end fashion. Interestingly, the results among these publications are somewhat mixed, with some cases of
successful RL agents, others more in line with the EMH (no structure found at all) and others arguing more in favour
heuristic approaches (due to the low signal to noise ratio, learning is too difficult and a good prior might be the best one
can do). Arguably, the success of a RL agent is intimately related to the information encoded in the state description and
this may be a paramount ingredient in the failure/ success of applications.

That said, the aim of this work is not to propose new state representations for the problem at hand, but rather try to
give insight to the following question: under essentially the same state representations used in the empirical finance
literature, what is the performance obtained across various tabular RL algorithms ?

The paper is organized as follows: section 2 gives a brief introduction to the reinforcement learning problem. Section
3 describes the algorithms used on the evaluation. Section 4 describes the experimental set up and its corresponding
results. In section 5, the present work is concluded.

2 Problem Formulation

In this section, a brief formulation of the problem is presented and the reader is referred to [8] for a thorough presentation.
In the general setting, the reinforcement learning problem can be defined by a tuple (S, A, P(R =1 ,S’=s" | S=s,A =a , R},
v, A). Concretely, at each time step ¢; the agent receives a state representation of the environment S € S, interacts with it
by choosing an action A € A and receives a stochastic reward R(S, A) € R}, from the action it has taken in state S and
trasitions to a new state S’. The rewards and transitions that the agent incurs are sampled from P(R =r ,S’=s’ | S=s,A
=a). The parameters 7, \ represent the discount factor and the eligibility trace respectively. Based on the experiences
from the interaction with the environment, the agent tries to select its new action in order to maximize the expectation
of the sum of the discounted future rewards from that state onwards. Hence, setting G; = > ;- | v*~1R; 1, the main
idea is to find a policy 7(A|S), a probability distribution over actions given states such that the action-value function,
gr(s,a) = Ex(G{|S = s, A = a), is maximized when the agent takes action A in state S and then follows 7 afterwards. In
this set up, E,(.) is the expected value of a random variable under the probability distribution P(R =r ,S’=s" | S=s,A =a)
when the agent samples its actions according to 7. Furthermore, the Markovian property allows the expectation to be
written in a recursive fashion as the expected Bellman equation i.e:

gr(s,a) = Ex (R(S,A) +7) _m(A'[S)Q(S, A")|S = 5,A = a). 1)
A/
If a policy is given, the value function is the expected return of starting from state S and following the policy m onwards,
i.e: vr(s) = Ex(G¢|S = s). In this case the corresponding expected Bellman equation for V7 (S) is given by:
vr(s) = Er (R(S,7(S5)) + yvx(s')|S = 5). @)

In order to solve the reinforcement learning problem, instead of just predicting the values of ¢, (s, a) the aim is to find the
optimal action-value function i.e: ¢.(s, a) = max, ¢-(s, a), which specifies the best possible performance in the problem
at hand. In addtion, ¢.(s, a) induces an optimal policy by selecting actions in a greedy fashion. The optimal action-value
function also satisfies the the Bellman optimality equation and can be written as:

¢« (s,a) = E(R(S, A) + ymax ¢.(S",a’)|S = 5,A = a). 3)
The algorithms proposed in the next section try to solve equations 2 and 3 for the case of value function prediction and

control respectively. Moreover, for the problem of prediction the notion of eligibility trace, unifying the backward and
forward view methods from [9] is added and evaluated empirically in table 1.

Paper # 20 74

3 Algorithmic Solutions

Before the first algorithm is introduced some particular aspects of finance are going to be outlined in the hope they can
be used in a constructive way by the agent. Assuming the agent is able to trade only a fixed amount of contracts of the
asset at hand (the bet size is fixed), there are really only 3 possible actions, buying (going long, +1), selling (going short,
-1) or staying neutral (doing nothing, 0). Furthermore, without taking into account transactions costs, the rewards are
symmetrical (what the agent gets for being short is the opposite of what it gets for holding a long position). Therefore in
order to start in a simple fashion, one could try to flatten the reinforcement learning problem into a prediction problem
by fixing a policy (say going long). This way the problem now becomes to predict the value function at each state the
agent visits, go long if it is positive, short if it is negative and staying neutral otherwise. In order to estimate the value
function using the temporal difference method, algorithm 1 from [8], is used.

Algorithm 1 Value Function Prediction

1: Hyperparameters: o, v, A
2: Initialize V(S) to 0.0
3: E(S)=0, forallsinS:
4: forty,...,t, do
5: A := action given by 7 (in this case 7 = 1)
6: Take action A, observe reward R, and next state S’
7: §:=R+~V(S) -V(S)
8: E(S) := (1 —a)E(S) + 1 (dutch traces)
9: foralls € S do:
10: V(s) ==V (s) + adE(s)

11: E(s) :=v\E(s)
12: end for

13: S =9

14: end for

Next instead of predicting the value function for a fixed policy in each state, the control problem is tackled. The idea
now is to predict state-actions pairs and from there derive the optimal policy by acting € - greedy. In addition, it turned
out, that the performance of Algorithm 1 is robust for different values of the eligibility trace parameter A (Table 1).
Therefore, in order to keep the number of hyper parameters to a minimum, both Q-learning, SARSA and Expected
SARSA Algorithms are investigated by implicitly setting A = 0.0 and using e-greedy exploration scheme (Table 2 and 3).
In this context, Q-learning ([8] page 131) , SARSA and expected SARSA ([8] page 133), are investigated in an out of the
shelf fashion for the case of two actions (long and short).

Algorithm 2 can be viewed as a particular extension of Q-learning, with two basic modifications, namely: first, instead
of updating only the state-action pair of the action the agent took, the Q values of all 3 actions (long, short or neutral) in
that state are all updated; secondly, given that for each visited state all actions are updated, the agent can follow a fully
explotiation policy and act greedily. This is possible because in a given state both the rewards and the next state for every
action choosen can be observed by the agent.

Algorithm 2 Modified Q-Learning

1: Hyperparameters: o, vy

2: Initialize Q(S, A) to 0.0

3: forty,...,t, do

: A :=argmaz,Q(S, a)

Take action A, observe reward R

forall A; € A do:
Pretend action A; was taken, observe reward R;, and next state S}
8; := R; + v argmaz,Q(S;,a) — Q(S;, Ai)
Q(Si, Ai) = Q(Si, Ai) + ad;

10: end for

11: end for

VRN I

4 Empirical Evaluation

In this section the algorithms are applied to a real world data set comprising the daily closing prices of the SP 500 index
from 10 March 1983 to the 31st December 2018. The results are benchmarked against a widely used momentum strategy
and a long only strategy: the long/short (resp. long/neutral) momentum strategy compares the price of today with the

Paper # 20 75

moving average of price of the last 180 trading days; in case the price is above a long position (buy the index) is held;
conversely, in case it is below the average a short (neutral resp.) position is held; otherwise the position is kept neutral.
On the other hand, the long only strategy holds the index forever, aiming at long term capital appreciation.

In order to compare the strategies two metrics are addressed, namely: the cumulative return i.e G; and the annualized
Sharpe ratio [10], i.e S = /252 1 , where 7 and ¢, are the sample average and standard deviation of returns. The

main idea behind the Sharpe ratlo is to address the return on risk adjusted basis. In addition, in order to make a “fair”
comparison the state representation of the tabular algorithms is constructed by calculating the Z score of the prices on
the last 180 trading days (same window used by the momentum strategy) and discretizing the score, yielding 8 states
which are depicted in x axis of figure 1. The rewards are calculated by multiplying the action took (i.e -1, 0 or +1) at time
t by the return of the index at time ¢ + 1.

In figure 1 the value function value predicted by algorithm is 1 is reported in basis points (i.e one hundredth of one
percent). It is interesting to note that during the years there is some consistency in the value function prediction in each
state. Furthermore, a hybrid behavior between momentum and mean reversion emerges, e.g: in the state where the price
falls below —30 a momentum strategy would go short whereas a mean reverting strategy would go long, the RL agent
would be long in this case. On the other hand, for price movements in range of (1o, 20), the RL agent would be long (so
would be a momentum strategy whereas a mean reverting strategy would be short). Therefore the behaviour captured
is not only dynamic in time but hybrid across the most common heuristics of the literature.

Table 1: Analysis of the impact of different values of discount factor, ~y, and elegibility trace, \, on the Sharpe ratio of Algorithm [1]. The results
suggest that v > 0 is not necessarily better, since the performance of a myopic agent turns out to be competitive, this could be related to the low
signal to noise ratio of the series but needs further investigation.

Al~y | 000 020 040 0.60 0.80 0.90 0.99
0.00 0.68 0.67 0.66 0.66 0.68 0.68 0.67
0.20 0.68 0.71 0.72 0.68 0.62 0.58 0.62
0.40 0.68 0.74 0.66 0.66 0.64 0.58 0.55
0.60 0.68 0.67 0.66 0.58 0.45 0.46 0.40
0.80 0.68 0.65 0.65 0.49 0.40 0.20 0.27
0.90 0.68 0.65 0.60 0.47 0.22 0.20 0.25
1.00 0.68 0.66 0.55 0.38 0.24 0.22 0.24

In Tables 2 and 3 the performance of different RL algorithms is compared and benchmarked against the momentum and
long only strategies. The results reported are averages and standard deviations accross 18 runs. Interestingly, there is not
much variability accross the performance of each algorithm and with a decent amount of confidence, say at least in the
20 region, all RL agents outperform the benchmark strategies in terms of Sharpe ratio.

5 Conclusions

In this work an empirical study of several tabular RL algorithms has been carried out for the problem of time series
based decision making. The experiments on a SP500 data set suggest that the RL agents trained online can outperform
some of the widely used heuristics in the finance literature by learning a hybrid dynamic strategy, conditioned on the
state representation. Furthermore, for this particular problem, it turned out that a simple value function prediction and
a fully exploitation modified Q learning agent are able to provide competitive performance across different algorithms.
That said, the performance of the algorithms is also relatively robust for different discount factors -, suggesting that long
term planning does not play a major role in this task. In particular for case of value function prediction, the performance
of the algorithm is also investigated for different values of eligibility trace parameters A and ~.

6 References

[1] Fama, E. E (1991) Efficient Capital markets: II, Journal of Finance, 46(5), 1575-1617.

Table 2: Cumulative returns, Go, of the algorithms tested for different values of -y compared with the heuristic baselines.

Performance Table (G+) v = 0.0 v =0.3 v =0.6 v =0.9 v = 0.99
Value Function Prediction 2.04 2.00 1.98 2.02 2.01
Q Learning (2 actions, € =0.01) 194+010 198+0.10 2.04+010 2.00+£0.15 2.03+0.09
Expected Sarsa (2 actions, € =0.01) 2024013 195+014 1904014 2.03+013 2.03+0.15
Sarsa (2 actions, € =0.01) 1944016 197+0.18 194+018 1924013 2.03+0.14
Modified Qlearning (3 actions e =0.0) 2.04 2.04 2.04 2.04 2.04
Momentum Long/Short 0.98
Momentum Long/Neutral 1.93
Long Only 1.39

Paper # 20 76

15 1.5

1.0 - 1.0

0s 0s l

o {0 M | -

-0.5 = -0.5 —

-1.0 T T T T T T T T -1.0 T T T T T T T T
-30 -(30,20)-(20,10) (-10,0) (0,10) (1l0,20) (20,30) 30 -30 -(30,20)-(20,10) (-10,0) (0,10) (10,20) (20,30) 30

15 1.5

1.0 - 1.0

N I N I

Il " | | . I . | .

0.0 — — 0.0 —

-0.5 = -0.5 —

-1.0 T T T T T T T T -1.0 T T T T T T T T
-30 -(30,20)-(20,10) (-10,0) (0,10) (10,20) (20,30) 30 -30 -(30,20)-(20,10) (-10,0) (0,10) (10,20) (20,30) 30

1.5 1.5

1.0 1.0

N . . I l N . . I

00 - . L — 00 - . — e

-0.5 = -0.5 - .

-1.0 T T T T T T T T -1.0 T T T T T T T T
-30 -(30,20)-(20,10) (-10,0) (0,10) (l0,20) (20,30) 30 -30 -(30,20)-(20,10) (-10,0) (0,10) (10,20) (20,30) 30

Figure 1: The y-axis shows the estimation of V'™, in basis points, from Algorithm [1] for every state in the x-axis. In order to visualize the dynamics
time is roughly spaced in 6 year intervals, so the top left is a snapshot of V™ on the 15th Feb 89; on the top right on 23rd Jan 95; on the middle
left the estimation corresponds to the 22ond Jan 2000; the middle right displays what V'™ looked on the 28th Sep 2006. The bottom left and right
correspond to the 7th Sep 2012 and 21st Aug 2018 respectively.

Table 3: Sharpe ratio,S, of the algorithms tested for different values of -y compared with the heuristic baselines.

Performance Table (Sharpe ratio) v =0.0 v =0.3 v =0.6 v =0.9 v =0.99
Value Function Prediction 0.68 0.68 0.66 0.68 0.67
Q Learning (2 actions, € =0.01) 0.654+0.03 066 +0.03 068+0.03 067+0.05 0.67+0.03
Expected Sarsa (2 actions, € =0.01) 0.68 + 0.04 0.65 + 0.05 0.64 + 0.05 0.68 £+ 0.04 0.69 £ 0.05
Sarsa (2 actions, € =0.01) 0.65+0.05 066+0.06 0.65+006 0.64+0.05 0.69+0.04
Modified Qlearning (3 actions € =0.0) 0.68 0.68 0.68 0.68 0.68
Momentum Long/Short 0.15
Momentum Long/Neutral 0.47
Long Only 0.46

[2] Jegadeesh, N. and Titman, S. (2001) Profitability of momentum strategies: An evaluation of alternative explanations. Journal of
Finance 56(2), 699-720.

[3] Li B, Hoi S.C.H (2014) Online portfolio selection: a survey. ACM Computing Surveys 46(3).
[4] Moody, J. E. & Saffell, M. (2001) Learning to Trade via Direct Reinforcement. IEEE Transactions on Neural Networks Vol 12, No 4.

[5] Nevmyvaka, Y., Feng, Y. & Kearns, M. (2006) Reinforcement learning for optimized trade execution. In 23rd International Conference
on Machine learning, pages 673 - 680.

[6] Shrestov, A. & Stone, P. (2004) Three Automated Stock-Trading Agents: A Comparative Study. Agent Mediated Eletronic Commerce
VI: Theories for and Engineering of Sistributed Mechanisms and Systems AMEC 2004 , Lectures Notes in Artificial Intelligence, pp. 194-205,
Springer Verlag. Berlin, 2005.

[7] Deng, Y., Kong, K., Ren, Z. & Dai, Q. (2016) Deep Direct Reinforcement Learning for Financial Signal Representation and Trading.
Image Processing IEEE Transactions Vol 25, pp. 4209-4221.

[8] Sutton, R. S. & Barto, A. G. (2018) Reinforcement Learning: An Introduction, 2nd Edition, Near final Draft - May, 27, 2018 MIT Press

[9] van Seijen, H. & Sutton, R. S. (2014) True online TD(X). In Proceedings of the 31st International Conference on Machine Learning, pages:
692 - 700.

[10] Sharpe, W. (1994) The Sharpe Ratio. The Journal of Portfolio Management, 21 (1) 49 - 58.

Paper # 267 77

Temporal Abstraction in Cooperative Multi-Agent Systems

Jhelum Chakravorty Sumana Basu
Department of Computer Science Department of Computer Science
McGill University /Mila McGill University /Mila
Montreal Montreal
jhelum.chakravorty@mail.mcgill.ca sumana.basulmail.mcgill.ca
Andrei Lupu Doina Precup
Department of Computer Science Department of Computer Science
McGill University /Mila McGill University /Mila
Montreal Montreal
andrei.lupu@mail.mcgill.ca dprecup@cs.mcgill.ca
Abstract

In this work we introduce temporal abstraction in cooperative multi-agent systems (or tearms), which are essentially
decentralized Markov Decision processes (Dec-MDPs) or dec. Partially Observable MDPs (Dec-POMDPs). We believe that as in
the case of single-agent systems, option framework gives rise to faster convergence to the optimal value, thus facilitating
transfer learning.

The decentralized nature of dynamic teams leads to curse of dimensionality which impedes scalability. The partial observabil-
ity requires minute analysis of the information structure involving private and public or common knowledge. The POMDP
structure entails growing history of agents’ observations and actions that leads to intractability. This calls for proper
design of belief to circumvent such a growing history by leveraging Bayesian update, consequently requiring judicious
choice of Bayesian inference to approximate the posterior. Moreover, in the temporal abstraction, the option-policies of the
agents have stochastic termination, which adds to intricacies in the hierarchical reinforcement learning problem.

We study both planning and learning in the team option-critic framework. We propose Distributed Option Critic! (DOC)
algorithm, where we leverage the notion of common information approach and distributed policy gradient. We employ the
former to formulate a centralized (coordinated) system equivalent to the original decentralized system and to define the
belief for the coordinated system. The latter is exploited in DOC for policy improvements of independent agents. We
assume that there is a fictitious coordinator who observes the information shared by all agents, updates a belief on the
joint-states in a Bayesian manner, chooses options and whispers them to the agents. The agents in turn use their private
information to choose actions pertaining to the option assigned to it. Finally, the option-value of the cooperative game is
learnt using distributed option-critic architecture.

Acknowledgements

We are indebted to Audrey Durand and Adriana Romero for their critical comments that helped us improve the content.

'We hereby would like to note that we have been unable to provide the proofs and some relevant preliminary ideas due to limitation
of space; they are given in the full paper.

Paper # 267 78
1 J-agent Dec-MDP planning with temporal abstraction

In this work we consider goal-based-event-driven Dec-MDP teams, where the agents know their own states but are unaware
of others’ states. There are some goal states g € G, where G C S is a set of goal states, which the agents like to explore.
There is a common pool of options O available to all agents, where we assume |O| =: Joption > J. The agents choose an

option o with unique identifier i € {1,..., Joption} from the pool without replacement. We write o/ = i to indicate that the
option used by Agent j has the identifier i. The agents update their common belief of joint-states via broadcasting. Upon
exploring a goal, the agents receive a common reward, they get penalized for collision and broadcasting involves a cost.

1.1 When to broadcast?

Any agent j at state s/ at time ¢ broadcasts under two circumstances: if it reaches a goal state (i.e. s; € G) and hence
terminates its current option o’ deterministically, or greedily (1). Agent j can terminate its option o’ stochastically with
probability 3%’ (s]), but does not necessarily broadcast. Let 3 := (5},...,s,...,5/) be a joint-state sampled from the
common belief (introduced in section 1.2), with the j-th component replaced by Agent j's true state s]. At every step t,
Agent j broadcasts if

Q"(5,05,) > Q"(3,05,), 1)
where Q* is the option-value corresponding to joint-option policy y. The joint-option op, implies that its component o’ is
broadcast and joint-option oz, implies its component o/ is not broadcast. While broadcasting, Agent j sends its state s/,
its action a] and the ID of the option it was executing o’ to every other agents.
The aforementioned description tells us that broadcasting depends on the current state s] of each Agent j and its
current option ol. For ease of exposition, let us denote the event that Agent j broadcasts at state s; by Broad(s], o).
Broad(s], o’) = 1implies that Agent j has broadcast, and Broad(s], 0/) = 0 implies that it hasn’t. The vector Broad(s, o) :=
(Broad(s},0'),...,Broad(s/,0”)) denotes the broadcast symbols of all agents. More formally, at time ¢, Broad(s, 0/) is
given by:
1, if sZ € Gor (1) is true
0, otherwise.

Broad(s],o’) == {)

1.2 Common information based belief state

The Dec-MDP can be viewed from the common information point-of-view as follows [4]. A fictitious coordinator observes the
information available to all the agents, the common information and prescribes a belief on the joint-state and a prescription
(Markov joint-option policy p;), which the agents apply in a decentralized manner (i.e., they apply their respective
action-policies on their local states) to decide on their actions. The common information based belief (coordinator’s state)
on the joint-state s; € S at time ¢ is then defined as:

bi(s) = P(sy =s|Z;™), 3)
where Z;"™ is the common information available to all agents at time instant m. Here m is the instant of the last broadcast.

Recall that when Agent j decides to broadcast, it broadcasts its own state s7, and own action a?. Hence, at any time ¢, the
joint-observation y; = (y7,...,y;) made by all agents as follows:

o (s],al), if Broad(s!,0l) =1
¢ , otherwise.

4
We can now express more formally the last instant of broadcast, m, as was introduced in Z;”™ in (3) as m := max{m’ <
t : for atleastone j,y’ , # @}. In other words, m is the last instant when at least one agent broadcast. Then, Z;""™
can be defined as follows: Z;”" := {y1.,,, Broad;.,, }, where Broad ., is the history of broadcasting of all agents until
time instant m. Note that since the broadcast information can be inferred from the joint-observation, Broad,.;—; can be

absorbed in y1.;—1 in the conditioning in the definition of b§. Thus, (3) can be rewritten as b$(s) := P(s; = s|y1.mm). Clearly,
P(st =s|y1.t—1) = P(st = s|y1.m), since no new information is received in times 7 € {m + 1,...,¢t — 1}. Thus,

bi(s) =P(st = s|y1.t—1)- 5)

From the common information perspective the coordinator observes the common information, the sequence of joint-
observations until time ¢, y;.¢, and generates prescriptions (in our case this is the joint Markov option-policy) p, according

Paper # 267 79

to some coordination rule 1) such that ¢ : Q@ — M, j € J (where Q2 is the set of all observations and M is the set of Markov
option policies)

pe = P(Y1:e-1, f1a—1)- (6)
The prescription 1! is then communicated to Agent j Note that Agent j then uses the component 1] of this prescription
chooses an option o/ ~ 1, uses the actlon-pohcy rind and termination probability 3" corresponding to o’ and generates
its action a] using its local information s] as per aj ~ 7° (\st) Since by (3), b is measurable with (y1..—1, ft1:4—1), we can
infer from (6) that there is no loss of optimality in restricting attention to coordination rules ¢ such that the prescription s

is given by 1, = ¥ (b5).
Denote by b , the posterior based on current observation as given by 7 ,(s) := P(s; = s|y1:¢)-
Then, the evolution of the common belief is given by:
F11(8) = Plseer =" [yre) = D p™ (5.8, (s). @)
seS

where p?(s, s’) denotes the one-step transition probability of going from state s to state s’ using action a.

We show that the above described coordinated system is a POMDP with prescriptions y; and observations y; = ht(st,),

where £, is Bayesian filtering update function®. Furthermore, based on a new joint observation received at time ¢, we show
that the common information based belief b has a Bayesian update.

The optimal policy of the coordinated centralized system is the solution of a suitable dynamic program, i.e. the fixed
point of which (if it exists) formulates the critic. We first show that the common information based belief state b] is an
information state, which forms a sufficient statistic to form a future belief bf, ; based on the current common belief and the
current joint-option p. Also, we establish the optimality of joint option-policy. We skip the main theorem involving these
results due to lack of space and instead turn our focus to the learning problem, as described in the subsequent sections.

2 Learning in Dec-MDPs with options

In this section we consider a setup of J-agent cooperative game, where they have decentralized control policies but a
single critic, the option-value, (infinite horizon discounted return) to maximize.

2.1 Common-belief based option-value and distributed gradient descent

We can extend the notion of option-value with full observability to the case with partial observability. Following the
definition of option-value upon arrival with call-and-return option, we have the following:

H(55,0) = 3 UM (5, 0)b5() = D | Boone(5)Q"(,0)b5(8) + (1 = Blonels))_max max _ Q"(s,0)bi(s)|, (8)

/ .
ses s T ePow(T) o' €EOuyait (T)

where BRoe(s) = [[;c 7 (18 of (s7)) is the probability that no agent has terminated, O,y (7) is the set of available options
for agents in the set 7 C 7 and Pow(7) is power-set of 7.

Q* in (8) is the solution of the following Bellman update:

*(b$, 0) ZQ“ (s,0)b5(s Z (Z 7°(als) [s) + 7 Z be (s’ (s,s)U“(s’,o))])bf(s), 9)

sES s€S \acAd s’'eS

where 7°(als) is the joint probability of choosing joint-action a in joint-state s. From independence of agents we have
m°(als) = [[;cs 7 (a?|s7), r*(s) is the common immediate reward of choosing joint-action a in joint-state s.

The optimal values corresponding to (8) and (9) are defined as follows:
*(]C — o 1C *(pcC — (e .
U (btu 0) . {L%aMX U (bt) 0)7 Q (bt7 0) 'Zréa’MX Q (bt ’ 0) (10)

Define operator B as follows: [BQ*](b¢,0) == v (> aca T2(als) Yoy es i () (pP(s,) U (S, o))) bs(s).

?Bayesian filtering applies Bayesian statistics and Baye’s rule in solving Bayesian inference problems including stochastic filtering
problems. See [3] and references therein for details.

Paper # 267 80

Then, Q* given by (10) can be rewritten as: with r° is the immediate reward corresponding to joint-option o, we have
Q7 (b, 0) = r°(b;) + [BQT](bf, 0). (11)

We show in the following lemma that B is a contraction. Thus, (11) has a unique solution. Furthermore, since r° is
bounded, so is Q*.

In this work we assume that the agents are factored, locally fully observable, transition independent and reward independent. For
such agents, it is shown in [5] that distributed gradient descent achieves local optima. In the sequel, we propose the idea of
learning in Dec-POMDP by augmenting the notion of distributed gradient descent of [5] with the spirit of option-critic
algorithm [2]. For Agent j we consider the parameters 7 = (71, ..., 67) for action-policy ﬁof and ¢’ = (¢j1 s, @IM)
for the termination function 3°’, where M > 1 is the number of parameters. We write 7" and 3°'%’ to show the
parameterized action-policy and termination function. We assume the standard Boltzmann function for the action policy
as given by

eQintra(57507)

Doaic A Qi (s7,09)”
where Qiorftra(sj7 a’) is the weight of the Boltzmann intra-option policy 700 of Agent j. Given the option o’ prescribed by
the coordinator, each agent j maintains its own action-value Q.. (s, a’) for their own true state s7, and action a’ € A7.

With fixed o7, the weights Q2. _(s7, a?) are updated using vanilla Q-learning.

intra

70’0’ (@ |s7) =

(12)

2.2 Factored common belief

For large scale systems, the common belief is intractable due to the combinatorial nature of joint state-space. Thus in one
of our experiments we assume that the common belief is factored, i.e.,

bi(s) = P(s; = s|yre1) = [[Pls] = &/ [yne—a) = [T 057 (s7) = 077(s). (13)
ieg J€T
2.2.1 Update of factored common belief in a consistent way

When the coordinator updates the factored common belief based on the joint-observation y;, it can do so first by iteratively
updating the factored likelihood L, as given by the following: for each agent j € J

Li(s7) = P(br’,a?|s’, Broad, bS)
By (1(s] = #)1(Broad() = b1z () = /)

ox Li—1(87) . _
Esgwa,j]l(Sg = SJ)

: (14)

where Broad is the deterministic broadcast function and br’ := Broad(s’), is the broadcast symbol of agent j, br’ € {0,1}.

Then, the posterior of the factored common belief can be computed using Bayes update rule (??) using the factored
likelihood (14). But this posterior may not be consistent with the fact that the dynamics of the agents are not transition
independent (e.g., when collision is not allowed as in our case). So, in order to make the posterior consistent, the coordinator
observes the current joint observation y; and re-marginalizes the factored common belief as follows: for inner loop k, do
forallje J

pod — bg,j7 B0 = H p0J (15)
jeT
bk+1’j X ESkaLt(Sj)IP(Sj 7£ Sij)
X By L(s7) [1(y; 7 # None)P(y; 7 # 5/)] + 1(y,; =None) Y~ P(s™ #)], (16)

s—Jn~bk,—J

where for any agent j, y; 7, s~/ and b*~7 denote respectively the observations, sampled states and the factored beliefs
of other agents. With a slight abuse of notation, the equalities and inequalities in the last line imply for all other agents

ke T\j.

Using arguments for the convergence of the policy-gradient based algorithms (e.g., [7]) and the local optima achieved by
distributed stochastic gradient descent [5, Theorem 1], we can show the following

Theorem 1 The DOC algorithm given above converges to the optimal option-value Q*.

Paper # 267 81

Critic Value Function

0.04 1

0.03 A

Q-Values

0.01 A

1000 2000 3000 4000
steps

o

Figure 1: Option-critic values over iterations

3 Experiments

We validate theoretical results using Four-room environment introduced in [6]. Unlike their setup, we do not have any pre-
specified options in the common pool of options available to all agents. In the first experiment we investigate a navigation
task in a tabular setting with several equivalent targets. In the second experiment we use a Teamgrid [1] environment
with hierarchichal tasks which call for cooperation among the agents. We parameterize the Q-value, intra-option policy,
termination function and the broadcast function with deep neural nets and use factored common belief so that the results
are scalable to large state-spaces. Fig. 1 shows the convergence over 5 runs of option-critic for the tabular set-up.

4 Discussion

This paper investigates the temporal abstraction in dynamic teams (cooperative multi-agent systems) with expensive
broadcast. The main contribution of the paper is the establishment of the theoretical results of the main learning algorithm.
We extend the option-critic architecture to multi-agent systems and provide convergence results. In the underlying
planning problem, we adopt the common-information approach which transforms the decentralized problem into an
equivalent centralized set-up which enables us to leverage the tools from centralized stochastic optimization problems.
Note that similar to option-critic, DOC does not require learning the the options and learning the intra-option policies
and terminations suffices. For simplicity of exposition we have assumed in this work that whenever the agents decide to
broadcast, they broadcast their state and action. This is common in practice in applications such as in communication
networks with collision channels where the alphabet to be transmitted is of a few bits and the action of transmitting or not is
of one bit. For larger bits to be broadcast, one may use techniques like source-coding before transmitting, but that would not
alter the rest of the modeling assumptions and the convergence results will continue to hold. In such applications collision
in the channel causes the packet to drop and so putting collision penalty to discourage collision helps in learning. That the
agents broadcast to everyone can be costly in realistic scenarios. In that case one may learn optimal neighbourhood on top
of learning the policies and terminations and broadcast only to the neighbours.

References

[1
[2
[3
[4

] Teamgrid github repo. https://github.com/mila-igia/teamgrid.

] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI, 2017.

] Zhe Chen. Bayesian filtering: From kalman filters to particle filters, and beyond. Statistics, 182(1):1-69, Jan. 2003.
]

A. Nayyar, A. Mahajan, and D. Teneketzis. Decentralized stochastic control with partial history sharing: A common information
approach. 58(7):1644-1658, jul 2013.

[5] Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau, and Leslie Pack Kaelbling. Learning to cooperate via policy search. In Proceedings
of the Sixteenth Conference on Uncertainty in Artificial Intelligence, UAI'00, pages 489-496, San Francisco, CA, USA, 2000. Morgan
Kaufmann Publishers Inc.

[6] Richard Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112:181-211, 1999.

[7] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for reinforcement learning with
function approximation. In Proceedings of the 12th International Conference on Neural Information Processing Systems, NIPS'99, pages
1057-1063, Cambridge, MA, USA, 1999. MIT Press.

Paper # 264 82

Improving Generalization over Large Action Sets

Yash Chandak Georgios Theocharous James E. Kostas
University of Massachusetts Amherst Adobe Research, San Jose University of Massachusetts Amherst
ychandak@cs.umass.edu theochar@adobe.com jekostas@cs.umass.edu
Scott M. Jordan Philip S. Thomas
University of Massachusetts Amherst University of Massachusetts Amherst
sjordan@cs.umass.edu pthomas@cs.umass.edu
Abstract

Most model-free reinforcement learning methods leverage state representations (embeddings) for generalization, but
either ignore structure in the space of actions or assume the structure is provided a priori. We show how a policy can
be decomposed into a component that acts in a low-dimensional space of action representations and a component that
transforms these representations into actual actions. These representations improve generalization over large, finite action
sets by allowing the agent to infer the outcomes of actions similar to actions already taken. We provide an algorithm to
both learn and use action representations and provide conditions for its convergence. The efficacy of the proposed method
is demonstrated on large-scale real-world problems.

Keywords: Large Action Spaces, Action Representations

Acknowledgements

Part of the work was done when YC was an intern at Adobe. Later, the work was supported by Adobe Research Grant.

Paper # 264 83

1 Introduction

Reinforcement learning (RL) methods have been applied successfully to many simple and game-based tasks. However,
their applicability is still limited for problems involving decision making in many real-world settings. One reason is that
many real-world problems with significant human impact involve selecting a single decision from a multitude of possible
choices. For example, maximizing long-term portfolio value in finance using various trading strategies [4], improving
fault tolerance by regulating voltage level of all the units in a large power system [3], and personalized tutoring systems
for recommending sequences of videos from a large collection of tutorials. Therefore, it is important that we develop RL
algorithms that are effective for real problems, where the number of possible choices is large.

In this paper we consider the problem of creating RL algorithms that are effective for problems with large action sets.
Existing RL algorithms handle large state sets (e.g., images consisting of pixels) by learning a representation or embedding
for states (e.g., using line detectors or convolutional layers in neural networks), which allow the agent to reason and learn
using the state representation rather than the raw state. We extend this idea to the set of actions: we propose learning
a representation for the actions, which allows the agent to reason and learn by making decisions in the space of action
representations rather than the original large set of possible actions. This setup is depicted in Figure 1, where an internal
policy, m;, acts in a space of action representations, and a function, f, transforms these representations into actual actions.
Together we refer to m; and f as the overall policy, .

Recent work has shown the benefits associated with using action-embeddings [2], particularly that they allow for general-
ization over actions. For real-world problems where there are thousands of possible (discrete) actions, this generalization
can significantly speed learning. However, this prior work assumes that fixed and predefined representations are provided.
In this paper we present a method to autonomously learn the underlying structure of the action set by using the observed
transitions. This method can both learn from scratch and improve upon a provided action representation.

A key component of our proposed method is that it frames the problem of learning an action representation (learning f)
as a supervised learning problem rather than an RL problem. This is desirable because supervised learning methods tend to
learn more quickly and reliably than RL algorithms since they have access to instructive feedback rather than evaluative
feedback [6]. The proposed learning procedure exploits the structure in the action set by aligning actions based on the
similarity of their impact on the state. Therefore, updates to a policy that acts in the space of learned action representation
generalizes the feedback received after taking an action to other actions that have similar representations.

To evaluate our proposed method empirically, we study two real-world recommender system problems using data from
Adobe HelpX and Adobe Photoshop. In both the applications, there are thousands of possible recommendations that
could be given at each time step (e.g., which video to suggest the user watch next on the HelpX portal, or which tool
to suggest to the user next in the Photoshop software). Our experimental results show our proposed system’s ability to
significantly improve performance relative to existing methods for these applications by quickly and reliably learning
action representations that allow for meaningful generalization over the large discrete set of possible actions.

2 Background

We consider problems modeled as discrete-time Markov decision processes (MDPs) with discrete states and finite actions.
An MDP is represented by a tuple, M = (S, A,P,R,~,dy). S is the set of all possible states, called the state space, and .A
is a finite set of actions, called the action set. In this work, we restrict our focus to MDPs with finite action sets, and |.A|
denotes the size of the action set. The random variables, S; € S, A; € A, and R; € R denote the state, action, and reward
attime t € {0,1,... }. The first state, Sy, comes from an initial distribution, dy, and the reward function R is defined so
that R(s,a) = E[R;|S: = s, Ay = a] forall s € S and a € A. The reward discounting parameter is given by v € [0,1). P is
the state transition function. A policy 7 : A x § — [0, 1] is a conditional distribution over actions for each state. For any
policy 7, the corresponding state-action value function, ¢” (s, a), and the state value function, v™(s), are defined as in [6].

3 Generalization over Actions

The benefits of capturing the structure in the underlying state space of MDPs is a well understood and a widely used
concept in RL. State representations allow the policy to generalize across states. Similarly, there often exists additional
structure in the space of actions that can be leveraged. We hypothesize that exploiting this structure can enable quick
generalization across actions, thereby making learning with large action sets feasible. To bridge the gap, we introduce
an action representation space, £ C R¢, and consider a factorized policy, 7, parameterized by an embedding-to-action
mapping function, f: £ — A, and an internal policy, m;: S x € — [0, 1], such that the distribution of A, given S, is
characterized by:
Ey ~mi(+|Se), Ay = f(E).

Paper # 264 84

SN ®

1 Vd \ . Ve \ 1 g ._f>. .—»H
A (7)) @ @ e ° @

i (\\,/‘ Repre‘s:g?v?ation N —,:L/ : e

1 AN / \ ! 1 VL

i ‘7/-.. e ,_\\—\' | @ v

| \ 7-‘-0/} (a) (b)

Figure 1: (Left) The structure of the proposed overall policy, 7,, consisting of f and ;, that learns action representations
to generalize over large action sets. (Right) a) Given a state transition tuple, functions g and f are used to estimate the
action taken. The red arrow denotes the gradients of the supervised loss (2) for learning the parameters of these functions.
b) During execution, an internal policy, 7;, can be used to first select an action representation, e. The function f, obtained
from previous learning procedure, then transforms this representation to an action. The blue arrow represents the internal
policy gradients (3) obtained using Lemma 1 to update ;.

Here, 7; is used to sample E; € £, and the function f deterministically maps this representation to an actlon in the set A.
Both these components together form an overall policy, 7,. With a slight abuse of notation, we use f~!(a) to denote the
set of representations that are mapped to the action a by the function f, i.e., f71(a) :={e € £ : f(e) = a}. With this, we
define the overall policy, 7,(als) == [, _, -1(a) Ti(€]s) de. In the following sections, we present the supervised learning process
for the function f when 7, is ﬁxed Next we give the policy gradient learning process for m; when f is fixed. Finally, we
combine these methods to learn f and 7; simultaneously.

Supervised Learning of f For a Fixed m;: We leverage a standard Markov property, often used for learning probabilistic
graphical models, to express P(A;|S;, Si11) as [P(A¢|Ey = e)P(Ey = €|Sy, Si41) de. Given an embedding F; we assume
that the action, A,, is deterministic and can be represented by a function f : £ — A, such that P(A4;|S;, Si+1) can be
decomposed in terms of f and P(E,|S;, S;+1). However, such a function f that maps from representation space to the
actions may not be known a priori. We propose searching for an estimator, f, of f and an estimator, §(E;|S:, Si+1), of
P(E4|St, Si+1) so that a reconstruction of P(A¢|S, S¢+1) is accurate. Let this estimate of P(A;|S;, Si+1) based on f and §
be P(A¢|Sy, Siy1) = [f(Ai|Ey=e)g(E;=e|S;, Siy1) de. One way to measure the difference between P(A;|S;, Sy;1) and
P(Ay|S;, S;41) is using the expected (over states coming from the on-policy distribution) Kullback-Leibler (KL) divergence
P(a|5t,5t+1)

P(alSt, Spp1)In | —5"—5—= 1
(;4 (| t tJrl) (P(CL|St,St+1) ()
Since the observed transition tuples, (S, A¢, Si4+1), contain the action responsible for the given S; to Sy11 transition, an
on-policy sample estimate of the KL-divergence can be computed readily using (1). We adopt the following loss function
based on the KL divergence between P(A4;|S;, S;11) and P(A;|S;, Si11):

L(f,§)=-E [ln (P(At|5ta St+1)>:| ; (2)

where the denominator in (1) is not included in (2) because it does not depend on f or g.If f and g are parameterized, their
parameters can be learned by minimizing the loss function, £, using a supervised learning procedure. In our experiments,
f contains learnable representations for the actions, and maps an embedding to the closest action. A computational graph

for this model is shown in Figure 1. Note that, while f will be used for f in an overall policy, g is only used to find f , and
will not serve an additional purpose. As this supervised learning process only requires estimating P(A;|S;, Si+1), it does
not require (or depend on) the rewards. This partially mitigates the problems due to sparse and stochastic rewards, since
an alternative informative supervised signal is always available. This is advantageous for making the action representation
component of the overall policy learn quickly and with low variance updates.

=—E

Learning 7; For a Fixed f: A common method for learning a policy parameterized with weights 6 is to optimize the
discounted start-state objective function, J(0) := ¢ do(s)v”(s). For a policy with weights 6, the expected performance
of the policy can be improved by ascending the policy gradient, 6‘](9) . Let the state-value function associated with the
internal policy, 7;, be v™ (s) = E[Y_ .=, 7' R|s, m;, f], and the state- actlon value function ¢™ (s, e) = B[y v Rils, e, m;, f).
We then define the performance function for ; as, J;(0) := > s do(s)v™ (s). Viewing the embeddings as the action for

the agent with policy 7;, the policy gradient theorem [7], states that the gradient of J;(9) is,

ZE[/ () mi(el i) de]. ®

Paper # 264 85

Cartesian Learned

, 2
o . . o
.
b 3
e J ~
-075 . e ® e .] °
-1.00 -
-100 075 -0.50 025 000 025 050 075 100 06 -04 02 00 02 04 06 08

€1

Figure 2: (a) The maze environment. The star denotes the goal state, the red dot corresponds to the agent and the arrows
around it are the 12 actuators. (b) 2-D representations for the displacements in the Cartesian co-ordinates caused by each
action, and (c) learned action embeddings. In both (b) and (c), each action is colored based on the displacement (Az,
Avy) it produces. Cartesian actions are plotted on co-ordinates (Axz, Ay), and learned ones are on the coordinates in the
embedding space. Smoother color transition corresponds to preservation of the relative underlying structure.

where, the expectation is over states from d”, as defined by [7] (which is not a true distribution, since it is not normalized).
The parameters of the internal policy can be learned by iteratively updating its parameters in the direction of 9.J;(8)/06.
Since there are no special constraints on the policy 7;, any policy gradient algorithm designed for continuous control can
be used out-of-the-box.

However, note that the performance function associated with the overall policy, 7, (consisting of function f and the internal
policy parameterized with weights 0), is, J,(0, f) = >_,cs do(s)v™ (s). The ultimate requirement is the improvement of
this overall performance function, J, (9, f), and not just J;(6). So, how useful is it to update the internal policy, m;, by
following the gradient of its own performance function? The following lemma answers this question.

Lemma 1. For all deterministic functions, f, which map each point, e € RY, in the representation space to an action, a € A, the

expected updates to 6 based on % are equivalent to updates based on W. That is, %g’f) = a%m

The chosen parameterization for the policy has this special property, which allows =; to be learned using its internal
policy gradient. Since this gradient update does not require computing the value of any 7,(a|s) explicitly, the potentially
intractable computation of f~! required for 7, can be avoided. Instead, 8.J;(6)/960 can be used directly to update the
parameters of the internal policy while still optimizing the overall policy’s performance, J,(, f).

Learning 7; and f Simultaneously: Since the supervised learning procedure for f does not require rewards, a few
initial trajectories can contain enough information to begin learning a useful action representation. As more data becomes
available it can be used for fine-tuning and improving the action representations.

If the action representations are held fixed while learning
the internal policy, then as a consequence of Lemma 1, con-
vergence of our algorithm directly follows from previous
two-timescale results [1]. Learning both 7; and f simul- 1

taneously using our PG-RA algorithm can also be shown 2

to converge. We consider three learning rate sequences, 3

such that the update recursion for the internal policy is 4 Sample action embedding, EF, from 7;(:|S;)
on the slowest timescale, the critic’s update recursion is 5 Ay = f(Ey)
6
7
8
9

Algorithm 1: Policy Gradient with Representations for
Action (PG-RA)

Initialize action representations
for episode = 0,1,2... do
fort=0,1,2...do

on the fastest, and the action representation module’s has Execute A; and observe S, 1, R,

an intermediate rate. With this construction, we leverage Update ; using any policy gradient algorithm
the three-timescale analysis technique [1] for convergence. Update critic (if any) to minimize TD error
Formal proofs and exact implementation details are left
out due to space constraints. =

Update f and § to minimize £ defined in (2)

4 Empirical Analysis

A core motivation of this work is to provide an algorithm that can be used as a drop-in extension for improving the action
generalization capabilities of existing policy gradient methods for problems with large action spaces. We consider two
standard policy gradient methods: actor-critic (AC) and deterministic-policy-gradient (DPG) in our experiments.

Maze: As a proof-of-concept, we constructed a continuous-state maze environment where the state comprised of the
coordinates of the agent’s current location. The agent has n equally spaced actuators (each actuator moves the agent in
the direction the actuator is pointing towards) around it, and it can choose whether each actuator should be on or off.

Paper # 264 86

Maze with 28 Actions Maze with 2/12 Actions Tutorisl MDP Software MDP

L — ACRA wo —— ACRA
— AC —— DPG-RA —— DPG-RA
200 — AC

Total Expected Return

Total Expected Retumn

Total Expected Return
8

Total Expected Return

o —— AC-RA
— AC

3

0 1 2 3 4

5 2 3 5 00 05 10
Episodes led Episodes. Ted

15 20 25 30 00 05 10 15 20 25 30
Episodes 165 Episodes 1e5

Figure 3: Results for the Maze domain with 2% actions, 2'? actions, Adobe HelpX MDP and Adobe Photoshop MDP. AC-RA
(green) and DPG-RA (blue) are the variants of PG-RA algorithm that uses actor-critic (red) and DPG, respectively.

Therefore, the size of the action set is exponential in the number of actuators, that is | A| = 2”. The net outcome of an
action is the vectorial summation of the displacements associated with the selected actuators. The agent is rewarded with
a small penalty for each time step, and a reward of 100 is given upon reaching the goal position. To make the problem
more challenging, random noise was added to the action 10% of the time and the maximum episode length was 150 steps.
This environment is a useful test bed as it requires solving a long horizon task in an MDP with a large action set and a
single goal reward. The visualizations of the learned action representations on the maze domain is provided in Figure 2.

Real-word recommender systems: We consider two real-world applications of recommender systems that require
decision making over multiple time steps. First, Adobe HelpX, a web-based video-tutorial platform, which has a recommen-
dation engine that suggests a series of tutorial videos on various Adobe software products. The second application is
Adobe Photoshop, a professional multi-media editing software. The aim is to meaningfully engage the users in learning
how to use these software products and convert novice users into experts in their respective areas of interest. For both
of these applications, an existing log of user’s click stream data was used to create an n-gram based MDP model for
user behavior [5]. Sequences of user interaction were aggregated to obtain over 29 million clicks and 1.75 billion user
clicks for HelpX and Photoshop, respectively. 1498 tutorials and 1843 tools for the HelpX platform and Adobe Photoshop,
respectively, were used to create the action set for the MDP model. Rewards were chosen based on a surrogate measure for
difficulty level of tutorials on HelpX portal and popularity of final outcomes of user interactions in Photoshop, respectively.

Performance Improvement: The plots in Figure 3 for the Maze domain show how the performance of standard actor-
critic (AC) method deteriorates as the number of actions increases, even though the goal remains the same. However,
with the addition of an action representation module it is able to capture the underlying structure in the action space and
consistently perform well across all settings. Similarly, for both Adobe HelpX and Adobe Photoshop MDPs, standard
AC methods fail to reason over longer time horizons under such an overwhelming number of actions, choosing mostly
one-step actions that have high returns. In comparison, instances of our proposed algorithm are not only able to achieve
significantly higher return, up to 2x and 3x in the respective tasks, but they do so much quicker. These results reinforce
our claim that learning action representations allow implicit generalization of feedback to other actions embedded in
proximity to executed action.

Further, under the PG-RA algorithm, only a fraction of total parameters, the ones in the internal policy, are learned
using the high variance policy gradient updates. The other set of parameters associated with action representations are
learned by a supervised learning procedure. As evident from the plots in the Figure 3, this reduces the variance of updates
significantly, thereby making the PG-RA algorithms learn a better policy faster. These advantages allow the internal policy,
m;, to quickly approximate an optimal policy without succumbing to the curse of large actions sets.

References

[1] V.S.Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48. Springer, 2009.

[2] G.Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap, J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin. Deep
reinforcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

[3] M. Glavic, R. Fonteneau, and D. Ernst. Reinforcement learning for electric power system decision and control: Past considerations
and perspectives. IFAC-PapersOnLine, 50(1):6918-6927, 2017.

[4] Z.Jiang, D. Xu, and J. Liang. A deep reinforcement learning framework for the financial portfolio management problem. arXiv
preprint arXiv:1706.10059, 2017.

[5] G.Shani, D. Heckerman, and R. I. Brafman. An MDP-based recommender system. Journal of Machine Learning Research, 2005.
[6] R.S.Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[7] R.S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. Policy gradient methods for reinforcement learning with function
approximation. In Advances in neural information processing systems, pages 1057-1063, 2000.

Paper # 209 87

Discrete off-policy policy gradient using continuous relaxations

Andre Cianflone Zafarali Ahmed Riashat Islam
Mila - McGill University Mila - McGill University Mila - McGill University
Avishek Joey Bose William L. Hamilton
Mila - McGill University Mila - McGill University
Abstract

Off-Policy policy gradient algorithms are often preferred to on-policy algorithms due to their sample efficiency. Al-
though sound off-policy algorithms derived from the policy gradient theorem exist for both discrete and continuous
actions, their success in discrete action environments have been limited due to issues arising from off-policy corrections
such as importance sampling. This work takes a step in consolidating discrete and continuous off-policy methods by
adapting a low-bias, low-variance continuous control method by relaxing a discrete policy into a continuous one. This
relaxation allows the action-value function to be differentiable with respect to the discrete policy parameters, and avoids
the importance sampling correction typical of off-policy algorithms. Furthermore, the algorithm automatically controls
the amount of relaxation, which results in implicit control over exploration. We show that the relaxed algorithm performs
comparably to other off-policy algorithms with less hyperparameter tuning.

Keywords: policy gradient, off-policy actor-critic, continuous relaxation

Acknowledgements

Z.A. is funded by a Canada Graduate Scholarship, A.C. is funded by a Borealis Al Fellowship.

Paper # 209 88

1 Introduction

Policy gradient methods are a class of algorithms used to solve reinforcement learning problems (RL) by directly optimiz-
ing a parameterized policy. On-policy learning uses data collected from this policy to compute gradient updates. Despite
being rather successful [1], they can be sample inefficient as new data needs to be collected for each gradient update.
Consequently, Off-policy learning is preferred due to its ability to re-use data collected from older policies. In particular,
off-policy methods support data re-use from multiple behaviour policies, while learning a desired target policy.

While algorithms such as the Deep Deterministic Policy Gradient (Deep DPG) [2] exist for environments with continuous
actions, there has not been much progress for discrete actions due to the lack of a viable discrete reparameterization
approach. Algorithms like off-policy actor critic (Off-PAC) [3] and Actor Critic with Experience Replay (ACER) [4] can be
derived for discrete action environments. However, the reliance on the importance sampling corrections limits their use
in practice due to its high variance gradient estimate [5]. Recent work introduces Actor-Critic with Emphatic Weightings
(ACE) [6] as another approach to discrete action off-policy learning that introduces the first “off-policy policy gradient
theorem”. However, ACE also requires estimating corrections and has not yet been demonstrated in more complex
domains.

Our work aims to use successful continuous control algorithms [7] for discrete action environments by using continuous
relaxations of samples from a discrete policy [8]. In essence, we convert the learning of a discrete policy into a continuous
control problem. A particularly interesting side effect of the relaxation is the introduction of a temperature parameter, 7,
that controls the amount of relaxation: The temperature can be automatically tuned [9], thereby controlling the entropy
of the policy and eliminating the need for external exploration noise. We call this approach a Autotuned, Relaxed,
Reparameterized Discrete Domain algorithm (AR2D2). Our contributions are:

1. Using continuous relaxations of discrete categorical samples [10, 8] to find the gradient of the action-value func-
tion, resulting in an algorithm similar to DPG [11].

2. Automatic control of the relaxation allowing sufficient exploration and eventual recovery of the optimal policy
using a novel objective that balances variance reduction [9] and action-value maximization.

2 Background

We start by covering the off-policy reinforcement learning setting before considering the continuous relaxation in Sec-
tion 2.1. Consider a Markov decision process (S, A, R,T,~) where S is a set of states, A is a set of discrete actions,
R : S x A — Ris the reward function, 7 : § x A x § — [0, 1] is the state-transition probabilities, and ~ € [0, 1] is the dis-
count factor. The expected discounted return from a state, s, is given by the value function: V7™ (s) = E;[>", v'r¢|so = s].
In policy gradient methods, we search for a parameterized target policy, 7, that maximizes J(6) = >, dx,(s)V™(s)
where dr, (s) is the stationary state distribution under the policy .

However, in case of off-policy learning the samples are drawn from the state distribution under the behaviour policy,
p(s|a) . Therefore, we optimize J(6) = >, d,,(s)V™ (s) where d,(s) is the stationary state distribution under .

Importance sampling techniques (IS) can be used to correct for the discrepancy in the behaviour and target policies [5].
However, IS corrections, being high variance, often make algorithms such as Off-PAC [3] difficult to use in practice.
Alternatively, we can use the deterministic policy gradient theorem [12] to avoid IS corrections by considering determin-
istic policies, mg(als) = a. In particular, DPG proposes a variant of Q-learning for policy gradients, where instead of
taking a greedy policy improvement, we can directly improve the policy in the direction of the gradient of the action-

value function: Vg J(6) = Z du(s)VeQm (s, my(s)). One limitation of the DPG is that it requires differentiable samples.

Differentiable reparameterizations exist for continuous distributions like the Gaussian [13, 14] and have been applied to
continuous control problems in RL [11, 7]. While relaxing a categorical distribution has been explored in reinforcement
learning as a action-depentent control variate [9] and a policy [15], it has not been fully developed into a viable alternative
to well-known algorithms such as DON [16].

2.1 Continuous Relaxations for Discrete Variables

In this section, we cover background material related to discrete reparmetrization of categorical distributions [10, 8].
Consider the general objective of optimizing parameters 6 of a probability distribution, py, to maximize the function f.
The gradient is defined as V4L () = Vo E.,,[f(2)]. When f is not differentiable the log-deriviative identity! can be
applied to obtain the REINFORCE estimator, Vo L(0) = E...,,)[f(2)Velogpg(z)] which can be estimated using Monte-
Carlo sampling [17].

'The log-derivative identity is Vo = 2V log =

Paper # 209 89

In cases where f is differentiable and py can be reparameterized through a deterministic function, z = g(¢, §), alow variance
gradient estimate can be be computed by shifting the stochasticity from the distributional parameters to a standardized
noise model, € [13, 14]. Specifically, we can rewrite the gradient computation as VgL (0) = E.[V, f(g(€,0))Vag(e, 0)].

The Gumbel-Max trick [18] offers such a reparameterization for the categorical distribution: z = argmax;[g; + log ;]
where 7; are the log probabilities for a Categorical distribution and g; are independent and identically distributed noise
variables from the Gumbel(0, 1) distribution. While such a reparametrization shifts the distribution parameters to a
deterministic node, it introduces a non-differentiable arg max. The Gumbel-Softmax (GS) [10] distribution proposes to
replace the arg max with a softmax and temperature parameter 7:

exp((logn; + g:)/7)
’ €))
> j=1 exp((logn; + g;)/7)

where 7 — 0 recovers the argmax, and 7 — oo recovers the uniform distribution. Due to the relaxation, the softmax
operation is differentiable providing continuous differentiable samples from this distribution. Computing arg max; y;
corresponds to sampling from a categorical distribution and allows execution in a reinforcement learning environment.

P =

3 Off-Policy Policy Gradients with Gumbel Reparameterization

In this section we discuss how to introduce the Gumbel-Softmax as an alternate parameterized policy for discrete actions
in the off-policy setting. We will do this by deriving the gradient for the action-value function to do policy improvement
by following the grading direction.

Recall the off-policy learning setup, where the goal is to learn a target parameterized policy mg while collecting data from
a behaviour policy u. Consider the gradient of the action-value function:

VoJ(mg) = Esnd,(s)[VaQ(s;a)Vema(s)] @)

Like in DPG, a = 7¢(s), where 7y is implemented using a Gumbel-Softmax policy with a relaxation parameter, 7 (Equa-
tion 1). These relaxed discrete actions allow us to take gradients of () w.r.t. the policy parameters 6§, effectively back-
propagating through the sampling process. To execute actions in the environment, continuous samples from relaxed
policies are discretized using arg max so that they correspond to samples from a categorical distribution. In supervised
learning tasks, the Gumbel-Softmax temperature parameter is decayed [10] to reduce the relaxation over time. In re-
inforcement learning, premature annealing may lead to a suboptimal deterministic policy as the policy would fail to
sample a diverse number of trajectories (i.e. reduced exploration). The temperature, 7, must be carefully controlled to
prevent this outcome. In this work we consider 7 is learned during optimization.

We now describe an off-policy actor-critic algorithm we call AR2D2 . We first describe the standard critic update to
learn @), and then describe how the actor parameters are updated. Finally, we discuss how the trainable relaxation
parameter is automatically tuned in our setup for exploration and variance minimization. The algorithm is summarized
in Algorithm 1.

3.1 Critic Update

We use a () function parameterized by w, where in our case w are the parameters of a neural network. Unlike DPG, our
policy is discrete and allows the @) function to be updated by minimizing the mean squared error (MSE) between) and
a fixed target. To address overestimation bias [19] in the critic update, we employ Double Clipped Q-Learning [7]. The
target) in the MSE now consists of taking the minimum of two Q-functions in the critic update:

L) = 5 S0+ miny @i, (siv1,mofsi11)) — Qu(sisa0))? ©)

3

where (s;, a;, 7, $;+1) are a collection of experiences from the environment.

3.2 Actor Update
Expanding the Gumbel-Softmax policy definition from Equation 1 reveals three sets of variables: the categorical proba-

bilities {71, ...,74}, the Gumbel noise {g1,..., g4/} and the temperature parameter 7. The categorical parameters are
implemented with a deep neural network and updated by following the gradient in Equation 2.

3.3 Temperature Update

While the addition of the temperature is added to Gumbel-Softmax as a requirement for being differentiable, its intro-
duction offers a unique opportunity in the reinforcement learning domain to automatically control the balance between

Paper # 209 90

00

k] — AR2D2 temperature
300
200 ! o] W 0
s w0 | fi E 40 g ®
g g £
g -100 ’/ @ g
_ 0 — | DDQN
o DDQN Q 0
| — ACER w — ACER
-m|. — ARID2 — AR2D2 °
-mD'CI 200000 400000 600000 800000 1000000 ! [} 200000 400000 600000 BOODOO 1000000 .3-3 50000 100000 150000 200000 250000 300000 350000 400000
steps steps sieps
(a) Performance on LunarLander-v2 (b) Performance on CartPole-v1 (c) Temperature auto-tuned in training

Figure 1: Evaluation performance for three algorithms on (a) LunarLander-v2 and (b) CartPole-vl. (c) shows the
behaviour of temperature during learning. (a) While all three algorithms solve LunarLander (> 200 reward), AR2D2
displays lower variability between random seeds. (b) While ACER and DDQN show high variance for CartPole, AR2D2
converges quickly even when using the same hyperparameters as Lunar Lander. We plot a smoothed mean-return along
with standard deviation (shaded) for 5 random seeds. (c) The temperature increases at the start of learning and decays
automatically over time.

exploration and exploitation: adjusting the temperature from zero to infinity interpolates the distribution between a
deterministic arg max and a uniform distribution. The role of 7 is then similar to the downstream impact of entropy reg-
ularization in that it controls policy stochasticity [20, 21] and avoids the need for external exploration noise often added
to off-policy algorithms [16, 2, 19]. Given 7 is part of the same computational graph which optimizes 1, we formulate
two separate gradient updates for 7, one to maxizime discounted return and another to minimize variance.

In order to stabilize the changing policy, we minimize the policy gradient variance w.r.t. 7, as proposed in [9], who
optimize the temperature of a relaxed hard threshold control variate. The gradient of the variance in gradient wrto 7 is
formulated as:
9g(my)
or

s Var(a(m,) = 5~ (Bla(m,)] Bla(m,) 1) = B [20(m,) @

where g(7,) is the gradient of Equation 2 w.r.t. the categorical parameters 7. The second update takes a gradient ascent
step w.r.t. 7 in the direction which maximizes). Combining the two, we get the following update for :

Ter1 = Tt + a2 [VoQ(8,) amry () VoTo(8)] — a2V, Var(g(m)) @)

where a@ and a7 are respective learning rates for the gradien updates to maximize) and minimize the gradient variance
from Equation 4. We find that a high o learning rate, allowing the policy to quickly interpolate between exploration
and exploitation, is key to quick convergence of the algorithm. The algorithm is summarized in Algorithm 1.

4 Experimental Results

In this section we show the viability of using continuous relaxations by comparing with two state-of-the-art off-policy RL
algorithms: Double Deep-Q Learning (DDQN) [19] and ACER [4] on two discrete action environments, LunarLander-v2
and CartPole-v1 [22]. Algorithms are compared based on rollouts of the greedy policy. We tune hyperparameters on
LunarLander-v2 and transfer them without modification to CartPole-v1.

All methods solve LunarLander-v2 (Figure 1a). Interestingly, the hyperparameters for AR2D2 found on LunarLander-v2
transferred without modification onto CartPole-v1 unlike ACER and DDQN (Figure 1b) for which we had to fine-tune
the learning rate. This suggests that the auto-tuning mechanism might provide increased stability and robustness to
hyperparameters in our algorithm. Additionally, we note the remarkable stability of AR2D2 on CartPole (Figure 1b
compared to ACER and DDQN, despite the simplicity of the domain. A more robust algorithm would be a strong
addition to the current repertoire of RL algorithms and a further exposition of robustness will be left to future work.

In Figure 1c we can see how the temperature parameter increases substantially at the beginning of training, while quickly
decreasing around 100,000 steps. An increase in the temperature 7 suggests both increased exploration and smoothing
of the problem early on during training.

5 Conclusion

In this work, we have shown empirical evidence for using continuous relaxations of discrete random variables in an off-
policy policy gradient algorithm. Particularly interesting is the dual purpose of the temperature parameter 7. It controls

Paper # 209 91

both the relaxation and the data collected from the environment, i.e. exploration. Specifically, the relaxation can be seen
as a form of smoothing and its relationship to entropy regularization will be explored in future work [21].

In summary, our work has unified discrete and continuous actions in the same off-policy policy gradient algorithm.
We expect that other RL algorithms that have previously faced the “differentiabiliy” requirement can successfully take
advantage of the relaxation. Future work will consider a more thorough theoretical and empirical investigation of per-
formance as well as the robustness of AR2D2 to hyperparameters.

References

[1] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David
Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International conference
on machine learning, 2016.

[2] Timothy P Lillicrap, Jonathan] Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[3] Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint arXiv:1205.4839, 2012.

[4] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu, and Nando de Fre-
itas. Sample efficient actor-critic with experience replay. International Conference on Learning Representations, 2017.

[5] Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department Faculty Publication
Series, page 80, 2000.

[6] Ehsan Imani, Eric Graves, and Martha White. An off-policy policy gradient theorem using emphatic weightings. In
Advances in Neural Information Processing Systems, 2018.

[7] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in actor-critic meth-
ods. In International Conference on Machine Learning, 2018.

[8] Chris] Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of discrete
random variables. International Conference on Learning Representations, 2017.

[9] George Tucker, Andriy Mnih, Chris] Maddison, John Lawson, and Jascha Sohl-Dickstein. Rebar: Low-variance,
unbiased gradient estimates for discrete latent variable models. In Advances in Neural Information Processing Systems,
2017.

[10] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. International Conference
on Learning Representations, 2017.

[11] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic policy
gradient algorithms. In International Conference on Machine Learning, 2014.

[12] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic policy
gradient algorithms. In International Conference on Machine Learning, 2014.

[13] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate infer-
ence in deep generative models. 31st International Conference on Machine Learning, 2014.

[15] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic for
mixed cooperative-competitive environments. In Advances in Neural Information Processing Systems, 2017.

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. Nature, 2015.

[17] Ronald] Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Ma-
chine learning, 1992.

[18] Emil Julius Gumbel. Statistical theory of extreme values and some practical applications. NBS Applied Mathematics
Series, 1954.

[19] Hado V Hasselt. Double g-learning. In Advances in Neural Information Processing Systems, 2010.

[20] Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning algorithms.
Connection Science, 1991.

[21] Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the impact of
entropy on policy optimization. arXiv preprint arXiv:1811.11214, 2018.

[22] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Paper # 209

92

6 Appendix

The algorithm derived from the updates in Section 3 is shown below:

Algorithm 1 AR2D2

Input: critic networks @, , Qw,, and Gumbel-Softmax actor network 7, and =,
Input: update actor step d, temperature learning rate o, update weight j
Initialize target networks w} < wq, w) < wo, 0" < 0
Initialize replay memory D
for episode =1 to M do
Initialize s;
fort=1to7 do
Select action a = my(s¢)
Discretize action a using arg max to obtain a.
Observe (r, s;y1) = env(a)
Append D with tuple (s, a, 7, s¢41)
Sample mini-batch of N transitions (s, a,r, s") from D
- for terminal state s
y r+ymin;—1 2 Qg,(s’;a) for non-terminal states
Update critics w; < argmin,, N1 3 (y — Qu, (s,a))?
if tmodd then
Update policy gradients:
an(n) =N Z an(Sa a)|a:7r9(s)vnﬂ_0(5)]
V. J(1) = N7 Y VaQ(,a)|amry (s) Vrmo(s)]
V- Var(g(mg)) = E[2g(m) V7 g(m9)]
Update target networks:
w; + Pw; + (1 = Blw;
n' < Bn+ (1= B
T pr+(1-p0)7
end if
end for
end for

Paper # 268 93

Modelling Individual Differences in Exploratory Strategies:
Probing into the human epistemic drive

Nicolas Collignon Christopher Lucas
School of Informatics School of Informatics
University of Edinburgh University of Edinburgh
n.collignon@ed.ac.uk clucas2@inf.ed.ac.uk

Abstract

People often navigate new environments and must learn about how actions map to outcomes to achieve their goals. In
this paper, we are concerned with how people direct their search and trade off between selecting informative actions
and actions that will be most immediately rewarding when they are faced with novel tasks. We examine how memory
constraints and prior knowledge affect this drive to explore by studying the exploratory strategies of people across four
experiments. We find that some people were able to learn new reward structures efficiently, selected globally informative
actions, and could transfer knowledge across similar tasks. However, a significant proportion of participants behaved
sub-optimally, prioritizing collecting new information instead of maximizing reward. Our evidence suggests this was
motivated by two types of epistemic drives: 1) to reduce uncertainty about the structure of the task and 2) to observe
new evidence, regardless of how informative they are to the global task structure. The latter was most evident when
participants were familiar with the task structure, hinting that the drive to gather knowledge can be independent of
learning an abstract representation of the environment. This was not the case when observations did not remain visible
to participants, suggesting that participants may adapt their exploratory strategies not only to their environment but also
to the computational resources available to them. Our initial modelling results attempt to explain the different cogni-
tive mechanisms underlying human exploratory behaviour across tasks, and are able to capture and explain systematic
differences across conditions and individuals.

Keywords: active learning; generalization; exploration-exploitation; heuris-
tics; transfer learning;

Paper # 268 94

1 Introduction

In order to act, plan, and achieve goals, people must learn about their environment and the outcome of possible actions.
One reason for human successes in developing new theories and strategies when confronted with new problems is
that people are not passive observers. Indeed, children ask informative questions and can adapt their strategies when
inquiring about things they don’t know [1], and play with new toys in ways that help them disambiguate uncertain
causal relationships and gather information [2, 3]. The idea that humans learn and interact with their environment by
performing intuitive experiments, maximizing information gain, is a popular one [4, 5, 6, 7].

In this work, we are interested in how people learn to select actions that are most rewarding when faced with a sequence
of novel but potentially related tasks. We designed experiments to better understand people’s exploration and reward
maximizing strategies across a sequence of tasks. Do those strategies evolve over time, as they encounter related tasks?
Can people transfer structural knowledge and improve their performance by leveraging similarities between tasks? What
is the relationship between people’s search strategies, their ability to learn and generalize from observations, and how
well they perform?

When faced with new situations, people are often faced with the decision of either gathering more information about the
task to improve the quality of their decision, or choosing an action that has been shown to be rewarding [8]. A doctor
might, for example, want to run more tests to have a better diagnosis for their patient or give them the treatment they
believe will best relieve them from their symptoms. To better understand human decision strategies when dealing with
the explore-exploit trade-off, Multi-armed Bandits (MAB) have been used extensively. In these experiments, participants
have to select between different possible actions yielding stochastic rewards, so as to maximize rewards. In the real
world, an essential part of solving problems lies in discovering the underlying structure of the problem, where each
action can be represented as a set of continuous and discrete features. In a Contextual MAB (CMAB), each arm has a set
of features that may be informative of the arm’s reward distribution. Learning how features relate to rewards allows for
an efficient representation of the environment, and enables the learner to generalize to new events.

We report on two experiments where people have to find rewarding actions in a sequence of tasks, and where the reward
structure is unknown. We compare them to cases where participants were trained on the reward structures prior to the
task. We find evidence that some participants selected actions that resolve uncertainty about the underlying structure of
the task, and traded off between exploration and exploitation in order to maximize reward. These participants were also
able to transfer knowledge across tasks and gradually improved their performance. Conversely, a significant proportion
of participants engaged in pure exploratory behavior, consistently preferring to attend novel information rather than
maximizing rewards. We highlight the importance of studying individual differences when studying human learners
and identify independent factors of epistemic drive that guide human exploration.

2 Experiment 1

We designed our initial experiment to look at how participants adapt to change of reward structure, and detect simi-
larities between tasks, with the hypothesis that people’s behavior would be well accounted by Bayesian models. What
we find instead is that, contrary to previous studies, the behavior of many participants deviated from those models’
predictions.

To better understand this phenomenon, we focused on the first three tasks each participant completed, which shared a
similar underlying reward structure. Participants were given a sequence of grids of 9x9 tiles, with each tile corresponding
to a possible choice. Participants had to select tiles to maximize their cumulative rewards over 20 choices in each grid.
This presents a classical explore-exploit trade-off: Succeeding in the task requires carefully balancing between choosing
new tiles to learn about the underlying reward structure or re-selecting tiles that were observed to be rewarding. In
each grid, contextual features (x,y) predicted for rewards. When a tile is selected, the reward is displayed for a short
period of time and is added to the cumulative score on the current grid. Participants were given no information about
the underlying structure of the grid prior to the task, apart from the fact that there may be patterns behind the rewards
across tiles. In the game, it is possible to re-select a tile repeatedly, and contrary to traditional bandit tasks, rewards were
deterministic for any given tile. This was done to ensure actions were distinctly either exploratory or exploitative (as
opposed to a stochastic case, where one could re-select an option to learn about it’s volatility.).

Experiment 1 showed that some participants were able to learn the underlying task structure when it was new and traded
off between exploration and exploitation to maximize their rewards. These participants transferred knowledge across
tasks that shared similarities in their underlying structure. However, we observed that a large proportion of participants
had a strong tendency to over-explore, preferring unobserved tiles over known tiles with a high reward value. Twenty-
two participants (31 percent) never re-selected tiles more than twice in any of the grids. We call these participants Full
eExplore (FE) participants. We call the other participants (n=49), that traded off exploration and exploitation, Explore-
Exploit (EE) participants. We plot the performance of EE and FE participants across all three grids in Figure 1. Further,

Paper # 268 95

EEEEEEEENE Full Explore participants Explore-Exploit participants
T . pe——
T v

EEEEEEEEN

EEEEEEENE
EEEEEEEEE
EEEEEEEEE
EEEEEEEEE . ;
EEEEEEEEE Tril

(a) Game screenshot (b) Experiment 1 performance

Figure 1: (a) The grid presented to participants after 5 observations. Note that in Experiment 1, the rewards disappear shortly after a
tile has been selected. (b) Performance of FE participants (n=22) and EE participants (n=49) in Experiment 1 across all three grids. The
plotted confidence interval corresponds to the standard error (ci=68%).

participants had overall a strong ‘local bias” in their sampling. Both EE and FE groups showed this bias, with adjacent
tiles selected in 49% of FE participants” exploratory choices and 39% for EE participants.

To explain the large proportion of FE participants, we hypothesized participants may have been driven by wanting to
learn more about the reward structure and collect information. This would be consistent with the local search strategies
exhibited in other domains such as causal learning [9], category learning [10], or more generally with people’s inherent
curiosity bias [11, 12]. We hypothesized that this would only be the case for new tasks when participants still had
something to learn about the underlying reward structure of the tasks.

3 Experiment 2

Experiment 2 was identical to Experiment 1, but with the reward displayed continuously once a tile has been observed.
We added comprehension questionnaires and changed the reward scheme to rule out the alternative explanations about
participants” extreme exploratory behavior. We hypothesized that with participants observations remaining visible, the
overall reward pattern would be more evident. Thus, participants would be more likely to re-select tiles with high
values and perform better than in Experiment 1. Because the underlying structure was more evident, we also assumed
fewer participants would engage in full exploration behavior, since their curiosity drive would be less pronounced. We
also hypothesized that participants would be able to make more globally informative actions (i.e. exploratory selections
would be more distant from each other).

Against our expectations, participants were overall more prone to engage in full exploratory behavior than in Experiment
1. It could be that participants were further motivated to collect more observations when they remained visible, as the
pattern might have been more salient to them and allowed them to learn better. Following our hypothesis that visible
observations allowed participants to generalize better, EE participants in Experiment 2 had more global exploratory
selections at the beginning of each grid. This could explain their better average performance on the first grid when
compared to those in Experiment 1.

4 Experiment 3

In Experiment 3, we tried to understand the large proportion of participants that engaged in full exploratory behavior.
After Experiment 1, we hypothesized that this might have been due to an intrinsic epistemic drive in participants. We
controlled for several alternative hypotheses, such as memory constraints, unclear instructions, or reward incentives, but
this led to more participants engaging in pure exploratory behavior. We designed Experiment 3 to control explicitly for
the potential epistemic drive of FE participants. To do this, we explicitly instructed participants about the relationship
between a tile’s location and the corresponding reward, prior to the task.

By making the structure clear to participants prior to the tasks, our primary prediction for Experiment 3 was that fewer
participants would engage in full exploratory behavior, since the epistemic reward would be largely attenuated. We also
hypothesized there would be weaker or no progress across grids since participants would already be familiar with the
reward structure from the first grid. With this training, we predicted participants would be more efficient at finding and
re-selecting tiles with high values, and would thus perform better overall than in Experiment 1 and 2. Experiment 3 was
set up identically to Experiment 2 except from the addition of a training step where participants were given one practice

Paper # 268 96

grid where all the rewards were continuously displayed, then two further practice grids, similar to the actual task grids,
so that they could learn the underlying pattern prior to performing the task.

Contrary to our hypothesis, many participants still engaged in full exploratory behavior. Given this result, we hypothe-
sized that participants might be motivated by observing new rewards rather than learning the underlying reward struc-
ture per se and that this effect might have been emphasized by the fact that rewards remained visible after having been
selected once. Indeed, in Experiment 2, where rewards remained observable, significantly more participants engaged in
full-exploratory behavior than in Experiment 1. We designed Experiment 4 to account for both factors of epistemic mo-
tivation: 1) wanting to learn about the underlying structure or the location of the maximum, and 2) wanting to observe
novel information.

5 Experiment 4

Our main hypothesis for Experiment 4 was that fewer participants would engage in full exploratory behavior, since the
epistemic reward is attenuated by not having the tiles visible after they have been selected and having training grids
prior to the task. We predicted EE participants would perform similarly or slightly worse than in Experiment 3, because
of the constraints of not having previous observations visible, but better than in Experiment 1 and 2. We also predicted
we would observe little or no transfer effect across grids.

In agreement with our hypothesis, only one participant out of 37 engaged in Full Exploration. This was significantly less
than in any other condition. This supports the idea that participants’ strategies were driven by an epistemic drive which
was twofold. First, participants were motivated to reveal the underlying reward structure, e.g., reducing the entropy
about the structure of the task, or about the location of the maximum. Participants were less likely to engage in FE
behavior in Experiment 4 (known structure and disappearing observations) than Experiment 1 (unknown structure and
disappearing observations), and significantly less in Experiment 3 (known structure and visible observations) than Ex-
periment 2 (unknown structure and visible observations). Second, participants were motivated to observe the outcomes
of individual actions, with a preference for actions that were local to their last one

Participants” drive to reduce local uncertainty was enhanced by the fact that information became available once it has
been observed once. They were engaged less in FE behavior in Experiment 1 (non-visible observations) than Experiment
2 (visible observations), and less in Experiment 4 (non-visible observations) than Experiment 3 (visible observations).

6 Computational Modelling: Initial Results

We are currently investigating how computational models of memory, generalization and search can give us insight into
people’s representations and strategies when learning in new environments. Besides the important differences across ex-
periments, we are also interested in investigating the differences in behaviour of participants from the same experimental
condition. People’s explore-exploit strategies have been shown to carry significant differences across individuals [13].
More generally, advances in statistical and modelling tools has led to an increased interest understanding qualitative
differences in how people think and act [14].

We outline briefly the different components used in our model to capture different mechanisms of human behavior. To
model directed search, we use the predictions of Gaussian Process (GP) with an RBF Kernel. We take a fully Bayesian
treatment of the GP kernel hyperparameters, as presented in [15]. GPs have been successful in explaining human func-
tion learning phenomena [16, 17], unifying conflicting theories about how humans learn functions. More recently they
have also been applied to study decision making in multi-armed bandit problems [18]. We define a greedy weight com-
ponent that assigns a probability weight to reselect the currently maximum known value. To account for the local bias
observed in participants, we use the inverse Manhattan distance (IMD) to the last observation and fit with a softmax tem-
perature parameter to individual participants. We also add a negative weight on previous observations and a random
exploratory term (uniform probability for all observations). Models are fit to individual participants by using a Differen-
tial Evolution algorithm to maximise the maximum likelihood function. We use an L1 penalty on all weight parameters
and an exponential penalty on the local-bias temperature parameter for more interpretable models. We map the result-
ing models in Figure 2 to highlight clusters of behaviours across all four experiments. Table 1 presents the parameters
of cluster centroids obtained after running a Gaussian Mixture Model over all participants, as plotted in Figure 2. The
results show that we can obtain interpretable parameters that are consistent with observed the participant behaviors.

7 Conclusion

In this paper, we focused on the behavioural analysis of participants across four experiments to study how people learn
to select rewarding actions in a sequence of novel tasks. We found that some participants were able to learn the un-
derlying structure while balancing exploration and exploitation to maximize their rewards across tasks. They improved

Paper # 268 il cms’Site e Vo o7
e clustor3 e Jeo
cluster [1] " 5 o. []
& cluster4 . - :
. :: . %
> 5 .32
e, * f:"':e . ®
‘. . b .‘...'.. .’..
."". .‘..
L] l‘.‘ [. .‘, *e s
.
"*:":’f: -
.

Figure 2: t-SNE visualisation of MLE parameters for individual participants across all 4

Gaussian Mixture Model. Cluster centroids are reported in Table 1.

experiments. Clusters are obtained via a

« directed search B global search Greei:ly Welght local-bias | local-bias dampen random
(E[z] under the GP) | (02 under GP) (reselecting weight temperature previous exploration
max-known) observations
cluster1 | 0.3 0.06 0.22 0.03 75.13 0.15 0.24
cluster 2 | 0.02 0 0.12 0.35 26.15 0.3 0.21
cluster 3 | 0.1 0 0.08 0.51 7.21 0.03 0.28
cluster 4 | 0.22 0.04 0.19 0.19 1.57 0.14 0.18

Table 1: Parameters of cluster centroids of Gaussian Mixture Model. Weight parameters are normalised (i.e. all but the local-bias tem-
perature). These results show that we can obtain interpretable parameters that are consistent with observed the participant behaviors.
E.g. Cluster 1 corresponds to EE participants with global exploration, cluster 3 corresponds to FE participants with a strong local bias.

their performance from one task to the next by transferring abstract knowledge about their environment. However, con-
sistently across tasks, we observed that a significant proportion of participants engaged in purely exploratory behavior,
largely ignoring the reward incentive. We showed that this behavior could be manipulated by controlling the availability
of information as the learner selected actions, and by giving prior knowledge before participants engaged with the task.
We suggest that people are motivated by two types of epistemic drives: 1) to reduce uncertainty and learn about the
structure of the task and 2) to observe new evidence, regardless of its informativeness about the global task structure.
In our study, we highlight that studying individual differences amongst participants can help us better understand the
complex mechanisms at play during active learning in new environments.

References

[1] Azzurra Ruggeri and Tania Lombrozo. Learning by asking: how children ask questions to achieve efficient search. In Proceedings of the 36th Annual Conference of the Cognitive Science Society, pages

1335-1340, 2014.

[2] Laura Schulz and Elizabeth Baraff Bonawitz. Serious fun: preschoolers engage in more exploratory play when evidence is confounded. Developmental psychology, 43(4):1045, 2007.

[3] Claire Cook, Noah D Goodman, and Laura E Schulz. Where science starts: Spontaneous experiments in preschoolers? exploratory play. Cognition, 120(3):341-349, 2011.

[4] Anna Coenen, Jonathan D Nelson, and Todd Gureckis. Asking the right questions about human inquiry. 2017.

[5] Todd M Gureckis and Douglas B Markant. Self-directed learning: A cognitive and computational perspective. Perspectives on Psychological Science, 7(5):464—481, 2012.

[6] Jonathan D Nelson. Finding useful questions: On bayesian diagnosticity, probability, impact, and information gain. Psychological review, 112(4), 2005.

[7] Alison Gopnik, Clark Glymour, David M Sobel, Laura E Schulz, Tamar Kushnir, and David Danks. A theory of causal learning in children: causal maps and bayes nets. Psychological review,

111(1):3, 2004.

[8] Thomas T Hills, Peter M Todd, David Lazer, A David Redish, Iain D Couzin, Cognitive Search Research Group, et al. Exploration versus exploitation in space, mind, and society. Trends in cognitive

sciences, 19(1):46-54, 2015.

[9] Neil R Bramley, David A Lagnado, and Maarten Speekenbrink. Conservative forgetful scholars: How people learn causal structure through sequences of interventions. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 41(3):708, 2015.

[10] Douglas B Markant, Burr Settles, and Todd M Gureckis. Self-directed learning favors local, rather than global, uncertainty. Cognitive science, 40(1):100-120, 2016.

[11] Celeste Kidd and Benjamin Y Hayden. The psychology and neuroscience of curiosity. Neuron, 88(3):449-460, 2015.

[12] Alison Gopnik. Explanation as orgasm. Minds and machines, 8(1):101-118, 1998.
[13] Mark Steyvers, Michael D Lee, and Eric-Jan Wagenmakers. A bayesian analysis of human decision-making on bandit problems. Journal of Mathematical Psychology, 53(3):168-179, 2009.

[14] Daniel] Navarro, Thomas L Griffiths, Mark Steyvers, and Michael D Lee. Modeling individual differences using dirichlet processes. Journal of mathematical Psychology, 50(2):101-122, 2006.

[15] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine learning algorithms. In Advances in neural information processing systems, pages 2951-2959, 2012.
[16] Christopher G Lucas, Thomas L Griffiths, Joseph] Williams, and Michael L Kalish. A rational model of function learning. Psychonomic bulletin & review, 22(5):1193-1215, 2015.

[17] Eric Schulz, Josh Tenenbaum, David K Duvenaud, Maarten Speekenbrink, and Samuel] Gershman. Probing the compositionality of intuitive functions. In Advances In Neural Information Processing

Systems, pages 3729-3737, 2016.

[18] Charley M Wu, Eric Schulz, Maarten Speekenbrink, Jonathan D Nelson, and Bjérn Meder. Generalization guides human exploration in vast decision spaces. Nature Human Behaviour, 2(12):915,

2018.

Paper # 251 98

Remediating Cognitive Decline with Cognitive Tutors

Priyam Das Fred Callaway Thomas L. Griffiths
University of California, Irvine Princeton University Princeton University
Irvine, CA Princeton, NJ Princeton, NJ
priyam.das@uci.edu fredcallaway@princeton.edu tomg@princeton.edu
Falk Lieder

Max Planck Institute for Intelligent Systems
Tiibingen, Germany
falk.lieder@tuebingen.mpg.de

Abstract

As people age, their cognitive abilities tend to deteriorate, including their ability to make complex plans. To remedi-
ate this cognitive decline, many commercial brain training programs target basic cognitive capacities, such as working
memory. We have recently developed an alternative approach: intelligent tutors that teach people cognitive strategies for
making the best possible use of their limited cognitive resources. Here, we apply this approach to improve older adults’
planning skills. In a process-tracing experiment we found that the decline in planning performance may be partly be-
cause older adults use less effective planning strategies. We also found that, with practice, both older and younger adults
learned more effective planning strategies from experience. But despite these gains there was still room for improvement
— especially for older people. In a second experiment, we let older and younger adults train their planning skills with
an intelligent cognitive tutor that teaches optimal planning strategies via metacognitive feedback. We found that prac-
ticing planning with this intelligent tutor allowed older adults to catch up to their younger counterparts. These findings
suggest that intelligent tutors that teach clever cognitive strategies can help aging decision-makers stay sharp.

Keywords: aging; planning; cognitive training; cognitive plasticity
Acknowledgements

This work was supported by grant number ONR MURI N00014-13-1-0341 and a grant from the Templeton World Charity
Foundation to TLG.

Paper # 251 99

1 Introduction

Many cognitive abilities deteriorate with normal aging, including planning. Commercial brain training programs
promised to remediate this cognitive decline by training basic cognitive capacities — especially working memory. But
they have often failed to live up to their promises (A consensus on the brain training industry from the scientific community,
2014). More effective methods for combating this decline or even improving planning abilities have yet to be discovered.
One new approach could be to discover and teach people cognitive strategies that make the best possible use of their
bounded cognitive resources (Lieder, Callaway, Das, et al., 2019; Lieder et al., 2018; Lieder, Krueger, Callaway, & Griffiths,
2017).

Previous studies have found that older adults have trouble formulating plans and updating them in the light of feedback
(Allain et al., 2005; Sorel & Pennequin, 2008). We hypothesized that the reason why older adults perform worse is that
their planning strategies are less effective than those of younger adults. If this is the case, then it should be possible
to mitigate this aspect of cognitive decline by teaching older adults better planning strategies. Here we investigate this
hypothesis using the intelligent cognitive tutor we developed in previous work (Lieder, Callaway, Das, et al., 2019; Lieder
et al., 2018, 2017). In Experiment 1, we characterized the planning strategies used by people of different age groups in
order to determine whether age affects the types of planning strategies used. In Experiment 2, we investigated whether
cognitive tutoring can help close the performance-gap between younger and older adults. Our results suggest that
cognitive tutoring is a promising approach that should be explored as an intervention for improving people’s decision-
making competency and remediating cognitive decline.

2 Experiment 1

2.1 Methods

We recruited participants younger than 25 years old to form our younger adults group (19 — 24 y.0., median = 23,
n = 49) and adults older than 47 years old to form our older adults group (48 — 70 y.0., median = 52, n = 29). The
experiment was conducted online via Amazon Mechanical Turk. In the experiment, participants completed 30 trials of
the Mouselab-MDP paradigm (Callaway, Lieder, Krueger, & Griffiths, 2017) with a three-step route planning task. On
each trial, participants were shown a map of gray circles (Figure 1) and instructed to move the spider in the middle to one
of the outermost nodes, picking up the rewards hidden along the way. For each trial, rewards are independently drawn
from discrete uniform distributions; in the first step the possible values were {—4, -2, +2, +4}; in the second step the
possible values were {—8, —4, +4, +-8}; and in the third step the possible values were {—48, —24, +24, +48}. Participants
could uncover rewards beforehand by clicking on the gray circles and paying a cost of —1 for each reveal. Participants
were instructed to maximize their rewards and were incentivized with a monetary bonus based on their in-game score.

We use the clicks our participants made to infer which kind of planning strat-
egy they used. We considered six different planning strategies: depth-first search,
breadth-first search, best-first search, progressive deepening, the optimal planning

Bl ng strategy, and an impulsive strategy that chooses randomly. Depth-first search ex-

t plores a single path at a time — from its beginning to its end. Once it reaches the

10 end of this path, it returns to the most recent unexplored fork in that path and con-

tinues exploring until all nodes have been inspected. Breadth-first search explores

t %f@ t the first nodes of all possible paths, then the second nodes, and so on until all
-« - - - paths have been explored. Best-first search explores paths in the order of highest

\ i expected sum of rewards. Progressive deepening is a strategy proposed by Newell

and Simon (1972) and is similar to depth-first search. The main difference is that

after exploring a path in its entirety, progressive deepening skips back to the start-

ing node, treating branches as part of another path for later exploration. Callaway
Figure 1: A typical Mouselab-MDP et al. (2018) found that the optimal strategy for the task environment used in this
trial used in Experiment 1 and the experiment is to first set a goal by evaluating potential final destinations. As soon
control condition of Experiment 2. as inspecting a potential final destination uncovers the highest possible reward
Some of the rewards have already (+48), the optimal strategy selects the path that leads to it and terminates plan-
been revealed by the participant. ning. If multiple potential final destinations are good (i.e., +$24) then the optimal

strategy collects additional information about the paths leading to those promis-

ing potential final destinations starting with the nodes right before a potential final
destination.

Paper # 251 100

2.2 Modeling Strategies

We modeled participants’ click sequences as a combination of following one of the six strategies described above and
some random moves. Formally, the probability of making click ¢ when following strategy k is defined as

(1—¢)-o(c; Vouy,) + € - Uniform(c; C) €))

where the first term, o(c; Vi, 1, , 7), is a softmax over the possible clicks ¢ in state b when following strategy k and is
the temperature paramete