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Abstract
To debug performance issues, engineers often rely on high-

frequency telemetry (HFT) from sources like perf, DTrace,
or eBPF, which can generate millions of records per second.

Current database systems are too slow to capture such high-

rate data in its entirety, and the de facto standard approach of

writingHFT to rawfilesmakes queries slow and cumbersome.

Engineers must therefore either work with incomplete data,

which risks missing critical events, or accept slow queries.

Loom is a new system specialized for capturing and analyz-

ingHFTwith timely, interactive queries. Key toLoom’s design

is that it combines the high ingest capability of log-based stor-

age with lightweight, sparse, and domain-specific indexes

that accelerate queries. This design strikes a balance: it pri-

oritizes capturing complete data at high rate while indexing

just enough to support interactive queries on HFT.

Experiments show that Loom supports both higher ingest

throughput and lower query latency than best-in-class sys-

tems for ingest-optimized storage (FishStore) and time series

databases (InfluxDB), all while consuming substantially fewer

host resources and ensuring data completeness.
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Example system [30, 51] [23, 41] [9] -

High ingest rate ✗ ✓ ✓ ✓

Fast queries ✓ ✗ ✗ ✓

Low probe effect ✗∗ ✓ ✓ ✓

Figure 1:HFT use cases require high-rate ingest, interactive

queries, and low probe effect. Existing classes of systems

achieve at most two of these. ∗ indicates low probe effect is

possible at the expense of dropping data.

1 Introduction
Performance engineers often instrument applications to col-

lect high-frequency telemetry (HFT) across the stack, ranging

from application logs to eBPF events and hardware perfor-

mance counters [11, 14–16, 18, 36, 38, 39, 48, 57, 58], which

they then query and analyze to debug issues in live deploy-

ments. Unsurprisingly, many HFT sources generate data at

high rates. For example, a key-value store application on a

single machine can generate millions of telemetry events per

second [58], and debugging outliers with high tail latency

requires detailed HFT at a fine granularity [53].

When looking for rare events, important outliers, or un-

known correlations, engineers often need to capture and in-

teractively query complete HFT data. Doing so in live deploy-

ments must have low probe effect—the slowdown introduced
as a result of measuring the system. Random sampling, which

reduces data rate and probe effect at the expense of fidelity,

works for some use cases but is insufficient for others, such as

finding “unknown unknowns” [8]. For example, an engineer

might look for the root cause of high-latency requestswithout

knowing what correlated event causes them, requiring the

engineer to capture all events.

Systems for capturing and querying HFT face a three-way

trade-off between high ingest rates sufficient for complete

HFT, fast queries at interactive latencies, and low probe ef-

fect on the monitored workload (Figure 1). Navigating this

trade-off means making decisions about how to store and

index HFT. Classic database systems, including time series

databases (TSDBs) like InfluxDB [30] and ClickHouse [51],

optimize for fast read queries by updating indexes in the

write path. Because this overhead slows downwrites, these

∗Work done while at Brown University.
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systems struggle to capture data at the rate of HFT, which

either results in dropped data or high probe effect. On the

other hand, ingest-oriented log-based storage systems (e.g.,

FuzzyLog [23], FasterLog [41]) keep up with high-rate data

by removing or severely restricting indexes. This means that

queries must scan large amounts of data, slowing them down.

Hence, the de facto standard approach today is to captureHFT
to raw files. But this requires engineers to write scripts that

post-process, scan, and analyze the captured data, which is

slow and less ergonomic than declarative queries.

Loom is a new system that efficiently captures and queries

HFT. To our knowledge, Loom is the first system that main-

tains thehigh ingest rates necessary forHFT, supports interac-

tive latencies across a broad class of parameterized observabil-

ity queries, and imposes low probe effect on the host system.

Achieving this balance required careful co-design of storage

layout, index structures, and persistence logic in Loom.

The key idea in Loom is to ingest HFT data into a hybrid log

that spansmainmemoryandpersistent storagewith sparse in-

dexes geared toward typical observability queries. Loom sup-

ports high-rate ingest through cheap appends. Its indexes are

flexible and accelerate queries enough to achieve interactive

latency without incurring the maintenance cost of traditional

indexes. Finally, the hybrid log design reduces probe effect by

using constant, limited host CPU and memory resources. To

achieve this, Loom had to address three challenges.

First, any index maintenance on the critical path of writes

risks failing to keep up with the high ingest rate necessary
for HFT. Existing indexes that support HFT’s data rate need a
priori knowledge of the exact query the indexwill support [63]
and are dense indexes that track individual records. Instead,

Loom builds sparse indexes that cover fixed-size chunks of

records. These lightweight indexes accelerate key classes of

parameterized HFT queries, such as time-range queries, ag-

gregations, and correlations across sources, without needing

to know an exact query to index. This design takes inspira-

tion from lightweight database indexes like zone maps [68]

designed to accelerate analytical queries while limiting index

space overhead [20, 42, 52, 65]. Loom leverages inexact index-

ing to amortize indexmaintenance costs, but thismeans Loom

must scan chunks that the indexes identify as relevant. Index-

ing chunks still vastly reduces the amount of data scanned.

Second, to support interactive observability queries,
the indexes must be effective at filtering out irrelevant data,

but queries must also coexist with concurrent, high-rate in-

gest processing. Loom addresses this challenge with a lay-

ered, append-only index design that accelerates queries by

time, data source, and distributive and holistic aggregations,

which are common query dimensions in observability. Loom

avoids coordination between high-rate ingest and concurrent

queries: rather than making the indexes a shared data struc-

ture between ingest and queries, Loom does not expose parts

of the index still under construction to queries. This avoids

synchronization at the cost of requiring a scan over a few

megabytes of unindexed, in-memory data.

Third, low probe effect is crucial to prevent resource con-
tention between ingest, queries, and application workloads

on the shared host machine from confounding obtained mea-

surements. Loom addresses this with the design of its hybrid

log, which has a CPU-efficient ingest path and a small fixed

memory footprint. Loom also provides simple, observability-

oriented query operators that similarly use little CPU and

memory. This design reduces probe effect by virtue of its small

resource footprint and lack of thread coordination costs.

We evaluated our Loom prototype with two workloads

based on real-world scenarios. Experiments show that Loom

keeps upwith ingest rates of up to 9M records/secondwithout

dropping data, while also efficiently serving typical observ-

ability queries (e.g., aggregations, histograms, correlation

queries). By contrast, InfluxDB, a widely used TSDB, drops

38–93% of data as its read-optimized indexing is too slow

for HFT workloads, and takes 7–160× longer than Loom to

answer queries. Loom also exceeds the ingest performance

of FishStore [63], a recent system optimized specifically for

ingesting high-volume data, and improves query latency by

1.5–17× over it. Finally, Loom achieves ingest performance

and probe effect on par with writing the data to a raw file.

In summary, this paper makes the following contributions:

(1) Loom, a system that efficiently captures and queries

HFT data by combining log-based storage and sparse

indexes to simultaneously achieve high ingest rate, in-

teractive query latency, and low probe effect;

(2) Loom’s observability-oriented, multi-layer indexing

design that creates time-based and value-based indexes

over HFT with low overhead; and

(3) query execution strategies and implementation mech-

anisms that efficiently answer typical observability

queries over recent and historical HFT with low re-

source footprint and probe effect.

Loom has some limitations. It is designed for ad hoc and sit-

uational analysis of recently generated HFT. For long-term

storage, engineers shouldmove data into existing storage sys-

tems that, e.g., support compression. Loomsupports high-rate

ingest but, like any system, has a finite capacity. Extremely

high data rates (e.g., capturing all incoming/outgoing packets

on a busy host) can overwhelmLoom, though suchworkloads

are rare in practice because they impose high probe effect.

2 Background

2.1 Motivating Example

As a motivating example, consider a performance engineer

who receives an alert that their Redis cache is experiencing

occasional high request tail latency. They begin by collecting

513



Loom: Efficient Capture andQuerying of High-Frequency Telemetry SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

Data Rate (records / second)
0

20

%
C

PU
in

de
xi

ng

InfluxDB
ClickHouse

100k 500k 750k 1.4M 7M
0

50

D
ro

p
R

at
e

(%
)

Figure 2:As ingest rate increases, InfluxDB and ClickHouse

spend an increasing fraction of available CPU resources

on index maintenance. Once CPU resources run out, they

quickly start to drop a substantial percentage of data.

application telemetry (865k records/second) and observe high

latency in one out of every 5M records. The engineer then

traces this back to slow recv system calls by using eBPF to

collect system call latencies (+ 2.7M records/second). After

further investigation, they collect network packets destined

for Redis (+ 3.6M records/second) and discover mangled pack-

ets [67] from a buggy eBPF packet filter that correlate exactly

with slow recv system calls and slow requests.

This example illustrates the hardest parts of a typical HFT

workload: the engineer iteratively drills down by formulating

and testing hypotheses about rare events by correlating data
frommultiple sources. The correlations are unknown a priori,

and the goal is to find such needle-in-a-haystack relationships

in fine-grained, high-rate data.

2.2 HFTWorkloads

HFT workloads exhibit two key characteristics: high data

rate and the use of multiple data sources. HFT sources like

performance-oriented applications (e.g., key-value stores) or

kernel-level tracing like eBPF can each generate millions of

recordsper second.Engineers typically combinemultipleHFT

sources for analyses (i.e., correlation), which means the total

HFT rate can reach several million records per second. They

require fast, low-latency queries to interactively iterate over

hypotheses as they drill down in their investigation [1, 28, 35].

However, probe effect inherently limits the rate and size of

HFT that a system can generate, so HFT records are typically

small [53–55, 64]. As it is difficult to interpret correlations

frommany sources, engineers also typically correlate only a

handful of HFT sources at a time.

A system for HFT must therefore (i) keep up with high-

rate data, (ii) support the interactive iteration that engineers
require, and (iii) impose low probe effect on applications.

2.3 Existing Approaches

Current approaches fail to keep up with HFT, either dropping

data or making queries slow and cumbersome.
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Figure 3: In the motivating example (§2.1), high-latency

Redis requests correlate with packets where a buggy packet

filter mangled the destination port. To keep up with the data

rate, InfluxDB needs to sample data. Because these events

are rare (six mangled packets out of 35M packets affecting

six operations out of 9M), sampling captures only one of the

slow requests and none of the mangled packets.

Time series databases (TSDBs) struggle with high-rate
ingest because they maintain indexes designed to speed up

queries. For example, TSM-Bench [19] found that two LSM-

tree-based TSDBs, InfluxDB [30] and ClickHouse [51], per-

form best for write-intensive workloads. These systems see

an increasing index update cost as the ingest rate increases

because they add more background threads to manage in-

dexing. With finite CPU resources, systems must eventually

either increase backpressure (i.e., high probe effect) or drop

data. Figure 2 shows the percentage of total CPU resources

available (16 CPUs) spent on index maintenance in InfluxDB

and ClickHouse as a function of the ingest rate, as well as

the fraction of data dropped on ingest when these TSDBs

fall behind. At 100k writes/second, InfluxDB and ClickHouse

spend 2% of CPU on indexmaintenance. This increases to 15%

at 500k writes/second, and at 1.4Mwrites/second, it increases

to 23%, or about four cores. InfluxDB and ClickHouse drop

9% of data at this point, as I/O, request handling, and index

maintenance compete for CPU. Consequently, the CPU time

spent on index maintenance no longer increases when the

rate goes up to 6Mwrites/second (as in §2.1 and Figure 3), but

the fraction of data dropped increases sharply to 77%.

Sampling can help reduce the data rate to ensure the stor-
age system (e.g., a TSDB) can keep up. Unfortunately, this is

not a panacea, as sampling can miss rare events and correla-

tion requires coordinated sampling across multiple sources.

Figure 3 shows the impact of sampling on the example from

§2.1. We uniformly sampled about 10% of the data, which

results in a data rate sufficient for InfluxDB to keep up. The

ground truth in red shows that six slow Redis requests (out

of 9M) occur over a 10-second window, yet sampling cap-

tures only one of those requests. To compound this problem,

sampling failed to capture any of the six mangled packets,

since they are exceedingly rare (six out of 35M packets). The
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only way to draw a correlation between the two events is to

capture slow requests and the mangled packets that caused

them.While one could bias sampling or perform retroactive

sampling [66], such targeted sampling is not possible for the

“unknown unknown” of mangled packets.

Log-based systems (e.g., FasterLog [41], FuzzyLog [23],
FishStore [63]) can keepupwith high-rate ingest but have pro-

hibitivelyhighquery latencybecause theyneed to scan the log.

To avoid scanning thewhole log, these systems typically build

back-pointer record chains using rules or heuristics that iden-

tify exactly the records required for a query. For example, Fish-

Storebuilds recordchainsusingarestricted indexingstructure

that sets up exact-match rules called “predicated subset func-
tions” (PSFs). While PSFs excel at finding exact matches, they

are not flexible enough for common classes of HFT queries.

Since PSFs require a priori knowledge of the exact query, they

cannot support queries that look back an arbitrary amount of

time (e.g., between 10 and 20 minutes ago) or queries that de-

pend on the data distribution (e.g., records with latency above

the 99.99
th
percentile). For these types of queries, FishStore

needs to scan irrelevant data, leading to high query latency.

In §2.1’s example, FishStore takes 40 seconds to return the

99.99
th
percentile Redis requests over a 60-second window,

and extracting the packet traces takes another 84 seconds.

Custom scripts to post-process raw data written to files

are common in ad hoc performance debugging [12]. Such

scripts must scan the data and require engineers towrite pars-

ing and analysis code. For the example in §2.1, this requires

50 LoC (as opposed to single-line queries in InfluxDB and

FishStore), and the script takes 35 seconds to run, using 8 GB

of host memory. Doing so slows down drill-down analysis, as

engineers must write a new script for every query.

3 LoomOverview

Loom is a new system to capture and query HFT on a single

host machine. It supports high-rate ingest and interactive,

low-latency queries while using limited resources.

Loom is designed for use as a library within amonitoring
daemon (Figure 4), which is a data collector like the Open-

TelemetryCollector [44] or FluentD [29]. Themonitoring dae-

mon receives data from a variety of HFT sources, including

user-space applications instrumented by developers, kernel

probes (e.g., collecting eBPF events), and hardware events

(e.g., via perf stat). The monitoring daemon uses Loom’s

API to manage the data it receives. An engineer can then use

Loom to investigate an issue by:

(1) enabling sources of interest, which generate HFT that

the monitoring daemon pushes into Loom;

(2) adding indexes over these sources to speed up queries
across dimensions of interest (Loom always maintains

a time-dimension index by default);

Loom 
Library

HFT Sources

Ingress

Queries

Host Machine
Monitoring Daemon

Storage

push(…) 
query(…)

SysX 
Library

HFT Sources

Ingress

Queries

Monitoring Daemon

Storage

push(…) 
query(…)

push(…)

Chunk 
Summary

Query 
Operators

Hybrid Logs

Timestamp

2

3

4

Record Log
...

In-Memory Persistent
Timestamp Index

...

Chunk Index
...

1

Figure 4: Loom is a library intended for use within a

monitoring daemon running locally on a host. HFT sources

send data to the monitoring daemon, which invokes Loom’s

API to store data. Querying clients (e.g., an engineer) use

Loom’s API to run queries over the data.

SysX 
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Figure 5: Loom’s architecture revolves around three logs

that spanmainmemory and persistent storage. During ingest,

Loom timestamps each record and writes it to the record log.
Loom also updates a chunk summary for the current chunk
of records and eventually writes this summary to the chunk
index. It also records timestamps in a timestamp index that

indexes by time. For queries, Loom scans the indexes first,

then the matching chunks and the active chunk in memory.

(3) issuing queries over the data in Loom by composing

one or more query operators; and
(4) repeating this process of enabling/disabling sources,

indexes, and queries as necessary.

In practice, engineers will typically use a front-end (e.g., a

dashboard or CLI) to instantiate query operators with appro-

priate parameters (e.g., the source, time range).

Goals. Loommust support the high write throughput com-

mon in HFT while also offering interactive query latencies.

This requires indexes, which could be costly to maintain.

Loom must update its indexes without introducing probe

effect to the monitored application and without using exces-

sive resources. Finally, Loommust support common classes of

observability queries: time-range and time-based correlation

queries, histograms, aggregates (including holistic aggregates

like percentiles), and outlier detection.

Design Choices. We now use Figure 5 to explain Loom’s

architecture, components, and key design choices.
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First, Loom organizes its storage as three append-only logs

that span main memory and persistent storage: the record log
stores the raw records (Figure 5, 1 ), and the other two logs

store indexes over the record log. Loom breaks the record

log into fixed-size chunks that serve as the units of indexing
for the chunk index, which indexes by record values, while

the timestamp index indexes by time. Hybrid logs help Loom

support high write rates by buffering recent data in mem-

ory and amortizing disk writes through large I/O batches.

They perform no further data transformations (e.g., sorting,

compaction) after chunks are finalized and written.

Second, Loom uses the chunk index and timestamp index

as sparse, append-only indexes specialized to the classes of

queries common in HFT. The indexes are sparse because they
only identify the chunks that contain records of interest rather

than the specific records themselves. Each entry in the chunk

index is a chunk summary: a small, lightweight structure

that contains metadata about a chunk, incrementally updated

while the chunk accumulates records. When Loom finalizes

a chunk, it writes the chunk summary to the chunk index

(Figure 5, 2 ). To build a coarse-grained index by time, Loom

also regularly stores a timestamp in the timestamp index (Fig-

ure 5, 3 ). This design makes updating indexes cheap, as it

amortizes appending a new entry over a chunk of data rather

than for every individual record.

Queries use these indexes to skip irrelevant chunks but

might need to scan chunks that match in the index. Loom’s

hybrid logs for timestamps and indexes grow far more slowly

than the record log, so a substantially larger portion of these

index logs resides in memory to accelerate queries.

Third, Loom delays exposing under-construction chunk

summaries to queries. This reduces the CPU cost of writes,

since they no longer need to coordinate with reads (e.g., by

taking a lock or performing an atomic operation). This helps

Loom support high-rate ingest with limited CPU resources.

When serving queries, Loom scans the most recent records in

the record log that do not yet have a finalized chunk summary.

This is fast, since chunks are small (e.g., 64 KiB).

Fourth, Loom provides a limited set of query operators de-

signed to efficiently serve typical observability queries with-

out burdening host resources. All query operators have a

constant maximum memory footprint and run in a single

thread. This avoids contention between queries and on-host

production workloads. Loom’s query operators scan, filter,

and aggregate data, leveraging indexes where possible, and

can be composed. This API ensures that more complex oper-

ators (e.g., joins that may require significant memory) must

execute outside Loom (and ideally off-host).

ManagingHistorical Data. Loom is primarily designed for

adhoc analysis of ingestedHFT that canbe discarded after use.

This scenario is common in practice (e.g., using temporary

files to store data from perf) due to the sheer volume of HFT.

Foruse cases likepost-mortemanalysis that require long-term

storage, Loom complements existing solutions. Specifically,

it can capture HFT so that engineers can identify the data of

interest for long-term retention or copy data in bulk for com-

pressionand/or long-termstorage (e.g.,HDFS[25],Kafka [26])

outside the critical path.

4 Design
At the heart of Loom’s design is a hybrid log abstraction that

spansmainmemoryandpersistent storage, aswell asa layered

set of indexes geared toward typical observability queries.

4.1 Hybrid Log Abstraction

To support high ingest rates, Loom is built around an append-

only log data structure. Following standard design [3, 4, 7, 61],

each inserted record receives a unique address correspond-

ing to its physical offset in the log, making the lookup for a

specific record address O(1). To amortize memory and I/O

overhead, Loom interleaves records frommany sources in the

record log, with records from the same source linked together

using these addresses as back-pointers to form a record chain.

Loom’s hybrid log abstraction is carefully designed to im-

pose minimal overhead on the write path while operating

within a fixed resource envelope. Loommust be highly CPU-

efficient in order to keep up with ingest rates of millions of

records per second without scaling out to many threads such

that theCPU loadwould contendwith the application, risking

probe effect. Loom stages writes to each log in a fixed-size

(e.g., 64 MiB) block in memory. Therefore, in the common

case, writes in Loom take only a few hundred cycles. Once the

block fills up, Loom evicts its contents to persistent storage

in a background thread and switches writing into a second

block. Similarly, when the second block fills up, Loom evicts

it in the background and switches back to the first block, then

repeats this process.

4.2 Layered Sparse Indexes

Log-based systems excel at supporting high ingest rates but

often fall short when trying to provide interactive query la-

tencies. Loom turns to ideas from sparse indexes in database

systems [20, 42, 52, 65, 68] to efficiently skip large amounts

of irrelevant data during query processing without adding

significant overhead to the write path. Loom builds two light-

weight index structures on top of the record log: the chunk

index and the timestamp index.

TargetQueries.Loom’s indexes target common classes of ob-

servability queries. Such queries usually focus on time ranges,

value ranges, aggregates, and data-dependent ranges (e.g.,

high percentiles). For example, correlation queries often re-

trieve data for the same time range from different sources,

while aggregates may count or average events during a time
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Kind Timestamp Event
1 Record 14 Latency: 10s

2 Record 17 Latency: 13s

3 Record 18 Latency: 9s

4 Internal 19 Chunk Summary

5 Record 25 Latency: 11s

6 Record 29 Latency: 23s

7 Internal 31 Chunk Summary

8 Record 32 Latency: 6s

9 Record 33 Latency: 12s

Figure 6: Running example. In rows 1–3, 5–6, and 8–9,

records from an HFT source that captures latency arrive

in Loom at the given timestamp. In rows 4 and 7, Loom

fills a fixed-size chunk with records. Timestamps increase

monotonically but are not consecutive (i.e., records from

other sources or internal eventsmay exist in between events).

window. These also compose: a querymight first retrieve data

above a data-dependent threshold (e.g., 99.99
th
percentile) and

then query other sources for times around the timestamps of

the outlier records. Loom’s layered indexes seek to support

these query classes efficiently—although Loom can execute

other operations (e.g., substring search), it cannot leverage

any indexes and must scan data.

Running Example. To illustrate Loom’s indexes, consider

the example shown in Figure 6, which depicts a timeline of

events.Rows1–3, 5–6, and8–9are records fromanHFTsource

that contain a latency value. Rows 4 and 7 are internal events

triggered by Loom filling a fixed-size chunk. Timestamps in-

crease monotonically but are not consecutive, as Loommay

have received records from other sources between the events.

Record Log.When Loom receives a record from a source, it

appends the record to the record log. Loom links records from

the same source using back-pointers, building a record chain

with each new record pointing to the previous record from

the same source. The record log in Figure 7 shows records

from the example in Figure 6 in green boxes and back-pointers

using dashed green lines. Rows 1 and 2 in Figure 6 correspond

to (T14, L10) and (T17, L13) in Figure 7, respectively. Loom
interleaves records from multiple sources in the record log.

For example, records from other sources can arrive between

timestamps 14 and 17, so Figure 7 indicates this with ellipses

(...) between the records.
Loom breaks the record log into fixed-size chunks (blue

boxes in the record log in Figure 7). It appends the new records

to the most recent active chunk (dashed box in Figure 7). The
record log contains only one active chunk, which becomes

immutable when it fills up (solid boxes in Figure 7).

Chunk Index. Loommaintains a summary of new records

appended to the active chunk.When Loomfills the chunk and

makes it immutable, it writes this summary into the chunk

Timestamp 
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Chunk Summ.

T17 T19 … T25 … T31 T32

T14 
L10
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T33 
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…… …

Chunk Summ.

…
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Chunk Summary

• Bin 0 
• Count: 1 
• TR: 18-18

• Bin 1 
• Count: 2 
• TR: 14-17

Other bins 
for other 
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< 10

Bin 1 
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[15-20)

Bin 3 
20 ≤

Chunk Summary

• Bin 1 
• Count: 1 
• TR: 25-25
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• TR: 29-29

Other bins 
for other 
sources…

T14 
L10

T17 
L13

T18
L9… … T25 

L11 … T29 
L23 …

Figure 7: Loom stores chains of raw records from sources

(dotted arrows) in the record log, summaries for each chunk

in the chunk index, and timestamps for key events in the

timestamp index. Entries in the indexes have addresses to

relevant chunks or records in the record log (solid arrows).
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Figure 8:A detailed view of the chunk summaries in Figure 7.

Summaries contain statistics for records in a chunk that fall in

an index-specific histogram bin. Loom constructs a summary

for the active chunk, but the summary is not accessible to

queries. When the active chunk fills up, Loomwrites the sum-

mary to the chunk index and makes it available for queries.

index. Figure 7 shows chunk summaries as filled blue boxes in

the chunk index. Loomuses the chunk index for twopurposes:

answering queries in the record log without needing to read

the chunks and skipping irrelevant chunks. Figure 8 continues

using the example in Figure 6 to illustrate the chunk index.

The monitoring daemon (or a client calling into it) defines

an index for a source’s data using a histogram abstraction

(i.e., a set of bins for different value ranges). Since observabil-

ity queries typically care about outliers, Loom also adds two

outlier bins above and below the histogram. In Figure 8, the

histogram (in gray) for the source’s latency value has four

bins. The monitoring daemon defines bins 1 and 2, and Loom

adds bins 0 and 3.

Loom chooses this histogram abstraction due to its flexi-

bility. Histograms can serve value-range queries (e.g., “Does

a chunk have data in bins above a threshold?”), aggregates

(e.g., “count/sum/max/min of items in each bin”), and per-

centiles (e.g., “sum bins until the count exceeds X%”), as well

as exact-match queries (with match/no-match bins).
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Specifying the histogram requires a priori knowledge com-

mon in observability. For example, a service-level objective

could specify the histogram’s maximum bin, or a historic

query latency distribution might inform a histogram for new

latencies. In some cases (e.g., percentages), the range of pos-

sible values is inherent. Unlike exact indexing approaches,

histograms require no knowledge of query parameters.

Chunk summaries contain statistics on the values that fall

within a histogram’s bins, including themaximum,minimum,

sum, timestamp range, and number of records. Figure 8 con-

tains two chunk summaries corresponding to the two filled

chunks in the record log. The first contains entries for bins

0 and 1, since its corresponding chunk contains records with

latencies that fall into these bins: the records at timestamps

14 and 17 fall into bin 1, and the record at timestamp 18 is an

outlier falling into bin 0. The second contains entries for bins 1

and 3 for the same reason. Chunk summaries have pointers to

their corresponding chunks in the record log. Just as chunks

in the record log contain records from different sources, the

chunk summary contains bins from other histograms with

records in the chunk.

Timestamp Index. Loom uses the timestamp index to keep

track of a coarse-grained timeline of events and their loca-

tions in the other logs. This helps queries quickly find relevant

records in the chunk index and record log based on time. The

timestamp index is always active and requires no specifica-

tion, so sources without a specified (or a poorly specified)

histogram still benefit from the timestamp index.

Loomwrites timestamp index entries for two events: (i) pe-
riodic intervals when a source pushes a record, and (ii) when
Loomfills and indexes chunks in the record log. The entry con-

tains the timestamp and a pointer to the corresponding record

written or chunk summary created during that timestamp.

Figure 7 shows timestamp index entries for records that ar-

rivedat timestamps17, 25, and32, aswell as timestamps19and

31 corresponding to the creation of chunk summaries. Like

the record log, timestamp entries also have back-pointers to

previous timestamp entries from the same source or previous

chunk summary creation events.

ImplicationsofLayering.The layered index design ensures
that each layer is more coarse-grained and smaller than the

layer below. Each chunk summary in the chunk index amor-

tizes many records in the record log, so index entries have

small storage overhead. The entries in the timestamp index

are infrequent and even smaller than chunk summaries, so

writing them adds little overhead.

For example, a 10-minute workload that produces 4.7M

records/second will create a record log of 253 GiB—the chunk

index is 3 GiB, and the timestamp index is 256 MiB. Loom

stores the indexes themselves in hybrid logs. Each hybrid log

uses twoblocksofhostmemory (128MiB), buta larger fraction

of the indexes resides in memory, owing to their smaller size

(e.g., 50% of the timestamp index and 4% of the chunk index, as

opposed to 0.0004% of the record log). This speeds up queries

as index scans can happen on in-memory data.

4.3 Query Processing

To execute an observability query, Loom uses the timestamp

and chunk indexes to progressively reduce the amount of data

needed to answer the query. It does so in three steps. First,

Loom uses the timestamp index to identify the locations in

the chunk index and record log that might contain relevant

data. Then, it uses the chunk index to filter or partially aggre-

gate chunks. Finally, Loom reads only these chunks from the

record log necessary to calculate a complete result.

Loom has three query operators that follow this access

pattern: raw scan, indexed range scan, and indexed aggregate.

These operators can be composed into complex queries and

correlations. For example, a query to find all requests that

exceed the 99
th
percentile latency is a data-dependent value-

range query, where the value of interest—the 99th percentile
latency—is unknown. This query first uses the indexed aggre-

gate operator to find the 99
th
percentile latency, then finds

records above that value via an indexed range scan. Compos-

ing these operators also enables data-dependent time-range
correlation, as needed for the example in §2.1,where amiscon-

figured packet filter affects individual application requests.

Thequery in §2.1 uses the indexed aggregate and indexed scan

operators to retrieve the slowest request, then uses a raw scan

to retrieve packets in the temporal vicinity of this request.

The raw scan operator retrieves records from a source

that arrived in Loom during a specified time range, iterating

from the most to least recent record. The operator uses the

timestamp index to identify the address of the source’s most

recent record that falls within the time range. It then scans

the source’s record chain backward from that address until

finding a record prior to the requested time interval.

The indexed range scan operator retrieves records from a

source within a time range (e.g., the last two minutes) and an

indexed valuewithin a value range (e.g., latency >50ms) using

a specified histogram index. Loom first uses the timestamp

index to find the chunk summaries in the chunk index that

fall within the time range. Then, it identifies the histogram

bins that contain the queried value range and scans the chunk

summaries to identify chunks in the record log that contain

relevant records. Finally, it scans these chunks to retrieve

the records. If the requested time range includes recent data,

Loom also scans the source’s records in the active chunk.

The indexed aggregate operator returns the value for ag-
gregates (e.g., min/max, percentile) for a time range using a

specifiedhistogramindex.Tocalculatedistributiveaggregates

(min, max, count, sum), the operator identifies the relevant
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Schema Operators
define_source(source_id) Define a new source.

close_source(source_id) Remove an existing source.

define_index(source_id, index_func, bins) Define a new index.

close_index(index_id) Remove an existing index.

Data Ingest Operators
push(source_id, bytes) Write records from a source with content bytes.

sync(source_id) Make all records from a source visible to queriers.

Query Operators
raw_scan(source_id, t_range, func) Scan a source in a time range.

indexed_scan(source_id, index_id, t_range, v_range, func) Scan a source in a time and value range using an index.

indexed_aggregate(source_id, index_id, t_range, method) Aggregate a source in a time range using specified method.

Figure 9: Loom API. A monitoring daemon uses this API to define sources and indexes, write data into those sources, and

perform complex queries using a set of query operators.

chunk summaries using the timestamp index. It then calcu-

lates a partial result using the bins in the chunk summaries

forwhich all records fall inside the query’s time range. Finally,

Loom scans chunks in the record log for which the chunk

summaries’ bins partially fall inside the query’s time range.

Holistic aggregates like percentile typically require look-
ing at all the data at once and sorting it [13]. To avoid this, the

operator treats bins in the chunk summaries as a cumulative

distribution function (CDF). First, it counts the number of

records that fall within each bin (accounting for partial time

range coverage by scanning chunks, as before). Examining

each bin’s count and summing them, the operator identifies

which bin contains the queried percentile. Finally, it scans

each chunk in the record log that contains records in that bin

to calculate the final result.

4.4 Coordination-Avoiding Queries

Query execution typically occurs concurrently with ingest.

While queries over historical data touch only immutable parts

of the hybrid logs, queries for very recent data need to access

the active in-memory block. In this case, Loom needs to coor-

dinate shared access between queries and thewriter. A simple

solution would lock the in-memory block while the query

scans it, but this could block writes for an extended time. For

example, with 64 MiB blocks, scanning the block takes up to

60ms, during which 500k new records arrive.

Loom instead opts for an approach based on lock-free snap-

shots, where the writer has uncontended access to the hybrid

log’s in-memory blocks. The reader attempts to copy the por-

tion of the in-memory block that already contains data and

which thewriterwill no longer touch (i.e., itmakesa snapshot).

This copy fails if the writer concurrently flushes the block to

storage. The reader detects this and reattempts to read the

data from persistent storage. This means queries never block

writes but also that a query can miss data. The next section

discusses the consistency implications of this choice.

4.5 Guarantees

Traditional database systems typically provide high-overhead

transactional guarantees unnecessary for HFT settings. To

meet its performance requirements, Loom relaxes some of

these classical guarantees inways that remain consistentwith

the unique needs of observability use cases.

Consistency. Loom linearizes queries and data ingestion at

the point of snapshot creation.All data that arrived before this

point is included in the query, and data that arrives afterward

is not. In the edge case where a query’s time range extends

into the future fromLoom’s perspective, Loom’s snapshot can

become stale, since new records with timestamps within the

queried time range can arrive after Loomcreates the snapshot.

We expect such queries to be rare.

Durability. Loom’s hybrid log avoids flushing records ac-

knowledgedtoclients topersistent storage immediately.While

doing sowould ensure that the records survive if themachine

crashes, flushing imposes prohibitive overhead on the write

path, and delaying acknowledgment to the client induces

probe effect. Instead, Loom’s persistence serves to maintain

a fixed memory footprint by evicting older data. A machine

failure therefore causes Loom to lose the data in the active

in-memory block. Given the limited size of the in-memory

block (e.g., 64 MiB), the lost data represents only the absolute

freshest data (i.e., on the order of a few hundredmilliseconds).

Since Loom runs in amonitoring daemon process, if a mon-

itored application (e.g., a key-value store) crashes, Loom can

be used to diagnose the crash using data it received from the

application. However, if the application and the monitoring

daemon process also crash (e.g., due to a kernel panic), then

Loom loses its in-memory data. Whole-host failures and fail-

ures of the monitoring daemon are outside of Loom’s scope.

5 Implementation

Our Loom prototype is a library that consists of 6k lines of

Rust. The library can integrate into a monitoring daemon
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or directly into an application. We integrated Loom with

the OpenTelemetry Collector, a vendor-agnostic monitoring

daemon compatible with many applications [44]. This makes

Loomdeployable as a drop-in replacement for existing teleme-

try backends. For our experiments, we also implemented a

bare-bones monitoring daemon in Rust (2k LoC) to remove

sources of overhead that might confound our evaluation.

5.1 LoomAPI

Figure 9 outlines Loom’s API. The monitoring daemon uses

this API to write data into Loom and execute queries.

Source and IndexDefinition.Themonitoring daemon uses

the schema operators to define and close ad hoc sources and in-
dexes. A source has a unique ID and canhavemultiple indexes.

Loom indexes records from a source based on a user-defined

function (UDF) supplied on index definition and based on a

histogram describing the bins in the index.

This API supports exact-match indexes (e.g., “== "ERROR"”
or “≥ 10”) by specifying a singular bin and an index_func
that returns a value in that bin for matching records.

Ingest. The monitoring daemon uses push to write records
into Loom, specifying a source ID and the bytes to be written.

The daemon can call sync to force queryability for a source.

Querying.Themonitoring daemon uses the raw_scan query
operator to apply aUDF (func) to every record ina source.The
indexed_scan provides the same functionality, but it lever-

ages Loom’s indexes to find records in a source that qualify

by time and value range. Finally, indexed_aggregate aggre-
gates records using Loom’s indexes, taking advantage of the

query access patterns described in the previous section.

5.2 Internal Timestamps

Loom uses the system’s monotonic clock to internally times-

tamp records and key events, so Loom’s timestamps represent

the arrival time of the records. With this internal timestamp

approach, Loom supports time-range queries efficiently with-

out the cost of sorting and indexing external timestamps that

can arrive out of order. The timestamp index coarsely indexes

data by internal timestamp, which allows Loom to efficiently

execute time-rangequeries for historical data by seekingback-

ward in the timestamp index until the requested time and then

scanning the record log from there.

If external timestamps are required (e.g., for true “happens-

after” relationships), Loom can support them because records

can carry their own timestamps in the data. Chunk summaries

can capture such external timestamps as indexed min/max

values, so Loom can efficiently retrieve matching records sim-

ilarly to how it serves aggregates. Alternatively, a query could

retrieve records within an over-approximated time range

(e.g., +/- 1 minute of the external time) that accounts for late-

arriving records. Either way, the client sorts the returned

records based on the embedded external timestamp.

5.3 ChangingWorkloads

Loom’s API allows it to react to changing workloads. When

the workload changes, the monitoring daemon (or an engi-

neer) can close a source’s out-of-date index and define a new

one using a new histogram. Doing so has no impact on ingest

performance, as the new histogram is only active for newly

arriving data from the specified source (i.e., older data is not

re-indexed). Consequently, the new index only accelerates

queries on data that arrives after the index was defined.

5.4 Write Path

Loom carefully coordinates the sequence in which it writes to

the record log, chunk index, and timestamp index. To process

a new record, it first takes a timestamp for that record and

writes it to the record log. If it detects that the record is now in

a new chunk, it finalizes the chunk summary for the previous

chunk and writes that to the chunk index. It then writes this

event into the timestamp index. Finally, Loommakes themost

recent entries in the record log, chunk index, and timestamp

index queryable (in that order) using an atomic operation that

indicates to readers which portion of the in-memory blocks

is now immutable.

5.5 Read Path

To avoid contention with the write path, a reader makes a

copy (i.e., a snapshot) of the in-memory blocks of each of the

logs up to a high watermark set by the writer (and updated

periodically and on sync calls) that denotes immutable data.

The reader then reads that snapshot. During the copy, how-

ever, the writer might flush and recycle a block, resulting in

an invalid copy. Loom employs a lock-free versioning mech-

anism to detect this event. Observing the event indicates that

the blockwas persisted to storage, so Loom continues reading

from persistent storage instead.

6 Evaluation
Our evaluation seeks to answer five key questions:

(1) Can Loom keep up with HFT’s high ingest rate while

also supporting interactive read queries? (§6.1)

(2) HowdoLoom’s ingest and query performance compare

to those of state-of-the-art alternatives? (§6.1)

(3) What probe effect does Loom induce compared to these

alternative approaches? (§6.2)

(4) How does Loom’s hybrid log perform relative to the

persistent data structures used in other systems? (§6.3)

(5) How do Loom’s indexes impact query latency? (§6.4)

WeevaluateLoomandbaseline systemsusing twocase studies

based on real-world scenarios, as well as synthetic workloads

for drill-down experiments.

The Redis case study is the motivating workload from §2,

where an engineer observes occasional high latency in a Re-

dis deployment, ultimately caused by a misconfigured packet
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Records
Phase Data Collected per second size Queries Query Type
P1 Application req. latency 865k 48 B 99.99

th
percentile latency records Scan over data

P2 + OS syscall latency + 2.7M 48 B + 99.99
th
percentile sendto latency records Correlation b/w records

P3 + Client TCP packets + 3.5M varies Packets 5 sec. before/after slow app. requests Time-driven scan

a: Redis workload: scan and correlation queries.

Records
Phase Data Collected per second size Queries Query Type
P1 RocksDB req. latency 4.7M 48 B Maximum, 99.99

th
percentile request latency Aggregation

P2 + OS syscall latency + 3.2M 48 B Maximum, 99.99
th
percentile pread64 latency Agg. on 3% of data

P3 + OS page cache events + 39k 60 B Count number of page cache events

(mm_filemap_add_to_page_cache)
Agg. on 0.5% of data

b: RocksDB workload: aggregation queries.

Figure 10: End-to-end experiments cover scan, correlation, and aggregation queries at ingest rates that increase across three

phases in each experiment. Each phase’s throughput is additive (“+ N”) over the previous phase’s total ingest throughput.

Percentage of data dropped

InfluxDB FishStore Loom

Redis

P1 38.2%

0% 0%P2 86.3%

P3 90.1%

RocksDB

P1 87.9%

0% 0%P2 92.8%

P3 92.7%

Figure 11: End-to-end, InfluxDB falls behind and drops

38–97% of data. Loom and FishStore capture complete data.

filter. Its queries (Figure 10a) cover data-dependent range

scans for high-latency requests (Phase 1), correlation with

slow syscalls (Phase 2), and data-dependent, time-windowed

correlation with TCP packets (Phase 3).

The RocksDB case study is based on a real-world Linux per-

formancedebuggingexample [5]. Figure10bshows itsqueries,

which cover aggregations (max, 99.99
th
percentile latency)

over HFT (Phase 1), aggregation on a subset of data collected

(Phase 2; 250k records/second, 3% of data), and aggregation

on very rare events (Phase 3; 0.5% of data).

Baselines.We evaluate Loom against InfluxDB 1.7 [30], a

widely used time series analytics database focused on expres-

sive queries, and FishStore [63], a state-of-the-art research

query engine designed for HFT-style observability data and

queries.We also evaluate Loom’s hybrid log directly against a

persistentB-tree inLMDB[22],LSM-tree-basedRocksDB[49],

and FishStore’s log based on FasterLog [41].

Metrics.Wemeasure the ingest throughput achieved by dif-

ferent systems (in records/second andMiB/second), as well

as the fraction of data dropped on ingest. For read queries, we

measure latency and the percentage of ground truth datamiss-

ing from the result. Missing data occurs because the system

dropped it on ingest.

Setup.All experiments were conducted on a server running

Ubuntu 22.04 (Linux v5.15) with two Intel
®
Xeon

®
Gold 6150

CPUs (36× 2.7 GHz), 377 GiB RAM, and a Samsung 2 TBNVM

Drive for persistent storage.

6.1 End-to-End Evaluation

We first evaluate end-to-end performance of Loom on the

Redis and RocksDBworkloads, comparing against state-of-

the-art systems (InfluxDB and FishStore). In the experiment,

all systems continuously ingest data and concurrently serve

different queries (per Figure 10) in three phases.

InfluxDB drops 38–93% of data on ingest because it falls

behind (Figure 11). To make the query latency comparison

apples-to-apples, we also compare against an idealized In-

fluxDBwith infinitely fast ingest bypreloading thedatabefore

issuing queries (“InfluxDB-idealized”). A good result for each

system would show no dropped data and interactive (i.e., <10

seconds) query latency. While low resource use is desirable,

the experiment lets all systems use unlimited resources.

RedisWorkload.Thisworkload is characterizedbyan ingest
rate increasing sharply across phases (865k records/second in

Phase 1 to 7M records/second in Phase 3) and data-dependent

scan queries to support correlations (Figure 10a).

Figure 12 shows the query latencies. In Phase 1 and Phase 2,

Loom is consistently 14–97× faster than InfluxDB-idealized

and 1.5–10× faster than FishStore. For InfluxDB, the Slow
Requests query is dominated by calculating the 99.99

th
per-

centile; the data fetch and scan take less than one second. In

FishStore, this query is faster in Phase 1 than in Phase 2 (8.7 vs.

20.3 seconds) because FishStore’s log interleaves data from all

sources, and FishStore must therefore read more data to find

the relevant records in Phase 2. Phase 2’s Slow sendto Execu-
tions query takes longer (184 seconds) in InfluxDB-idealized
than the Slow Requests query because the former reads and
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Figure 12: In Phases 1 and 2 of the Redis workload, Loom has 1.5–10× lower latency than FishStore and 14.4–97× lower latency

than (unrealistic) InfluxDB-idealized. For Phase 3, Loom outperforms FishStore by 2–46× and InfluxDB-idealized by 7–11×.

scans more data. In FishStore, both Phase 2 queries have simi-

lar latencies, as the log interleaves data frommultiple sources

and queries have to scan data from other sources.

Phase 3 has two queries:Maximum Latency Request, which
benefits from indexing because it selects few application

requests, and TCP Packet Dump, which fetches the records

within a given 10-second window and must scan millions of

records even with a time index. Loom outperforms InfluxDB-

idealizedby7–11×andFishStoreby2–46×. InfluxDB-idealized
executesMaximumLatencyRequest relatively quickly (4.3 sec-
onds) due to its “tag” index. FishStore executes the samequery

in a streaming fashion, so it avoids having to load all the data

into memory. Hence, the query latency (18.3 seconds) is com-

parable to the Phase 2 queries, even though FishStore must

traversemore data to find the relevant records. Loom is fastest

(0.4 seconds), as it scans mainly the chunk summaries in the

chunk index, in addition to two partial chunks at the start

and end of the 10-second window. TCP Packet Dump forces
InfluxDB into an expensive scan over its LSM-tree that results

in high latency (104.3 seconds), while FishStore—lacking a

time index—must scan the log until the relevant timewindow.

Loom finds the relevant chunks via its time index. Because

of the number of records scanned, the latency (14.2 seconds)

is still higher than for the other queries.

RocksDBWorkload.Thisworkload is characterizedbyhigh-
rate ingest (4.7–8M requests/second) and aggregation queries

in all phases, with increasingly selective queries (Figure 10b).

Figure 13 shows the query latencies. In Phase 1,Application
Max Latency benefits from indexes that track maximum val-

ues, whileApplication Tail Latencymust compute a percentile

aggregation. InfluxDB-idealized runs these queries in 23.1 and

380 seconds, as InfluxDB’s indexes do not support percentile

aggregations, and the tail latency query aggregates over mil-

lions of records. This changes in Phase 2, where pread64 Max
Latency and pread64 Tail Latency queries need to aggregate
over only 3% of the data. Here, InfluxDB’s “tag” index allows it

to efficientlyfind subsets of data and scan themtocalculate the

percentiles (23–26 seconds). FishStore needs to scan records

for all queries, resulting in slow queries (48 and 38 seconds).

Since FishStore loads all relevant records into memory, it can

calculate the max and percentiles simultaneously. In Phase 1,

the Application Tail Latency query is faster in FishStore than

InfluxDB because FishStore retrieves records from its PSF

index. FishStore’s PSF builds a back-pointer chain of records

that match exactly a provided predicate, so scans on a pred-

icate can quickly access relevant records in FishStore’s log.

This changes in Phase 2, where InfluxDB’s indexes are more

effective in summarizing and skipping to small portions of

data that FishStore must scan. Loom serves all four maximum

and tail latency queries largely from chunk summaries, so

they are fast (0.5–3.2 seconds).

In Phase 3, all systems benefit from indexing. The “tag”

index in InfluxDB, which is most effective on narrow subsets

of data, helps the Page Cache Count query, which touches

only 0.5% of the data. In FishStore, we installed a PSF that se-

lects only data from the page cache event source, so FishStore

quickly retrieves the data. Finally, Loom uses counts stored

in chunk summaries to answer the query.

Discussion.This experiment shows that Loom and FishStore

have the ingest performance required to keep up with HFT,

while InfluxDBstruggleswithhigh-rate ingest.However, Fish-

Store’s PSF indexes are too restrictive and cannot accelerate

important classes ofHFTqueries. InfluxDB’s indexes (“tag” in-

dex and value indexes) accelerate distributive aggregates (e.g.,

maximum) and value-range queries, but not holistic aggre-

gates (e.g., percentiles). Loom’shybrid log and layered indexes

help itmaintain high ingest throughputwhile simultaneously

achieving interactive query latency.

In this experiment, FishStore and InfluxDB use substan-

tially more CPU resources than Loom: FishStore has eight

index threads and InfluxDB uses 16 ingest threads, in addition

to any background resources these systems require. Loom

uses only one CPU but still keeps up with ingest, also having

the lowest overall query latency.
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heavy-weight indexing has 14% probe effect, while FishStore

with indexes (-I) sees 9.9% probe effect proportional to the

number of PSFs installed. FishStorewithout indexes (-N) still
has 6.6% probe effect. Loom has similar probe effect (4.83%)

to capturing data to a raw, unindexed file (4.10%).

6.2 Probe Effect

Wenow evaluate what probe effect Loom and state-of-the-art

systems impose on the application being monitored. We run

Phase 3 of the RocksDBworkload (≈8M records/second), in-

gesting the datawithout any concurrent queries, andmeasure

probe effect (i.e., the decline in performance) on RocksDB’s

application-level request throughput. Without telemetry col-

lection, RocksDB achieves 5.06M operations/second.

We consider telemetry collection into (i) InfluxDB; (ii) Fish-
Storewith indexing (FishStore-I, 3 PSFs); (iii) FishStorewith-
out indexing (FishStore-N); (iv) writing the data to a raw file

(as e.g., perf record would); and (v) Loom. A good result

would show that RocksDB sees high throughput and incurs

low probe effect from telemetry collection. Probe effect above

7% is often considered problematic in industry [54].

Figure 14 shows the results. InfluxDB has high probe effect

(14.1%, 3.82M operations/second) because its heavy-weight

indexing strategy consumes significant resources. Although

more lightweight than InfluxDB, FishStore’s probe effect in-

creases with the number of PSF indexes added. FishStore

with indexing has 1.5× higher probe effect (9.9%, 4.19M op-

erations/second) than without indexing (6.6%, 4.37M oper-

ations/second). Writing to a raw file, which represents the

bare minimum overhead for telemetry collection, incurs 4.1%
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Figure 15: Loom achieves the highest ingest throughput

with small records at high frequency and is competitive for

large records, even when FishStore uses 3× and RocksDB

uses 8× as many CPU cores.

probe effect (4.87M operations/second). Loom’s 4.83% probe

effect (4.74M operations/second) comes closest to the raw

file baseline. This demonstrates that Loom avoids imposing

unacceptable probe effect on applications.

6.3 Data Structure Ingest Scaling

WenowevaluateLoom’shybrid logbycomparing it to alterna-

tive data structures for storage organization. As baselines, we

consider (i) a persistent B-tree (LMDB); (ii) LSM-tree-based

storage (RocksDB); and (iii) a log-structured store (FishStore).
We benchmark with an ingest-only workload consisting of

records whose size varies from 8 to 1024 bytes; this synthetic

benchmark is more demanding than the workload in §6.2.

Observability workloads are dominated by small records (e.g.,

48–60 B for our end-to-end workloads), which makes high

performance on small writes critical.

Bydesign, FishStore andRocksDBscale by acceptingwrites

from many ingest threads, while LMDB and Loom are de-

signed to accept writes from one ingest thread. Hence, we run

the experiment (i) with FishStore and RocksDB set to accept
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writes from a single ingest thread, comparing under fixed

resources; and (ii) with number of concurrent ingest threads

scaled until the baseline systems match Loom’s performance

(i.e., eight CPUs for RocksDB and three for FishStore). We

impose no restriction on the number of background threads

or CPUs each system uses to process writes. For example,

RocksDB with one ingest thread still has its internal paral-

lelism set to the number of CPUs (72 cores). For RocksDB, we

switch off its write-ahead log, as it slows down writes. For

LMDB, wewrite data in APPENDmode designed for bulk loads

of sequential data, the fastest ingest method in LMDB.

Figure 15 shows the results. Across the board, LMDB’s B-

tree constructionmeans it cannotmatch Loom’s performance

rooted in fast, log-based storage. When writing 8-byte and

64-byte records, Loom also outperforms FishStore’s log and

RocksDB’s LSM-tree. This is because writing small records

is a CPU-bound task: write throughput is far from saturat-

ing I/O bandwidth. LSM-trees/RocksDB in particular suffer

due to the CPU cost of merging. As the record size increases,

this advantage for Loom shrinks, as FishStore and RocksDB

amortize their CPU costs over larger writes, and multiple

writer threads can saturate SSDbandwidth better. At 256-byte

records, FishStore with three CPUs matches Loom. RocksDB

with eight CPUs only (marginally) outperforms Loom at 1024-

byte records, writing 1.1M records/second. Similarly, 1024-

byte records amortize FishStore’s CPU costs over the shared

log, so it performs best, writing 1.4M records/second.

Loom’s large block flushes effectively use the disk band-

width under limited resources. Notably, while achieving high

performance, RocksDB with eight CPUs and FishStore with

three CPUs have significant probe effect, reducing co-located

application performance by 29% and 19%, respectively. By

contrast, Loom has only 2% probe effect.

6.4 Impact of Indexes

Next, we consider the impact of Loom’s indexes on query
latency.We performan ablation study inwhichwe run Loom

(i) without any indexes; (ii) with only the timestamp index;

(iii) with only the chunk index; and (iv) with both indexes

(the default). The experiment runs Phase 2 of the RocksDB

workload. We vary the lookback time (i.e., how far in the past

the queried data starts) and query for high-latency syscalls

within a 120-second window. A good result would show that

the indexes reduce query latency.

Figure 16 shows the results. Without indexes, the query

takes hundreds of seconds, and latency increases linearly

with lookback distance. Adding a timestamp index removes

this growth proportional to lookback, as the timestamp in-

dex helps Loom scan the hybrid log starting from the right

address. However, the query still takes 150–160 seconds, as

it must scan all data within the 120-second window. Com-

bining timestamp and chunk indexes achieves both benefits
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Figure 16: Loom’s time index is effective at reducing query

latency as a function of how far a query looks back in time;

the range index reduces the amount of data scanned within

the query window (120 seconds). These benefits compose.
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Figure 17: For exact-match queries, FishStore outperforms

Loom for short lookbacks, but Loom outperforms FishStore

for longer lookbacks. This is because FishStore lacks range

or percentile indexes.

simultaneously, reducing query latency below five seconds

independent of lookback duration. This shows that Loom’s

indexes are effective and necessary for good performance.

Unlike Loom’s indexes, FishStore’s indexes are exact in-
dexes optimized for exact matches on point lookups (e.g., a

specific error ID) and range queries (e.g., all records with a

value greater than 50). Although Loom’s histogram-based

indexes are more flexible, they can also mimic the behavior

of exact indexes by treating them as a histogramwith a single

bin.We now compare the performance of Loom’s indexes and

FishStore’s exact indexeswhenLoomemulates exact indexing

via this approach. The setup is the same as before (RocksDB

workload, Phase 2), andwe again vary the lookback time from

60 to 600 seconds.

Figure 17 shows the results. FishStore has lower query la-

tency than Loom when querying very recent data (e.g., 2.0

vs. 4.5 seconds at a 60-second lookback). This is because Fish-

Store’s indexes identify exactly the records queried while

Loomneeds to scan some irrelevant data because of its coarse-

grained histogram index. But as lookback time increases, Fish-

Store’s query latency increases. This happens because Fish-

Store lacks a time index and must scan all historic data that

matches in the index. Beyond 120 seconds, Loomoutperforms

FishStore for this workload.
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7 RelatedWork
Log-based systems support high-rate ingest and simple

record retrieval using log addresses. They fall into two cat-

egories. First, shared log abstractions exist for different do-

mains, such as distributed transactions and replicated state

machines (e.g., CORFU [3], Tango[4], Scalog [10], vCorfu[61],

FuzzyLog [23], LazyLog [24]). Second, ingest-oriented storage

systems are more directly applicable to HFT, such as Faster-

Log [7, 41] and FishStore [63]. FishStore builds on FasterLog

and indexes data using user-defined PSFs. While these sys-

tems can keep upwithwrite rates required forHFT, they do so

at the expense of query performance, sacrificing indexing en-

tirely (FasterLog) or sacrificing too much indexing expressiv-

ity (FishStore). By contrast, Loom’s approach sacrifices index-

ing specificity, opting for sparse indexes tomaintainhighwrite

throughput while supporting a broad class of HFT queries.

Key-value stores like BerkeleyDB [43], LevelDB [21], Rocks-
DB [49], PebblesDB [47], WiredTiger [62], and LMDB [22]

are often used to handle high-rate workloads. They use tree-

based indexes with multiple levels of compaction or tree-

construction costs, thereby suffering from write amplifica-

tion [47]. These techniques introduce too much overhead for

HFT, which results in insufficient ingest performance.

Read-optimized time series databases like InfluxDB [30],

OpenTSDB [32], and TimescaleDB [37] store and query time-

structureddata, but these systemsprioritize readperformance

and use high-overhead indexes (e.g., B-trees) that make it dif-

ficult to achieve the ingest rates needed for HFT [6, 19].

Specialized tools like CLP [50], NanoLog [64], 𝜇Slope [59],
and LogGrep [60], or systems tracing tools like perf [9] and

ETW [40] store one type of data (e.g., logs or system events)

in a specialized way. It takes significant engineering effort

to query data stored by these tools in conjunction with data

from other sources of HFT. Systems like Prometheus [34],

Jaeger [31], or others [44, 69] are insufficient, as they only

cover specific types of data (e.g., traces) and can only keep up

with the ingest rate of heavily sampled events, not with HFT

needed for drill-down analysis. By contrast, Loom provides

a storage and query engine for arbitrary sources of HFT.

Distributed tracing and diagnosis tools like Fay [12],

Canopy [17], Hindsight [66], and Helios [46] aggregate traces

from distributed applications to identify and diagnose is-

sues. These systems give engineers a broad view of their

deployment, aggregating or sampling data and spreading

work across many nodes. Unlike Loom, they are not designed

to support high-rate data for drill downs on a single machine.

Bespoke tools are also sometimes used forHFT. For example,

Google uses specialized tools to correlate statistics from dif-

ferent layers in the stack for characterizing their services [2].

Loom is a generic tool for drilling down and correlating HFT

frommultiple sources to discover rare events.

8 Discussion and Opportunities

Distributed Environments. Loom is designed to run on a

single node. However, in modern, large-scale systems, corre-

lated events can happen across multiple (potentially many)

nodes.With some additional infrastructure built on top, Loom

could extend to the distributed case.

Specifically, a coordinator could execute correlations or

aggregations onHFT by contacting the Loom instances in the

relevant hosts. To respond to a query, each nodewould collect

the necessary HFT and calculate intermediate results on-host.

The coordinator would then aggregate these intermediate

results into the final result.

Tracing with Kernel Extensions. Kernel extension pro-

grams written in eBPF are a key source of HFT. eBPF loads

programs into an OS kernel, verifies that these programs are

safe to run, and then runs them in a privileged context.

Several front-ends (e.g., BPFTrace [27], Ply [33], Pixie [45],

BQL [56]) make it simpler for engineers to write, load, and

run eBPF programs for observability. These front-ends alone

cannot efficiently collect the HFT to which they have access,

so they follow a streaming aggregation model whereby they

summarize and then immediately discard events as they occur.

But in this model, an engineer cannot further investigate a

specific event because the data for that event was discarded.

Deploying Loom as a sink for these front-ends would solve

this problem because it can absorb high-rate HFT even while

the front-end summarizes it.

9 Conclusion
This paper introduced Loom, a new system for capturing and

querying HFT. Loom keeps up with the high ingest rates of

HFTwhile simultaneously serving a broad class of parameter-

ized observability queries with interactive latency. The key to

Loom’s performance is its combination of lightweight, sparse

indexes and fast log-based storage.

Loom achieves higher ingest throughput, drops less data,

and sees lower query latency than state-of-the-art systems,

all with lower resource utilization and little probe effect.

Loom is open-source software and its code is available at:

https://github.com/fsolleza/loom

Acknowledgments
We thank Sam Thomas, Justus Adam, and the members of the

ETOS and Systems groups at Brown for their helpful feed-

back on drafts of this paper. Ugur Çetintemel and Suman

Karumuri also gave feedback on an early version of Loom.

Feedback from the anonymous reviewers and JonathanMace,

our shepherd, greatly improved the paper.

This workwas supported by a grant from Intel’s Corporate

ResearchCouncil, aMicrosoftGrant forCustomer Experience

Innovation, and a Google Research Scholar Award.

525

https://github.com/fsolleza/loom


Loom: Efficient Capture andQuerying of High-Frequency Telemetry SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

References
[1] Jaeger Github issue #2693.Unstable performance Jaeger

UI (query) and lacking insights on the ’why’. url: https:
//github.com/jaegertracing/jaeger/issues/2693 (visited

on 08/07/2025).

[2] Dan Ardelean, Amer Diwan, and Chandra Erdman.

“Performance analysis of cloud applications”. In: Pro-
ceedings of the 15th USENIX Symposium on Networked
SystemsDesignand Implementation (NSDI). 2018,pages405–
417.

[3] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prab-

hakaran, TedWobbler, Michael Wei, and John D Davis.

“CORFU: A shared log design for flash clusters”. In: Pro-
ceedings of the 9th USENIX Symposium on Networked
SystemsDesignand Implementation (NSDI). 2012,pages1–
14.

[4] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber,

Ming Wu, Vijayan Prabhakaran, Michael Wei, John

DDavis, SriramRao, Tao Zou, andAviad Zuck. “Tango:

Distributed data structures over a shared log”. In: Pro-
ceedings of the 24th ACM Symposium on Operating Sys-
tems Principles (SOSP). 2013, pages 325–340.

[5] Brendan Gregg. Linux Page Cache Hit Ratio. 2014. url:
https://brendangregg.com/blog/2014-12-31/linux-

page-cache-hit-ratio.html (visited on 10/09/2024).

[6] HokeunCha,XiangpengHao,TianzhengWang,Huanchen

Zhang, Aditya Akella, and Xiangyao Yu. “Blink-hash:

An Adaptive Hybrid Index for In-Memory Time-Series

Databases”. In: Proceedings of the 49th International
Conference on Very Large Data Bases (VLDB). 2023,
pages 1235–1248.

[7] Badrish Chandramouli, Guna Prasaad, Donald Koss-

mann, Justin Levandoski, James Hunter, and Mike Bar-

nett. “Faster: A concurrent key-value store with in-

place updates”. In: Proceedings of the 2018 International
Conference on theManagement of Data (SIGMOD). 2018,
pages 275–290.

[8] Liz Fong-Jones Charity Majors and George Miranda.

Observability Engineering, Achieving Production Excel-
lence. O’Reilly Media, 2022.

[9] Linux perf wiki Contributors. perf: Linux Profiling with
Performance Counters. url: https://perf.wiki.kernel.
org/index.php/Main_Page (visited on 10/09/2024).

[10] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo

Alvisi, and Robbert Van Renesse. “Scalog: Seamless

reconfiguration and total order in a scalable shared

log”. In: Proceedings of the 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).
2020, pages 325–338.

[11] Jaana Dogan.Want to Debug Latency? 2018. url: https:
/ / rakyll . medium . com /want - to - debug - latency -

7aa48ecbe8f7 (visited on 10/09/2024).

[12] Úlfar Erlingsson, Marcus Peinado, Simon Peter, Mihai

Budiu, and Gloria Mainar-Ruiz. “Fay: Extensible dis-

tributed tracing from kernels to clusters”. In: Proceed-
ings of the 23rd ACM Symposium on Operating Systems
Priciples (SOSP). 2011, pages 311–326.

[13] JosephMHellerstein andMichael Stonebraker. Read-
ings in database systems. MIT press, 2005.

[14] Alexey Ivanov.Optimizingweb servers for high through-
put and low latency — dropbox.tech. 2017. url: https:
/ / dropbox . tech / infrastructure / optimizing - web -

servers-for-high-throughput-and-low-latency (vis-

ited on 10/09/2024).

[15] Chris Jones. Effective Troubleshooting. url: https://sre.
google/sre-book/effective-troubleshooting (visited on

10/09/2024).

[16] Theo Julienne. Debugging network stalls on Kubernetes
— github.blog. 2019. url: https://github.blog/2019-11-
21-debugging-network-stalls-on-kubernetes/ (visited

on 10/09/2024).

[17] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edi-

son Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win

Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, et

al. “Canopy: An End-to-End Performance Tracing And

Analysis System”. In: Proceedings of the 26th ACM Sym-
posium on Operating Systems Priciples (SOSP). 2017,
pages 34–50.

[18] Suman Karumuri, Franco Solleza, Stan Zdonik, and

Nesime Tatbul. “Towards observability data manage-

ment at scale”. In: ACM SIGMOD Record 49.4 (2021),

pages 18–23.

[19] AbdelouahabKhelifati,MouradKhayati,AntonDignös,

Djellel Difallah, and Philippe Cudré-Mauroux. “TSM-

bench: Benchmarking time series database systems for

monitoring applications”. In: Proceedings of the 49th In-
ternational Conference onVery LargeData Bases (VLDB).
2023, pages 3363–3376.

[20] Harald Lang, Tobias Mühlbauer, Florian Funke, Pe-

ter A. Boncz, Thomas Neumann, and Alfons Kemper.

“Data Blocks: Hybrid OLTP and OLAP on Compressed

Storage using both Vectorization and Compilation”. In:

Proceedings of the 2016 International Conference on the
Management of Data (SIGMOD). 2016, pages 311–326.

[21] LevelDB maintainers. LevelDB. url: https : / /github.
com/google/leveldb (visited on 10/09/2024).

[22] LMDBmaintainers. LMDB. url: https://www.symas.

com/mdb/ (visited on 10/09/2024).

[23] Joshua Lockerman, Jose M. Faleiro, Juno Kim, Soham

Sankaran, Daniel J. Abadi, James Aspnes, Siddhartha

Sen, and Mahesh Balakrishnan. “The FuzzyLog: A Par-

tially Ordered Shared Log”. In: Proceedings of the 13th

526

https://github.com/jaegertracing/jaeger/issues/2693
https://github.com/jaegertracing/jaeger/issues/2693
https://brendangregg.com/blog/2014-12-31/linux-page-cache-hit-ratio.html
https://brendangregg.com/blog/2014-12-31/linux-page-cache-hit-ratio.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://rakyll.medium.com/want-to-debug-latency-7aa48ecbe8f7
https://rakyll.medium.com/want-to-debug-latency-7aa48ecbe8f7
https://rakyll.medium.com/want-to-debug-latency-7aa48ecbe8f7
https://dropbox.tech/infrastructure/optimizing-web-servers-for-high-throughput-and-low-latency
https://dropbox.tech/infrastructure/optimizing-web-servers-for-high-throughput-and-low-latency
https://dropbox.tech/infrastructure/optimizing-web-servers-for-high-throughput-and-low-latency
https://sre.google/sre-book/effective-troubleshooting
https://sre.google/sre-book/effective-troubleshooting
https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
https://github.com/google/leveldb
https://github.com/google/leveldb
https://www.symas.com/mdb/
https://www.symas.com/mdb/


SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea F. Solleza, S. Li, W. Sun, R. Tang, M. Schwarzkopf, A. Crotty, D. Cohen, N. Tatbul, S. Zdonik

USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 2018, pages 357–372.

[24] Xuhao Luo, Shreesha G Bhat, Jiyu Hu, Ramnatthan

Alagappan, andAishwaryaGanesan. “LazyLog: ANew

SharedLogAbstraction forLow-LatencyApplications”.

In:Proceedings of the 30thACMSymposiumonOperating
Systems Principles (SOSP). 2024, pages 296–312.

[25] ApacheHadoopmaintainers.ApacheHadoop. url:https:
//hadoop.apache.org (visited on 09/01/2025).

[26] Apache Kafka maintainers.Apache Kafka. url: https:
//kafka.apache.org (visited on 09/01/2025).

[27] BPFTrace maintainers. bpftrace. 2024. url: https : / /
github.com/bpftrace/bpftrace (visited on 01/04/2025).

[28] Elastic maintainers. Slow log. 2025. url: https://www.

elastic .co/guide/en/elasticsearch/reference/8 .18/

index-modules-slowlog.html (visited on 08/07/2025).

[29] FluentDmaintainers. FluentD. url: https://github.com/

fluent/fluentd (visited on 10/09/2024).

[30] InfluxDB maintainers. InfluxDB. url: https://www.

influxdata.com/ (visited on 10/09/2024).

[31] Jaegermaintainers.Jaeger. url:https://www.jaegertracing.

io (visited on 10/09/2024).

[32] OpenTSDBmaintainers.OpenTSDB. url:http://opentsdb.
net (visited on 10/09/2024).

[33] Ply maintainers. Ply, a dynamic tracer for Linux. 2024.
url:https://github.com/wkz/ply (visitedon01/04/2025).

[34] Prometheus maintainers. Prometheus Documentation.
url: https://prometheus.io/docs/concepts/metric_

types/ (visited on 10/09/2024).

[35] Prometheus maintainers. Prometheus Queries are very
slow.url:https://github.com/prometheus/prometheus/

issues/3234 (visited on 08/07/2025).

[36] Redis maintainers. Diagnosing latency issues — redis.io.
2024. url: https://redis.io/docs/latest/operate/oss_

and_stack/management/optimization/latency/ (vis-

ited on 10/09/2024).

[37] TimescaleDB maintainers. TimescaleDB. url: https :
//www.timescale.com/ (visited on 10/09/2024).

[38] Marek Majkowski. The story of one latency spike —
blog.cloudflare.com. 2015. url: https://blog.cloudflare.

com/the- story- of - one- latency- spike/ (visited on

10/09/2024).

[39] MorganMcLean. IntroducingStackdriverAPMandStack-
driver Profiler. 2018. url: https://cloud.google.com/

blog/products /gcp/ introducing- stackdriver- apm-

and-stackdriver-profiler-distributed-tracing-debugging-

and - profiling - for - your - performance - sensitive -

applications (visited on 10/09/2024).

[40] Microsoft. Event Tracing. 2025. url: https : / / learn .
microsoft.com/en-us/windows/win32/etw/event-

tracing-portal (visited on 08/07/2025).

[41] Microsoft. FasterLog. url: https://microsoft.github.io/

FASTER/docs/fasterlog-basics (visited on 10/09/2024).

[42] GuidoMoerkotte. “Small Materialized Aggregates: A

LightWeight Index Structure for DataWarehousing”.

In: Proceedings of the 24th International Conference on
Very Large Data Bases (VLDB). 1998, pages 476–487.

[43] Michael A. Olson, Keith Bostic, and Margo I. Seltzer.

“Berkeley DB”. In: Proceedings of the 1999 USENIX An-
nual Technical Conference (ATC). 1999, pages 183–191.

[44] OpenTelemetry maintainers.OpenTelemetry Collector.
url: https://opentelemetry.io/docs/collector (visited

on 10/09/2024).

[45] Pixie.How Pixie uses eBPF. 2024. url: https://docs.px.
dev/about-pixie/pixie-ebpf (visited on 01/04/2025).

[46] RahulPotharaju,TerryKim,WentaoWu,VidipAcharya,

Steve Suh, Andrew Fogarty, Apoorve Dave, Sinduja

Ramanujam, Tomas Talius, Lev Novik, and Raghu Ra-

makrishnan. “Helios: hyperscale indexing for the cloud

& edge”. In: Proceedings of the 46th International Confer-
ence onVeryLargeDataBases (VLDB). 2020, pages 3231–
3244.

[47] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,

and Ittai Abraham. “PebblesDB: Building key-value

stores using fragmented log-structured merge trees”.

In:Proceedings of the 26thACMSymposiumonOperating
Systems Principles (SOSP). 2017, pages 497–514.

[48] Jian Reis. Lessons from the trenches: Episode 2 - Replicat-
ing bugs in production is hard (without Snaplet). 2023.
url: https://www.snaplet.dev/post/lessons-from-the-

trenches-when-the-bugs-are-real-but-the-data-isnt

(visited on 10/09/2024).

[49] RocksDBmaintainers. RocksDB. url: https://rocksdb.
org/ (visited on 10/09/2024).

[50] Kirk Rodrigues, Yu Luo, and Ding Yuan. “CLP: Effi-

cient and Scalable Search on Compressed Text Logs”.

In: Proceedings of the 15th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI). 2021,
pages 183–198.

[51] Robert Schulze, Tom Schreiber, Ilya Yatsishin, Ryadh

Dahimene, and Alexey Milovidov. “ClickHouse: Light-

ning Fast Analytics for Everyone”. In: Proceedings of
the 50th International Conference on Very Large Data
Bases (VLDB). 2024, pages 3731–3744.

[52] Lefteris Sidirourgos and Martin L. Kersten. “Column

imprints: a secondary index structure”. In: Proceedings
of the 2013 International Conference on theManagement
of Data (SIGMOD). 2013, pages 893–904.

[53] Richard Sites. Understanding Software Dynamics. Addi-
sonWesley, 2021.

[54] Richard Sites. Data Center Computers: Modern Chal-
lenges in CPU Design. url: https://youtu.be/QBu2Ae8-

527

https://hadoop.apache.org
https://hadoop.apache.org
https://kafka.apache.org
https://kafka.apache.org
https://github.com/bpftrace/bpftrace
https://github.com/bpftrace/bpftrace
https://www.elastic.co/guide/en/elasticsearch/reference/8.18/index-modules-slowlog.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.18/index-modules-slowlog.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.18/index-modules-slowlog.html
https://github.com/fluent/fluentd
https://github.com/fluent/fluentd
https://www.influxdata.com/
https://www.influxdata.com/
https://www.jaegertracing.io
https://www.jaegertracing.io
http://opentsdb.net
http://opentsdb.net
https://github.com/wkz/ply
https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/concepts/metric_types/
https://github.com/prometheus/prometheus/issues/3234
https://github.com/prometheus/prometheus/issues/3234
https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/latency/
https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/latency/
https://www.timescale.com/
https://www.timescale.com/
https://blog.cloudflare.com/the-story-of-one-latency-spike/
https://blog.cloudflare.com/the-story-of-one-latency-spike/
https://cloud.google.com/blog/products/gcp/introducing-stackdriver-apm-and-stackdriver-profiler-distributed-tracing-debugging-and-profiling-for-your-performance-sensitive-applications
https://cloud.google.com/blog/products/gcp/introducing-stackdriver-apm-and-stackdriver-profiler-distributed-tracing-debugging-and-profiling-for-your-performance-sensitive-applications
https://cloud.google.com/blog/products/gcp/introducing-stackdriver-apm-and-stackdriver-profiler-distributed-tracing-debugging-and-profiling-for-your-performance-sensitive-applications
https://cloud.google.com/blog/products/gcp/introducing-stackdriver-apm-and-stackdriver-profiler-distributed-tracing-debugging-and-profiling-for-your-performance-sensitive-applications
https://cloud.google.com/blog/products/gcp/introducing-stackdriver-apm-and-stackdriver-profiler-distributed-tracing-debugging-and-profiling-for-your-performance-sensitive-applications
https://learn.microsoft.com/en-us/windows/win32/etw/event-tracing-portal
https://learn.microsoft.com/en-us/windows/win32/etw/event-tracing-portal
https://learn.microsoft.com/en-us/windows/win32/etw/event-tracing-portal
https://microsoft.github.io/FASTER/docs/fasterlog-basics
https://microsoft.github.io/FASTER/docs/fasterlog-basics
https://opentelemetry.io/docs/collector
https://docs.px.dev/about-pixie/pixie-ebpf
https://docs.px.dev/about-pixie/pixie-ebpf
https://www.snaplet.dev/post/lessons-from-the-trenches-when-the-bugs-are-real-but-the-data-isnt
https://www.snaplet.dev/post/lessons-from-the-trenches-when-the-bugs-are-real-but-the-data-isnt
https://rocksdb.org/
https://rocksdb.org/
https://youtu.be/QBu2Ae8-8LM?t=1641
https://youtu.be/QBu2Ae8-8LM?t=1641


Loom: Efficient Capture andQuerying of High-Frequency Telemetry SOSP ’25, October 13–16, 2025, Seoul, Republic of Korea

8LM?t=1641 (visited on 12/05/2023).

[55] Richard Sites.KUTrace: Where have all the nanoseconds
gone? Tracing Summit 2017.

[56] Franco Solleza, Justus Adam, Akshay Narayan, Malte

Schwarzkopf, Andrew Crotty, and Nesime Tatbul. “

Kernel Extension DSLs Should Be Verifier-Safe! ” In:

Proceedings of the 3rd ACM SIGCOMM Workshop on
eBPF and Kernel Extensions (eBPF). ACM, 2025.

[57] Franco Solleza, Andrew Crotty, Suman Karumuri, Nes-

ime. Tatbul, and Stan Zdonik. “Mach: A Pluggable Met-

rics Storage Engine for the Age of Observability”. In:

12th Conference on Innovative Data Systems Research
(CIDR). 2022.

[58] Franco Solleza, Shihang Li, William Sun, Richard Tang,

Malte Schwarzkopf, Nesime Tatbul, Andrew Crotty,

David Cohen, and Stan Zdonik. “Mach: Firefighting

Time-Critical Issues in Complex Systems Using High-

Frequency Telemetry (Demo Paper)”. In: Proceedings
of the 50th International Conference on Very Large Data
Bases (VLDB). 2024, pages 4425–4428.

[59] Rui Wang, Devin Gibson, Kirk Rodrigues, Yu Luo, Yun

Zhang, KaiboWang, Yupeng Fu, Ting Chen, and Ding

Yuan. “𝜇Slope: High Compression and Fast Search on

Semi-StructuredLogs”. In:Proceedingsof the18thUSENIX
SymposiumonOperating SystemsDesignand Implemen-
tation (OSDI). 2024, pages 529–544.

[60] Junyu Wei, Guangyan Zhang, Junchao Chen, Yang

Wang, Weimin Zheng, Tingtao Sun, JieshengWu, and

Jiangwei Jiang. “LogGrep: Fast and Cheap Cloud Log

Storage by Exploiting Both Static and Runtime Pat-

terns”. In: Proceedings of the 18th European Conference
on Computer Systems (EuroSys). 2023, pages 452–468.

[61] Michael Wei, Amy Tai, Christopher J Rossbach, Ittai

Abraham, MaithemMunshed, Medhavi Dhawan, Jim

Stabile, Udi Wieder, Scott Fritchie, Steven Swanson,

et al. “vCorfu: A Cloud-Scale Object Store on a Shared

Log”. In: Proceedings of the 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).
2017, pages 35–49.

[62] WiredTigermaintainers.WiredTiger.url:http://source.
wiredtiger.com/ (visited on 10/09/2024).

[63] Dong Xie, Badrish Chandramouli, Yinan Li, and Don-

ald Kossmann. “Fishstore: Faster ingestion with subset

hashing”. In: Proceedings of the 2019 International Con-
ference on the Management of Data (SIGMOD). 2019,
pages 1711–1728.

[64] StephenYang,Seo JinPark,andJohnOusterhout. “NanoLog:

A Nanosecond Scale Logging System”. In: Proceedings
of the 2018 USENIX Annual Technical Conference (ATC).
2018, pages 335–350.

[65] Jia Yu and Mohamed Sarwat. “Two Birds, One Stone:

A Fast, yet Lightweight, Indexing Scheme for Modern

Database Systems”. In: Proceedings of the 22nd Inter-
national Conference on Very Large Data Bases (VLDB).
2016, pages 385–396.

[66] Lei Zhang, Zhiqiang Xie, Vaastav Anand, Ymir Vig-

fusson, and JonathanMace. “The benefit of hindsight:

TracingEdge-Cases indistributedsystems”. In:Proceed-
ings of the 20th USENIX Symposium on Networked Sys-
temsDesignand Implementation (NSDI). 2023,pages321–
339.

[67] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-

Tycho Förster, Arvind Krishnamurthy, and Thomas

Anderson. “Understanding and mitigating packet cor-

ruption in data center networks”. In: Proceedings of the
2017 Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM). 2017, pages 362–
375.

[68] Mohamed Ziauddin, Andrew Witkowski, You Jung

Kim, Janaki Lahorani, Dmitry Potapov, and Murali

Krishna. “Dimensions BasedData Clustering and Zone

Maps”. In: Proceedings of the 23rd International Confer-
ence onVeryLargeDataBases (VLDB). 2017, pages 1622–
1633.

[69] Zipkin maintainers. Zipkin. url: https : / / zipkin . io/
(visited on 10/09/2024).

528

https://youtu.be/QBu2Ae8-8LM?t=1641
http://source.wiredtiger.com/
http://source.wiredtiger.com/
https://zipkin.io/

	Abstract
	1 Introduction
	2 Background
	2.1 Motivating Example
	2.2 HFT Workloads
	2.3 Existing Approaches

	3 Loom Overview
	4 Design
	4.1 Hybrid Log Abstraction
	4.2 Layered Sparse Indexes
	4.3 Query Processing
	4.4 Coordination-Avoiding Queries
	4.5 Guarantees

	5 Implementation
	5.1 Loom API
	5.2 Internal Timestamps
	5.3 Changing Workloads
	5.4 Write Path
	5.5 Read Path

	6 Evaluation
	6.1 End-to-End Evaluation
	6.2 Probe Effect
	6.3 Data Structure Ingest Scaling
	6.4 Impact of Indexes

	7 Related Work
	8 Discussion and Opportunities
	9 Conclusion

