Sesame: Practical End-to-End Privacy Compliance
with Policy Containers and Privacy Regions

Kinan Dak Albab
Alexander Portland

Artem Agvanian
Sarah Ridley

Allen Aby Corinn Tiffany
Malte Schwarzkopf

Brown University

Abstract

Web applications are governed by privacy policies, but de-
velopers lack practical abstractions to ensure that their code
actually abides by these policies. This leads to frequent over-
sights, bugs, and costly privacy violations.

Sesame is a practical framework for end-to-end privacy
policy enforcement. Sesame wraps data in policy containers
that associate data with policies that govern its use. Policy
containers force developers to use privacy regions when op-
erating on the data, and Sesame combines sandboxing and a
novel static analysis to prevent privacy regions from leaking
data. Sesame enforces a policy check before externalizing
data, and it supports custom I/O via reviewed, signed code.

Experience with four web applications shows that Sesame’s
automated guarantees cover 95% of application code, with
the remaining 5% needing manual review. Sesame achieves
this with reasonable application developer effort and imposes
3-10% performance overhead (10-55% with sandboxes).

CCS Concepts: « Security and privacy — Information
flow control.

Keywords: privacy enforcement; information flow control;
privacy policies; Rust; static analysis; sandbox.

ACM Reference Format:

Kinan Dak Albab, Artem Agvanian, Allen Aby, Corinn Tiffany,
Alexander Portland, Sarah Ridley, Malte Schwarzkopf. 2024. Sesame:
Practical End-to-End Privacy Compliance with Policy Containers
and Privacy Regions. In ACM SIGOPS 30th Symposium on Operating
Systems Principles (SOSP °24), November 4—6, 2024, Austin, TX, USA.
ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3694715.
3695984

1 Introduction

Modern web applications are subject to both self-imposed pri-
vacy policies and those required for compliance with privacy
laws (e.g., GDPR [17], HIPAA [42], FERPA [18]). Inadvertent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SOSP °24, November 4—6, 2024, Austin, TX, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1251-7/24/11
https://doi.org/10.1145/3694715.3695984

breaches of these policies can lead to significant penalties [7,
31-33]. For example, Instagram was fined €405M for acci-
dentally disclosing children’s email addresses and phone
numbers [16]. Although Instagram had the correct internal
policy and enforced it manually, developers overlooked an
edge case where children had business accounts with public
details. Similarly, a Google+ bug gave 438 third-party apps ac-
cess to data from 500k Google+ accounts [20]; and LinkedIn
accidentally leaked user data via its “auto-fill” feature [6].

These problems are difficult to avoid because developers
today lack practical frameworks to ensure that their code
abides by their privacy policies. It’s easy for a developer to
misremember which policy applies to data, or to forget to ap-
ply appropriate checks throughout the application code. To
reduce this burden, developers need small and clear regions
of privacy-critical code on which to focus their attention,
and automatic guarantees for the remaining code.

Existing systems that seek to provide policy compliance
guarantees face the challenge of enforcing complex and
application-specific policies over an entire codebase. Classic
approaches to compile-time enforcement require developers
to aid the analysis, e.g., by reasoning about security labels
or writing proofs [26, 27]. Dynamic approaches, by contrast,
often require custom runtimes and either suffer from high
overhead [46, 47] or limit application functionality [44].

Sesame is a new framework for writing web applications
that guarantees by construction that the majority of applica-
tion code upholds policies attached to data, and clearly high-
lights the remaining code that developers must audit. Sesame
embraces key taint-tracking techniques from prior work on
Information Flow Control (IFC) systems, but makes differ-
ent tradeoffs to provide practical abstractions for developers.
Sesame’s key idea is to break the application into smaller,
independent privacy regions that operate on sensitive data
and “glue code” that connects these regions. This breakdown
is possible because the Rust type system provides automated
guarantees for the glue code, and it enables Sesame to ap-
ply a new hybrid approach to reason about privacy regions.
Sesame checks privacy regions with a policy-independent
static analysis, uses selective dynamic enforcement when
static analysis fails, and taps into existing software engineer-
ing processes like code review as a fallback.

Sesame needs to prevent code outside privacy regions
from accessing sensitive data, and must track the association
between data and policy. Sesame addresses this need with

https://doi.org/10.1145/3694715.3695984
https://doi.org/10.1145/3694715.3695984
https://doi.org/10.1145/3694715.3695984

policy containers. A policy container is a wrapper type that
protects the wrapped data and associates a policy object with
it. Sesame relies on Rust’s encapsulation of private members
to restrict access to the sensitive data, and on Rust’s static
type system to propagate the policy taint, even as the policy
container moves through data structures and glue code.

Of course, application business logic eventually needs to
compute on the sensitive data. To do so, the developer uses a
Sesame privacy region, realized as a closure that has access
to the raw data. Sesame unwraps data in policy containers
passed to the privacy region and re-wraps any returned data.
This allows Sesame to distill the problem of arbitrary pol-
icy enforcement into enforcing a fixed, policy-independent
leakage-freedom property over privacy regions. In particu-
lar, a privacy region must not—directly or implicitly—leak
sensitive data into captured or global variables, via system
calls, or through native or unsafe code. Sesame applies static
analysis to privacy regions to detect such leakage.

Because no existing static analysis for Rust covers this
leakage-freedom property, Sesame contributes SCRUTINIZER,
a new static analyzer that soundly rejects leaking privacy re-
gions. Rust’s mutability, ownership, and lifetime information
enable SCRUTINIZERs analysis, which is difficult to do pre-
cisely in other languages. Verified leakage-free regions that
pass SCRUTINIZER run as-is and without runtime overhead.

SCRUTINIZER’s static analysis is sound but incomplete,
so it may reject non-leaking privacy regions that call into
complex-to-analyze code or libraries with native code. Sesame
executes such regions in a sandbox that prevents leaks.

Naturally, applications eventually do intentionally exter-
nalize data, e.g., via database queries, HTTP RPCs, or emails.
Sesame accommodates this via trusted Sesame-enabled li-
braries, which invoke policy checks before releasing data
from policy containers. For custom I/O via arbitrary unsup-
ported libraries, Sesame provides critical regions. A code
reviewer must manually review and sign each critical region.
Sesame’s design makes critical regions infrequent (<5% of
code), slim (~16 LoC), and clear to the reviewer; and Sesame
enforces new reviews when the underlying code changes.

Sesame targets honest developers who make unintentional
mistakes and assumes that sanctions deter developers from
malicious behavior. Thus, timing and side-channel attacks
are out of scope. The Rust compiler, SCRUTINIZER’s static
analysis, the sandbox, and Sesame-provided libraries are
trusted, and Sesame’s guarantees for critical regions rely on
good-faith and attentive code review. Developers should use
Sesame-provided libraries to interact with external entities,
such as an HTTP client or a database, to avoid frequent
critical regions. Such mandatory use of specific libraries is
already common practice in organizations today.

We evaluated our Sesame prototype [1] with four Rust
web applications. Our experience suggests that Sesame can
express a wide variety of policies and requires limited devel-
oper effort, and that effort is focused on critical regions that

need careful attention. In our case studies, Sesame’s auto-
mated guarantees cover 95% of application code, including
the vast majority of privacy regions. Sesame’s policy checks
add 3-10% runtime overhead in the common case, while
sandboxed regions have higher overhead (10-55%).

In summary, this paper makes four contributions:

1. Sesame, a practical framework that enforces policy
compliance over data by construction, by breaking the
application into glue code and privacy regions.

2. A new approach that composes Rust’s guarantees with
hybrid static/dynamic enforcement of a single, policy-
independent leakage-freedom property.

3. A novel static analysis that checks Sesame’s leakage-
freedom property over privacy regions.

4. Dynamic enforcement of Sesame’s guarantees using
sandboxing where static analysis fails, and a design
that focuses developer attention on critical regions
that require human review.

2 Background and Related Work

Sesame builds on a rich literature on enforcing policies over
data. While inspirational, these prior approaches have failed
to gain traction because they are impractical or costly.
Information flow control (IFC) enforces end-to-end se-
curity policies in programs. IFC systems may rely on enforce-
ment via runtime labels [25, 47-49], compile-time enforce-
ment via type systems [27, 41] and static analysis [13], or on
hybrid approaches [4, 10, 29, 36]. A common failure point of
IFC systems is that they are challenging for developers to
use [15]: some require use of custom languages unfamiliar
to web developers [4, 27, 29, 35], and others require devel-
opers to propagate complex security labels [48, 49]. Static
approaches can only express limited policies that develop-
ers must encode [26, 39, 40], and dynamic approaches often
come with steep performance costs [46, 47].
Compile-time policy enforcement statically guaran-
tees policy compliance. Application developers define their
policies in a single, reviewable location, and associate them
with data. The compiler then checks that the program’s exe-
cution cannot violate policies. Policies can range from classic
IFC non-interference (e.g., enforced through Rust types in
Cocoon [26]) to more complex policies over SQL databases
and their schemas (e.g., in Ur/Flow [8], or via refinement
types in Storm [27]). The latter approaches can express data-
dependent policies, but only if they are exclusively defined
via relationships over the database schema. They also re-
quire writing applications in specialized languages, such as
Ur/Web [9] or LiquidHaskell [27], which limits adoption.
Dynamic policy tracking attaches policies to data, and
tracks these associations with a modified language runtime.
The runtime maintains a policy taint for every variable, prop-
agating and combining the policy taints as the program
runs. Developers write policies declaratively over a data
model [46] or attach them dynamically to data [47], and the

1 fn submit_homework(request: Request) { 1
2 let uid = authenticate(request); 2
3 // Find the email of the authenticated user 3
4 let email = DB.lookup(uid); 4
5 // Get the homework answer from the request 5
6 let answer = request.answer; 6
7 DB.insert(answer) ; 7
8 8
9 9

// Format email body
let body = format!("submitted {}", answer);

// Email access control implicit
email::send(email, body);

(a) Without Sesame.

fn submit_homework(request: SesameRequest) {

let uid = authenticate(request);

// email: PCon<String, ...>

let email = SesameDB.lookup(uid);

// answer: PCon<String, AnswerAccessPolicy (§4.1)>
let answer = request.answer;
SesameDB. insert (answer);

// body: PCon<String, AnswerAccessPolicy>

let body = sesame::privacy_region(answer,

// §6.1

|raw_answer: String| format!("submitted {}", raw_answer)

)5

// Sesame checks that email meets AnswerAccessPolicy.

let context = Context { email }; // §4.2
sesame: :critical_region(body, context, // §6.3

#[signed(Kinan Dak Albab <babman@brown.edu>, 7459f3da..)]

|raw_body: String, context: Context::Out| {
// Reviewer checks context.email used as recipient
email::send(context.email, raw_body);

b

(b) With Sesame, privacy regions highlighted.

Figure 1. An HTTP endpoint for submitting homework answers, implemented (a) without Sesame and (b) with Sesame. Using
Sesame, the developer must use privacy regions to operate on data in PCons. Sesame verifies the first region via static analysis
(green), but the region that sends an email requires a critical region (yellow), which a code reviewer must sign.

runtime checks the associated policy before application sinks
externalize tainted data. Runtime tracking imposes high per-
formance overheads (e.g., 33% [47] to 75% [46]) and requires
using interpreted languages, but minimizes developer effort.

Sesame targets end-to-end enforcement of flexible, data-
dependent policies for applications written in a widely used,
mainstream programming language (Rust). This means that
Sesame can express richer policies that rely on dynamic in-
formation about the data or application, and makes it easy to
adopt. Sesame achieves this without a custom taint-tracking
runtime, in the presence of third-party libraries, with limited
extra burden for developers, and at low overhead.

3 Sesame Overview

Sesame is a framework for web application development.
To illustrate how developers use Sesame, consider how a
developer might write an HTTP endpoint for students to
submit their answers in a homework submission application
(Figure 1a, without Sesame). The code authenticates the user
(line 2), retrieves their email address from the database (line
4), inserts the student’s homework answer into the database
(lines 6-7), and sends the student a confirmation email via a
third-party library (lines 10 and 18).

This endpoint handles two types of user data: the student’s
email address and their submitted answer. Each type might
be governed by a different policy. For example, a policy for
the answer might allow only the student themselves, TAs,
and the instructor to view the submission.

We now look at how the developer uses Sesame to imple-
ment this endpoint with compliance guarantees (Figure 1b).
The developer invokes Sesame-enabled libraries, as man-
dated by their organization, to look up the email address in
the database (line 4) and to access the answer in the HTTP
request (lines 1, 6). As these libraries are Sesame-enabled,
they return data wrapped in a Policy Container (PCoN; see
§5). They also accept PCons as input, e.g., to insert the PCon-
wrapped answer directly into the database (line 7). A PCoN
keeps the underlying data private and inaccessible to the
application and associates it with a policy: e.g., the answer is
protected by an AnswerAccessPolicy. §4.1 explains how
developers write policies and associate them with data.

Now, the developer needs to construct the email body.
This is application-specific functionality unavailable in a
Sesame-enabled library, and it operates on the answer data.
However, accessing the answer directly causes a compiler er-
ror, as the answer is a private member in a PCoN. Instead, the
developer must use a privacy region. They invoke Sesame’s
privacy_region API, passing the PCon along with a clo-
sure to execute on the raw answer (lines 9-11). Sesame’s
static analysis (§6.1) verifies that the closure is leakage-free,
so it runs as-is on the raw data. Sesame wraps the output of
the closure in a PCoN with an identical policy to the input.

Finally, the developer emails the body they constructed to
the student using a third-party email library. The contents
of body are inside a PCoN, so the developer could again in-
voke privacy_region with a closure that sends the email.

However, this closure intentionally leaks data via email, so
it is clearly not leakage-free. The developer informs Sesame
of this by instead using a critical region (CR) (lines 14-19).
Before executing a critical region, Sesame checks the associ-
ated policy relative to a developer-provided context. In our
example, this context contains the recipient’s email address,
and Sesame checks that AnswerAccessPolicy allows send-
ing the answer to that email address. A code reviewer, e.g., a
team lead or a policy engineer, must now manually review
the critical region and ensure that it sends the email to the
address in context that passed Sesame’s policy check. §4.2
describes Sesame’s policy check and the review workflow.
In general, reviewers must verify that the CR uses the
context and acts in ways that are consistent with it, and then
sign the region. During a release build, Sesame validates the
signature (§6.3). If the CR’s code or any of its dependencies
change, validation fails. If the developer failed to see the
need for a CR on line 14 and used privacy_region instead,
Sesame’s static analysis would reject this privacy region. The
developer then would have to decide whether they believe
the rejected region to be leakage-free. If so, they can run it
in a sandbox (§6.2); if not, they use a CR as shown.
Developers may implement policies concurrently with the
application, or use placeholder policies first and then add the
policy logic later; §8 discusses porting existing applications.

4 Design

Sesame’s policy enforcement is concerned with the applica-
tion’s sources and sinks, which correspond to where data
enters and leaves the application. When the application reads
from a source, Sesame attaches a policy to the data. Sesame’s
design then ensures that policy remains attached to the data,
including derived data, as it flows through the application
(i.e., taint-tracking). Sesame only allows data to leave the
application at a sink if its associated policy check succeeds.

Sources. Sesame provides built-in support for common
sources such as HTTP requests and SQL databases. Sesame
reads data from those sources, places it in a policy container
(PCon), attaches the appropriate policies to it, and returns it
to the application. For example, Figure 2 shows an endpoint
for students to view their homework answers. answer_id
comes from a Sesame HTTP source (line 4), and rows comes
from a Sesame database source (lines 7-10), so the applica-
tion receives data in PCons. Attempts to read raw data from
these sources will cause a compile-time type error.

Sources not in Sesame-enabled libraries provide raw data,
which developers must manually place in policy containers
and associate with policies. Organizational rules are responsi-
ble for ensuring that developers do this correctly: e.g., requir-
ing developers to use a custom I/O module that associates
policies to the data, rather than reading files directly.

Sinks. Similarly, Sesame has built-in support for common
sinks, such as rendering HTML templates (line 15), or passing

1 #[sesame::get("/view/<answer_id>", auth="student")]
2 pub fn view_answer(

3 student: Student, // authenticates via cookie

4 answer_id: PCon<u8, NoPolicy>,

5 context: Context) -> sesame::HTMLTemplate {

6 // rows : Vec<sesame: :PConRow>

7 let rows = SesameDB.query(

8 "SELECT * FROM answers WHERE id = ?

9 AND author = ?", (answer_id, student.email),
10 context);

11 // answer: PCon<String, AnswerAccessPolicy>

12 let answer = rows[0]["answer"];

13 // Render the answer. Sesame automatically checks
14 // associate AnswerAccessPolicy here.

15 sesame: :render("answer.html", answer, context)
16}

Figure 2. An endpoint for students to view their answer uses
answer_id from the HTTP request to look up the answer
in the DB. Sesame only reveals the PCon-wrapped answer if
the policy allows the signed-in student to view it.

data to the DB for reads (line 9) or writes. Sesame receives
policy containers from the application, checks the associated
policies, and sends the data to the sink if the policy per-
mits. Releasing data to custom sinks unsupported by Sesame
requires critical regions and code review. For these sinks,
developers explicitly provide Sesame a context that describes
the intended use. Sesame checks that the policy associated
with data accepts the context before running the critical
region that touches the custom sink. Code reviewers must
review and sign CRs to ensure that they match the context.

4.1 DPolicies

Developers express each policy type as a Rust struct and
implement Sesame’s PoLIcy trait for this struct. This trait
requires providing a cHECK function that Sesame invokes
before revealing data associated with that policy at a sink.
The cHECK function may use the context as well as metadata
stored inside the policy itself, and can execute arbitrary code
(e.g., query a database). If the policy check fails, Sesame
reports an error; otherwise, it releases the data to the sink.

Figure 3 shows a policy for student homework answers.
The policy allows revealing an answer only to its author, the
instructor, or students who are discussion leaders for the
lecture (identified via a database query).

Associating Policies with Data. Application develop-
ers must associate policies with the data read from appli-
cation sources. Developers must explicitly associate insen-
sitive data that is intentionally not covered by any policy
with NoPoLicy (e.g., Figure 2, line 4). For sources with a
structured schema, application developers specify the policy
associations decoratively for that schema: e.g., Figure 3 as-
sociates AnswerAccessPolicy with the answer column in

1 #[db_policy(table = "answers", columns = ["answer"])]

2 struct AnswerAccessPolicy {author: String, lecture: u64}
3 impl Policy for AnswerAccessPolicy {

4 fn check(&self, context: Context::0ut) -> bool {

5 let email: String = context.email;

6 email == self.author || is_instructor(email)

7 || is_discussion_leader(email, self.lecture)

8 }

9 fn join(self, other: Self) -> Self { ... }

10 }

—-
_

impl DBPolicy for AnswerAccessPolicy {
fn from_row(row: &MySQLRow) {

_ e
w N

AnswerAccessPolicy {
author: row.get("author"),
lecture: row.get("lecture_id"),

}

S
N o G

}
}

—_
=3

Figure 3. The cuEeck function (lines 4-8) of Answer-
AccessPolicy only allows sending an answer to an email,
from context.email (line 5), if it matches the answer’s au-
thor, the instructor, or a discussion leader. Line 1 binds the
policy to the answer column; lines 12-16 instantiate it.

table answers (line 1). Applications declare the associated
policies when they read data from unstructured sources, such
as a cookie or GET parameter. Developers must implement
constructors to create instances of a policy for each type of
source to which they attach the policy. Since Sesame trusts
policy code, it passes raw data to policy constructors.

Policy Conjunction. Sesame combines policies when com-
bining PCons, e.g., when executing a privacy region over a
vector of PCons. If the policies have different types, Sesame
generically combines them by stacking them. The stacked
policy stores all source policies, and checks all of them in
its cHECK function. If all the policies have the same type,
Sesame combines them using a policy-specific joIn, if pol-
icy developers implement one (Figure 3, line 9). Joining and
stacking must be semantically equivalent, but joining may
result in more compact policies that are faster to check.

4.2 Context and Policy Checks

Sesame invokes policy checks when: (i) a policy container
reaches a Sesame-enabled sink; and (ii) before running a
critical region on the data in a PCon.

Like in prior systems, Sesame policy checks happen rel-
ative to a context. Contexts contain summary information
about the associated source or sink. They are immutable ob-
jects, either provided by Sesame or created by the developers
themselves. The content and API of a context is application-
specific: e.g., the homework submission example identifies
users by emails, but other application contexts might contain

user IDs or OAuth tokens. Contexts can store sensitive infor-
mation in PCons, which Sesame replaces with raw data when
invoking cHECK and critical regions (i.e., CONTEXT::OUT; see
§5 SESAMETYPE).

Contexts created by Sesame are trusted, e.g., they cor-
rectly identify the authenticated user. Developers may pass
them to built-in Sesame sinks, which use them for policy
checks without any developer intervention (Figure 2, line
15). By contrast, Sesame only allows custom contexts with
custom sinks, and relies on manual review to ensure the
sink’s behavior is consistent with the context.

Example. Figure 1b contains a critical region to send
emails (a custom sink). The application creates a custom,
untrusted context that indicates the intended recipient of the
email (line 13). The application then invokes a critical region
on body with that context (line 14). Since body is associated
with AnswerAccessPolicy (line 8), Sesame first invokes
that policy’s cHECK function (Figure 3, lines 4-8) with the
provided context, and executes the region only if that check
succeeds. CHECK ensures that the email provided in the
context belongs to the author, the instructor, or a discussion
leader. A reviewer must ensure that the critical region indeed
sends an email to the intended address (Figure 1b, line 18).

A buggy implementation might violate this policy in two
ways. The application could provide Sesame with a context
that contains an unauthorized email (Figure 4a). This causes
the policy check to fail, so Sesame never executes the critical
region. Or the application may provide a context with an
authorized email when the code in the critical region sends
an email to a different address (Figure 4b). This is an exam-
ple of a custom context that misrepresents the sink. Here,
the policy check would succeed, but a careful reviewer re-
fuses to sign the critical region, because it does not email
context.email, and Sesame errors on a release build.

Importantly, the reviewer merely verifies that the critical
region uses context.email, which passed a policy check,
and therefore Sesame guarantees it is authorized.

4.3 Guarantees and Threat Model

Sesame views policy definitions as ground truths that spec-
ify desired application behavior. This includes each policy’s
CHECK and JOIN functions, constructors, and associations
with data at sources. Sesame also relies on the soundness
of the Rust type system, its compiler, and the correct imple-
mentation of Sesame components, all of which are trusted.
Subject to the assumptions below, Sesame guarantees that
data can only be revealed at a sink whose context passes the
policy check associated with the data’s origin.

Proper Usage. Organizations must mandate the proper
use of Sesame, e.g., via code review, linters, or other best
practices. Specifically, developers must (i) use Sesame’s built-
in sources when applicable, (ii) correctly wrap data from

1 let context = Context { email: "someone@else.com" } ;

2 sesame::critical_region(body, context,

3 // Sesame invokes policy check with context prior
4 // to calling the closure. Policy check fails.

5 #[signed(..., 7459f3da..)]

6 |raw_body: String, context: Context::Out| {

7 email::send(context.email , raw_body);

8 I3H

(a) A signed critical region correctly uses its context, but the email

in the context is unauthorized and Sesame’s policy check fails.

aos WwoN

® N o

let context = Context { email: answer.author } ;
sesame: :critical_region(body, context,
// Policy check would pass on this recipient, but the
// region uses an email address not from the context.
// Reviewer refuses to sign region.
|raw_body: String, context: Context::Out| {
email::send("someone@else.com" , raw_body);

s

(b) Sesame’s policy check passes on an authorized email, but the
critical region mismatches its context, so the reviewer rejects it.

Figure 4. Buggy alternative implementations for Figure 1. Sesame rejects both via policy checks (a) or code review (b).

custom sources in policy containers, and (iii) compile their
applications with Sesame’s toolchain.

Accurate Review. Sesame assumes that reviewers carefully
vet critical regions and only sign them after ensuring that
the regions are consistent with their specified contexts.

Unsafe Rust. Rust guarantees encapsulation for applica-
tions that operate solely within safe Rust. However, appli-
cations often, directly or in dependencies, invoke unsafe
code for which Rust provides no encapsulation guarantees.
Sesame implements additional protections to ensure data in
PCons remains inaccessible even to unsafe Rust code (§5),
assuming that such code is buggy but not outright malicious.
For example, Sesame protects against a logging library that
uses unsafe code to byte-wise dump provided objects, but not
unsafe code that dumps the entire memory of the application
process (in line with other IFC systems [27, 29, 47]).

Implicit Leakage. Sesame protects against direct leak-
age and implicit data-dependent control flow. Application
code cannot perform control flow on data wrapped in pol-
icy containers without using privacy regions, which have
mechanisms for mitigating data-dependent control flow (§6).
This also ensures that observable data-dependent interac-
tions (e.g., with a database) only occur following a successful
policy check. The one exception is certain FoLp APIs that
Sesame provides for ergonomic reasons, which can leak infor-
mation about the shape of some data types. Developers can
disable them for data with restrictive policies (§5). Timing
and micro-architectural side channels are out of scope.

5 Policy Containers

Sesame’s policy containers are a generic data type, PCon<T,
P>, that wraps two private members: data of type T, and a
policy object of type P. The data wrapped by a PCoN is pri-
vate and can only be accessed or manipulated by Sesame and
never by application code, except through a privacy region.
This guarantees application code cannot leak such data with-
out going through Sesame’s checks. Using policy containers
also guarantees that a policy associated with data at a source

remains associated with that data, including derived data,
throughout the application.

PCons are regular Rust data types. Application code can
pass or return PCons to and from functions. It can store
PCons inside vectors and other collections, and it can define
structs that have PCon fields. While PCons simplify policy
tracking and checking, they prevent application code from
directly computing over the wrapped data. Therefore, a core
challenge in Sesame is to provide application developers
with tools and abstractions to allow them to operate on data
inside PCons. PCons provide builtin functions for common
operations, such as type conversions (e.g., from a PCon<u32,
P> to a PCON<STRING, P>). Developers must use privacy
regions to perform more complex tasks on data in PCons.

PCon Layout. Rust guarantees that safe Rust code can-
not access the private members of a PCon. However, unsafe
Rust code can circumvent these protections by using casts
or accessing the bytes of the policy container directly. Li-
brary code sometimes does this for legitimate reasons, e.g.,
a data structure that uses memcpy for efficient resizing, or a
logging library that dumps the bytes of arbitrary objects. To
ensure that such libraries cannot accidentally leak the data
wrapped by PCons, Sesame stores the data on the heap and
references it within the PCon using an obfuscated pointer.
Sesame XORs this pointer with a random global secret. This
prevents unsafe application or library code from accidentally
leaking the data, but cannot protect against actively mali-
cious code that intentionally undoes the obfuscation or scans
memory contents, both of which are out of scope. Finally,
this layout has performance implications: operations on the
PCoN require an additional XOR and pointer dereference,
and vectors and collections of PCons have worse cache lo-
cality than their plain counterparts. These overheads affect
wrapping and unwrapping data at privacy region entry and
exit, but not the body of a privacy region, which accesses the
data directly. This indirection adds a 1.7-2.1X overhead in
microbenchmarks, but is negligible for real workloads (§9).

SESAMETYPE. Sesame handles types with arbitrary nested
PCons, such as Vec<PCon<T, P>> or a custom struct with

API Level Supports Guarantees Root of Trust | Application Developer Effort
Built-in Common primitives Static (taint tracking) Rust + Use PCon<T, P> instead of T
Runtime (policy checks) Sesame with compiler guidance
Verified Statically-verified Static analysis (sound Rust + Check that Sesame
Region (VR) leakage-free closures but incomplete) Sesame accepts closure as leakage-free
Rjgiibg;) Ciiil;igsef‘r/:ig:glzz:iiﬁ; Runtime (sandbox) + RLBox [30] Engineering setup
Critical Arbitrary closures Code sieni . Authorized developers review
Region (CR) including sinks ode sighing T reviewers and sign closure

Figure 5. Sesame’s API levels. Built-in libraries and verified regions require a minimal root of trust. Sandboxed regions support
more complex code at the cost of runtime overhead. Critical regions support arbitrary code, but rely on code review.

nested PCon fields, by relying on the SESAMETYPE trait. For
each type X that implements it, this trait defines the corre-
sponding out-type X::Out. X::Out mirrors the structure of X
but replaces every nested PCon<T, P> with the correspond-
ing T. The trait also defines private conversion functions be-
tween the two types, which only Sesame can invoke. Sesame
implements this trait for various monads, tuples, and collec-
tions that may contain PCons, e.g., Vec<X> and Option<X>
with out-types Vec<X::Out> and Option<X::Out>. Because
this trait deals with raw data, Sesame disallows applications
from manually implementing it for their custom types (en-
forced via custom lints, §7). Instead, Sesame provides a macro
that applications can use to derive trusted implementations
of this trait and its out-type for their custom types.

Fold. For better ergonomics, Sesame provides a FOLD AP,
which allows applications to move PCons in and out of
data structures. Suppose the application has d: PCon<X,
P> where X is some application struct containing {a: T1, b:
T2}. Applications can use FoLD(d).a to retrieve the field a:
PCon<T1, P> (“folding in”). Alternatively, applications can
rFoLD PCons “out”, e.g., to transform Vec<PCon<T, P>> to
a PCon<Vec<T>, P> whose policy is the conjunction of all
the input policies. Folding out is always safe, but folding in
may leak information about the shape of the underlying data,
e.g., the length of a vector or whether an Option is NONE or
SoME. If undesirable, policy developers can annotate a policy
with NoFoLDIN to prohibit folding in on its associated data.

6 Privacy Regions

Sesame provides different ways for applications to operate on
data wrapped by PCons. Figure 5 summarizes them: “built-
in” describes Sesame-enabled libraries, while the other three
API levels correspond to privacy regions. Privacy regions
allow application code to execute on the raw data. Sesame’s
static analysis helps the developer determine what type of
privacy region to use. At a high level, the analysis checks that
a closure cannot leak input or derived data, e.g., by writing
to a file or modifying a global or captured variable.

Depending on the static analysis outcome, different types
of privacy regions are appropriate:

1. If the static analysis passes, the privacy region is a
verified region (VR) and runs as-is (§6.1).

2. If the static analysis fails, but the developer expects
the region to be leakage-free, they can choose to use a
sandboxed region (SR), which runs the code in a con-
strained environment that prevents leakage (§6.2).

3. If the developer expects a failing region to have in-
tentional side effects (e.g., because it interacts with
a custom sink), they use a critical region (CR), which
requires manual code review (§6.3).

In general, the privacy_region APIs accept a SESAMETYPE
X and a closure F: X::Out — Y as arguments. Sesame exe-
cutes the closure over the input after replacing PCons with
their underlying data. Sesame wraps the result of the closure
in a PCoN, and associates it with the conjunction of all the
policies in the input. Critical regions are the exception; they
can return data with a different policy or no policy at all.

6.1 Static Analysis and Verified Regions

Sesame’s static analyzer, SCRUTINIZER, checks whether a
closure passed to a privacy region could leak some of its
arguments outside the region. SCRUTINIZER is sound but
incomplete: it never accepts leaky privacy regions, but may
conservatively reject leakage-free ones.

SCRUTINIZER searches the application code for instances
of Sesame’s privacy_region call. We refer to the closure
passed to the privacy region as the top-level function. SCru-
TINIZER considers each argument to the top-level function
to be sensitive. Top-level functions may also capture exter-
nal variables from their environment, but captured variables
are not sensitive. SCRUTINIZER accepts a function only if it
concludes that the function cannot leak any of its arguments
or any data derived from them. This includes leakage via
external side effects (e.g., printing to stdout, changing the
file system) or via mutating captured variables that other
parts of the application can observe (e.g., global variables).
ScRUTINIZER checks the top-level function and its callees,
direct or indirect, including those in external libraries. Top-
level functions can return data derived from their arguments
since Sesame wraps the return value in a PCon.

Information Flow. SCRUTINIZER computes a sound over-
approximation of the information flow of the arguments
and captured variables in the top-level function all the way
through call chains to helper and library functions. Scru-
TINIZER uses Flowistry [12] to find flows from a sensitive
variable to any aliases within a single function body. We
extend SCRUTINIZER with additional analysis to track sensi-
tive variables as they are passed to and returned from other
functions. SCRUTINIZER uses dataflow analysis to soundly
resolve dynamic dispatch with good accuracy. Thus, ScCRuUTI-
NIZER identifies all aliases or variables derived from sensitive
variables, either directly or implicitly via control flow. Scru-
TINIZER considers all such variables to be sensitive as well.

Analysis. SCRUTINIZER checks that the information flow of
sensitive variables is contained entirely within the analyzed
code. Within Sesame’s threat model, information can flow
outside a function in three ways:

1. via mutably captured variables or variables derived
from such captures;

2. via any unsafe mutation primitives applied to captured
variables and variables derived from captures, regard-
less of their mutability;

3. via functions with unknown bodies that SCRUTINIZER
cannot conservatively approximate, such as native
code or unresolved generics, unresolved dynamic dis-
patch, and unresolved function pointers.

SCRUTINIZER catches all three cases. Mitigating the first case
ensures that the function cannot mutate external variables
in ways that depend on (and thus leak) sensitive arguments.
Mitigating the second case covers all forms of interior mu-
tability in Rust, which ultimately rely on unsafe mutation
(via transmute or raw pointer dereferences). Mitigating the
third case ensures that SCRUTINIZER rejects functions that
leak sensitive data via external side effects, such as writing
to files or sockets, as they must invoke native code.

Allow list. ScRUTINIZER allow-lists some trusted functions,
including certain Rust intrinsics and low-level functions for
string formatting and panics. We manually confirmed that
these functions are leakage-free.

SCRUTINIZER also allow-lists functions in standard library
collections (e.g., Vec: :push) that take the Self parameter
as a mutable reference. This is sound, as invoking such a
function on a captured collection would require a mutable
reference to it, which can only be acquired by mutably cap-
turing it (violating case 1) or via an unsafe conversion from
an immutable capture to a mutable one (violating case 2).
Since SCRUTINIZER rejects such code, these functions can
only be called on local variables, which external code cannot
observe. The only remaining risk is the allow-listed functions
directly leaking arguments (e.g., by writing to a file), which
standard library collections do not. This assumption makes
std: :collections part of Sesame’s TCB, an acceptable
risk in practice.

Details. ScrRUTINIZER first collects Rust’s MIR represen-
tation of all available function bodies via rustc dataflow
analysis framework, including all possible variants for dy-
namic dispatch. Second, SCRUTINIZER ensures all captures
are immutable and then uses Flowistry to track information
flow through the collected call tree. If it encounters any vio-
lations of cases 1-3, SCRUTINIZER rejects the privacy region.
Appendix A describes the analysis in more detail.

Discussion. SCRUTINIZER is sound but incomplete for three
reasons. First, SCRUTINIZER conservatively rejects functions
if it fails to resolve their information flow in its entirety. For
example, a leakage-free function will be rejected if it contains
dynamic dispatch that SCRUTINIZER cannot resolve. Second,
SCRUTINIZER checks for stronger (but easier to detect) vari-
ants of the three cases above. For example, SCRUTINIZER
rejects all functions that capture via mutable reference, even
if they never mutate them based on sensitive values. Third,
Flowistry itself over-approximates information flow [12].
ScrUTINIZER uses Flowistry to propagate sensitivity labels
within a function body, but it contributes new dataflow and
type analyses that (i) propagate labels across functions, (ii)
handle unsafe code, generics, and dynamic dispatch, and (iii)
detect mutation, including in implicit, data-dependent ways.

6.2 Sandboxes

Developers may choose to run a region that SCRUTINIZER
rejects as a sandboxed region, which relies on runtime pro-
tections to enforce that the region never leaks sensitive data.

Sesame’s sandboxed regions use RLBox [30], a lightweight
sandbox used in Firefox to execute untrusted native libraries.
RLBox relies on software-based fault isolation (SFI), which
uses inline dynamic checks to restrict memory reads and
writes to a memory region allocated at sandbox creation
time. This isolates the sandboxed region’s memory from the
rest of the application. In addition, RLBox forbids system
calls, so sandboxed regions cannot externalize data via I/O.

Extending RLBox. RLBox is designed to isolate untrusted
libraries from a trusted host application (Firefox). Hence,
RLBox allows the application to access the sandbox’s outputs
and lets the sandbox print to stdout and stderr for debugging.
In Sesame, the application is untrusted and the sandbox must
not leak any sensitive information to it. We thus align RLBox
with Sesame’s requirements by: (i) modifying the RLBox
runtime to forbid printing, and (ii) building infrastructure
around sandbox invocations to compute the conjunction of
all policies associated with the sandbox inputs and wrapping
the sandbox output in a PCoN with the conjoined policy.

Optimizations. RLBox allocates the entire sandbox mem-
ory on sandbox creation, which makes creating and destroy-
ing sandboxes expensive. Firefox overcomes this by reusing
the same sandbox for invocations in the same trust domain
(i.e., the same library and HTTP origin). Sesame sandboxes

process data with different policies, making such reuse un-
safe: earlier invocations with stronger policies could affect
sandbox state that influences later invocations with weaker
policies. Instead, Sesame uses a pool of pre-allocated sand-
boxes, and wipes the sandbox memory after each use to
ensure isolation across invocations. This involves zeroing
out the sandbox stack and heap, and restoring global data
and metadata to their initial state from a checkpoint.

Because of sandbox memory isolation, Sesame must copy
all input data into the sandbox memory, and vice-versa for
its outputs. However, the same datatype may have an incom-
patible size and memory layout across the application and
sandbox, as RLBox runs sandboxes in 32-bit WASM and off-
sets its address space for isolation. For example, a vector type
in the application may store three 64-bit fields: the pointer
to the underlying buffer, a length, and a capacity, while the
vector type in the sandbox stores all three in 32-bit variables
with an offset pointer. Sesame provides a SANDBOXCOPY trait
for quickly deep-copying Rust objects to/from sandbox mem-
ory, while altering their memory layout and offsetting any
pointers (i.e., “pointer swizzling”). Sesame implements this
trait for primitives, strings, and vectors, and provides devel-
opers with macros to derive the trait for their custom types.
For types that do not implement this trait, Sesame falls back
on serializing and deserializing data.

6.3 Critical Regions

Developers must use a critical region (CR) to send data to cus-
tom sinks. They may also use a CR to execute a leakage-free
region that SCRUTINIZER conservatively rejected, and in rare
cases where that region is incompatible with sandboxing
or the runtime overheads of sandboxing prove undesirable.
Code reviewers manually review CRs for unintentional leak-
age and for correct use of the region’s context.

Review Process. CRs should be concise, single-purpose,
and self-contained. Reviewers should reject CRs that are un-
focused or overly complex and request that authors simplify
them, similar to regular code review.

Sesame executes a CR only after a successful policy check
on the input data, given the provided context (§4.2). Review-
ers thus do not need to reason about the semantics of the
associated policies (e.g., which emails are allowed). Instead,
they reason about the code of the CR and the semantics of
the context object it receives (e.g., does the CR send an email
to the address specified in the context). They also need to
ensure the CR has no unintentional leaks, e.g., via logging.

Reviewing a CR includes reasoning about library code
it calls into. Large companies have existing procedures for
approving and updating dependencies; for example, Google
curates approved dependencies and versions that developers
are allowed to use [21]. A reviewer of a CR that invokes
an approved dependency need only check that the usage
of the dependency is consistent with its documented API,

and relies on the curation process to ensure the sanity of
the docs. Open source projects or smaller companies may
not have the capability to perform such detailed vetting. In
such cases, reviewers must look up each dependency they
encounter in a CR, and decide how strictly they review it
based on reputation, bug reports, or other criteria.

Sesame requires reviewing and re-signing a CR when its
code or dependencies change. Since Rust locks the depen-
dency versions in an application’s Cargo. lock file, depen-
dency updates are explicit, intentional, and generally rare.

Signatures. Reviewers indicate to Sesame that they approve
a CR by signing it. Signatures serve two purposes: (i) they
verify to Sesame that the CR has indeed been approved by an
authorized reviewer, and (ii) that the CR and its dependen-
cies are unchanged since the review. During review, Sesame
produces a hash of the CR. Reviewers sign that hash and
attach their signature to the CR. During each subsequent
release build, Sesame reproduces a hash for that CR using
the same procedure, and checks that the signature attached
to the CR is a valid signature for that hash. The hash dif-
fers if the CR changed since review, including changes to
helper and library functions. This in turn invalidates the sig-
nature, which prompts Sesame to reject the CR and require
a reviewer to re-vet and re-sign it.

Hashing. Sesame builds a call graph for the CR similar to
§6.1, but stops at calls to external dependencies. Sesame con-
catenates the source code of all functions in the call graph
into a normalized string (e.g., without comments and extra-
neous white spaces). Sesame then records the external depen-
dencies the region calls into and traverses the Cargo.lock
file to find the exact versions of these dependencies and
any transitive dependencies. Sesame augments the CR string
with the dependency information, and hashes it. Changes to
the application portion of the CR, or to direct or transitive
dependencies, result in a different hash. Updates to depen-
dencies or application code unrelated to the CR do not affect
the hash and avoid superfluous review.

Ergonomics. Sesame omits signature checks in debug mode,
which allows developers to implement and test their CRs
without review. Then, authors request signatures from re-
viewers, who must review these regions, e.g., as part of a
pull request. This mirrors existing industry practices that
require approval by authorized reviewers for merging code.
Our prototype uses GitHub as a key provider and for iden-
tity management. Sesame pulls public keys for reviewers
from GitHub to validate the signature of each CR during
release builds. A reviewer’s privileges can be revoked, and
Sesame can either invalidate their signatures immediately, or
preserve existing signatures while disallowing future signa-
tures if privilege revocation and signatures are timestamped.

7 Implementation

We implement a Sesame prototype in 12k LoC in Rust, includ-
ing 4.2k LoC for SCRUTINIZER, 2.1k for Sesame’s web frame-
work, and 0.5k for Sesame’s MySQL library. The web frame-
work and MySQL library mirror the APIs of Rocket.rs [38]
and mysql [3], modified to accept PCons at sinks and gen-
erate PCoNs at sources. Sesame also has partial support for
SeaORM [43]. All this code is trusted, as is RLBox (for SRs).

RLBox is primarily designed for sandboxing C++ func-
tions; Sesame generates the necessary wrappers and bind-
ings to use it with Rust. Our prototype uses RLBox with
WebAssembly (WASM), and thus does not support code and
libraries incompatible with WASM in sandboxed regions.

Sesame provides mock versions of its built-in sources and
sinks for end-to-end application tests. These versions strip
policy containers from application outputs, and allow testing
code to create synthetic contexts to test policy cHECK func-
tions. Sesame uses Rust’s conditional compilation to ensure
these features are only available in tests.

Finally, Sesame includes linting rules it checks when com-
piling in release mode. These forbid developers from manu-
ally implementing SESAMETYPE on their custom types, and
instead force them to use Sesame’s [#derive] macros to
generate automatic and correct implementations.

Our prototype’s hashing of CRs is sensitive to some syn-
tactic changes to code that have no semantic effect (e.g.,
renaming a variable), which invalidate signatures. Better sta-
ble code hashing techniques could improve precision [14].

8 Application Case Studies

We applied Sesame to four web applications: (i) WebSub-
mit [37] and (ii) Portfolio [24] are pre-existing applications
we ported to Sesame; (iii) Voltron is an application from
Storm [27] that lets group of students collaboratively edit
a piece of code with instructor oversight; and (iv) YouChat
is a simple chat application for individuals and groups. The
original versions of WebSubmit and Portfolio have 1.3k and
5.1k LoC. We built a Rust version of Voltron with comparable
functionality to the original LiquidHaskell application. For
Voltron and YouChat, we first built idiomatic Rust imple-
mentations without Sesame in mind (0.5k and 0.8k LoC) and
then ported these implementations to Sesame. This section
describes the applications’ policies and our process porting
them to Sesame, while §9.1 quantifies developer effort.

Policies. We added policies for access control, purpose
limitation, user consent, and aggregates to the applications.

YouChat has a single access control policy: users can only
view messages that they sent or received, or messages from
groups they are members of.

For Voltron, we implemented all of the policies from
Storm [27]: (i) only admins can enroll new instructors; (ii)
students can only be enrolled into a class by that class in-
structor; and (iii) code buffers can only be read or modified

by students in the corresponding group or by the class in-
structor. The last policy turns into two Sesame policies that
cover reads and writes. We also added two additional policies:
(i) Firebase authentication headers from HTTP requests may
only be used for read database queries; and (ii) endpoints
may only use the email address of the authenticated user.

WebSubmit is a homework submission system similar to
our example in §3. Prior to porting to Sesame, we extended
WebSubmit with a machine learning model over students’
grades (training and inference), and with aggregate statistics
for university managers and employers, as well as a user
consent choice to release the latter. WebSubmit has six poli-
cies: (i) a student’s answer is only accessible to the student,
instructor, and discussion leaders for the corresponding lec-
ture; (ii) an individual grade is only accessible to the student
and instructor; (iii) a student’s average grade and email are
only released to employers if the student consents; (iv) a
student’s data can only be used for model training if the
student consents; (v) university administrators cannot ag-
gregate over protected demographic data; and (vi) aggregate
grade data released must contain grades from at least k dif-
ferent students (k-anonymity).

Portfolio is a high school admissions system deployed
in the Czech Republic [24]. Candidates create accounts, in-
put personal information, and upload PDF documents for
admission review; Portfolio encrypts the stored data at rest.
We add two policies to Portfolio, which cover the most sen-
sitive data it handles: (i) sensitive candidate data, in either
plain or ciphertext form, is accessible only to the candidate
themselves and to school administrators reviewing their ap-
plication; and (ii) private keys are never revealed outside of
the DB, except in cookies to their respective owners.

Porting Experience. To port these applications to Sesame,
we first implemented the policies, then associated policies
with data at sources, and adapted application code to use
PCons instead of raw data. Finally, we used Sesame to check
verified regions, and reviewed and signed any CRs.

Swapping Sesame-provided libraries for the web frame-
work (Rocket) and database connector (SeaORM in Portfolio,
MySQL in others) made the applications fail to compile, as
the libraries now provide PCons in, e.g., HT TP request data,
but the application expects them to be raw types. To fix these
compiler errors, we replaced these raw types with PCons
with an associated policy: for structured data, this was a
quick update to database schemas; for unstructured data, we
had to change code that obtains it from Sesame libraries.

These changes sufficed for simple endpoints (e.g., Figure 2),
but endpoints that compute on data in PCons still had com-
piler errors. We fixed these errors by introducing privacy
regions, akin to Figure 1b. Rust made this process of lifting
code into privacy regions easy, as idiomatic Rust already
encourages closures (e.g., in iterator chains).

With the application building and tests passing in debug
mode, we compiled in release mode to invoke SCRUTINIZER
and Sesame’s lints. SCRUTINIZER accepted most regions as
verified regions; for the remainder, we found the distinction
between sandboxed regions and CRs obvious (e.g., hashing a
password vs. sending an email). SCRUTINIZER rejected six re-
gions that use an encryption library that relies on async Rust,
even though they are in fact leakage-free. We attempted to
make them sandboxed regions, but the library is incompati-
ble with WebAssembly, so we had to turn these regions to
CRs and review them manually. Replacing the library with a
compatible alternative could avoid these CRs.

Anti-Patterns. We found two problematic code patterns.
First, because SCRUTINIZER currently lacks support for async
Rust, it rejects regions that contain await. To overcome this,
we perform operations inside the privacy region without
await and return a PCon that wraps a future. PCon has an
API to await a wrapped future outside of privacy regions;
this is safe because the result remains wrapped in a PCon.

Second, some endpoints in Portfolio and WebSubmit early-
return, e.g., on failed form validations. But early-return checks
inside privacy region closures cannot return from the sur-
rounding function. Instead, we return a REsurT<T> from
these privacy regions, which Sesame wraps in a PCoN with
the appropriate policy. Sesame’s FoLp API (§5) lets the appli-
cation fold it into a ResuLT<PConN<T, P>>. This allows early-
return when the RESULT is an error, but creates a channel
for implicit leakage. Policies can disable this if unacceptable,
forcing the remaining code to operate on the RESULT monad
instead and defer the early return.

9 Evaluation

We evaluate Sesame with four applications: YouChat, Voltron,
Portfolio, and WebSubmit. We ask three questions:
1. What developer effort does using Sesame require? (§9.1)
2. What is the impact of using Sesame on end-to-end
application performance? (§9.2)
3. What is the impact of key Sesame components on its
correctness and performance? (§9.3)
Our benchmark machine has a Xeon E3-1230v5 CPU (3.4GHz)
and 64 GiB RAM. We use Ubuntu 20.04, Rust nightly-2023-10-
06 for sandboxes and nightly-2023-04-12 for static analysis.

9.1 Developer Effort

We evaluate the developer effort required to implement ap-
plications with Sesame or to port them as described in §8.

Implementing Policies. A critical component of writing
an application with Sesame is implementing policies. Ideally,
the size of these policies and the effort required to imple-
ment them should depend on the complexity of the policies
themselves, rather than application size.

Policy | App | ..of which | _of which
App. count | LoC policy CHECK
YouChat 1 1.1k 118 38
Voltron 6 1.2k 425 121
Portfolio 2 6.7k 305 85
WebSubmit 6 2.2k 373 72

Figure 6. Policy code size scales with the complexity and
number of policies, rather than the size of the application.

We thus measured the size, in LoC, of the policies in our
four applications. Policy code includes the policy structs, con-
structors, the Policy trait implementations, and the cHECK
functions. The cHECK function typically dominates the de-
veloper effort for policy authoring.

Figure 6 shows the results. Policy complexity varies based
on the diversity of application user roles and purposes of
data use. For example, Voltron (1.2k LoC total) is a small ap-
plication, but it contains a complex hierarchy of user roles, so
its policy code is comparatively large (425 LoC). By contrast,
Portfolio is the largest application (6.7k LoC), but it has fewer,
simpler policies, as it collects broad data (academic history,
letters, demographics) but for the same purpose (viewing by
admissions officials). This indicates that effort for writing
Sesame policies reflects the complexity of the application’s
data-use semantics, rather than application size.

We compare the three policies Storm [27] implements for
Voltron with the equivalent policies in Sesame. In Sesame,
the cHECK functions for these policies consist of 88 Rust LoC,
compared to 37 and 17 LiquidHaskell LoC for policy and
“non-trivial type annotations” in Storm. This suggests that
writing policies for Sesame requires comparable effort to
existing work. In addition, Sesame can express more diverse
policies, such as k-anonymity, that depend on runtime state.

Using Policy Containers. Writing a Sesame application
requires developers to use PCoNs to associate data with
policies, to change types to PCoNns where necessary (e.g., in
function signatures), and to add privacy regions. To quantify
this effort, we consider our experience porting Portfolio to
Sesame. Porting an existing application is more work than
writing a new one that already anticipates these abstractions.

Porting Portfolio took 30 person-hours. We changed types
in five ORM and four JSON payload structs to associate poli-
cies with structured data. For unstructured data, e.g., cookies
and GET parameters, we declared the policy type on each
read. We spent the majority of porting time adjusting func-
tion signatures to use PCons. This is largely mechanic and
guided by compiler type errors that indicate where changes
are needed. Compiler errors related to PCons also pointed us
to application logic that requires raw data, and we lifted this
logic into privacy region closures. Across our applications,
this required no structural changes (e.g., moving code be-
tween functions or changing control flow). Sesame requires

of Total % | Size

App. Region | regions | of App | (LoC)
YouChat VR 3 <1% 1-5
VR 3 <1% 1-2
Voltron CR 5 1% 37
VR 43 1.2% 1-8
Portfolio SR 6 <1% 1-5
CR 20 1.4% 1-27
VR 17 2.0% 1-9

WebSubmit SR 2 1.0% 4-19
CR 2 1.3% 8-22

Figure 7. Counts and sizes of each Sesame privacy region
used. This accounts for the size of the top-level region closure,
but not helper functions that require no porting effort.

App. LoC | # CRs || Burden % | Avg Burden
YouChat 1.1k 0 - -
Voltron 1.2k 2 <1% 5 LoC
Portfolio 6.7k 20 5.0% 16.8 LoC
WebSubmit | 2.2k 2 1.5% 16.5 LoC

Figure 8. Critical region count in applications. Burden %
indicates the fraction of code that needs review; average
burden is the average size of in-crate code for CRs.

a few dozen privacy regions for Portfolio, and smaller ap-
plications require fewer (Figure 7). Overall, we had to lift
1-4.3% of application code into region closures.

Critical Region Review. We now consider the review effort
for critical regions. A good result for Sesame would show
that critical regions are slim and infrequent.

Figure 8 shows the number of critical regions and their
review burden in terms of in-crate code to audit. In all ap-
plications, critical regions are small and shallow: the review
burden in Portfolio makes up 5% of application code includ-
ing the CR closures and all their in-crate helpers. Portfolio
has 20 CRs with an average review burden of 17 LoC each.

CRs often invoke external dependencies in addition to
in-crate code, so the review burden extends to auditing these
dependencies. Reviewers may leverage organizations’ exist-
ing supply chain audit protocols for approving dependencies
and updates to reduce review burden.

These results suggest that Sesame focuses reviewer atten-
tion on infrequent, small, and contained code regions.

9.2 Application Performance

Next, we evaluate Sesame’s impact on end-to-end applica-
tion performance using WebSubmit and Portfolio. PCoN en-
capsulation adds overhead due to pointer indirection and
the additional memory footprint of policies; runtime policy
checks and the use of sandboxes may also incur overhead.
We compare (i) the baseline application, and (ii) application

WebSubmit Portfolio
@' 10 - 30
g B Baseline Sesame
o - 20
g] 10
3
0- -0

Use! odef\ ades ales
geg\s&efaewa‘“ \\}Qed\c‘ Séx Pé‘é‘é‘%%“g\“)’%da\e

ex ‘“C (\C\‘? A didate®
138

Figure 9. Sesame has reasonable performance overheads for
WebSubmit and Portfolio (solid: median; shaded 95™ %-ile).

with Sesame. We use a database with 100 students and 100
homework questions for WebSubmit and an admission co-
hort of 1k candidates (one application each) for Portfolio. We
measure endpoint latency for HTTP endpoints that use pri-
vacy regions and/or require policy checks. A good result for
Sesame would show comparable latencies with and without
Sesame and acceptable overhead for sandboxed operations.

Figure 9 shows the results. WebSubmit performs API key
hashing during user registration (“Register Users”) and ML
model training (“Retrain Model”) in sandboxed regions. These
endpoints with sandboxed regions see 10% and 55% over-
head, most of which is due to the cost of copying data into
the sandbox. User registration (10% overhead) copies a single
record into the sandbox (tail latency is due to DB disk I/O);
retraining the ML model transfers the grades of all consent-
ing users to the sandbox (55% overhead). “Get Aggregates”,
which computes statistics over the whole class, and “Get Em-
ployer Info”, which computes average grades for release to
employers, have a 1-3% overhead. Both endpoints combine
many students’ data, which can have different policies that
cannot be folded together into a single policy, so Sesame
must perform repeated policy checks. “Predict Grades” has
a 10% overhead, albeit with low absolute latency as grade
inference operates on an in-memory model without I/O.

Portfolio’s “Update Candidate” writes candidate demo-
graphics to the DB on disk. It performs JSON serialization in
a sandboxed region, resulting in a 25% overhead. “List Candi-
dates” has admins retrieve a paginated list of 20 applications.
Sesame uses FoLD to combine the candidates’ policies into a
single policy check, resulting in a 10% overhead.

These results indicate that PCons and policy checks im-
pose low overheads, while the cost of sandboxing scales with
the size of the data copied into the sandbox.

9.3 Drill-Down Experiments

We now evaluate key components of Sesame—SCRUTINIZER,
sandboxes, and policy composition—in isolation.

SCRUTINIZER. Sesame’s guarantees depend on sound re-
jection of leaking regions. Simultaneously, if SCRUTINIZER

M Function 8 Setup + Tear M Function B8 Setup + Tear . 260 A I Baseline
—_ 85 7 #Z Copy . 4600 - % Copy E I Naive Sesame
é— 75 E— 4400 - = 250 = Sesame
g i E ” 2
i _ |5
= 20 = 400 3
10 1 200 A ‘
0- 0- st
W C
dbo* 6‘007‘ Joo* Joo* 6‘00" Joo* AQmE L 1ed
No S¥give ST qpr. S No S¥give S qpt. S Discuss

(a) Reuse optimizations speed up a sandbox (b) Copy optimizations speed up a sandbox (c) Policy composition avoids repeated pol-

running a cheap hash function by 4x.

running ML training by 11x.

icy checks (median; 95the jle shaded).

Figure 10. Drill-down experiments: Sesame benefits from sandbox reuse reducing setup/teardown overhead (a) and from direct
copies avoiding serialization of data passed into the sandbox (b); policy composition reduces check overheads (c). Functions
run 2X slower in the sandbox because of the WASI runtime [11] and inserted dynamic checks, e.g., on pointer dereferencing.

Privacy Regions

Leak- | - of those, | Functions
Application | free accepted | Analyzed | Time
YouChat 3 3 823 2.31s
Voltron 3 3 11 0.80s
Portfolio 55 43 774,624 | 711.61s
WebSubmit 19 17 332,326 | 500.52s

Figure 11. SCRUTINIZER accepts the majority of leakage-free
regions, avoiding sandboxing overheads or the burden of
manual review. SCRUTINIZER rejected all leaking regions.

accepts genuinely leakage-free regions, this avoids sandbox-
ing overhead and manual review. We evaluate SCRUTINIZER
on 98 privacy regions across our four applications: 80 that
we manually verified as leakage-free, and 18 that we know
to be leaking. In a good result, SCRUTINIZER would accept
most leakage-free regions and reject all leaking regions.

Figure 11 shows the results of running SCRUTINIZER over
regions we know to be leakage-free. SCRUTINIZER success-
fully verified 66 of 80 regions, but conservatively rejected
two regions in WebSubmit and twelve in Portfolio. Six of the
rejected regions use async code not currently supported by
ScrRUTINIZER. The remaining eight regions perform crypto-
graphic hashing, encryption, ML training, and CSV serializa-
tion via external libraries that dereference raw pointers for
performance. With extra engineering effort, SCRUTINIZER
should be able to verify some of these as leakage-free. Scru-
TINIZER correctly rejects all 18 leaking regions.

We also evaluated SCRUTINIZER on methods from standard
library containers, which extensively use unsafe code for
performance. SCRUTINIZER rejected all leaking methods, and
rejected two out of 57 leakage-free methods.

Sandboxes. To measure the cost of sandboxing, we consider
the sandboxed regions in WebSubmit: “Register Users” and
“Retrain Model”. The former computes a hash over a short

string and the latter fits a linear regression model to thou-
sands of rows. We compare the runtime of executing the two
privacy regions (i) without a sandbox (the baseline); (ii) in a
sandbox without any optimizations (“Naive Sandbox”); and
(iii) in a sandbox with reuse and copy optimizations (§6.2).

The results are in Figures 10a and 10b. Compared to the
baseline, the naive sandbox adds substantial overhead: sand-
box setup and teardown dominate the (fast) hashing sand-
box’s runtime (Figure 10a), while data copying via serializa-
tion dominates for ML training, which operates over more
data (Figure 10b). With optimizations, the overhead of sand-
boxes decreases substantially. Reusing sandboxes after eras-
ing their memory improves the hashing sandbox’s runtime
by 4x. Copying data and swizzling pointers reduces data
copy time by 29X and overall runtime by 11X compared to
an naive, serialization-based ML training sandbox.

In both cases, the actual code of the region itself (“Func-
tion”) takes roughly twice as long as without sandboxing, in
line with overheads reported by RLBox [30].

Policy Composition. We now measure the performance
impact of policy composition using FoLb. We use two end-
points from WebSubmit that display homework answers to
course staff and discussion leaders, for a setup with 100k
answers (100 students, 100 lectures). Releasing homework
answers requires evaluating the AnswerAccessPolicy: an-
swers are shared only with authors, admins, or discussion
leaders. The list of admins is part of the application’s in-
memory configuration, while discussion leaders must be
retrieved with a database query. In the discussion leader
case, each policy check requires a database query, and join-
ing policies that have the same discussion leaders reduces
this policy check to a single database query. The experiment
measures the impact of this policy join, and its overhead for
the admin case, where the policy check is inexpensive. Figure
10c shows the results: the admin endpoint without policy
composition incurs a 1.4X performance overhead compared

to a policy-free baseline, while policy composition incurs a
1.6X overhead. For the discussion leaders endpoint, retriev-
ing answers without policy composition has a 27X overhead,
while the same operation with policy composition incurs a
1.5% overhead. This experiment indicates that policy com-
position is a worthwhile abstraction: while it incurs some
additional overhead when policy check execution is cheap, it
cuts the cost of policy checks when execution is expensive.

10 Related Work

Sesame draws inspiration from Resin’s techniques for attach-
ing flexible policies to data [47]. Akin to taint tracking in
Resin’s runtime, PCons associate data with policies, track
and combine policies as data flows through the application,
and ensure applications cannot modify policies or reveal data
without policy checks. Sesame avoids expression-granularity
taint tracking, and instead manages taints at the boundaries
of privacy regions, which operate on untainted data, secured
by static analysis, sandboxing, and rare critical regions.
Cocoon [26] is a static type-based IFC system for Rust that
avoids compiler modifications and runtime overheads. Co-
coon centers on secret blocks that operate directly on data and
serve a similar purpose to verified regions. While Sesame
relies on SCRUTINIZER to verify privacy regions, Cocoon
ensures that blocks are leakage-free via trait bounds and
rewriting with procedural macros. This approach is more
conservative than SCRUTINIZER's: it e.g., disallows all Rust
unsafe code or types with interior mutability, and requires
porting any dependencies invoked in a block to Cocoon.
SCRUTINIZER, by contrast, analyzes unmodified libraries. Fi-
nally, Cocoon enforces non-interference via static secrecy
labels, while Sesame enforces arbitrary dynamic policies.
RuleKeeper [19], like Sesame, combines static analysis
with runtime policy enforcement. It protects against pol-
icy violations at HTTP endpoints and database queries, but
not against accidental leaks or custom sinks (e.g., logging,
file I/0). RuleKeeper’s static analysis of JavaScript source
code is unsound and can miss policy violations. Sesame
achieves soundness by analyzing Rust code for leakage-
freedom, rather than for more complex policy compliance.
While both RuleKeeper and SCRUTINIZER can have false pos-
itives, Sesame can apply sandboxing to code that fails static
analysis, while RuleKeeper must default to manual review.
Laminar [36] is a decentralized information flow control
(DIFC) system that supports “security regions” within which
code can access raw data. Laminar uses a modified Java
VM and a kernel module to manage labels and capabilities
that developers assign to regions. Sesame’s privacy regions
enforce leakage-freedom via static analysis or sandboxes.
Harpocrates [34] associates policies with data and enforces
context-dependent checks when calling into potentially side-
effecting code, detected via static analysis. Harpocrates lever-
ages Scala features to avoid type signature changes and to
automate context capturing and propagation of policies to

derived data. Sesame requires more developer work, but
combines static analysis, sandboxing, and code review for
end-to-end policy enforcement from explicit sources to sinks.
Riverbed [44] separates users with different policies into
separate application deployments (“universes”) that cannot
interact, and leverages a taint-tracking language runtime.
Sesame lets users with different policies share a deployment,
but ensures their data interacts only in permissible ways.
Other policy enforcement systems differ from Sesame in
their threat model, scope, or mechanism used. PrivGuard [45],
like Sesame, uses static analysis and runtime mechanisms
to enforce privacy policies, but targets a narrower set of
Pandas-like data analytics programs. Ryoan [23] has a strong
threat model: it trusts neither the application nor the under-
lying cloud platform, and leverages sandboxes, hardware
enclaves, and IFC to protect sensitive data. Sesame trades a
weaker threat model for general application support and
lower overheads. Zeph [5] relies on cryptography to re-
strict computations over sensitive data, but only supports
restricted classes of computations (e.g., streaming sums),
while Sesame supports general computation. Finally, classic
role-based access control (RBAC), as well as systems like
Daisy [22] and Qapla [28] enforce access control policies in a
database-centric environment. These approaches cannot pro-
tect against application bugs; Sesame focuses on application
code and supports policies beyond access control, such as
k-anonymity. K9db [2] handles users’ right to access/delete
their data within a relational database; an orthogonal con-
cern to application bugs, which K9db cannot reason about.

11 Discussion and Future Work

Sesame could be extended with an optional DSL for policies
that compiles to Rust. This could make expressing common
policies easier and more succinct, enable automated reason-
ing about them, and maintain expressiveness.

Sesame’s guarantees for unsafe Rust code rely in part on
pointer obfuscation (§5). Sesame could instead apply a static
analysis that detects unsafe code that breaks encapsulation.
We believe this is feasible and has utility beyond Sesame.

Finally, leveraging information from a database that un-
derstands data ownership, such as K9db [2], in Sesame’s
policies is an interesting avenue for future work.

12 Conclusion

Sesame is a framework to help developers enforce application-
specific privacy policies over user data across an application.
Privacy regions allow developers to operate over policy-
protected data by leveraging runtime policy checks, static
analysis, sandboxing, and human code review.

We show that Sesame requires modest developer effort,
incurs acceptable overheads, and achieves practical compli-
ance. Sesame is available as open-source software:

https://github.com/brownsys/sesame.

https://github.com/brownsys/sesame

Acknowledgments

We thank Deniz Altinbiiken, Alexandre Meier Doukhan,
Shriram Krishnamurthi, Akshay Narayan, Deepti Raghavan,
Samyukta Yagati, Carolyn Zech, and the ETOS and Systems
groups at Brown for their helpful feedback on drafts of this
paper. Feedback from the anonymous reviewers and our
shepherd, Brad Karp, helped greatly improve the paper. We
are also grateful to Sinan Pehlivanoglu, whose master’s thesis
on enforcing privacy polices using compiler techniques [34]
inspired the policy APIs and use of static analysis in Sesame;
and to Sreshtaa Rajesh and Livia Zhu, whose CSCI 2390
project on static IFC in Rust (“Beaver”) spawned early ideas
on how to realize policy-protected data in Rust.

This research was supported by NSF awards CNS-2045170
and DGE-2335625, by a Google Research Scholar Award, a
Microsoft Grant for Customer Experience Innovation, an
Amazon Research Award, and a gift from VMware.

References

[1] Kinan Dak Albab, Artem Agvanian, Allen Aby, Corinn
Tiffany, Alexander Portland, Sarah Ridley, and Malte
Schwarzkopf. Sesame. Sept. 2024. URL: https://github.
com/brownsys/sesame (visited on 09/14/2024).

[2] Kinan Dak Albab, Ishan Sharma, Justus Adam, Ben-
jamin Kilimnik, Aaron Jeyaraj, Raj Paul, Artem Agva-
nian, Leonhard F. Spiegelberg, and Malte Schwarzkopf.
“K9db: Privacy-Compliant Storage For Web Applica-
tions By Construction”. In: Proceedings of the 17"
USENIX Symposium on Operating Systems Design and
Implementation (OSDI). Boston, Massachusetts, USA,
July 2023, pages 99-116.

[3] blackbeam. mysql. URL: https://docs.rs/ mysql _
common / latest / mysql _ common/ (visited on
04/19/2024).

[4] Pablo Buiras, Dimitrios Vytiniotis, and Alejandro
Russo. “HLIO: Mixing static and dynamic typing for
information-flow control in Haskell”. In: Proceedings
of the 20" ACM SIGPLAN International Conference on
Functional Programming (ICFP). Vancouver, British
Columbia, Canada, Aug. 2015, pages 289-301.

[5] Lukas Burkhalter, Nicolas Kiichler, Alexander Viand,
Hossein Shafagh, and Anwar Hithnawi. “Zeph: Cryp-
tographic Enforcement of End-to-End Data Privacy”.
In: Proceedings of the 15" USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI). Vir-
tual Event, July 2021, pages 387-404.

[6] Jack Cable. LinkedIn AutoFill Exposed Visitor Name,
Email to Third-Party Websites. Apr. 2018. URL: https:
// lightningsecurity . io / blog / linkedin/ (visited on
09/14/2024).

[7] California Attorney General. Privacy Enforcement Ac-
tions. URL: https://oag.ca.gov/ privacy/ privacy -
enforcement-actions (visited on 07/31/2023).

(10]

(11]

(14]

(17]

Adam Chlipala. “Static checking of dynamically-
varying security policies in database-backed applica-
tions”. In: Proceedings of the 9" USENIX Conference
on Operating Systems Design and Implementation
(OSDI). Vancouver, British Columbia, Canada, 2010,
pages 105-118.

Adam Chlipala. “Ur: statically-typed metaprogram-
ming with type-level record computation”. In: Proceed-
ings of the 31 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI).
Toronto, Ontario, Canada, 2010, pages 122-133.
Stephen Chong, K. Vikram, and Andrew C. Myers.
“SIF: enforcing confidentiality and integrity in web
applications”. In: Proceedings of 16" USENIX Security
Symposium. Boston, Massachusetts, USA, Aug. 2007.
Lin Clark. Standardizing WASI: A system interface to
run WebAssembly outside the web. Mar. 2019. URL:
https://hacks.mozilla.org/2019/03/standardizing -
wasi-a-webassembly-system-interface/ (visited on
08/12/2024).

Will Crichton, Marco Patrignani, Maneesh Agrawala,
and Pat Hanrahan. “Modular Information Flow
through Ownership”. In: Proceedings of the 43 ACM
SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI). San
Diego, California, USA, 2022, pages 1-14.

Dorothy E. Denning and Peter J. Denning. “Certifi-
cation of programs for secure information flow”. In:
Communications of the ACM 20.7 (1977), pages 504—
513.

Christian Dietrich, Valentin Rothberg, Ludwig
Furacker, Andreas Ziegler, and Daniel Lohmann.
“cHash: Detection of Redundant Compilations via
AST Hashing”. In: Proceedings of the 2017 USENIX
Annual Technical Conference (USENIX ATC). Santa
Clara, California, USA, July 2017, pages 527-538.
Petros Efstathopoulos and Eddie Kohler. “Manageable
Fine-Grained Information Flow”. In: Proceedings of the
3@ ACM SIGOPS European Conference on Computer
Systems (EuroSys). Glasgow, Scotland, UK, Apr. 2008,
pages 301-313.

European Data Protection Board. Binding Decision
2/2022 on the dispute arisen on the draft decision of
the Irish Supervisory Authority regarding Meta Plat-
forms Ireland Limited (Instagram) under Article 65(1)(a)
GDPR. July 2022. UrL: https://www.edpb.europa.
eu/system/files/2022-09/edpb _bindingdecision _
20222_ie_sa_instagramchildusers_en.pdf (visited on
09/14/2024).

“Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of per-
sonal data and on the free movement of such data, and

https://github.com/brownsys/sesame
https://github.com/brownsys/sesame
https://docs.rs/mysql_common/latest/mysql_common/
https://docs.rs/mysql_common/latest/mysql_common/
https://lightningsecurity.io/blog/linkedin/
https://lightningsecurity.io/blog/linkedin/
https://oag.ca.gov/privacy/privacy-enforcement-actions
https://oag.ca.gov/privacy/privacy-enforcement-actions
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://www.edpb.europa.eu/system/files/2022-09/edpb_bindingdecision_20222_ie_sa_instagramchildusers_en.pdf
https://www.edpb.europa.eu/system/files/2022-09/edpb_bindingdecision_20222_ie_sa_instagramchildusers_en.pdf
https://www.edpb.europa.eu/system/files/2022-09/edpb_bindingdecision_20222_ie_sa_instagramchildusers_en.pdf

[20]

(21]

(22]

(26]

(27]

(28]

repealing Directive 95/46/EC (General Data Protection
Regulation)”. In: Official Journal of the European Union
L119 (May 2016), pages 1-88.

Family Educational Rights and Privacy Act. United
States Code of Laws, 20 US.C. § 1232g. Aug. 1974.
Mafalda Ferreira, Tiago Brito, José Fragoso Santos,
and Nuno Santos. “RuleKeeper: GDPR-Aware Personal
Data Compliance for Web Frameworks”. In: Proceed-
ings of the 44" IEEE Symposium on Security and Pri-
vacy (S&P). San Francisco, California, USA, May 2023,
pages 2817-2834.

Google, Inc. Project Strobe: Protecting your data,
improving our third-party APIs, and sunsetting con-
sumer Google+. Oct. 2018. URL: https://blog.google/
technology/safety-security/project-strobe/ (visited
on 09/14/2024).

Google, Inc. Google Open Source: Third-Party. Mar.
2023. URL: https://opensource.google/documentation/
reference/thirdparty (visited on 09/16/2024).

Marco Guarnieri, Musard Balliu, Daniel Schoepe,
David Basin, and Andrei Sabelfeld. “Information-Flow
Control for Database-Backed Applications”. In: Pro-
ceedings of the 4" 2019 IEEE European Symposium on
Security and Privacy (EuroS&P). Stockholm, Sweden,
June 2019, pages 79-94.

Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter,
and Emmett Witchel. “Ryoan: A distributed sandbox
for untrusted computation on secret data”. In: ACM
Transactions on Computer Systems (TOCS) 35.4 (2018),
pages 1-32.

Vojtéch Jungmann and Sebastian Pravda. Portfolio.
2022. URL: https://github.com/admisio/Portfolio
(visited on 04/12/2024).

Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan
Cliffer, M. Frans Kaashoek, Eddie Kohler, and Robert
Morris. “Information flow control for standard OS
abstractions”. In: Proceedings of the 21 ACM SIGOPS
Symposium on Operating Systems Principles (SOSP).
Stevenson, Washington, USA, 2007, pages 321-334.
Ada Lamba, Max Taylor, Vincent Beardsley, Jacob
Bambeck, Michael D. Bond, and Zhigiang Lin. “Co-
coon: Static Information Flow Control in Rust”. In:
Proceedings of the ACM on Programming Languages
8.00PSLA1 (Apr. 2024).

Nico Lehmann, Rose Kunkel, Jordan Brown, Jean Yang,
Niki Vazou, Nadia Polikarpova, Deian Stefan, and Ran-
jit Jhala. “STORM: Refinement Types for Secure Web
Applications”. In: Proceedings of the 15" USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI). Virtual Event, July 2021, pages 441-459.
Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak
Garg, and Peter Druschel. “Qapla: Policy compliance
for database-backed systems”. In: Proceedings of the

[29]

(30]

(32]

(33]

(34]

(36]

(37]

(38]

(39]

26" USENIX Security Symposium. Vancouver, British
Columbia, USA, Aug. 2017, pages 1463-1479.
Andrew C. Myers and Barbara Liskov. “Protecting
privacy using the decentralized label model”. In: ACM
Transactions on Software Engineering and Methodology
(TOSEM) 9.4 (2000), pages 410-442.

Shravan Narayan, Craig Disselkoen, Tal Garfinkel,
Nathan Froyd, Eric Rahm, Sorin Lerner, Hovav
Shacham, and Deian Stefan. “Retrofitting fine grain
isolation in the Firefox renderer”. In: Proceedings of
the 29" USENIX Security Symposium. Virtual Event,
Aug. 2020, pages 699-716.

NOYB: European Center for Digital Rights. GDPRHub:
CNIL SAN-2020-008. URL: https://gdprhub.eu/index.
php ? title = CNIL_ - _SAN - 2020 - 008 (visited on
07/31/2023).

NOYB: European Center for Digital Rights. GDPRHub:
CNIL SAN-2020-018, Nestor SAS. URL: https://gdprhub.
eu/index.php?title=CNIL_-_SAN-2020-018 (visited on
07/31/2023).

NOYB: European Center for Digital Rights. GDPRHub:
GPDDP 9485681, Vodafone Italia. URL: https://gdprhub.
eu/index.php?title=Garante_per_la_protezione_dei_
dati_personali_-_9485681 (visited on 07/31/2023).
Sinan Pehlivanoglu and Malte Schwarzkopf. Har-
pocrates: A Statically Typed Privacy Conscious Pro-
gramming Framework. May 2022. arXiv: 2411.06317
[cs.CR].

Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar
Itzhaky, Travis Hance, and Armando Solar-Lezama.
“Liquid information flow control”. In: Proceedings of the
ACM on Programming Languages 4.ICFP (Aug. 2020).
Indrajit Roy, Donald E. Porter, Michael D. Bond,
Kathryn S. McKinley, and Emmett Witchel. “Laminar:
practical fine-grained decentralized information
flow control”. In: Proceedings of the 30™ ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI). Dublin, Ireland, 2009,
pages 63-74.

Malte Schwarzkopf. websubmit-rs: a simple class sub-
mission system. URL: https://github.com/ms705/
websubmit-rs (visited on 06/03/2024).

SergioBenitez. rocket. URL: https://docs.rs/rocket/
latest/rocket/ (visited on 04/19/2024).

Emin Giin Sirer, Willem de Bruijn, Patrick Reynolds,
Alan Shieh, Kevin Walsh, Dan Williams, and Fred B.
Schneider. “Logical attestation: an authorization archi-
tecture for trustworthy computing”. In: Proceedings of
the 23" ACM SIGOPS Symposium on Operating Systems
Principles (SOSP). Cascais, Portugal, 2011, pages 249-
264.

https://blog.google/technology/safety-security/project-strobe/
https://blog.google/technology/safety-security/project-strobe/
https://opensource.google/documentation/reference/thirdparty
https://opensource.google/documentation/reference/thirdparty
https://github.com/admisio/Portfolio
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-008
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-008
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-018
https://gdprhub.eu/index.php?title=CNIL_-_SAN-2020-018
https://gdprhub.eu/index.php?title=Garante_per_la_protezione_dei_dati_personali_-_9485681
https://gdprhub.eu/index.php?title=Garante_per_la_protezione_dei_dati_personali_-_9485681
https://gdprhub.eu/index.php?title=Garante_per_la_protezione_dei_dati_personali_-_9485681
https://arxiv.org/abs/2411.06317
https://arxiv.org/abs/2411.06317
https://github.com/ms705/websubmit-rs
https://github.com/ms705/websubmit-rs
https://docs.rs/rocket/latest/rocket/
https://docs.rs/rocket/latest/rocket/

(45]

(49]

Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves
Strub, Karthikeyan Bhargavan, and Jean Yang. “Se-
cure distributed programming with value-dependent
types”. In: SIGPLAN Not. 46.9 (Sept. 2011), pages 266—
278.

Nikhil Swamy, Brian] Corcoran, and Michael Hicks.
“Fable: A language for enforcing user-defined security
policies”. In: Procedings of the 29" IEEE Symposium on
Security and Privacy (S&P). Oakland, California, USA,
May 2008, pages 369-383.

The Health Insurance Portability and Accountability
Act of 1996. United States Public Law 104-191. Aug.
1996.

Chris Tsang and Chan Billy. SeaORM: An async &
dynamic ORM for Rust. URL: https://crates.io/crates/
sea-orm (visited on 09/17/2024).

Frank Wang, Ronny Ko, and James Mickens. “Riverbed:
Enforcing User-defined Privacy Constraints in Dis-
tributed Web Services”. In: Proceedings of the 16
USENIX Symposium on Networked Systems Design and
Implementation (NSDI). Boston, Massachusetts, USA,
Feb. 2019, pages 615-630.

Lun Wang, Usmann Khan, Joseph Near, Qi Pang,
Jithendaraa Subramanian, Neel Somani, Peng Gao,
Andrew Low, and Dawn Song. “PrivGuard: Privacy
regulation compliance made easier”. In: Proceedings
of the 31" USENIX Security Symposium. Boston,
Massachusetts, USA, Aug. 2022, pages 3753-3770.
Jean Yang, Travis Hance, Thomas H. Austin, Armando
Solar-Lezama, Cormac Flanagan, and Stephen Chong.
“Precise, dynamic information flow for database-
backed applications”. In: Proceedings of the 37" ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). Santa Barbara,
California, USA, 2016, pages 631-647.

Alexander Yip, Xi Wang, Nickolai Zeldovich, and
M. Frans Kaashoek. “Improving Application Security
with Data Flow Assertions”. In: Proceedings of the
ACM SIGOPS 22" Symposium on Operating Systems
Principles (SOSP). Big Sky, Montana, USA, Oct. 2009,
pages 291-304.

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie
Kohler, and David Maziéres. “Making Information
Flow Explicit in HiStar”. In: Proceedings of the 7"
Symposium on Operating Systems Design and Imple-
mentation (OSDI). Seattle, Washington, USA, 2006,
pages 263-278.

Nickolai Zeldovich, Silas Boyd-Wickizer, and David
Maziéres. “Securing Distributed Systems with In-
formation Flow Control”. In: Proceedings of the 5
USENIX Symposium on Networked Systems Design
and Implementation (NSDI). San Francisco, California,
USA, Dec. 2008.

A Appendix

This appendix contains supplementary material that has not
been peer-reviewed.

ScrRUTINIZER Code. SCRUTINIZER is open-source software
at https://github.com/brownsys/scrutinizer. Our experiments
in the paper used the version tagged sosp24.

SCRUTINIZER Analysis Details. ScrUTINIZER follows a
two-stage approach to check the properties in §6.1.

First, SCRUTINIZER builds a call tree of all functions and
code that may be executed by the top-level function under
analysis. SCRUTINIZER uses Rust’s dataflow analysis frame-
work to traverse function bodies recursively in execution
order. This discovers all possible function bodies that the
top-level function could call, and organizes them into a call
tree. When it encounters dynamic dispatch, SCRUTINIZER
attempts to construct a superset of all concrete functions the
dynamic dispatch may resolve to, and analyzes all of them.
If SCRUTINIZER cannot construct such a set, it rejects the
function. SCRUTINIZER keeps track of functions it visited to
avoid unnecessary recomputation. This stage finishes when
SCRUTINIZER discover no more new function calls.

Second, SCRUTINIZER begins the analysis stage. SCRUTI-
NIZER rejects a top-level function if it captures any variables
with a mutable reference, since such sensitive data could
leak into such variables. For top-level functions that pass
this check, SCRUTINIZER labels the arguments to the function
as “sensitive”. It then traverses every statement in the call
tree while simultaneously propagating the “sensitive” label
to aliases and derived variables using Flowistry [12]. This
ensures that SCRUTINIZER keeps track of sensitive arguments
as they are passed, aliased, and derived from throughout the
call tree. If SCRUTINIZER encounters a function call into na-
tive or otherwise unresolvable code that sensitive variables
flow into, it rejects. If SCRUTINIZER encounters a function
call to an allow-listed function, or with arguments that lack
the sensitive label, it skips it. Otherwise, SCRUTINIZER an-
alyzes the function’s body. If SCRUTINIZER encounters an
unsafe mutability mechanism, such as a raw mutable pointer
dereference, it rejects. If SCRUTINIZER finishes analyzing the
call tree without rejecting, it accepts the top-level function.

https://crates.io/crates/sea-orm
https://crates.io/crates/sea-orm
https://github.com/brownsys/scrutinizer

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Sesame Overview
	4 Design
	4.1 Policies
	4.2 Context and Policy Checks
	4.3 Guarantees and Threat Model

	5 Policy Containers
	6 Privacy Regions
	6.1 Static Analysis and Verified Regions
	6.2 Sandboxes
	6.3 Critical Regions

	7 Implementation
	8 Application Case Studies
	9 Evaluation
	9.1 Developer Effort
	9.2 Application Performance
	9.3 Drill-Down Experiments

	10 Related Work
	11 Discussion and Future Work
	12 Conclusion
	A Appendix

