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ABSTRACT to a processing site where the registered complex events are evaluated

as continuous queries, triggers, or rules. This model is neither effi-
_cient, as it requires communicating all base events to the processing
site, nor necessary, as only a small fraction of all base events eventu-

Complex Event Detection (CED) is emerging as a key capability for
many monitoring applications such as intrusion detection, sensor
based activity & phenomena tracking, and network monitoring. Ex-

isting CED solutions commonly assume centralized availability and allyrzrjake up complex events. lan-based hf L
processing of all relevant events, and thus incur significant overhead | NS Paper presents anew plan-based approach for communication-

in distributed settings. In this paper, we present and evaluate commu€fficient CED across distributed sources. Given a complex event, we

nication efficient techniques that can efficiently perform CED across generate a cost-pased multi-step Qetectlon plan on the basis of the
distributed event sources. temporal constraints among constituent events and event frequency

Our techniques arplan-based: we generate multi-step event ac- statistics. Each step in the plan involves acquisition and processing

quisition and processing plans that leverage temporal relationshipgf @ Subset of the events with the basic goal of postponing the mon-

among events and event occurrence statistics to minimize event trandtorng O_f high fre_quency events to later steps'l_n the plan. As such,
mission costs, while meeting application-specific latency expecta_processmg the higher frequency events conditional upon the occur-

tions. We present an optimal but exponential-time dynamic pro- "6Nce of lower frequency ones eliminates the need to communicate

gramming algorithm and two polynomial-time heuristic algorithms, th_e fgrmer In many cr:]ases, ]Ehug has th%potentléil 0 r(_edulce the trans-
as well as their extensions for detecting multiple complex events with MSSIon COsts in exchange for increased event detection latency.
common sub-expressions. We characterize the behavior and perfor- Our algorithms are parameterized to limit event detection laten-

mance of our solutions via extensive experimentation on synthetic¢€S BY C(;nstrha_mlltrg tt?le n_ugjber ?]f sltepsl in a CED pl_c’;lnt.)l There aI:e
and real-world data sets using our prototype implementation. two uses or this flexibility: First, the local storage available at eac
source dictates how long events can be stored locally and would thus

be available for retrospective acquisition. Thus, we can limit the du-
1. INTRODUCTION ration of our plans to respeevent life-timesat sources. Second,

In this paper, we study the problem of complex event detection While timely detection of events is critical in general, some appli-
(CED) in a monitoring environment that consists of potentially a large cations are more delay-tolerant than others (e.g., human-in-the-loop
number of distributed event sources (e.g., hardware sensors or sof@pplications), allowing us to generate more efficient plans.
ware receptors). CED is becoming a fundamental capability in many To implement this approach, we first present a dynamic program-
domains including network and infrastructure security (e.g., denial ming algorithm that is optimal but runs in exponential time. We then
of service attacks and intrusion detection [22]) and phenomenon and®resent two polynomial-time heuristic algorithms. In both cases, we
activity tracking (e.g., fire detection, storm detection, tracking sus- discuss a practical but effective approximation scheme that limits the
picious behavior [23]). More often than not, such sophisticated (or number of candidate plans considered to further trade off plan qual-
“complex”) events "happen” over a period of time and region. Thus, ity and cost. An integral part of planning is cost estimation, which
CED often requires consolidating over time many "simple” events requires effective modeling of event behavior. We show how com-
generated by distributed sources. monly used distributions and histograms can be used to model events

Existing CED approaches, such as those employed by stream proWith independent and identical distributions and then discuss how to
cessing systems [17, 18], triggers [1], and active databases [8], ar&xtend our models to support temporal dependencies such as bursti-
based on a centralized, push-based event acquisition and processiritgss. We also study CED in the presence of multiple complex events
model. Sources generate simple events, which are continually pushe@nd describe extensions that leverage shared sub-expressions for im-
proved performance. We built a prototype that implements our al-
*This work has been supported by the National Science Foundationdorithms; we use our implementation to quantify the behavior and
under Grant No. 11S-0448284 and CNS-0721703. benefits of our algorithms and extensions on a variety of workloads,
using synthetic and real-world data (obtained from PlanetLab).

The rest of the paper is structured as follows. An overview of our
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2. BASIC FRAMEWORK 2.2 Event Composition

Events are defined as activities of interest in a system [10]. De- Complex events are specified on simpler events using the syntax:

tection of a person in a room, the firing of a cpu timer, and a Denial complexname

of Service (DoS) attack in a network are example events from vari- onsource.i st

ous application domains. All events signify certain activities, how- schemaattribute.list
ever their complexities can be significantly different. For instance, eventevent _expressi on
the firing of a timer is instantaneous and simple to detect, whereas whereconstrai nt i st

the detection of a DoS attack is an involved process that requires . L .
computation over many simpler events. Correspondingly, events are A unique name is given to each complex event typg usingaime
categorized agrimitive (base) anccomplex(compound), basically attribute. Sub_ev_e_nts of a Comple).( event type, Wh.'Ch can b_e other
forming an event hierarchy in which complex events are generatedcornplex or primitive events, are listed Bourcelist. Asin

by composing primitive or other complex events using a set of eventPrimitive events, t.he source list may qontam mﬂ.je pseudo-source
composition operators (Section 2.2) aswell. Theattri but e_l i st contains the attributes of a complex

Each event has an associated time-interval that indicates its occur‘-eve.gt ty{:;]e that t?hgether form a sgperl set Olf th(t-:‘hbase sghetrr?a anhd de-
rence period. For primitive events, this interval is a single point (i.e., SC"'0€S the way théy are assigned values. 1n other words, the schema
identical start and end points) at which the event occurs. For com-sDeC'f'es the transformation from subevents to complex events.

plex events, the assigned intervals contain the time intervassl of We use a standard set of event composition operators for easy spec-

subevents. Thigterval-based semantidsetter capture the underly- ification of complex event expressions in theent clause. Our

ing event structure and avoid some well-known correctness problemg\_/ent_opere_\torsand, or andseq, are aIIn_—ary operators extended
that arise with point-based semantics [9]. with time windowarguments. The time window,, of an event op-

erator specifies the maximum time duration between the occurrence

2.1 Primitive Events of any two subevents of a complex event instance. Hence, all the
Each event type (primitive and complex) has a schema that extendsubevents are to occur withintime units. In addition, we allow non-
the base schema consisting of the following required attributes: existence constraints to be expressed on the subevents arsitle

e node.id is the identifier of the node that generated the event. andseq ppt_arators using the negatl_on operaltorNegation cannot
idi identifi ianed h ) | be used inside aar operator or on its own as negated events only
e eventid is an identifier assigned to each event instance. It can  5xe sense when used together with non-negated events.

bfe made un_lgue fofr e_ve_rly event instance or set toﬁ function " £o a1 semantics of our operators are provided below. We denote
% ?:vent attri Iute_s Osg::lg evert;tl |gs|_tgnces to lget the s%mek subevents witle1, e2, . . ., e and the start and end times of the out-
id. For example, in an -enabled library application a book ¢ comblex event witi, andt».

might be detected by multiple RFID receivers at the same time.

Such readings can be discarded if they are assigned the same ® @nd(e1, ez, ..., en; w) OUtputs a complex event with = min;
event identifier. (ei.start_time), t2 = max;(e;.end_time) if max; ; (e;.

end_time — ej.end_time) <= w. Note that the subevents

e start_time andend_time represent the time interval of the event .
can happen in any order.

and are assigned by the system based on the event operator se-
mantics explained in the next subsection. These time values e Seq,ez, ..., e,; w) OUtputs a complex event with = e;.
come from an ordered domain. start_time, t2 = ep.end_time if () Viin1,...,n — 1 we
havee;.end_time < e;41. start_time and (i) e, .end_time—
er1.end_time < w. Hence,seq is a restricted form oaind
where events need to occur in order without overlapping.

Primitive event declarations specify the details of the transforma-
tion from raw source data into primitive events. The syntax is:

primitive nane
onsource.ist
schemaat tri bute_li st

e or(ei,es,...,en) OUtputs a complex event when a subevent
occurs.t; andt, are set to start and end times of the subevent.
Note that this operator does not require a window argument.
Each primitive event is assigned a unique name usiage. The

set of sources used in a primitive event is listed inghar ce | i st .

The schema component expresses the names and domains of the at-

tributes of the primitive event type and automatically inherits the at-

tributes in the base schema.

e negation (i) For and( ei, ez, .., lei, .., en; w) , We needf e; :
maz; (ej. endtime) — w < e;.endtime < min; (e;.
end_time) + w wherej ranges over the indices of the non-
negated subevents.

An example primitive event, expressing the detection of a person, (ii) For seq(eu, ez, ., lei, . en;w) , if i ¢ {1,n}, we need
is shown below together with the declaration opersondetector to haved e; : ep.end-time < e;.end_time < eq.start_time
source (e.g., a face detection module running on a smart camera). wheree, ande, are the previous and next non-negated subevents
for e;. If i = 1 (i.e. negated start [7]), we need to hajre
source persondetector ei : ep.end_time — w < ej.end_time < eq.start_time.
schemaint id, double locx, double locy And finally if i = n (i.e. negated end) we nedde; : e,_1.
o end_time < e;.end_time < ej.end_time + w. At least one
primitive persondetected of the subevents in a complex event should be left non-negated.
on persondetector as PD, node

schema eventid as hashf(persondetected, node.id, node.time, PD.i
loc as[ PD.locx, PD.locy ],
personid as PD.id

dr%In most applications, users will be interested in complex events that
iMpose additional constraints on their subevents. For instance, users
may be interested in events occurring in nearby locations. Our system
allows the expression of such spatial constraints ither e clause

We use the pseudo-soumede that enables access to context in- of the event specifications. Moreover, parameterized attribute-based
formation such as the location of the source and the current value oftonstraints between events and value-based comparison constraints
node clock. We use a hash functidrash_f , to generate unique ids  can be specified in the where clause as well. We illustrate the use
for event instances. Similar to its use in SQ@Isdescribes how an  of the constraints through the following “running person” complex
attribute is derived from others. event.
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complexrunningperson each involving the monitoring of a subset of events. The number of

on persondetectedas PD1,persordetectedas PD2, node plans for a complex event defined usiagd or seq operators over
schemaeventid as hashf(running person, node.id, n primitive subevents is exponential inas given by the recursive
node.time, persaid), relationT(n) = 37, (")T(n — i), where we defind’(0) to bel.
locasPD2.loc, . To demonstrate the basic idea behind the event detection plans,
personid as PD1.persorid consider a simple complex eveahd(e, eo; w). The transmission
event seq(PD1,PD2;3) _ cost when using the naive plan for monitoring this event would be
where PD1.persorid = PD2.persorid the total cost for transmitting every instanceeafande». On the
and distance(PD1.loc, PD2.log) 12 other hand, a two-step plan, where we continuously momitand
2.3  Event Detection Graphs acquire the instances ef (which are withinw of an instance o)

] . ) through pull requests when necessary, could cost less. However, ob-
Our event detection model is basedevrent detection grapts]. serve that the two-step plan would incur higher detection latency than
For each event expression, we construct an event detection tree. Theg naive plan, which offers the minimum possible latency. Studying

trees are then merged to form the event detection graph. CommoRyiq tradeoff between cost and latency is an important focus of our
events in different event trees, which we refer to as shared events, argork: we aim to find low-cost event detection plans that meet event-

merged to form nodes with multiple parents. Nodes in an event de'specific latency expectations.

tection graph are either operator nodes or primitive event nodes. The " \ye ;se acost-latency modedased on event occurrence probabil-
non-leaf nodes, operator nodes which execute the event language Ofyes tg calculate the expected costs and latencies of candidate event
erators on their inputs, are the operator nodes. The inputs to operatQfjetection plans. We define te&pected cost of a plaas the expected

nodes are either complex or primitive events. and their outputs aré,;mper of events the plan asks nodes to send to the base per time
complex The leaf nodes in the graph are primitive event nodes. At \we expect transmission costs to be the bottleneck for many

primitive event no_de exists for each _pri_mitive event type and storesanvorked systems, especially for sensor networks with thin, wire-
references to the instances of that primitive event type. less pipes. Even with Internet-based systems, bandwidth problems
2.4 System Architecture arise, espe_c_ially around th_e base, with increasing event generation
. ) rates. Additionally, we define thiatency of a planfor a complex

The main components in our system are the esentcesand the g \ent a5 the time between the occurrence of the event and its detec-
basenode (Figure 1). Sources generate events; e.g., routers and firg;,, by the system executing the plan. We assume that there is an
walls in a network monitoring application and a temperature SensOrgtimated latency to access each event source and that detection la-
in a disaster monitoring application are examples. Sources have localycies are dominated by network latencies, thus ignoring the event
storage that allows them to log events of interest temporarily. These,,esging costs at the base station. However, since we strive to de-
logs can be queried and events be acquired when necessary. In pragzease the number of events sent to base, our approach should reduce
tice, some event sources may not have any local storage or be aY;oth network and processing costs. Note that we abstractly define
tonomous and outside our control (e.g., RSS sources on the web). Il metrics to avoid overspecializing our results to particular sys-
such cases, we rely gmoxynodes that provide these capabilities on ., configurations and protocol implementations.
their behalf. Thus, we use the tesnurcewhen referring to either As briefly mentioned earlier, event latency constraints may origi-
the original event source o its proxy. _ _ nate from two different sources. First, we may have user specified,

The base station is responsible for generating and executing CEDQyy jicit [atency deadlines based on application requirements. Second,

plans. Plan execution involves coordifnationhwith event sources aﬁatency deadlines can arise from limited data logging capabilities: an
events are transmitted upon demand from the base. Consequentlyent source may be able to store events only for a limited time be-

our system combines the pull and push paradigms of data collectiony, e i runs out of space and has to delete data. Therefore, a plan that
to avoid the disadvantages of a purely push-based system. The CERQqq;mes the availability of events for longer periods is not going to

plans we generate strive to reduce the network traffic towards the,e \isefyl. In practice, we can consider both cases and use the most
base station by carefully choosing which sources will transmit what g~ latency target for a complex event.

events. Let's summarize some key assumptions we make in the rest of
the paper. First, we assume event sources are time-synchronized,

3. PLANNING FOR EFFICIENT CED as otherwise there might be false/missed event detections. Second,

3.1 Event Detection Plans: Overview we bound the maximum network latency for events and use timeout

A common approach to event detection would be to continuouslymeChan'sms for event detection. Finally, event delivery is assumed

transmit all the events to the base where they would be processe&o be reliable. . - .

as soon as possible. This push-based approach is typical of continus We_representour plans with extended finite state machines (FSMs).
ous query processing systems (e.g., [17, 18, 19]). From an efficienq;:(.m.st'.der the (ttomp;z)f et\llqeah(.j(gl, €2, €3; 1}'1)hwhereel_|,_632, i3la3r%.f
point of view, this approach leads to a hot-spot at the base and signifp”m't“zje tevet_n S a||1 'Sf (teh\_/vm ow f'ze' tergtarte ( )E. If-th
icant resource consumption at sources for event transmission. From Leren etection pians for this complex event. state machines ot the

semantic point of view, many applications do not require access to an?lar;s tfotr this compl;e_x etvhent ha\_/te at mmzt: 3 sta_tfe_zs d(EXCtEpt tlhe .
“raw” events but only a small fraction of the relevant on@sir goal inal state) representing the monitoring order specified by the plan, in

is to avoid continuous global acquisition of data without missing any eachhpf W?'Ch ahsqbsgt Of. p“m.'t'vlf. even;s '|S: mgnlttored. g\ne?)st?te
complex events of interest, as specified by the users machiné of each size IS given in Figuré 2. For instance, the s-step

To achieve this goal, we usavent detection plan® guide the monitoring plan: “First, continuously monitet;, then one; lookup

event acquisition decisions. Event detection plans specify multi-step@k‘] andtkf:naII); (i.nel ande; lookupes”, 'Z Llludstratetzdtla_ F|g:ure 2(c),
event acquisition strategies that reduce network transmission costs' 1< € notation; — ez = 5 IS USed to denote this plan. -
The FSMs we use for representing plansraadeterministic, since

The simplest plan, which corresponds to the push-based approac h h Ltin| tive states at a fi E tive stat
consists of a single step in which all subevents are simultaneousl ey can have multiple aclive stales at a ime. Every active state cor-
responds to a partial detection of the complex event. For example,

monitored (referred to as theaive planin the sequel). More com- . . I A
plex plans have up ta steps, where is the number of subevents, in stateS., of the plan given in Figure 2(c), there can be active in-
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Figure 1. Complex event detection framework: The base node plans and coordinates the event detection using low network cost event detection plans
formed by utilizing event statistics. The event detection model is an event detection graph generated from the given event specifications. Information
sources feed the system with primitive events and can operate both in pull and push based modes.

stances o&; waiting for instances of.. When an instance of; is

detected, in addition to the transition to next state, a self-transition
will also occur so that an instance @f can match multiple instances

reduce cost or latency without increasing the other metric.
Definition 1. A planp; with coste; and latency; is pareto opti-
malif and only if # p» with costcz and latency such thaic; > c2

of es (self-transitions are not shown in the figure). Unlike the initial andi, > I2) or (1 > Iz ande; > ¢2).
state that is always active, intermediate states are active only as longhe DP solution to plan generation is based on the follovgiageto

as the windowing constraints among event instances are met.

(b) Plan e; — e9, e3:

optimal substructure property: Lét C S be the set of subevents
monitored in thei'" step of a pareto optimal plgmfor monitoring

C. Definep; to be the subplan g, consisting of its first steps
used for monitoring the subevemﬂ§:1tj. Then the subplap;; is
simply the planp; followed by a single step in which the subevents
t;+1 are monitored. The pareto optimal substructure property can
then be stated as: ff;+1 is pareto optimal them; must be pareto
optimal. We prove the pareto optimal substructure property below
with the assumption that “reasonable” cost and latency models are
being used (that is both cost and latency values are monotonously

increasing with increasing subevents).
PROOF: PARETO OPTIMAL SUBSTRUCTURE Let the cost ofp;

be ¢; and its latency bé;. Assume thap; is not pareto optimal.
Then by definitiordp; with costc; and latency; such that(c; > c;
andl; > I;) or (I; > Ij andc; > c;). However, therp; could be

(a) The naive plan:

(e1, €2, €3) @ @ (e1) @ (e1,€2,€3) @
/817 e, €3 /el /a:.e;; within

w of e;
(c) Plan e; — es — e3:
% 4mthin éwithin
w of e w of ey, e

Figure 2: Event detection plans represented as finite state machines
3.2 Plan Generation used to form apj,, such that(c;+1 > cj; andlip1 > Ii4,) or

We now describe how event detection plans are generated with(li+1 > i, andc;+1 > ¢j;1) which would contradict the pareto
the goal of optimizing the overall monitoring cost while respecting optimality ofp; 1. [
latency constraints. First, we consider the problem of plan genera- This property implies that, ip, the plan used for monitoring the
tion for a complex event defined by a single operator. We provide complex event’, is a pareto optimal plan, then for all i, must be
two algorithms for this problem: a dynamic programming solution pareto optimal as well. Our dynamic programming solution lever-
and a heuristic method (in sections 3.2.1 and 3.2.2, respectively)aging this observation is shown in Algorithm 1 for the special case
Then, in section 3.2.3, we generalize our approach to more com-where all the subevents are primitive. Generalization of this algo-
plicated events by describing a hierarchical plan generation methodithm to the case with complex subevents (not shown here due to
that uses as building blocks the candidate plans generated for simplespace constraints) basically requires repeating the lines betéveen
events. The dynamic programming algorithm can find optimal plansand15 for all possible plan configurations of monitoring events in set
and achieve the minimum global cost for a given latency. However, it s in a single step. After execution, all pareto optimal plans for the
has exponential time complexity and is thus only applicable to small complex event will be in poplans[S], wherepoplans is the pareto
problem instances. The heuristic algorithm, on the other hand, runsoptimal plans table. This table has exacly' entries, one for each
in polynomial time and, while it cannot guarantee optimality, it pro- subset ofS. Every entry stores a list of pareto optimal plans for mon-
duces near optimal results for the cases we studied (Section 6). itoring the corresponding subset of events. Moreover, the addition of

. . a plan to an entrpoplans[s] may render another plan foplans|s]

3.2.1 The dynamic programming approach non-pareto optimal. Hence, when adding a pareto optimal plan to the

The input to the dynamic programming (DP) plan generation al- list (line 12), we remove the non-pareto optimal ones.
gorithm is a complex evertt’ defined over the subevenfsand a set At iteration i of the plength for loop, we are generating plans of
of plans for monitoring each subevent. For the primitive subevents,length (number of steps) whose first — 1 steps consist of the events
the only possible monitoring plan is the single step plan, whereas forin setj C ¢ and last step consists of the events inssétherefore, in
the complex subevents there can be multiple monitoring plans. Giverthei*" iteration of the plength for loop, we only need to consider the
these inputs, the DP algorithm produces a s@aoéto optimablans setss andj that satisfy:
for monitoring the complex eveidt. These plans will then be used in

. . ] . 1> >i—1 1
the hierarchical plan generation process to produce plans for higher- '|t\ tl2i= i > Z @)
level events (Section 3.2.3). = [t =15 —ls|Zi-1=|s| <|S|—i+1 @

A plan ispareto optimalf and only if no other plan can be used to 7] >i—-1 3)
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Algorithm 1 Dynamic programming solution to plan generation with the highest cost-latency gain at each iteration and both finish in

1. Input: S={ey,ez,...,en} a finite number of iterations since the algorithm halts as soon as it
2. for plength=1to|S| do cannot find a move that results in a better plan. Thus, the first heuris-
3. forall s€ 2%\ 0do tic aims to generate low-latency plans with reasonable costs, and the
4. p = new plan latter strives to generate low-cost plans meeting latency requirements
5. t=S\s complementing the other heuristic.
6. if plength! = 1then As a final step, the plans produced by both heuristics are merged
7. forall j€2'\(do into a feasible plan set, one that meets latency requirements. During
8. for all planp; in poplans[] do the merge, only the plans which are pareto optimal within the set of
9. p.steps =p;.steps generated plans are kept. As is the case with the dynamic program-
10. p.steps.add(new step(s)) ming algorithm, only a limited number of these plans will be consid-
11. if p is pareto optimal for poplans[s 5] then ered by each operator node for use in the hierarchical plan generation
12. poplans[sU j].add(p) algorithm. The selection of this limited subset is performed as dis-
13. else cussed in the previous subsection.
14. p.steps.add(new step(s)) 3.2.3 Hierarchical plan composition
15. poplans[s].add(p)

Plan generation for a multi-level complex event proceeds in a hi-
erarchical manner in which the plans for the higher level events are
built using the plans of the lower level events. The process follows a

Otherwise, at iteration, we would redundantly generate the plans depth-first traversal on the event detection graph, running a plan gen-
with length less thar. However, for simplicity we do not include  eration algorithm at each node visited. Observe that using only the
those constraints in the pseudocode shown in Algorithm 1 as they ddninimum latency or the minimum cost plan of each node does not
not change the correctness of the algorithm. guarantee globally optimal solutions, as the global optimum might

Finally, the analysis of the algorithm (for the case of primitive include high-cost, low-latency plans for some component events and
subevents) reveals that its complexityG¥|S|22/°/k), where the  low-cost, high-latency plans for the others. Hence, each node creates
constantk is the maximum number of pareto optimal plans a table @ set of plans with a variety of latency and cost characteristics. The
entry can store. When the number of pareto optimal plans is largefPlans produced at a node are propagated to the parent node, which
than the value of: (i) non-pareto optimal plans may be produced by USes them in creating its own plans.
the algorithm, which also means we might not achieve global opti- ~ The DP algorithm produces exclusively pareto optimal plans, which
mum and; (i) we need to use a strategy to chobg#ans from the  are essential sinaen-pareto optimal plans lead to suboptimal global
set of all pareto optimal plans. To make this selection, we exploredsolutions(the proof, which is not shown here, follows a similar ap-

a variety of strategies such as naive random selection, and selectioRroach with the pareto optimal substructure property proof in sec-
ranked by cost, latency or their combinations. We discuss these altertion 3.2.1). Moreover, if the number of pareto optimal plans submit-
natives and experimentally compare them in Section 6. ted to parent nodes is not limited, then using the DP algorithm for
L. . each complex event node we can find the global optimum selection
3.2.2 Heuristic techniques of plans (i.e., plans with minimum total cost subject to the given la-

Even for moderately small instances of complex events, enumeratency constraints). Yet, as mentioned before, the size of this pareto
tion of the plan space for plan generation is not a viable option due tooptimal subset is limited by a parameter trading computation with the
its exponential size. As discussed earlier, the dynamic programmingexplored plan space size. On the other hand, the set of plans produced
solution requires exponential time as well. To address this tractability by the heuristic solution does not necessarily contain the pareto opti-
issue, we have come up with a strategy that combines the followingmal plans within the plan space. As a result, even when the number
two heuristics, which together generate a representative subset of albf plans submitted to parent nodes is not limited, the heuristic algo-
plans with distinct cost and latency characteristics: rithm still does not guarantee optimal solutions. The plan generation

- Forward Stepwise Plan Generation:This heuristic starts with  process continues up to the root of the graph, which then selects the
the minimum latency plan, a single-step plan with the minimum la- minimum cost plan meeting its latency requirements. This selection

tency plan selected for each complex subevent, and repeatedly modat the root also fixes the plans to be used at each node in the graph.
ifies it to generate lower cost plans until the latency constraint is ex-

ceeded or no more madifications are possible. At each iteration, the3-3 ~ Plan Execution
current plan is transformed into a lower cost plan either by movinga Once plan selection is complete, the set of primitive events which
subevent detection to a later state or replacing the plan of a complexare to be monitored continuously according to the chosen plans are
subevent with a cheaper plan. identified and activated. When a primitive event arrives at the base
- Backward Stepwise Plan Generation:This heuristic starts by  station, it is directed to the corresponding primitive event node. The
finding the minimum cost plan, i.e., anstep plan with the minimum  primitive event node stores the event and then forwards a pointer of
cost plan selected for each complex subevent, wheigethe num- the event to its active parents. An active parent is one which accord-
ber of subevents. This plan can be found in a greedy way when alling to its plan is interested in the received primitive event (i.e. the
subevents are primitive, otherwise a nonexact greedy solution whichstate of the parent node plan which contains the child primitive event
orders the subevents in increasiagt x occurrence frequency is active). Observe that there will be at least one active parent node
order can be used. At each iteration, the plan is repeatedly transfor each received primitive event, namely the one that activated the
formed into a lower latency plan either by moving a subevent to an monitoring of the primitive event.
earlier step or changing the plan of a complex subevent with a lower Complex event detection proceeds similarly in the higher level
latency plan, until no more alterations are possible. nodes. Each node acts according to its plan upon receiving events
Thus, the first heuristic starts with a single-state FSM and growseither by activating subevents or by detecting a complex event and
it (i.e., adds new states) in successive iterations, whereas the se@assing it along to its parents. Activating a subevent includes ex-
ond one shrinks the initially-state FSM (i.e., reduces the number of pressing a time interval in which the activator node is interested in the
states). Moreover, both heuristics are greedy as they choose the mowdetection of the subevent. This time interval could be in the past, in
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which case previously detected events are to be requested from evemther hand, the interarrival times have geometric distribution for the
sources, or in the immediate future in which case the event detector8Bernoulli case. The reachability probability for initial state is 1 since
should start monitoring for event occurrences. itis always active and the probability for final state is not required for
Arelated issue that has been discussed mainly in the active databasest estimation. Below, we consider the monitoring cost and latency
literature [5, 9] isevent instance consumption. An event consumption of a simple complex event as an example.
policy specifies the effects of detecting an event on the instances oExample: We define the everand(e, e2, e3; w) wheree; , e2 andes
that event type’s subevents. Options range from highly-restrictive are primitive events witk\¢ latency and use Poisson processes with
consumption policies, such as those that allow each event instance tates).,, A, and Ac; to model their occurrences. First, we con-
be part of only a single complex event instance, to non-restrictive sider the naive plan in which all subevents are monitored at all times.
policies that allow event instances to be shared arbitrarily by anylts cost is simply the sum of the rates of the subeveﬁg::1 Aejs
number of complex events. Because the consumption policy affectsvhereas its latency is the maximum latency among the subevents:
the set of detected events, it affects the monitoring cost as well. OurAt. The cost derivation for the three step plan— ex — es (Fig-
results in this paper are based on the non-restrictive policy — usingure 2c) is more complex. Using the interarrival distributions for the
more restrictive policies will further reduce the monitoring cost. reachability probabilities the cost of the three step plan is given by:
Observe that, independent of the consumption policy being used, cost fore; — e2 — e3 = Ao, 4 (1 — € 1) 2whe, +
the events which are guaranteed not to generate any further complex (1= e 1) (1 — e e2) 4 (1 — e e2)(1 — e~ 1)) 2w,
events due to window constraints can always be consumed to save ) o . )
space. Hence, both the base and the monitoring nodes need only 1he plan hassA¢ latency since this is the maximum latency it
store the event instances for a limited amount of time as specified by?XNiPits (for instance, when the events occur in the ordees, e:

the window constraints. or ez, e3, e1). For simplicity, we do not include the latencies for the
pull requests in this paper. However, observe that the pull requests
4. COST-LATENCY MODELS do not necessarily increase the latency of event detection as they may

- ) be requests for monitoring future events or their latencies may be
The cost model uses event occurrence probabilities to derive exsyppressed by other events. In the cost equation above and the rest of
pected costs for event detection plans. Our cost model is not strictlythe paper, we omit the cost terms originating from events occurring in
tied to any particular probability distribution. In this section, we pro- the same time step, assuming that we have a sufficiently fine-grained
vide the general cost modell fand also de.rlve the cost estimations fofime model. We do not model the cost reduction due to possible
two commonly-used probability modelBoissonandBernoullidis-  gyerlaps in monitoring intervals of multiple pull requests, although
tnbutlclins. Mcr)]r_eover, nonpar%metrlcdmog_els clan ble elasnyhplugggd;_rlwin practice each event is pulled at most once.
as well, e.g., histograms can be used to directly calculate the probabil- iy
ity values 31 the gegneral cost model if the even%/types do not fiFt)weII to 4.1 Operator-specn‘lc Models
common parametric distributions. Model selection techniques, such Below we discuss cost-latency estimation for each operator first
as Bayesian model comparison [13], can be utilized to select a probfor the case where all subevents are primitive and are represented by
ability model out of a predefined set of models for each event type.the same distribution, and then for the more general case with com-
We first assume independent event occurrences and later relax this alex subevents. Allowing different probability models for subevents
sumption and discuss how to capture dependencies between eventstequires using the corresponding model for each subevent in calcu-
For latency estimation, we associate each event type with a latencyating the probability terms, complicating primarily the treatment of
value that represents the maximum latency its instances can havdhe sequence operator, as sums of random variables can no longer be
Here, we consider identical latencies for all primitive event types for calculated in closed forms.
simplicity. However, different latency values can be handled by the And Operator. Given the complex ever@ind(er, ez, . . . , en; w),
system as well. a detection plan withn + 1 statesS; throughsS,,,, and the final state
Poisson distributions are widely used for modeling discrete occur- Sm+1, We show the cost derivation both for Poisson and Bernoulli
rences of events such as receipt of a web request, and arrival of distributions below. For event; we represent the Poisson process
network packet. A Poisson distribution is characterized by a singleparameter witt\.; and the Bernoulli parameter wigh ; .
parameten that expresses the average number of events occurring in - The general cost term fand with n operands is given by ™ | Ps,
a given time interval. In our case, we defiheo be the occurrence X costs, wherePs, is the state reachability probability for state
rate for an event type in a single time unit. In addition, our initial andcosts,; represents the cost of monitoring subevents of state
assumption that events have independent occurrences means that tf a period of lengtl2I. In the case that all subevents are primi-
event occurrences follows a Poisson process withxawhen mod-  tive costs, = 3. s, 2W Ac; when Poisson processes are used and
eling an event type with the Bernoulli distributione has indepen-  costg, = Zejesi 2Wpe; for Bernoulli distributions.
dent occurrences with probabiliy. at every time step, providedthat  pg | the reachability probability fos;, is equal to the occurrence
the occurrence rate is less than 1. robability of the partial complex event that causes the transition to
As described before, an event detection plan consists of a set Oktates;. For this partial complex event to occur in the “current” time
states each of which corresponds to the monitoring of a set of eventsstep, all its constituent events need to occur within the lEistime
The cost of a plan is the sum of the costs of its states weighted byynits with the last one occurring in the current time step (otherwise
state reachability probabilities. The cost of a state depends on thehe event would have occurred before). Théy, is 1 wheni is 1
cost of the events monitored in that state. The reachability probabil-and form > i > 1is given for Poisson processes (i) and Bernoulli
ity of a state is defined to be the probability of detecting the partial distributions (ii) by:
complex event that activates that state. For instance, in Figure 2c, the e W
event that activates stal, is e;. State reachability probabilities 0] Z (1—e ") H (1—e7=™)
are derived using interarrival distributions of events. When using a e;€ULY Sk efj‘flj
Poisson process with parameieto model event occurrences, the in- et €Uk Sk
terarrival time of the event is exp_(_)nentially_ (_:iistri_buted with th_e same (i) Z Pe; H (1—(1—pe, )W)
parameter. Hence, the probability of waiting time for the first oc- ceUi=t s ere;
currence of an event to be greater thas given bye™**. On the PTERSITE Uit s,
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Under the identical latency assumption, the latency of a plan for Negation Operator. In our system, negation can be used on the
and operator is defined by the number of the states in the plan (excepsubevents oand andseqoperators. The plans we consider for such
the final state). Hence, the latency of a plan for the eaad{e, e2, ..., complex events (in addition to the naive plan) resemble a filtering
en) can range from\¢ to nAt. approach. First, we detect the partial complex event consisting of

Sequence Operator. We can consider the same set of plans for non-negated subevents only. When that complex event is detected,
seq as well. However, sequence has the additional constraint thatwe monitor the negated subevents. The detection plans for the com-
events have to occur in a specific order and must not overlap. Thereplex event defined by non-negated events is then the same with the
fore, the time interval to monitor a subevent depends on the occur-plans forand andseqoperators. The same set of plans can be con-
rence times of other subevents. sidered for negated events as well. However, we now have to look
for the absence of an event instead of its presence. The cost estima-

C(" (f Cﬁ’ Lf’“ Cp; tions forand andsecoperators can be applied here by changing the

< =y occurrence probabilities with nonoccurrence probabilities. Finally, to
. i generate plans for events involving the negation operator, both plan
Figure 3: subevents forseg(ep, , €py s - - - » €py W) generation algorithms (Section 3.2) have been modified such that at

any point during their execution the set of generated plans is restricted
’ to the subset of plans that match the described criteria.
Or Operator. As discussed beforer generates a complex event

The expected cost of monitoring the complex evenies, e, . . .
en;w) Using a plan withn + 1 states has the same fofm." , P,

X costs, LEtSGQ(ep? 2 €pas - Epy; W) With ¢ S nandp, < p> < for every event instance it receives. Hence, the only detection plan
- < pi be the Partlal complex event consisting of the events beforefor or operator is thenaive plan. The cost of the naive plan is the
. = — :
statesi, I.e. U Sk = {€p1, €pzr - €p J. ThEN sum of the costs of the subevents and its latency is the highest latency
1. Ps, is equal to the occurrence probabilityefy(ep, , eps, - - -, among the subevents.

ep,; w) atatime point. For this complex event to occur subevents Generalization to Complex SubeventsGiven a plan for a com-
has to be detected in sequence as in Figure 3 within W time plex eventE, we are given a specific plan to use in monitoring each
units. We define the random variabl&., to be the time be-  subevent and an order for monitoring them. For the complex subevents

tweene, ., and the occurrence ef,, beforeep .. (see Fig- of E, which generally provide multiple monitoring plans, this means
ure 3). Then,Xep is exponentially distributed W|th if we that a particular plan among the available plans is being considered.
are using Poisson processes, or has geometric dlstrlbutlon withAlso as the occurrence probability of a subevent is independent of the
Pe,. When using Bernoulli distributions. plan it is being monitored with, the only difference between distinct

g plans is the latency and cost values.
For the Poisson case, we hais, = (1-¢ ) (1-R(W)) Forseq, the presented cost model is still valid in the presence of

where R(W) = PE_°"} 1 Xe,, = W). Closed form expressions  complex subevents. Fand, minor changes are required for deal-
for R(W) are avallable [15]. For the Bernoulli casBg, = ing with complex subevents. Ttad operator requires only the end
Pe,, (1 — R(W)) where R(W) is defined on a sum of geo-  points of complex subevents to be in the window interval. Therefore,
metric random variables. In this case, there is no parametricthe complex subevents could have start times before the window in-
distribution for R(W) unless the geometric random variables terval and, as such, some of their subevents could originate outside
are identical. Hence, it has to be numerically calculated. the window interval. As a result, the monitoring of the subevents of
the complex subevents extend beyond the window interval. In such
cases, we calculate an estimated monitoring interval based on the
window values of evenE and its corresponding complex subevent.
As negat i on operator has a single operand and is directly applied
onandandseqoperators, no changes are required for it. Finally, the
caseii we need to momtor the event fot” — Zt h Xe, or operator requires the same modifications veitidl operator.

time units. In the cost estimation, we use the expectatlon val-4.2 Addressmg Event Dependenues

ues E[X, | 3,7} Xe,, < WlandW — E[Y7) X, | The cost model presented in Section 4.1 makes the independent
Sich Xe,, < W]for estlmatlngLeik, the monitoring inter-  and identical distribution (i.i.d.) assumption for the instances of an
val. Thencosts, is Z s, Leiy Aei, with Poisson processes eventtype. This assumption simplifies the cost model and reduces the
andz Le, De,. W|th Bernoulli distributions. required computation for the plan costs. However, for certain types
) €5 TR of events the i.i.d. assumption may be restrictive. A very general
The latency for sequence depends only on the latency of the eventsubclass of such event types is the event types involving sequential
which are in the same state with the last eveny) (or are in later patterns across time. As an example, considebthisty behavioof
states if we ignore the unlikely cases where the latency of the eventghe corrupted bits in network transmissions. While a general solution
in earlier states are so high that the last event might occur beforethat models event dependencies is outside the scope of this paper, we
they are received. If the sequence event is being monitored withtake the first step towards a practical solution.
an m-step plan where thg!" step containg,,, then its latency is To illustrate the effects of this sequential behavior on the cost model
(m —j+1)At. This latency difference betweamd andseq exists and plan selection we provide the following example scenario, which
because unlikseq, with and any of the subevents can be the last we verified experimentally. Consider the complex evand(e1, e2; w)
event that causes the occurrence. This discontinuity in latency intro-wheree;, ande. are primitive events witl; exhibiting bursty behav-
duced by the last event in sequence seems to create an exception f@r. Also assume that; has a lower occurrence rate than When
the DP algorithm as the pareto optimal substructure property dependthe cost model makes the i.i.d. assumption and the occurrence rates
on non-decreasing latency values for the plans formed from smallerof e; ande; are high enough, it decides to use the naive plan as no
subplans. However, in such cases, the pareto optimal plans will in-multi-step plan seems to provide lower cost. However, when we use a
clude only the minimum cost subplans for monitoring the events in Markov model (as described below) for modeling the bursty behavior
earlier states thas,, and because one of the minimum cost subplans of e;, the cost model finds out that the 2-step ptan— e2 has much
will always be pareto optimal, DP will still find the optimal. less cost since most of the instances:pfoccur in close proximity

2. Any evente;, of stateS; should either occur (i) between,
ande,,  , for some j or (ii) beforee,,, or aftere,, depending
on the sequence order. In caseve need to monitoe;, be-
tweene,, ande,, , for X, time units (see Figure 3). For
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and therefore require monitoring ef at overlapping time intervals.  Algorithm 2 Plan generation with a shared event
One of the most commonly used and simplest approaches to mod- 1. s= shared event, A= s.parents
eling dependencies between events is the Markov models. We dis- 2. P = 04! // zero vector of lengthA|
cuss anm" order discrete-time Markov chain in which occurrence 3. plans= generatePlans() // execute hierarchical plan generation
of an event in a time step depends only on the tassteps. This 4. /I from Section 3.2.3
is generally a nonrestrictive assumption as recent event instances ares. for all ac A do
likely to be more revealing and not all the previous event instances 6. ¢ = plan fora in plans

are relevant. We build this model on the Bernoulli cost model. 7. P[a] = cost of s in g/ occurrence rate of s
Denoting the occurrence of the event typeat time t as a binary 8. for all ancestors, of sdo

random variable!, we haveP (el |el, e?, .., e! 1) = P(ellel™™, .., 9. = plan fora in plans

et~"). Such anm'”" order Markov chain can be represented as afirst 10.  g.cost -= cost of s in g shared cost of s under P with q

order Markov chain by defining a new variahjeas the lastn val- 11. isLocalMinimum =false, P = 0!4!

ues ofe; so that the chain follows the well-known Markov property. 12. while lisLocalMinimumdo

Then, we can define the Markov chain by its transition matfx, 13. newplans = generatePlans(A,P)

mapping all possible values of the last m time steps to possible nexti4. forall ac A do

states. The stationary distribution of the chai,can be found by 15, g = plan fora in newplans

solving@P = 7. In this case, modifying the cost model to use the 16. P'[a] = cost of s in q / occurrence rate of s

Markov chain requires one to ugeas the occurrence probability of 17.  for all ancestors of sdo

the event at a time step and utilize the transition matrix for calculating 18. g = plan fora in newplans

the state reachability probabilities. 19. g.cost -= cost of s in g - shared cost of s undewRh g
20. if newplans.cost- plans.cost| newplans== plansthen

5. OPTIMIZATION EXTENSIONS o1 isL ocalMinimum =true

5.1 Leveraging Shared Subevents 22. else
23. plans = newplans, P =P

The hierarchical nature of complex event specification may intro-
duce common subevents across complex events. For example, in a
network monitoring application we could have theevent indicat-

ing the arrival of a TCRsynpacket. Various complex events could o subevent (lines 8-10). We assume the parents of the shared node
then be specified using tlsgnevent, such as syn-flood (sending syn  nction independently and fix the cost for the cases where the shared
packets without matching acks to create half-open connections fofeyent is monitored by multiple parents simultaneously.
overwhelming the receiver), a successfull TCP session, and another Then e proceed to the plan generation loop during which at each
event detecting port scans where the attacker looks for open ports. jteration new plans are generated for the nodes starting from the par-
The overall goal of plan generation is to find the set of plans for gns of the shared node. However, in this execution of the plan gener-
which the total cost of monitoring all the complex events in the sys- ation algorithm (line 13), for each operator node, the algorithm com-
tem is minimized. The plan generation algorithms presented in Secy, tes the reduction in plan costs due to sharing by using the previous
tion 3.2 do not take the common subevents into account as they argpared node monitoring probabilities, P, and updating the shared node
executed independently for each event operator in a bottom-up manmgnitoring probability with each plan it considers. Hence, the ances-
ner. As such, while the resulting plans minimize the monitoring €ost 14y of the shared node may now change their plans to reduce cost.
of each complex event separately, they do not necessarily minimiz&oregver, the new plans generated in each iteration are guaranteed to
the total monitoring cost when shared events exist. Here, we modifyincrease the amount of sharing if they have lower cost than the pre-
our algorithm to account for the reduction in cost due to sharing andyioys plans. This is because the plan costs can only be reduced by
to exploit common subevents to further reduce cost when possible. monjtoring the shared node in earlier states. The algorithm iterates
To estimate the cost reduction due to sharing, we need to find outj| 5 plan set with a local minimum total cost is reached. We con-
the expected amount of sharing on a common subevent. Howevergjger it future work to study techniques such as simulated annealing
the degree of sharing depends on the plans selected by the parents gfq tapy search [14] for convergence to global minimum cost plans.
the shared node, as the monitoring of the shared event is regulated bype ajgorithm can be extended to multiple shared nodes (excluding
those plans. Since the hierarchical plan generation algorithm (SeCie cases where cycles exist in the event detection graph), by keeping
tion 3.2.3) proceeds in a bottom-up fashion, we cannot identify the 5 separate monitoring probability vector for each shared node s, and
amount of sharing unless the algorithm completes and the plans ol gach iteration updating the plans of each node in the system using

all nodes are selected. To address these issues, we modify the plafje shared node probabilities from all its shared descendant nodes.
generation algorithm such that it starts with the independently se-

lected plans and then iteratively generates new plans with increaseg‘-2 Leveraglng Constraints
sharing and reduced cost. The modified algorithm is given in Algo- We now briefly describe how spatial and attribute-based constraints
rithm 2 for the case of a single shared event. affect the occurrence probabilities of events and discuss additional
After the independent plan generation is complete (line 3), eachoptimizations in the presence of these constraints. A comprehensive
node will have selected its plan, but the computed plan costs will evaluation of these techniques is outside the scope of this paper.
be incorrect as sharing has not yet been considered. To fix the plan First, we considespatial constraints that we define in terms of
costs, first for each parent of the shared node, we calculate the probregional units. The space is divided into regions such that events in
ability that it monitors the shared event in a given time unit (lines a given region are assumed to occur independently from the events
5-7). We have already computed this information during the initial in other regions. The division of space into such independent re-
plan generation as the plan costs involve the terprebability of gions is typical for some applications. For instance, in a security
monitoring the shared node occurrence rate of the shared event. application we could consider the rooms (or floors) of a building as
We can obtain these values with little additional bookkeeping during independent regions. In addition, it is also easy for users to specify
plan generation. Next, using the probability values, we adjust the costspatial constraints (by combining smaller regions) once regional units
of each plan to only include the estimated shared cost for the com-are provided. An alternative would be to treat the spatial domain as
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a continuous ordered domain of real-world (or virtual) coordinates 6.2  Single-Operator Analysis

and then perform region-coordinate mappings. This latter approach \we first analyze in-depth the base case where our complex events
would allow us to use math expressions and perform optimizationsconsist of individual operators.
using spatial-windowing constraints, similar to what we described  \vindow size and detection latency: We defined the complex
for temporal constraints. eventand( ey, ez, es; w) andseq( es, ez, es; w) , wherees, e; and
The effects of region-based spatial constraints on event occurrencg, are primitive events. We ran both the dynamic programming (DP)
probabilities can then be incorporated in our framework with minor gng heuristic-based algorithms for different window sited and
changes. First, we modify our model to maintain event occurrenceplan lengths (as an indication of execution plan latency). The results
statistics per each independent region and event type. Then, whegre shown in Figures 4(a) and 4(b).
a spatial constraint on a complex event is given, we only need to Oy results reveal that, as the number of steps in the plan increases,
combine the information from the corresponding regions to derive the event detection cost generally decreases. In the case afithe
the associated event occurrence probability. For example, if we havgyperator, both the heuristic method and the DP algorithm find the op-
Poisson processes with parametersand A for two regions, then  tima| solution, as we are considering a trivial complex event. How-
the Poisson process associated with the combined region has the paver, in the case of theeq operator, there is some difference between
rameteri; + A. Hence, by combining the Poisson processes we canthe two algorithms for the 1-step case (i.e. the minimum latency
easily construct the Poisson process for any arbitrary combination Ofcase). Recall that due to the ordering constraint,steg operator
independent regions. If the regions are not independent, we need tgoes not need to monitor the later events of the sequence unless the
derive the corresponding joint distributions. An interesting optimiza- earlier events occur. Therefore, it can reduce the cost using multi-step
tion would be to use different plans for monitoring different spatial plans even under hard latency requirements. However, this asymme-
regions if doing so reduces the overall cost. try introduced by theeq operator is also the reason why our heuris-
Attribute-based constraints on the subevents of a complex event ¢ algorithm fails to produce the optimal solution. Finally, the event
can be used to reduce the transmission costs as well. Value-based aptection costs tend to increase with increasing window sizes since
tribute constraints can be pushed down to event sources avoiding thgyrger windows increase the probability of event occurrence. If the
transmission of unqualified events. Similarly, parameterized attribute\yindow is sufficiently large, the system would expect the complex

constraints between events can also be pushed down whenever one giient to occur roughly for each instance of a primitive event type in
the events is monitored earlier than the other. Constraint selectivitiesyyhich case the system will monitor all the events continuously and

which are essential to make decisions in this case, can be obtainegb|axing the latency target will not reduce the cost.

from histograms for deriving the event occurrence probabilities. Effects of negation: We performed an experiment with the event
and( e, ez, es;w = 1) in which we varied the number of negated

6. EXPERIMENTAL EVALUATION subevents. We observe that the cost increases with more negated
subevents, although fewer complex events are detected (Figure 4(c)).

6.1 Methodology This is mainly because (1) all the transmitted non-negated subevents

We implemented a prototype complex event detection system to-have to be discarded when a negated subevent that prevents them
gether with all our algorithms in Java. In our experiments, we usedfrom forming a complex event is detected, and (2) as described in
both synthetic and real-world data sets. For synthetic data sets, wéection 4, the monitoring of the negated and non-negated events are
used theZipfian distribution (with default skew = 0.255) to generate Not interleaved: the negated sub-events are monitored only after the
event occurrence frequencies, which are then plugged into the exponon-negated subevents. Results are similar for uniformly distributed
nential distribution to generate event arrival times. Correspondingly, €vent frequencies (yet the cost seems to be more independent of the
we used the Poisson-based cost model in the experiments. The reflumber of negated subevents in the uniform case). For highly-skewed
data set we used is a collection of Planetlab network traffic logs ob-event frequencies, the results depend on the particular frequency dis-
tained from Planetflow [20]. Specific hardware configurations used tribution. For instance, if the frequency of the negated event (or one
in the experimentation are not relevant as our evaluation metrics daf the negated events) is very high, then the complex event almost
not depend on the run-time environment (except in one study, whichnever occurs, but the monitoring cost is also low since other events
we describe later). have low frequencies. Finallgeq operator also performs similarly.

The actual number of messages or “bytes” sent in a distributed Increasing the operator fanout: We now analyze the relation be-
system is highly dependent on the underlying network topology andtween the cost and the fanout (number of subevents) usiranén
communication protoc0|sl To C|ean|y separate the impact of our a|_operat0r with a fixed window size of 1. To eliminate the effects of
gorithms from those of the underlying configuration choices, we usefrequency skew, we used uniform distribution for event frequencies.
high-level, abstract performance metrics. We do, however, also proResuIts from running the heuristic algorithm (DP results are similar)
vide a mapping from the abstract to the actual metrics for a represenare shown in Figure 4(d), in which the lowest dark portion of each
tative real-world experiment. bar shows the minimal transmission factor and the cost values for in-

As such, our primary evaluation metric is the "transmission fac- creasingly strict deadlines are stacked on top of each other. We see
tor”, which represents the ratio of the number of primitive events that (i) increasing the fanout tends to decrease the number of detected
received at the base to the total number of primitive events generate§omplex events and (ii) larger fanout implies we have a wider latency
by the sources. This metric quantifies the extent of event suppresSpectrum, thus alarger plan space and more flexibility to reduce cost.
sion our plan-based techniques can achieve over the standard push- Effects of frequency skew:ln this experiment, we define the com-
based approach used by existing event detection systems. We alg@/ex eventand( ei, ez, e3;w = 1) and vary the parameter of the
present the "minimum transmission factor”, the ratio of the number Zipfian distribution with which event frequencies are generated. The
of primitive events that participate in the complex events that actually total number of primitive events for different event frequency values
occurred to the total number generated. This metric represents thére kept constant. Figure 4(e) shows that a higher number of complex
theoretical besthat can be achieved and thus serves as a tight lowerevents is detected with low-skew streams and the cost is thus higher.
bound on transmission costs. All the experiments involving synthetic Furthermore, our algorithms can effectively capitalize on high-skew
data sets are repeated till results statistically converged with approxcases where there is significant difference between event occurrence
imately 1.2% average and 5% maximum variance. frequencies by postponing the monitoring of high-frequency events
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Figure 4: Operator wise experiments

as much as the latency constraints allow. tween the two cost values.

Tolerance to statistical estimation errors: We now analyze the Selective hierarchical plan propagation:In this experiment, we
effects of parameter estimation accuracy on system performance usanalyze the effects of the parameterwhich limits the number of
ing and(e1, e2,...,es;w = 1), whereeq, es, ..., es are primitive plans propagated by operator nodes to their parents during hierarchi-
events. We use the Zipfian distribution to create the “true” occur- cal plan generation (see section 3.2.1). We defined complex events
rence rates\? = [/\Zl,)\eTQ, R /\Z,)] of events. We then defing® using exclusivelyand operators, each with a fixed window size of
with A2 = AT £8AT for 1 < i < 5as an estimator of” with error 2.5, and together forming a complete binary tree of height 4. We
£ (the + indicates that the error is either added or subtracted based-onsider the following strategies for pickirigplans from the set of
on a random decision for each event). The results are in figure 4(f). all plans produced by an operator:

For highly skewed occurrence rates, the estimation error has a
larger impact on the cost as the occurrence rates are far apart in such
cases. For very low skew values, error does not affect the cost much
since most of the events are “exchangeable”, i.e., selected plans are
independent of the monitoring order of the events as switching an

random selection: randomly seleét plans from all plans.
minimum latency: pick thek plans with minimum latency.
minimum cost: pick thek plans with minimum cost.
balance cost and latency: represent each plan in#fe(cost,

event with another does not change the cost much. We did a similar latency) space, then pick theplans with minimum length pro-
experiment using events with many operators instead of a single one.  jections to thecost = latency line.

The relative results and averages were similar, however, the variance e mixture: pick /3 plans using the minimum latency strategy,
was higher (approximately 10%), meaning for some complex event kI3 using the minimum cost strategy and the oth& plans
instances the cost could be highly affected by the estimation error. using the balanced strategy.

6.3 Effects of Event Comple)“ty The average cost of event detection for each strategy with different

Increasing event complexity: For this experiment, we generated & values are given in figure 5(c) in which DP is used. Greater val-
complex event specifications using all the operator types and variedues ofk generally means reduced cost since increasing the value of
the number of operators in an expression from 1 to 7. Each operatohelps us get closer to the optimal solution. The mixture and the mini-
was given 2 or 3 subevents with equal probability and a window of mum cost strategies perform similarly and approach the optimal plan
size 2.5. In figure 5(a), we provide the average event detection costgven for low values ok. However, the minimum cost strategy does
for the complex events that have approximately the same number ohot guarantee finding a feasible plan for each complex event since it
occurrences (as shown by the minimum transmission factor curve)does not take the plan latency into account during plan generation.
for low, medium and high latency values (latencies depend on theOn the other hand, the mixture strategy will find the feasible plans if
number of operators in a complex event, and represent the variety ofthey exist since it always considers the minimum latency plans.
the latency spectrum). We can see that the cost does not depend on We repeated the same experiment with the heuristic plan gener-
the number of operators in the expression but instead depends on thation method using the mixture strategy (figure 5(d)). Results are
occurrence frequency of the complex event. similar to the DP case; however, the heuristic algorithm, unlike the

Dynamic programming vs. heuristic plan generation: Using DP algorithm, does not produce the set of all pareto optimal plans.
the same settings with the previous experiment, we compare the avMoreover, the size of the plan space explored by the heuristic algo-
erage event detection costs of heuristic and DP plan generation algorithm depends on the number of moves it can make without reaching
rithms (figure 5(b)). The results show that the heuristic method per-a point where no more moves are available. Therefore, even when
forms, on average, very close to the dynamic programming methodthe value ofk is unlimited, the heuristic method does not guarantee
The error bars indicate the standard deviation of the difference be-optimal solutions, which is not the case with the DP approach.
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Figure 5: Event complexity, shared optimization, plan generation and PlanetLab experiments

6.4 Effects of Event Sharing more than half of the nodes are active it queries the event sources for

To quantify the potential benefits of leveraging shared subeventsthe event that most nodes were idle in the past 30 minutes.
across multiple complex events, we generated two complex events Active-diverse clusters:Here, we use a complex event (Figure 6)
with a common subevent tree and compared the performance witinSpired by Snort rules [22]. The basic idea is to identify a cluster
and without shared optimization. Each complex eventhasd op- ~ ©f machines that exhibit high traffic activity (active) through a large
erators, one of which is shared. There is a total pfimitive events, ~ number of connections (diverse) within a time window.
2 of which are common to both complex events. In the experiment, e define a cluster to be a set of machines from the serie
we varied the frequency of the complex event that corresponds to th&lass. Adiverse clustefs defined as a cluster with more than C=500
shared subtree. In Figure 5(e), we see that when the frequency of thgonnectlons to PlanetLab nodes within the last mlnlut.e (multiple con-
shared part is low, leveraging sharing does not lead to a noteworthyections from the same IP address are counted distinctly). To spec-
improvement since the shared part is chosen to be monitored earlieffy this complex event we first definelacally diverse clusteevent
in both cases anyway. When the frequency of the shared part is thavhich monitors the event that a PlanetLab node has more {fag
same with or slightly higher than the non-shared parts, the latter areconnections with a cluster. The diverse cluster complex event is spec-
monitored earlier without sharing optimization. In this case, sharedified assum(conns)> (group by clusterThen, itisand’ed with the
optimization reduces the cost by monitoring the shared part first. Fi-locally diverse cluster event which acts as a prerequisite for the di-

nally, when the shared part has very high frequency, non-shared part$erse cluster event and helpg reduce monitoring cost. Next, using the
are monitored first in both cases. diverse cluster event, we define theexpected diverse clustevent

: : as the diverse cluster event preceded by no occurrences of the event

6.5 Experlments with the PlanetLab Data Set that the same cluster has mopre than C/2yconnections within the last 5

The PlanetLab data set we used consists of 5 hours of network logsninutes. Moreover, we define the active cluster event, similar to the
(1pm-6pm on 6/10/2007) for 49 PlanetLab nodes [20]. The logs pro- diverse cluster event, but thresholding on the network traffic instead
vide aggregated information on network connections between Planof the connections. Finally, we define the top level complex event as
etLab nodes and other nodes on the Internet. For each connectionheand of the active cluster and unexpected diverse cluster events.
indicated by source and destination IP/port pairs, the information in-  Figure 5(g) shows the event transmission factors for three cluster
cludes the start and end times, the amount of generated traffic and thgpeed threshold values. In all cases, we observe significant savings
network protocol used. We experimented with a variety of complex that increase with increasing thresholds. The primary reason for this
events commonly used in network monitoring applications. Here, we pehavior is that the active cluster complex event and its subevents
present the results for two representative complex events. become less likely to happen as we increase the threshold, thereby

Capturing load spikes: We define a PlanetLab node asidle if yielding increasingly more savings for our plan-based approach. In
its average network bandwidth consumption (incoming and outgoing)figure 5(h), we provide the actual network costs by assuming a fully-
within the last minute is less thare5KBps and as (iactiveif the connected TCP mesh with a fixed packet size of 1500 bytes, the max-
average speed is greater than a thresffol@hespikeevent monitors  jmum possible for a TCP packet. The cost for our system is still much
for the following overall network load change: the event that more |ower than the cost of a push-based system despite the existence of
than half of all nodes are idle, followed by the event that more thanthe pull requests. Moreover, the results overestimate the cost of our
half is active within a specified time interval. Thus, the complex event system as event messages and pull requests are much smaller than the
is defined aseq(count(idle)> %50 of all nodes, count(active} fixed packet size. Finally, we note that a more sophisticated imple-
%50 of all nodes; w=30min ). Note here that tbeuntoperator is  mentation can use more efficient pull-request distribution techniques

evaluated in an entirely push-based manner and thus does not affee.g., an overlay tree) to significantly reduce these extra pull costs.
plan generation or execution. The results are provided in Figure 5(f)

for T' = 250, 500, and 1250 KBps. We see substantial savings that! - RELATED WORK
range from 75% to 97%. For this complex event, our system chooses In continuous query processing systems such as TinyDB [2] for
to monitor the active nodes first, and upon detection of the event thatwireless sensor networks, and Borealis [17] for stream processing
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Active/Diverse Cluster execution plans that materialize the common intermediate results for

S reuse [11]. Our shared optimization extensions build on similar tech-
nexpecte . . . - . . . .

Divares Cluster nigues while the goal is to improve communication efficiency.

8. CONCLUSIONS AND FUTURE WORK

sum(conns) > C CED is a critical capability for emerging monitoring applications.
group by cluster While earlier work mainly focused on optimizing processing require-
Diverse Cluster ments, our effort is towards optimizing communication needs using

Base
Node

sum(speed) > T
group by cluster

sum(conns) > C/2
group by cluster

Active Cluster

777777777777777777777777777777777777777777777777777777777777777777777777 a plan-based approach when distributed sources are involved. To our
Planetiab ‘ _ knowledge, we are the first to explore cost-based planning for CED.
Nodes [[ cocaly Active ] [[ cocally Diverse ] Our results, based on both artificial and real-world data, show that

p——— I I sumieonns) group communication requirements can pe substantially reduced by .us.ing
by cluster }—1 | by cluster plans that exploit temporal constraints among events and statistical

] o o event models. Specifically, the big benefits came from a novel multi-

Figure 6: Active/Diverse cluster event specification step planning technique that enabled “just-enough” monitoring of
applications queries are expected to constantly produce results. Pusévents. We believe some of the techniques we introduced can be
based data transfer, either to a fixed node or to an arbitrary location imapplied to CED on even centralized disk-based systems (i.e., to avoid
a decentralized structure, is characteristic of such continuous queryulling all primitive events from the disk)
processing systems. On the other hand, event detection systems are CED is a rich research area with many open problems. Our imme-
expected to be silent as long as no events of interest occur. The ainfliate work will explore probabilistic plans for sensor-based applica-
in event systems is not continuous processing of the data, but is thdions and augmenting manual event specifications with learning.
detection of events of interest.
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