Tuplex: Data Science in Python at Native Code Speed

Leonhard Spiegelberg Rahul Yesantharao
Ispiegel@cs.brown.edu rahuly @mit.edu
Brown University MIT

Abstract

Data science pipelines today are either written in Python
or contain user-defined functions (UDFs) written in Python.
But executing interpreted Python code is slow, and arbitrary
Python UDFs cannot be compiled to optimized machine code.

We present Tuplex, the first data analytics framework that
just-in-time compiles developers’ natural Python UDFs into
efficient, end-to-end optimized native code. Tuplex introduces
a novel dual-mode execution model that compiles an opti-
mized fast path for the common case, and falls back on slower
exception code paths for data that fail to match the fast path’s
assumptions. Dual-mode execution is crucial to making end-
to-end optimizing compilation tractable: by focusing on the
common case, Tuplex keeps the code simple enough to apply
aggressive optimizations. Thanks to dual-mode execution, Tu-
plex pipelines always complete even if exceptions occur, and
Tuplex’s post-facto exception handling simplifies debugging.

We evaluate Tuplex with data science pipelines over real-
world datasets. Compared to Spark and Dask, Tuplex im-
proves end-to-end pipeline runtime by 5x—109x, and comes
within 22% of a hand-optimized C++ baseline. Optimizations
enabled by dual-mode processing improve runtime by up to
3x; Tuplex outperforms other Python compilers by 5 x; and
Tuplex performs well in a distributed setting.

1 Introduction

Data scientists today predominantly write code in Python,
as the language is easy to learn and convenient to use. But
the features that make Python convenient for programming—
dynamic typing, automatic memory management, and a huge
module ecosystem—come at the cost of low performance
compared to hand-optimized code and an often frustrating
debugging experience.

Python code executes in a bytecode interpreter, which inter-
prets instructions, tracks object types, manages memory, and
handles exceptions. This infrastructure imposes a heavy over-
head, particularly if Python user-defined functions (UDFs) are
inlined in a larger parallel computation, such as a Spark [70]
job. For example, a PySpark job over flight data [63] might

Malte Schwarzkopf Tim Kraska
malte @cs.brown.edu kraska@mit.edu
Brown University MIT

compute a flight’s distance covered from kilometers to miles
via a UDF after joining with a carrier table:

carriers = spark.read.load('carriers.csv')

fun = udf (lambda m: m * 1.609, DoubleType ()
spark.read.load('flights.csv")
.join(carriers, 'code', 'inner')

.withColumn ('distance', fun('distance'))
.write.csv ('output.csv')

This code will run data loading and the join using Spark’s
compiled Scala operators, but must execute the Python UDF
passed to withColumn in a Python interpreter. This requires
passing data between the Python interpreter and the JVM [41],
and prevents generating end-to-end optimized code across the
UDFs—for example, an optimized pipeline might apply the
UDF to distance while loading data from flights.csv.

Could we instead generate native code from the Python
UDF and optimize it end-to-end with the rest of the pipeline?
Unfortunately, this is not feasible today. Generating, compil-
ing, and optimizing code that handles all possible code paths
through a Python program is not tractable because of the com-
plexity of Python’s dynamic typing. Dynamic typing (‘“duck
typing”) requires that code always be prepared to handle any
type: while the above UDF expects a numeric value for m, it
may actually receive an integer, a float, a string, a null value,
or even a list. The Python interpreter handles these possi-
bilities through extra checks and exception handlers, but the
sheer number of cases to handle makes it difficult to compile
optimized code even for this simple UDF.

Tuplex is a new analytics framework that generates op-
timized end-to-end native code for data analytics pipelines
with Python UDFs. Developers write their Tuplex pipelines
using a LINQ-style API similar to PySpark’s, and use Python
UDFs without any type annotations. Tuplex compiles these
pipelines into efficient native code by relying on a new dual
mode execution model. Dual-mode execution separates the
common case, for which code generation offers the greatest
benefit, from exceptional cases, which complicate code gener-
ation and inhibit optimization, but have minimal performance

impact. Our key insight is that separating these cases and
leveraging the regular structure of LINQ-style data analytics
pipelines makes Python UDF compilation tractable, as the Tu-
plex compiler faces a simpler and more constrained problem
than a general Python compiler.

Making dual-mode processing work required us to over-
come several challenges. First, Tuplex must establish what
the common case is. Tuplex’s key idea is to sample the input,
derive the common case from this sample, and infer types and
expected cases across the pipeline. Second, Tuplex’s gener-
ated native code must represent a semantically-correct Python
execution in the interpreter. To guarantee this, Tuplex sepa-
rates the input data into records for which the native code’s
behavior is identical to Python’s, and ones for which it is not
and which must be processed in the interpreter. Third, Tu-
plex’s generated code must offer a fast bail-out mechanism if
exceptions occur within UDFs (e.g., a division by zero), and
resolve these in line with Python semantics. Tuplex achieves
this by adding lightweight checks to generated code, and
leverages the fact that UDFs are stateless to re-process the of-
fending records for resolution. Fourth, Tuplex must generate
code with high optimization potential but also achieve fast JIT
compilation, which it does using tuned LLVM compilation.

In addition to enabling compilation, dual-mode processing
has another big advantage: it can help developers write more
robust pipelines that never fail at runtime due to dirty data
or unhandled exceptions. Tuplex detects exception cases, re-
solves them via slow-path execution if possible, and presents a
summary of the unresolved cases to the user. This helps proto-
type data wrangling pipelines but also helps make production
pipelines more robust to data glitches.

While the focus of this paper is primarily on multi-threaded
processing efficiency of a single server, Tuplex is a distributed
system, and we show results for a preliminary backend based
on AWS lambda functions.

In summary, we make the following principal contributions:

1. We combine ideas from query compilation with specula-
tive compilation techniques in the dual-mode processing
model for data analytics: an optimized common-case
code path processes the bulk of the data, and a slower
fallback path handles rare, non-conforming data.

2. We observe that data analytics pipelines with Python
UDFs—unlike general Python programs—have suffi-
cient structure to make compilation without type annota-
tions feasible.

3. We build and evaluate Tuplex, the first data analytics
system to embed a Python UDF compiler with a query
compiler.

We evaluated our Tuplex prototype over real-world datasets,
including Zillow real estate adverts, a decade of U.S. flight
data [63], and web server logs from a large university. Tu-
plex outperforms single-threaded Python and Pandas by 6.5—
20.6x, and parallel Spark and Dask by 9.4-109x (§6.1). Tu-
plex outperforms general-purpose Python compilers by 5-

32x%, and its generated code comes within 2x of the per-
formance of Weld [49] and Hyper [26] for pure query exec-
tion time, while achieving 2 x faster end-to-end runtime in
a realistic data analytics setting (§6.2). Tuplex’s dual-mode
processing facilitates end-to-end optimizations that improve
runtime by up to 3x over simple UDF compilation (§6.3).
Finally, Tuplex performs well on a single server and distribut-
edly across a cluster of AWS Lambda functions (§6.4); and
anecdotal evidence suggests that it simplifies the development
and debugging of data science pipelines (§7). We will release
Tuplex as open-source software.

2 Background and Related Work

Prior attempts to speed up data science via compilation or
to compile Python to native code exist, but they fall short of
the ideal of compiling end-to-end optimized native code from
UDFs written in natural Python. We discuss key approaches
and systems in the following; Table 1 summarizes the key
points.

Python compilers. Building compilers for arbitrary Python
programs, which lack the static types required for optimiz-
ing compilation, is challenging. PyPy [54] reimplements the
Python interpreter in a compilable subset of Python, which
it JIT-compiles via LLVM (i.e., it creates a self-compiling
interpreter). GraalPython [16] uses the Truffle [61] language
interpreter to implement a similar approach while generating
JVM bytecode for JIT compilation. Numba [31] JIT-compiles
Python bytecode for annotated functions on which it can per-
form type inference. Numba supports a subset of Python
and targets array-structured data from numeric libraries like
NumPy [2]. All of these compilers either myopically focus
on optimizing hotspots without attention to high-level pro-
gram structure, or are limited to a small subset of the Python
language (e.g., numeric code only, no strings or exceptions).
While Pyston [40] sought to create a full Python compiler us-
ing LLVM, it was abandoned due to insufficient performance,
memory management problems, and complexity [39].

Python transpilers. Other approaches seek to cross-
compile Python into languages for which optimizing compil-
ers exist. Cython [4] unrolls the CPython interpreter and a
Python module into C code, which interfaces with standard
Python code. Nuitka [18] cross-compiles Python to C++ and
also unrolls the interpreter when cross-compilation is not pos-
sible. The unrolled code represents a specific execution of the
interpreter, which the compiler may optimize, but still runs
the interpreter code, which compromises performance and
inhibits end-to-end optimization.

Data-parallel IRs. Special-purpose native code in libraries
like NumPy can speed up some UDFs [24], but such pre-
compiled code precludes end-to-end optimization. Data-
parallel intermediate representations (IRs) such as Weld [49]
and MLIR [32] seek to address this problem. Weld, for ex-
ample, allows cross-library optimization and generates code

System Class Examples

Limitations

Tracing JIT Compiler PyPy [54], Pyston [40]

Special Purpose JIT Compiler Numba [31], XLA [33],

Glow [55]

Requires tracing to detect hotspots, cannot reason about high-level program
structure, generated code must cover full Python semantics (slow).
Only compiles well-formed, statically typed code, enters interpreter other-
wise; use their own semantics, which often deviate from Python’s.

Python Transpiler Cython [4], Nuitka [18] | Unrolled interpreter code is slow and uses expensive Python object represen-
tation.

Data-parallel IR Weld [49], MLIR [32] No compilation from Python; static typing and lack exception support.

SQL Query Compiler Flare [12], Hyper [45] No Python UDF support.

Simple UDF Compiler Tupleware [6] Only supports UDFs for which types can be inferred statically, only numerical

types, no exception support, no polymorphic types (e.g., NULL values).

Table 1: Classes of system that compile analytics pipelines or Python code. All have shortcomings that either prevent full support
for Python UDFs or prevent end-to-end optimization or full native-code performance.

that targets a common runtime and data representation, but
requires libraries to be rewritten in Weld IR. Rather than re-
quiring library rewrites, Mozart [50] optimizes cross-function
data movement for lightly-annotated library code. All of these
lack a general Python UDF frontend, assume static types, and
lack support for exceptions and data type mismatches.

Query compilers. Many query compilers from SQL
queries to native code exist [1, 28, 57, 59, 71], and some inte-
grate with frameworks like Spark [12]. The primary concern
of these compilers is to iterate efficiently over preorganized
data [27, 58], and all lack UDF support, or merely provide
interfaces to call precompiled UDFs written in C/C++.

Simple UDF compilers. UDF compilation differs from tra-
ditional query compilation, as SQL queries are declarative ex-
pressions. With UDFs, which contain imperative control flow,
standard techniques like vectorization cannot apply. While
work on peeking inside imperative UDFs for optimiziation
exists [20], these strategies fail on Python code. Tupleware [6]
provides a UDF-aware compiler that can apply some optimiza-
tions to black-box UDFs, but its Python integration relies on
static type inference via PYLLVM [19], and it neither sup-
ports common cases like optional (NULL-valued) inputs, nor
strings, nor can it handle exceptions in UDFs.

Exception handling. Inputs to data analytics pipelines of-
ten include “dirty” data that fails to conform to the input
schema. This data complicates optimizing compilation be-
cause it requires checks to detect anomalies, and exception
handling logic. Load reject files [8, 38, 53] help remove ill-
formed inputs, but they solve only part of the problem, as
UDFs might themselves encounter exceptions when process-
ing well-typed inputs (e.g., a division by zero, or NULL values).
Graal speculatively optimizes for exceptions [11] via poly-
morphic inline caches—an idea also used in the V8 Javascript
engine—but the required checks and guards impose around a
30% overhead [10]. Finally, various dedicated systems track
the impact of errors on models [29] or provide techniques
to compute queries over dirty data [66, 67], but they do not
integrate with compiled code.

Speculative processing. Programming language research
on speculative compilation pioneered native code perfor-
mance for dynamically-typed languages. Early approaches,
like SELF [5], compiled multiple, type-specialized copies of
each control flow unit (e.g., procedure) of a program. This
requires variable-level speculation on types, and results in
a large amount of generated code. State-of-the-art tracing
JITs apply a dynamic variant of this speculation and focus on
particular “hot” parts of the code only.

A simpler approach than trying to compile general Python
is to have Python merely act as a frontend calling a more
efficient backend. However, to account for Python’s dynamic
types, the system has to speculate on how to call into this
backend. Janus [21, 22] applies this idea to TensorFlow, and
Snek [9] takes it one step further by providing a general mech-
anism to translate imperative Python statements of any frame-
work into calls to a framework’s backend. However, while
these frameworks allow for imperative programming, the exe-
cution can only be efficient for Python code that maps to the
operators offered by the backend. In addition, the backend’s
APIs may impose materialization points, which can reduce
performance as they enforce unnecessary data copies.

In big data applications, efficient data movement is just
as important as generating good code: better data movement
can be sufficient to outperform existing JIT compilers [50].
Gerenuk [44] and Skyway [46] therefore focus on improving
data movement by specializing serialization code better within
the HotSpot JVM.

Tuplex. In Tuplex, UDFs are first-class citizens and are
compiled just-in-time when a query executes. Tuplex solves
a more specialized compilation problem than general Python
compilers, as it focuses on UDFs with mostly well-typed, pre-
dictable inputs. Tuplex compiles a fast path for the common-
case types (determined from the data) and expected control
flow, and defers records not suitable for this fast path to the
interpreter. This simplifies the task sufficiently to make opti-
mizing compilation tractable.

Tuplex supports natural Python code, rather than just spe-

cific libraries (unlike Weld or Numba), and optimizes the full
end-to-end pipeline, including UDFs, as a single program.
Tuplex generates at most three different code paths to bound
the cost of specialization (unlike SELF); and it speculates on
a per-row basis, compared to a per-variable basis in SELF
and whole-program speculation in Janus. Tuplex uses the fact
that UDFs are embedded in a LINQ-style program to pro-
vide high-level context for data movement patterns, and to
make compilation tractable. Finally, Tuplex makes exceptions
explicit in its execution model, and handles them without
compromising the performance of compiled code, as it col-
lects records affected by exceptions and batches the slow path,
rather than entering the interpreter from the fast path.

3 Tuplex Overview

Tuplex is a data analytics framework with a similar user ex-
perience to e.g., PySpark, Dask, or DryadLINQ [69]. A data
scientist writes a processing pipeline using a sequence of high-
level, LINQ-style operators such asmap, filter, or join, and
passes UDFs as parameters to these operators (e.g., a function
over a row to map). For example, the PySpark pipeline shown
in §1 corresponds to the following Tuplex code:

c = tuplex.Context ()
carriers = c.csv('carriers.csv')
c.csv('flights.csv'")
.join(carriers, 'code', 'code')
.mapColumn ('distance', lambda m: m * 1.609)
.tocsv ('output.csv')

Like other systems, Tuplex partitions the input data (here, the
CSV files) and processes the partitions in a data-parallel way
across multiple executors. Unlike other frameworks, however,
Tuplex compiles the pipeline into end-to-end optimized native
code before execution starts. To make this possible, Tuplex
relies on a dual-mode processing model structured around
two distinct code paths:

1. an optimized, normal-case code path; and

2. an exception-case code path.
To establish what constitutes the normal case, Tuplex samples
the input data and, based on the sample, determines the ex-
pected types and control flow on the normal-case code path.
Tuplex then uses these assumptions to generate and optimize
code to classify a row into normal or exception cases, and spe-
cialized code for the normal-case code path. It lowers both to
optimized machine code via the LLVM compiler framework.

Tuplex then executes the pipeline. The generated classifier
code performs a single, cheap initial check on each row to
determine if it can proceed on the normal-case path. Any
rows that fail this check are placed in an exception pool for
later processing, while the majority of rows proceed on the
optimized normal-case path. If any exceptions occur on the
normal-case code path, Tuplex moves the offending row to the
exception pool and continues with the next row. Finally, after
normal-case processing completes, Tuplex attempts to resolve
the exception-case rows. Tuplex automatically resolves some

Pipeline Input Data
sample

Tuplex Compiler ‘

| codegen. & compile

codegen. L
[Row Classifier (compiled)
pile

]
1
1
1
1
& com- 1
1
1
1
1
1

) ase?
\//es normal case: no\

- {Exception Row Pool‘
CXCCP[I()[] l

Resolve Logic J

fail
Failed Rows |

Figure 1: Tuplex uses an input sample to compile specialized
code for the normal-case path (blue, left), which processes
most rows, while the exception-case path (red, right) handles
the remaining rows. Compiled parts are shaded in yellow.

Normal-Case
Code
(compiled)

success

success

Result Rows

exceptions using general, but slower code or using the Python
interpreter, while for other exceptions it uses (optional) user-
provided resolvers. If resolution succeeds, Tuplex merges the
result row with the normal-case results; if resolution fails, it
adds the row to a pool of failed rows to report to the user.

In our example UDF, a malformed flight record that has a
non-numeric string in the distance column will be rejected
and moved to the exception pool by the classifier. By contrast,
arow with distance set to NULL, enters the normal-case path
if the sample contained a mix of non-NULL and NULL values.
However, the normal-case code path encounters an exception
when processing the row and moves it to the exception pool.
To tell Tuplex how to resolve this particular exception, the
pipeline developer can provide an optional resolver:

oo
.join(carriers, 'code', 'code')

.mapColumn ('distance', lambda m: m * 1.609)
.resolve (TypeError, lambda m: 0.0)

Tuplex then merges the resolved rows into the results. If no
resolver is provided, Tuplex reports the failed rows separately.

4 Design

Tuplex’s design is derived from two key insights. First, Tu-
plex can afford slow processing for exception-case rows with
negligible impact on overall performance if such rows are
rare, which is the case if the sample is representative. Sec-
ond, specializing the normal-case code path to common-case
assumptions simplifies the generated logic by deferring com-
plexity to the exception-case path, which makes JIT compila-
tion tractable and allows for aggressive optimization.

4.1 Abstraction and Assumptions

Tuplex’s UDFs contain natural Python code, and Tuplex must
ensure that their execution behaves exactly as it would have
in a Python interpreter. We make only two exceptions to this
abstraction. First, Tuplex never crashes due to unhandled top-
level exceptions, but instead emulates an implicit catch-all
exception handler that records unresolved (“failed”) rows.
Second, Tuplex assumes that UDFs are pure and stateless,
meaning that their repeated execution (on the normal and
exception paths) has no observable side-effects’.

The top-level goal of matching Python semantics influ-
ences Tuplex’s design and implementation in several impor-
tant ways, guiding our code generation, execution strategy,
and optimizations as explained in the following sections.

4.2 Establishing the Normal Case

The most important guidance for Tuplex to decide what code
to generate for the normal-case path comes from the observed
structure of a sample of the input data. Tuplex takes a sam-
ple of configurable size every time a pipeline executes, and
records statistics about structure and data types in the sample.

Row Structure. Input data may be dirty and contain differ-
ent column counts. Tuplex counts the columns in each sample
row and builds a histogram; it then picks the most common
column structure as the normal case.

Type Deduction. For each sample row, Tuplex deducts each
column type based on a histogram of types in the sample. If
the input consists of typed Python objects, compiling the his-
togram is simple. If the input is text (e.g., CSV files), Tuplex
uses a set of heuristics. For example, numeric strings con-
taining periods are floats, zero/one integers and true/false are
booleans, strings containing JSON are dictionaries, and empty
values or explicit NULL strings are null values. If Tuplex can-
not deduce a type, it assumes a string. Tuplex then uses the
most common type in the histogram as the normal-case type
for each column (except for null values, described below).

This data-driven type deduction contrasts with classic,
static type inference, which seeks to infer types from pro-
gram code. Tuplex uses data-driven typing because Python
UDFs often lack sufficient information for static type infer-
ence, and because the actual type in the input data may be
different from the developer’s assumptions. In our example,
for instance, the common-case type of m may be int rather
than float.

For UDFs with control-flow that Tuplex cannot annotate
with sample-provided input types, Tuplex uses the AST of
the UDF to trace the input sample through the UDF and an-
notates individual nodes with type information. Then, Tuplex
determines the common cases within the UDF and prunes
rarely visited branches. For example, Python’s power operator
(**) can yield integer or float results, and Tuplex picks the

These assumptions do not preclude aggregations, as discussed in §4.6.

common case from the sample trace execution.

(L)

Option types (NULL). Optional column values (“nullable
columns) are common in real-world data, but induce poten-
tially expensive logic in the normal case. Null-valued data cor-
responds to Python’s None type, and a UDF must be prepared
for any input variable (or nested data, e.g., in a list-typed row)
to potentially be None. To avoid having to check for None in
cases where null values are rare, Tuplex uses the sample to
guide specialization of the normal case. If the frequency of
null values exceeds a threshold §, Tuplex assumes that None
is the normal case; and if the frequency of null values is be-
low 1 — 8, Tuplex assumes that null values are an exceptional
case. For frequencies in (1 —8,3), Tuplex uses a polymorphic
optional type and generates the necessary checks.

4.3 Code Generation

Having established the normal case types and row structure
using the sample, Tuplex generates code for compilation. At
a high level, this involves parsing the Python UDF code in
the pipeline, typing the abstract syntax tree (AST) with the
normal-case types, and generating LLVM IR for each UDF.
The type annotation step is crucial to making UDF compila-
tion tractable, as it reduces the complexity of the generated
code: instead of being prepared to process any type, the gen-
erated code can assume a single static type assignment.

In addition, Tuplex relies on properties of the data analytics
setting and the LINQ-style pipeline API to simplify code
generation compared to general, arbitrary Python programs:

1. UDFs are “closed” at the time the high-level API op-
erator (e.g., map or filter) is invoked, i.e., they have
no side-effects on the interpreter (e.g., changing global
variables or redefining opcodes).

2. The lifetime of any object constructed or used when a
UDF processes a row expires at the end of the UDF, i.e.,
there is no state across rows.

3. The pipeline structures control flow: while UDFs may
contain arbitrary control flow, they always return to the
calling operator and cannot recurse.

Tuplex’s generated code contains a row classifier, which pro-
cesses all rows, and two generated code paths: the optimized
normal-case code path, and a general-case code path with
fewer assumptions and optimizations. The general-case path
is part of the exception path, and Tuplex uses it to more effi-
ciently resolve some exception rows.

Row Classifier. All input rows must be classified according
to whether they fit the normal case. Tuplex generates code for
this classification: it checks if each column in a row matches
the normal-case structure and types, and directly continues
processing the row on the normal-case path if so. If the row
does not match, the generated classifier code copies it out
to the exception row pool for later processing. This design
ensures that normal-case processing is focused on the core
UDF logic, rather including exception resolution code that

adds complexity and disrupts control flow.

Code Paths. All of Tuplex’s generated code must obey the
top-level invariant that execution must match Python seman-
tics. Tuplex traverses the Python AST for each UDF and
generates matching LLVM IR for the language constructs
it encounters. Where types are required, Tuplex instantiates
them using the types derived from the sample, but applies
different strategies in the normal-case and general-case code.
In the normal-case code, Tuplex assumes the common-case
types from the sample always hold and emits no logic to check
types (except for the option types used with inconclusive null
value statistics, which require checks). The normal-case path
still includes code to detect cases that trigger exceptions in
Python: e.g., it checks for a zero divisor before any division.

By contrast, the general-case code always assumes the
most general type possible for each column. For example, it
includes option type checks for all columns, as exception rows
may contain nulls in any column. In addition, the general-case
code path also contains code for any user-provided resolvers
whose implementation is a compilable UDF. However, the
compiled general-case code cannot handle all exceptions, and
must defer rows from the exception pool that it cannot process.
The general-case code path includes logic to detect these
cases, convert the data to Python object format, and invoke
the Python interpreter inline.

Memory Management. Because UDFs are stateless func-
tions, only their output lives beyond the end of the UDF.
Tuplex therefore uses a simple slab allocator to provision
memory from a thread-local, pre-allocated region for new
variables within the UDF, and frees the entire region after the
UDF returns and Tuplex has copied the result.

Exception handling. To meet the invariant of simulating
a Python interpreter execution, the code Tuplex generates
and executes for a row must have no observable effects that
are distinct from complete execution in a Python interpreter.
While individual code paths do not always meet this invariant,
their combination does. Tuplex achieves this via exceptions,
which it may generate in three places: when classifying rows,
on the normal-case path, and on the general-case code path.
Figure 2 shows how exceptions propagate rows between the
different code paths.

Rows that fail the row classifier and those that generate
exceptions on the normal-case code path accumulate in the
exception row pool. When Tuplex processes the exception
row pool, it directs each row either to the general-case code
path (if the row is suitable for it) or calls out to the Python in-
terpreter. Any rows that cause exceptions on the general-case
path also result in a call into the interpreter. An interpreter
invocation constitutes Tuplex’s third code path, the fallback
code path. It starts the UDF over, running the entire UDF code
over a Python object version of the row. Finally, if the pipeline
developer provided any resolvers, compilable resolvers exe-
cute on the general-case code path, and all resolvers execute

Normal Case Exception Case

Normal
Path

br i3 %3, %except...

Exception Row Pool

parse with general case types

success

General Path

fail
Fallback Path
Python

Interpreter

J U
success fail

except:
ret i64 129

exception

br i3 33, %except, ...
except :
ret i64 129

success

Merge Rows

Figure 2: Tuplex’s exception case consists of a compiled
general path and a fallback path that invokes the Python inter-
preter. Exceptions (red) move rows between code paths.

on the fallback path. If the fallback path still fails, Tuplex
marks the row as failed.

Consequently, Tuplex may process a row a maximum of
three times: once on the normal-case path, once on the general-
case path, and once on the fallback path. In practice, only a
small fraction of rows are processed more than once.

4.4 Execution

Executing a pipeline in Tuplex involves typical steps for a data
analytics framework, though customized to handle end-to-end
UDF compilation. Tuplex has a logical planner, which applies
logical optimizations (e.g., operator reordering and filter push-
down); a physical planner, which splits the pipeline execution
into distinct stages; and a UDF compiler, which handles the
actual code generation. However, the typing requirements
of Tuplex’s dual-mode processing model permeate all these
components. For example, the logical planner also types the
UDFs according to the common-case types deduced from the
sample in order to allow for type-aware logical optimizations.

Stages. A stage is a sequence of operators, including UDFs,
that is bounded on either side by an operator that consumes
materialized data from memory or requires generating it. Ex-
amples of such operators include inputs, joins, aggregations,
and outputs. Stages are also the unit of code generation: Tu-
plex generates and executes a normal-case and an exception-
case code path for each stage. The materialized output of a
stage may initially consist only of normal-case result rows,
though some operators require immediate production and ma-
terialization of resolved exception-case rows too (see §4.5).

To delineate stages, Tuplex follows a model similar to Hy-
Per’s [45]. Tuplex makes stages as long as possible, so that
a row is processed through many UDFs while in the CPU
cache, and to facilitate compiler optimizations across UDFs.
In the ideal case, the bulk of input rows proceeds through a
single, highly-optimized stage that ends with the materialized
output of the pipeline.

4.5 Joins

Tuplex uses a hash join, which materializes records on one
side of the join (the “build” side) and streams rows on the
other side to look up into the hash table. Tuplex chooses the
smaller side (in terms of input rows) as the build side and
terminates a stage at the materialized join input.

This standard design, however, requires adaptation to work
with dual-mode processing. A classic data-parallel join works
because the data on both sides of the join is partitioned by
the same key. For join A > B between relations A and B, it
suffices to join each A; 0 B;. But in the dual-mode execution
model, each partition of A is itself split into normal-case rows
NC(A;) and exception-case rows EC(4;), and likewise for B.
For correct results, Tuplex must compute each pairwise join:

NC(A,') [><INC(B,') U NC(A,‘) I><IEC(B,') U
EC(A,) NNC(B,’) @] EC(A,) NEC(B,’)

To compute the joins between normal-case and exception-
case rows, Tuplex would have to execute all three code paths
for both join inputs and materialize the input rows in memory.
This conflicts with the goal of long stages that keep caches
hot on the normal path and avoid unnecessary materialization.
Instead, Tuplex executes all code paths for the build side of
the join and resolves its exception rows before executing any
code path of the other side. If the build side is B and the
result of resolving exception rows of B; is R(B;) = NC(B;) U
resolve(EC(B;)), Tuplex then executes NC(A;) > R(B;) as
part of a longer stage and without materializing NC(A;).

4.6 Aggregates

Dual-mode processing works for aggregations as long as the
aggregation function is associative. Tuplex can separately
aggregate normal-case rows and, subsequently, exception-
case rows via the general and fallback code paths; in a final
merge step, it can combine the partial aggregates into a final
result. This merging of partial aggregates can happen at the
end of the stage (which requires immediate resolution of
exception rows), or can be pushed further down the pipeline.
Aggregations are also compatible with Tuplex’s assump-
tion that UDFs are stateless, as the framework can track the
accumulated state across rows. To make this work, the ag-
gregation operator needs to take a UDF with a row argu-
ment and an accumulator argument, and return an updated
accumulator. For example, .aggregate’s UDF signature is
lambda acc, r: acc + r['col'], where acc is an accumu-
lator (e.g., an integer, a list or a more complicated object like
a nested tuple or dictionary). Tuplex is responsible for man-
aging the memory of acc, and the UDF remains stateless.

4.7 Optimizations

Tuplex applies both logical and compiler optimizations, par-
ticularly to the normal-case path.

Logical optimizations. Pushing selective operators (e.g.,
filters, projections) to the start of the pipeline is a classic
database optimization. Yet, systems that treat Python UDFs
as black box operators cannot apply this optimization across
UDFs. Tuplex’s logical planner analyzes UDFs’ Python ASTs
to determine which input objects are preserved, dropped, and
modified by each UDF. Based on this knowledge, Tuplex
then reorders operators to preserve columns only as long
as needed. In another, more complex optimization, Tuplex
pushes UDFs that modify a column past any operators and
UDFs that do not read it. This allows e.g., pushing UDFs that
rewrite non-key columns below joins, which is a good choice
if the join is selective.” Crucially, this optimization is only
possible because Tuplex analyzes the Python UDF code.

Code generation optimizations. On the normal-
case path, Tuplex removes any code related to types
that it classified as exceptions. Consider for example
lambda m: m * 1 0.0. With an input sample
of mostly non-null floats, Tuplex removes code for integer-to-
float conversion, null checks, and the else branch from the
normal-case path. This reduces the generated code from 17
LLVM IR instructions (5 basic blocks) to 9 IR instructions
(1 basic block). If the common-case input is null, Tuplex
simplifies the normal-case path to 3 IR instruction that return
Zero.

09 if m else

Compiler optimizations. Once Tuplex has generated
LLVM IR for the normal-case path, it applies several LLVM
optimizer passes to the code. In particular, we use the Clang
9.0 pass pipeline equivalent to -03 which are applied for all
UDFs and operators inside a stage.

However, since Tuplex’s generated code must match
Python semantics, not all compiler optimizations are valid.
For example, some optimizations to speed up floating point
math (equivalent to the -ffast-math C compiler flag) change
the handling of NaN values in ways that fail to match Python.
Tuplex consequently avoids these optimizations.

5 Implementation

We implemented a prototype of Tuplex in about 65,000 lines
of C++. Our prototype uses LLVM 9’s ORC-JIT to compile
the generated LLVM IR code at runtime. It is implemented
as a C-extension (shared library) which users import like a
regular module in Python or from a Jupyter Notebook. In
addition, Tuplex provides a shell in CPython interactive mode.
The prototype also offers a web Ul and a history server, which
developers can use to inspect their pipelines’ execution and
any failed rows generated.

‘We built our prototype as a standalone data analytics system
rather than integrating with an existing system like Spark or
Dask because adding dual-mode processing to these systems
would have required substantial code changes.

2Standard cardinality estimation techniques help decide when to do this;
our prototype does not implement cardinality estimation yet.

Multithreaded Execution. On a single server, our proto-
type runs a configurable number of executors over a thread
pool. Executors process input data partitions in individual
tasks, which run identical code. Each thread has its own
bitmap-managed block manager for memory allocation. When
invoking the fallback path, Tuplex acquires the global inter-
preter lock (GIL) of the parent Python process.

Distributed Execution. Tuplex’s techniques apply both on
a single server and in a distributed data processing setting
where many servers process parts of the input data in parallel.
For datasets that require this scale-out data parallelism, our
prototype supports executing individual processing tasks in
serverless AWS Lambda functions over data stored in S3.

Exception handling. Tuplex implements exception control
flow on the normal-case and general-case paths via special
return codes. We found that this is 30% faster than the “zero-
cost” Itanium ABI exception handling [35], and allows more
optimization than

set jmp/longjmp (SJLJ) intrinsics [36].

Limitations. Our prototype supports compiling optimized
code for many, but not all Python language features. The pro-
totype currently supports compiling integer, float, string, and
tuple operations, as well as essential dictionary and list oper-
ations. It also supports simple list comprehensions, control
flow, random number generation, and regular expressions. For
unsupported language features, Tuplex falls back on running
the UDF in the Python interpreter. We believe that support
for all missing core Python features could be added to our
prototype with additional engineering effort.

Our prototype also does not focus on external modules,
which could be compiled but often already come with
their own native-code backends. Linking Tuplex’s gen-
erated LLVM IR with the LLVM IR code produced by
library-oriented compilers such as Weld [49], Numba [31] or
Bohrium [30] should be feasible in future work.

6 Evaluation

We evaluate Tuplex with three representative pipelines and
with microbenchmarks of specific design features. Our exper-
iments seek to answer the following questions:

1. What performance does Tuplex achieve for end-to-
end data science pipelines, compared to both single-
threaded baselines and widely-used parallel data pro-
cessing frameworks? (§6.1)

2. How does Tuplex’s performance compare to off-the-
shelf Python compilers, such as PyPy, Cython, and Nu-
itka; and to state-of-the-art query compilers, such as
Weld [49] and Hyper [26]? (§6.2)

3. What factors affect Tuplex’s performance, and what is
the impact of optimizations enabled by Tuplex’s dual-
mode processing model? (§6.3)

4. How does Tuplex perform when operating distributedly
across many servers? (§6.4)

Dataset Size Rows Columns Files
Zillow 10.0 GB 48.7M 10 1
Flights 5.9 GB 14.0M 110 24

30.4 GB 69.0M 110 120
Logs 75.6 GB 715.0M 1 3797
311 1.2GB 197.6M 1 1
TPC-H (SF=10) 1.5GB 59.9M 4 1

Table 2: Dataset overview (smaller join tables excluded).

Python PySpark

([J
Pandas @ PySpark
100 @® Dask
[J

Tuplex

Tuplex
C++ (hand-opt.)

80

runtime in s

S o
o e}
[. 0 |

&t W Q")“&AS’Y\‘Q\% cxx at W e’Q\/ 03% '(\5\’\%

(a) single-threaded (b) 16x parallelism

Figure 3: Tuplex outperforms single-threaded and parallel
alternatives by 6.5x-20.6x when running the Zillow pipeline
over 10G of input data, and comes close to hand-tuned C++.

Setup. In most experiments, Tuplex and other systems run
on a single eight-socket server with 64 physical cores and 128
hyperthreads (8x Xeon E7-8830, 2.13GHz), 512 GB RAM,
and four 1 TB HDDs configured in a RAID-0 setup. The input
data is CSV-formatted UTF-8 text. We compare our Tuplex
prototype against Dask v2.12.0 and Spark (Pyspark, v2.4.5)
on Ubuntu 18.04. All systems use 16-way parallelism, and
we pin them to the first two NUMA nodes on the machine to
reduce variance. Numbers reported are the average of 10 runs
with warmed up OS caches.

Our focus is on Tuplex’s performance on a single multi-
core server, a common medium-scale analytics setup [12].
But the systems we compare against support scale-out across
servers, and for this reason we also compare Tuplex’s proto-
type AWS Lambda backend to Spark (§6.4).

6.1 End-to-End Performance

We measure Tuplex’s end-to-end performance using three
data science pipelines, and with the datasets shown in Table 2.
The full pipelines are included in our supplementary material.

Zillow. Zillow is a real estate directory website whose list-
ings are uploaded by individual brokers. We scraped 34,603
Boston area listings [56], scaled the data to 10 GB, and
cleaned it for performance experiments to avoid failures in
Spark and Dask. The query extracts information like the num-
ber of bedrooms, bathrooms, and the price from textual data.

It involves twelve Python UDFs, which perform value con-
versions, multiple substring extractions, and several simple
lookups, as well as filtering out implausible records. The
UDF’s operators can execute as a single, large pipelined stage.

Flights. We modeled this workload after a Trifacta tuto-
rial [17] and extended it by joining with additional airport and
airline data from other sources (743 KB [51] and 82 KB [62]).
Besides conversions, this query involves one inner and two
left joins, as well as UDFs to reconstruct values from multiple
columns which can’t be easily expressed in a SQL query. We
ran this query on ten years (2009-2019) of CSV data [63].

Weblogs. Based on a Spark use case [7], this query extracts
information from twelve years of Apache web server logs
obtained from a U.S. university. It converts the Apache log
format into a relational representation, and retains records for
potentially malicious requests. We extended the original data
preparation query by an inner join with a list of bad IPs [43]
and anonymize any personally-identifiable URLs by replacing
usernames (e.g., “~alice”) with random strings.

311 and TPC-H Q6. We use the Pandas cookbook [13]
data cleaning query for 311 service requests, which yields
a set of unique zipcodes, to compare to Weld [49]. Finally,
we also run a microbenchmark with TPC-H Q6 to measure
Tuplex’s performance compared to Hyper [26], a state-of-the-
art SQL query compiler.

6.1.1 Zillow: String-heavy UDFs.

In this experiment, we compare Tuplex to other frameworks
using the Zillow pipeline. This pipeline contains eleven
UDFs, which use Python idioms for substring search (e.g.,
"bd" in s, or s.find("bd")), string splitting, normaliza-
tion (s.lower ()), and type conversions (int, float).

We consider two row representations: (i) as Python tu-
ples, and (ii) as Python dictionaries (hashmaps), which allow
lookups by column name. The dictionary representation eases
implementation, but typically comes with a performance over-
head. Tuplex allows either representation and compiles both
representations into identical native code.

Single-threaded execution. We compare standard
CPython (v3.6), Pandas (v1.0.1), and a hand-optimized C++
baseline to Tuplex configured with a single executor. Tuplex’s
end-to-end optimized code might offer an advantage over
CPython and Pandas, which call into individual native-code
functions (e.g., libc string functions) but cannot optimize
end-to-end. A good Tuplex implementation should come
close to the hand-optimized C++ baseline.

Figure 3 shows our results. As expected, the CPython im-
plementation with rows represented as dictionaries is substan-
tially slower (about 2x) than the tuple-based implementa-
tion. Pandas, perhaps surprisingly, is about 23.7% slower than
CPython. While Pandas benefits from a faster CSV parser, an
efficient data representation for each column, and specialized

@ Dask
@ PySparkSQL

. @ Tul

2 150 1500 =

[} < on

£ 100) 1000 — S

= = ~ I3

50 500 <
v
@ ©
0 [| 0 —_—

Dask PySparkSQL Tuplex
(a) 5.9 GB input

Dask PySparkSQL Tuplex
(b) 30.4 GB input

Figure 4: Tuplex achieves speedups of 10.9x—-58.2x over
PySparkSQL and Dask on the flights pipeline.

native-code operators for numeric computation, its perfor-
mance suffers when UDFs—for which Pandas has no effi-
cient native operators—require processing in Python. Finally,
Tuplex completes processing in 75.13 seconds, a speedup of
6.5x—15.5x over the CPython and Pandas implementations,
and half as fast as the hand-optimized C++ implementation.
However, this overstates Tuplex’s overhead: in Tuplex the
compute part of the pipeline (i.e., excluding 1/O) takes 20.6s,
22% slower than in the C++ implementation (16s).

Data-parallel execution. Next, we benchmark Tuplex
against widely-used frameworks for parallel processing of
large inputs: PySpark (2.4.5) and Dask (2.16). We configure
each system for 16-way parallelism: PySpark uses 16 JVM
threads and 16 Python processes for UDFs; Dask uses 16
worker processes; and Tuplex uses 16 executor threads. We
benchmark PySpark both with RDDs [70] and with the more
efficient SparkSQL operators [3]. Neither PySpark nor Dask
compile UDFs to native code or optimize across UDFs, so a
good result would show Tuplex outperforming them.

Figure 3 confirms that this is the case: Tuplex outperforms
the fastest PySpark setup by 16.7x and Dask by 9.4 x. Com-
pared to the single-threaded execution, Tuplex achieves a
speedup of 14.35x when using 16 threads.

These results confirm that Tuplex’s native code generation
for UDFs and its end-to-end optimization can offer perfor-
mance gains for UDF-heavy pipelines. In §6.2.1, we compare
Tuplex to other Python compilers, and §6.3 drills down into
the factors contributing to Tuplex’s performance.

6.1.2 Flights: Joins and Null Values.

We repeat the comparison between Tuplex, Spark, and Dask
for the flights query. The flight query contains three joins, and
the dataset has “sparse” columns, i.e., columns that mostly
contain null values, while others have occasional null values
complemented by extra columns (e.g., diverted flights landing
at a different airport). Tuplex infers the normal-case null
value status for each column from its sample, and defers the
more complicated logic needed to resolve exception rows
to the general-case code path. 2.6% of input rows violate
the normal-case and get handled by the general-case code

[] PySpark
@ PySparkSQL
) 4000 ® Dusk
C: @ Tuplex
= 3000-) .
£ & % &
' 2000- k=gl =] b3 — I
=} — | o~ — — |
- 0 = = N ESQ)
1000 ® S < m @
0- — — | —
strip split per-column single

regex regex

Figure 5: Tuplex outperforms Spark and Dask by 5.4 x—-109 x
on the weblogs pipeline; all Tuplex variants have comparable
performance. PySparkSQL only supports per-column regexes.

path in Tuplex. Spark and Dask handle null values inline in
UDF execution, and we use PySparkSQL, which compiles
the query plan (though not the UDFs) into JVM bytecode. A
good result for Tuplex would show that it still outperforms
the other systems, even though it must resolve some rows via
the slower general-case path.

Figure 4 shows the results for two years’ worth of data
(5.9 GB) and ten years (30.4 GB). PySparkSQL outperforms
Dask by 4-5x because of its compiled query plan and more
efficient join operator. Tuplex, however, still achieves a 4.4 x
speedup over PySparkSQL (18.9x over Dask) because it
compiles and merges the UDFs, and processes the bulk of
the data through a single, end-to-end optimized stage (we
break this down in §6.3.2). Tuplex’s join operator is still
unoptimized, so these results may understate its performance
rather.

6.1.3 Log Processing: Regex and Randomness.

We use the weblogs pipeline to investigate how Tuplex’s com-
piled code compares to special-purpose operators designed
to accelerate common UDF functionality in existing frame-
works. The query splits an input log line into columns, and
then rewrites one of those columns with a random string if it
matches a username pattern:

def randomize_udf (x):
[random_choice (LETTERS)
return re_sub('"/~["/]+"',

r = for t in range(10)]

T/~ 4+ ' qoin(r), x)

While this step requires a UDF in all systems, we consider
three settings for the log line splitting operation:

1. natural Python using string operations (strip/split);

2. per-column regular expressions; and

3. asingle regular expression.
Natural Python requires UDFs in all systems, but we also
wrote an equivalent query to the split-based UDF using a
project operator that applies SparkSQL’s native string func-
tions (which execute in the JVM). In addition to these, PyS-
parkSQL also has a native operator for regular expressions
(regexp_extract). While it only supports per-column reg-
ular expressions (second setting), the operator applies the

10

regular expression in the JVM, rather than in the Python in-
terpreter. Finally, all systems currently require UDFs when
using a single regular expression.’ Tuplex supports all three
approaches.

We would expect Python UDFs (both strip/split and
regex-based) in Spark and Dask to be slowest. PySparkSQL’s
native regex operator and the split-like SQL query should
outperform them. A good result for Tuplex would show perfor-
mance improvements in all three setups, as Tuplex end-to-end
compiles and optimizes each setting for this pipeline.

The input in our experiment is 75.6 GB of logs (715M
rows). For Dask, we excluded 31.7M rows (4.5%, 4 GB) of
the data because they triggered an unfixed bug in the inner
join, which fails when chunks produce empty results [64].

Figure 5 reports the results organized by setting. The
PySpark pipelines with two UDFs are slowest at about 3
hours, while Dask UDFs are roughly 3x faster (51-53 min).
Dask is more efficient because it executes the entire pipeline
in Python, avoiding costly back-and-forth serialization be-
tween the JVM and Python workers. However, when PyS-
parkSQL keeps the log line splitting in the JVM—either us-
ing string functions (PySparkSQL (split)) or via per-column
regexes—runtime reduces to 21 (regex) from 42 minutes
(split). This happens because SparkSQL can generate JVM
bytecode for most of the pipeline (except the randomiza-
tion UDF) via its whole-stage code generation [68]. Tuplex,
on the other hand, completes the pipeline in two minutes
both using natural Python and with a regular expression. Per-
column regular expressions slow Tuplex down by a factor
of two, but it still outperforms PySparkSQL by 5.4 x; like-
wise, Tuplex’s split-based pipeline is 18.2x faster than
PySparkSQL’s equivalent native SQL query. This difference
comes, in part, because Tuplex compiles both UDFs to na-
tive code, while PySpark can only use compiled code for
line-splitting. When we subtract the anonymization UDF run-
time in both systems, Tuplex is still about 3.5 faster than
PySparkSQL. The remaining speedup comes from Tuplex’s
end-to-end optimization, and from using PCRE2 regular ex-
pressions: in our microbenchmarks, PCRE2 is 12.5 x faster
than java.util.regex, which Spark uses.

Tuplex’s fastest pipelines (single regex, strip) outperform
the best PySpark and Dask setups by 12x and 30x. Tuplex
supports logical optimizations unavailable to Dask and Spark
that improve performance further, which we discuss in §6.3.1.

6.2 Comparison To Other Systems

We now compare Tuplex to prior systems that compile general
Python programs, data science workloads, or SQL queries.

6.2.1 Python Compilers.

We first compare Tuplex to general Python compilers, which
compile arbitrary Python programs.

3 A PySparkSQL PR introducing support for a single regex returning
multiple columns exists [15], but it did not work for us.

2500 250

Python / PySpark
PySparkSQL
Pandas / Dask
Tuplex

C++ (hand-opt.)

‘lllm

Qe \\)Q\e sQ\/ oy}(‘

2000 200
= 1500 150
1000 100

I | — 50
C’ .
=

0 f— 0

runtime in s

500

37.0

R A“&\ Q\@I» o~ Q\a~

(a) single-threaded (b) 16x parallelism

Figure 6: The PyPy3 general-purpose JIT fails to accelerate
the Zillow pipeline, and degrades performance by up to 3 x.
Dark bars use PyPy, light bars use the CPython interpreter

(Fig. 3).

System Runtime Compile time
CPython (interpreter) 492.7 s -
Python Cyt?lon 394.1s 85s
compilers Nuitka 386.5s 53s
Tuplex 74.6's 0.6s
Hand-optimized C++ 36.6 s 75s

Figure 7: Tuplex runs the Zillow query 5 x faster than Cython
and Nuitka, and compiles 5x—10x faster than alternatives.

PyPy. PyPy [54] is a tracing JIT compiler that can serve as
a drop-in replacement for the CPython interpreter. It detects
hot code paths (usually loops), JIT-compiles a specialized
interpreter and caches the hot paths’ native code. We con-
figured Pandas, PySpark and Dask to use PyPy (v7.3.0 in
JIT mode) instead of CPython to measure how well PyPy
performs on UDFs, and run the Zillow pipeline in the same
setups as before. Even though PyPy is still bound to Python’s
object representation and has limited scope for end-to-end op-
timization, the hope is that JIT-compiling the hot code paths
will improve performance.

Figure 6 shows that this is actually not the case. PyPy is
slower than interpreted Python in all settings, by between
3% and 3.18 x; only with PySparkSQL it comes close to in-
terpreted Python. Profiling with cProfile [14] suggests that
PyPy has a variable impact on UDF performance: of twelve
UDFs, four are faster (25%—6x) with PyPy, four are up to
20% slower, and four are 50%—-2.5 x slower. The one UDF
that benefits substantially (6x) merely forms a tuple; for oth-
ers, even superficially similar string-processing UDFs exhibit
varying performance. We attribute this to PyPy JIT-compiling
and caching only some code paths, but not others. The 3 x
slowdown for Pandas and Dask is due to PyPy3’s poor perfor-
mance when invoking C extension modules [60].

11

ded (16x)

ded (16x)

400

300

time in s

time in s

200

(a) query-time only (b) end-to-end

Figure 8: 311 service requests cleaning.

Figure 9: For the 311 data cleaning pipeline, single-threaded
Tuplex comes within 34% of Weld and outperforms all par-
allel systems. Tuplex outperforms Weld by 2x end-to-end
because Tuplex inlines the aggregation in its generated parser.

Cython and Nuitka. Nuitka and Cython emit C/C++ files
that contain unrolled calls to C functions which power the
CPython interpreter. Compiling this file into a shared library
object produces a drop-in replacement for a Python module.
We used Nuitka (v0.6.9) and Cython (v0.29.16) to transpile
the Python module to C for the Zillow pipeline. This elim-
inates the cost of Python byte code translation and allows
the C compiler to optimize the whole pipeline. We run the
resulting module over 10 GB of input data, and compare
single-threaded runtime to interpreted CPython and Tuplex.
Figure 7 shows runtimes and compile times. Nuitka and
Cython’s compiled code runs 20% faster than interpreted
Python, but is still over 5x slower than Tuplex. Tuplex out-
performs Nuitka and Cython because it replaces C-API calls
with native code, eliminates dispensable checks and uses a
more efficient object representation than Cython and Nuitka,
which use CPython’s representation. Cython and Nuitka also
have 5-8 x higher compile times than Tuplex. They take about
a second to generate code, with the rest of the compile time
taken up by the C compiler (gcc 7.4). Tuplex generates LLVM
IR, which is faster to compile than higher-level C/C++, and
also compiles 10x faster than gcc compiles the C++ baseline.

6.2.2 Data-parallel IR: Weld [49].

Weld is a data-parallel IR that admits optimizations like vec-
torization or loop fusion across libraries [49]. Weld serves
as a backend to ported existing libraries such as Pandas [37],
while Tuplex is a complete data analytics system, but both
execute compiled native code. We compare Tuplex’s perfor-
mance to Weld’s on the 311 data cleaning workload [13] and
TPC-H Q6. Q6 performs a simple aggregation over numeric
columns and is a challenging workload for Tuplex, which
shines at string-heavy workloads with row-level UDFs and
does not yet support vectorized (SIMD) compilation of UDFs.
We compare to Weld v0.4.0; since Weld’s multithreaded run-
time was removed in v0.3.0 [48], we compare single-threaded
performance. In addition, we preprocessed the inputs to con-

tain only the required columns and converted string-typed
date columns in Q6 to integers, since Weld lacks automatic
projection pushdown and has limited string processing capa-
bilities. Because Weld does not have a native CSV parser, we
preload the Q6 data into its columnar in-memory format with
a single-threaded C++ CSV parser. For the 311 workload, we
use Weld’s benchmark code, which relies on Pandas to load
the data. We measure both pure compute time and end-to-end
runtime: the former measures how good Tuplex’s generated
code is, while the latter measures a realistic data analytics
experience. A good result for Tuplex would show competitive
compute time (despite Tuplex’s row-oriented data format and
lack of SIMD vectorization), and an improved end-to-end
runtime.

Figure 9 shows that Tuplex’s compute time (including com-
pilation and sampling) for the 311 data cleaning workload
is within 35% of Weld’s, and that end-to-end (total runtime
to load the data, compile the query, and execute it), Tuplex
runs the workload 2 x faster than Pandas+Weld. On TPC-H
Q6, Tuplex’s runtime is within 2 x of Weld’s for Q6, despite
Tuplex’s lack of vectorization and its row-structured data lay-
out in memory (Figure 10a), and Tuplex again outperforms
Weld by 1.95x end-to-end (Figure 10b). Tuplex’s end-to-end
performance gains come from an optimization available when
compiling full pipelines: instead of loading the data first and
then running the aggregation, Tuplex generates a CSV parser
and inlines the aggregation code into it. Weld, by contrast,
first loads the data via Pandas to a columnar in-memory rep-
resentation and then aggregates it via fast SIMD instructions.

6.2.3 SQL query compiler: Hyper [26].

Tuplex is designed for analytics over large, non-indexed data
sets. In classic SQL databases, query compilation is well-
established. While Tuplex seeks to support a broader use case
(Python UDFs) than SQL queries, we compare to the Hyper
query compiler [26, 45] to establish a baseline for Tuplex’s
performance on classic SQL queries. We use Tableau’s latest
HyperAPI [34] (0.0.11355) to run TPC-H Q6 with 16 threads.
Hyper relies on indexes for performance [42]: we expect Q6
to run an order of magnitude faster when indexes are used,
as they allow to skip most of the data compared to a pure
scan-based version. This comes at the upfront cost of creating
the indexes, however.

Tuplex’s scan-based query execution is indeed 4.11x
slower than Hyper’s index-based execution (Figure 10a). Tu-
plex’s Python code is also more expensive to compile (120ms)
than directly parsing a simple, well-structured SQL query like
Q6, as Tuplex must perform additional steps like type in-
ference and tracing. Finally, Figure 10b shows that Tuplex
outperforms Hyper by 5.92x on end-to-end runtime, since
Tuplex avoids upfront index creation and interleaves the ag-
gregation with data loading through its generated parser.

12

single-threaded multi-threaded (16x) hreaded (16x)

IS

40

-
@ =}
S3 ‘s 30
:
S ERN) =
= “ o
= o) s 2
e g S S -
S o0
S1 o Fwo S =
0 [0 —

o

5 5 S 5
i o o e « "‘Q\cqﬂ B e i

(a) query-time only (b) end-to-end

Figure 10: For TPC-H Q6 Tuplex’s generated code (without
vectorization or indexes) comes within 2x of Weld’s vector-
ized code and within 4 x of Hyper’s index-based execution.
End-to-end, Tuplex outperforms Weld by 2x (due to its gen-
erated parser) and Hyper by 7 (as it avoids index creation).

® 400 == Tuplex only ==
E @ with LLVM Opt.
g
=
Q 4 o
= 200 — (‘ﬁ N
=3 _— _— o~ (@) (\I [\
: o e
S
0-

PAY
\“\OQ \O(L\C \\\\ ot \)\)N\

PRL\S D S N
e 06 \\“OQX \)\}] N \0"*\" s §:: (\\\\\ o?

‘; AR
Figure 11. Factor analysis for the flights pipeline: Tuplex
optimization and LLVM optimizers together realize speedups.

6.2.4 Discussion.

Tuplex by design cannot use some optimizations available
to Weld or Hyper, because Tuplex adheres strictly to Python
semantics and must forego optimizations that would violate
these semantics (e.g., via —~fastmath). Further, Tuplex pro-
duces robust generated code that still contains instructions to
check for exceptions, while Weld and Hyper only work on
perfectly clean data.

6.3 Tuplex Performance Breakdown

The largest contributor to Tuplex’s speedup over Spark and
Dask is compiling Python UDFs to native code, but specific
design choices improve Tuplex’s performance by up to 3.

We measure the impact of specific design choices and opti-
mizations with the flights pipeline, using 4-way concurrency
on a single NUMA node to avoid confounding factors (our
prototype is not NUMA-aware yet). Figure 11 summarizes the
impact of each factor on flights (30.4 GB input data) with and
without LLVM optimizers enabled, plotting times only for
the compute part of the pipeline (i.e., excluding I/O). There
are two high-level takeaways: first, logical optimizations and
stage fusion are important; and second, our optimizations give
additional purchase to the LLVM optimizers. We mention re-
sults for other pipelines where relevant; these are end-to-end
numbers including I/O.

6.3.1 Logical Optimizations.

Tuplex compiles Python UDFs with full knowledge of their
ASTs. This allows Tuplex to apply standard optimizations
like filter and projection pushdowns and operator reorderings
through UDFs—in contrast to Spark or Dask, which treat
UDFs as black-boxes. We illustrate the impact such logical
optimizations have with the weblogs and flight pipelines; the
Zillow pipeline has few logical optimization opportunities.

In the flights pipeline, projection pushdown helps drop
many of the 110 input columns early. Tuplex achieves a 2.5x
speedup thanks to this logical optimization when we disable
LLVM optimizers, but the benefit grows to 3x with LLVM
optimizers enabled. This is caused by LLVM eliminating
code that processes data eventually dropped and its ability to
reorder basic blocks for inlined functions.

The weblogs pipeline contains a join with a list of mali-
cious IPs and a mapColumn operator that anonymizes some
records. Applying the mapColumn to output rows of the (se-
lective, i.e., filtering) join requires anonymizing fewer rows.
But Spark or Dask cannot move a UDF-applying mapColumn
through a join, while Tuplex can, thanks to its understanding
of columns read and modified in the UDF. With this optimiza-
tion, Tuplex takes 55 seconds (2x faster than the unreordered
result we reported in Figure 5). If we manually reorder the op-
erators in PySparkSQL, it also runs 2x faster (611 seconds),
but remains 14.5x slower than Tuplex.

6.3.2 Stage Fusion.

Systems that treat UDFs as black-box operators are unable
to end-to-end optimize across them. In Spark and Dask, a
UDF operator is an optimization barrier, while Tuplex seeks
to make stages—which are its unit of optimized compilation—
as large as possible. To measure the impact of this design, we
manually insert optimization barriers in the flights pipeline,
forcing Tuplex to use additional stages. We consider Tuplex
with optimization barriers that mimic Spark’s optimization
constraints; and Tuplex with stage fusion (i.e., only the build
side of a join is a barrier, cf. §4.5). For each, we disable
and enable LLVM optimizers to measure any extra cross-
UDF optimization opportunities enabled. Without LLVM
optimizers, Tuplex takes 178 seconds without stage fusion
and 147 seconds with stage fusion (17.4% improvement); with
LLVM optimizers, runtimes drop to 96 and 62 seconds (35.4%
improvement). Stage fusion therefore enables optimization
potential that improves runtime by an extra 18%.

6.3.3 Optional Types off the Normal Path.

Dual mode processing allows Tuplex to optimize the normal-
case path by deferring complexity to the exception-case path.
We measure the impact of shifting rare null values to the
general-case code path (§4.7). In flights, this optimization
reduces the pipeline’s compute time by 8—17%, albeit at the
cost of increasing compile time by 2 seconds, which reduces
end-to-end benefit. (Larger datasets would realize more of

13

Setup Spark (64 executors) Tuplex (64 Lambdas)

100 GB 209.03 sec (¢ = 10.53) 31.5 sec (o = 8.25)
1TB 1791.51 sec (c =4.38) 351.1sec (0 =22.1)

Figure 12: In a distributed scale-out experiment, Tuplex’s
Lambda backend outperforms a Spark cluster by 5.1x—-6.6x.

the benefit, as compile time is a constant.) In Zillow, the
end-to-end impact is 5% runtime reduction.

6.4 Distributed, Scale-Out Execution

While our focus has been on the single-machine performance
of our Tuplex prototype, some systems we compare to (PyS-
park and Dask) support distributed execution. To verify that
Tuplex’s performance gains are not merely a consequence of
avoiding overheads associated with distributed operation, we
compare these systems with Tuplex’s experimental distributed
execution over AWS Lambda functions.

We compare our prototype’s Lambda backend with a maxi-
mum concurrency of 64 simultaneously running requests to
a Spark cluster with 64 executors. We use Lambdas with 1.5
GB of memory. The Spark cluster runs on 32 m5. large in-
stances that each run two executors with 1 core and 2 GB of
memory per executor. This gives Spark an advantage, as it
has more memory and the cluster runs continuously, while Tu-
plex provisions a Lambda container for each task. In addition,
whereas Tuplex’s Lambda backend writes to S3, Spark merely
collects results on its driver node, as writing to S3 requires
extra infrastructure [23, 65]. We run the Zillow pipeline over
scaled datasets of 100 GB and 1 TB, with data stored in 256
MB chunks in AWS S3. To verify that the compute speed of
m5.large VMs is comparable to 1.5 GB Lambda functions,
we ran a microbenchmark over one 256MB chunk. It takes
3.99 seconds on an m5. large VM, while our code within a
Lambda function takes 4.00 seconds on average, with some
variance (min: 3.68 sec, max 9.99 sec). A good result for Tu-
plex would show competitive performance, with its compiled
UDFs amortizing the overheads incurred by Lambdas.

Figure 12 shows the results. For Spark, we show numbers
for the tuple-based pipeline; the dictionary and SparkSQL
versions are 10-20% slower. Tuplex completes the pipeline
in 31.5 and 351 seconds for 100 GB and 1 TB, 5.1x and
6.6x faster, respectively, than the fastest Spark setup. This
difference comes from Tuplex’s compute speed, which out-
weighs the overheads associated with Lambdas (HTTP re-
quest, queueing, container provisioning, etc.). In terms of
direct monetary cost, Tuplex is competitive at 4¢ for 100 GB
(Spark: 3.7¢) and 55¢ for 1 TB (Spark: 32¢), while also avoid-
ing the setup and provisioning time costs, idle costs, and EBS
storage costs that Spark incurs on top of the EC2 VM costs.
This suggests that Tuplex has the potential to be competitive
in scale-out settings as well as on a single server.

7 Discussion and Experience

Tuplex’s primary objective is high performance for pipelines
that include Python UDFs. But the dual-mode execution
model may also help Tuplex users avoid some long-standing
challenges of pipeline development and debugging [25, 52].
Key to this is Tuplex’s guarantee that pipelines never fail
because of malformed input rows: instead, Tuplex does its
best to complete the pipeline on valid, normal-case rows and
reports statistics about failed rows to the user.

It is difficult to quantify the impact of failure-free pipelines
on developer productivity. However, in our anecdotal experi-
ence implementing pipelines in Tuplex, PySpark, and Dask,
we found Tuplex preferable for several reasons:

 Although our evaluation data sets are fairly “clean”, they
contain a small number of anomalous rows, which often
caused hard-to-debug failures in Spark and Dask.

* Representing rows as tuples rather than dictionaries
yields better PySpark performance, but the required nu-
merical indexing took painstaking work to get right. Tu-
plex, by contrast, has identical performance for tuples
and dictionaries, avoiding the speed-usability tradeoff.

e Making null values work with Dask/Pandas required
using special datatypes (e.g., np.1int64), rather native
Python types, as Pandas fails on None values.

* The semantics of special-purpose operators designed to
help developers avoid UDFs differ from Python code.
For example, SparkSQL’s regex_extract returns an
empty string when there is no match, rather than NULL
as a Python user might expect (Python’s re returns None
in this case). Our weblog dataset has two anomalous
rows, which caused SparkSQL to silently return incorrect
results, while Tuplex correctly reported the failed rows.

* We compared to Weld using the Pandas cookbook’s sub-
sampled 311 dataset [13] (99k rows) scaled 2,000 in
§6.2.2, but Tuplex also works out-of-the-box on the full
NYC 311 dataset [47] (22.4M rows), while Weld, PyS-
park, PySparkSQL, and Dask all fail and require changes
to the UDF code for this more complex but realistic
dataset.

We found that we spent substantial time tracking down edge
cases in framework documentation for other systems, while
Tuplex’s Python UDFs behaved as expected. We also found
that Tuplex’s reporting of exceptions and failed rows helped
us quickly and accurately track down bugs in our pipelines.

Tuplex’s dual mode processing works as long as the sample
is representative. Like with any sampling approach, an un-
representative sample can lead Tuplex to deduce an incorrect
common case. In addition, the sample might itself produce
only exceptions. If that is the case, Tuplex warns the user
either to revise the pipeline or increase the sample size.

8 Conclusion

We introduced Tuplex, an new data analytics framework that
compiles Python UDFs to optimized, native code. Tuplex’s

14

key idea is dual-mode processing, which makes optimiz-
ing UDF compilation tractable because it specializes the
normal-case code to the common-case input data, and defers
the complexity of handling other cases to a less-optimized
exception-case code path. Our experiments show that Tuplex
achieves speedups of 5-109 x over Python, Pandas, Spark, and
Dask, and comes close to hand-optimized C++ code. Tuplex’s
failure-free execution and exception resolution capabilities
may also ease pipeline development.
Tuplex will be available as open-source software.

References

[1] Yanif Ahmad and Christoph Koch. “DBToaster: A
SQL Compiler for High-Performance Delta Processing
in Main-Memory Databases”. In: Proceedings of the
VLDB Endowment 2.2 (Aug. 2009), 1566—1569.

Anaconda, Inc. Will Numba Work For My Code? URL:
http://numba.pydata.org/numba-doc/latest/
user/5minguide . html #will-numba-work-for-

my-code (visited on 05/16/2020).

Michael Armbrust, Reynold S Xin, Cheng Lian, Yin
Huai, Davies Liu, Joseph K Bradley, Xiangrui Meng,
Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al.
“Spark sql: Relational data processing in spark™. In:
Proceedings of the 2015 ACM SIGMOD international
conference on management of data. 2015, pages 1383—
1394.

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Sel-
jebotn, and K. Smith. “Cython: The Best of Both
Worlds”. In: Computing in Science Engineering 13.2
(2011), pages 31 —39.

C. Chambers and D. Ungar. “Customization: Optimiz-
ing Compiler Technology for SELF, a Dynamically-
Typed Object-Oriented Programming Language”. In:
Proceedings of the ACM SIGPLAN 1989 Conference
on Programming Language Design and Implementa-
tion. PLDI ’89. Portland, Oregon, USA: Association
for Computing Machinery, 1989, 146—160.

Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim
Kraska, Carsten Binnig, Ugur Cetintemel, and Stan
Zdonik. “An architecture for compiling udf-centric
workflows”. In: Proceedings of the VLDB Endowment
8.12 (2015), pages 1466-1477.

Databricks. W3L1: Apache Logs Lab Dataframes
(Python). 2019. URL: https : / / databricks -
prod - cloudfront . cloud . databricks . com /
public / 4027ec902e239c93eaaa8714f173bcfc /
2799933550853697 / 4438435960036599 /
2202577924924539 / latest . html (visited on
03/24/2020).

(2]

(3]

(6]

http://numba.pydata.org/numba-doc/latest/user/5minguide.html#will-numba-work-for-my-code
http://numba.pydata.org/numba-doc/latest/user/5minguide.html#will-numba-work-for-my-code
http://numba.pydata.org/numba-doc/latest/user/5minguide.html#will-numba-work-for-my-code
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2799933550853697/4438435960036599/2202577924924539/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2799933550853697/4438435960036599/2202577924924539/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2799933550853697/4438435960036599/2202577924924539/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2799933550853697/4438435960036599/2202577924924539/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/2799933550853697/4438435960036599/2202577924924539/latest.html

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Databricks, Inc. Handling bad records and files. URL:
https://docs.databricks.com/spark/latest/
spark-sql/handling-bad-records.html (visited
on 05/26/2020).

James M Decker, Dan Moldovan, Andrew A Johnson,
Guannan Wei, Vritant Bhardwaj, Gregory Essertel, and
Fei Wang. Snek: Overloading Python Semantics via
Virtualization.

G. Dot, A. Martinez, and A. Gonzélez. “Analysis and
Optimization of Engines for Dynamically Typed Lan-
guages”. In: 2015 27th International Symposium on
Computer Architecture and High Performance Com-
puting (SBAC-PAD). 2015, pages 41-48.

Gilles Duboscq, Thomas Wiirthinger, Lukas Stadler,
Christian Wimmer, Doug Simon, and Hanspeter
Mossenbock. “An intermediate representation for spec-
ulative optimizations in a dynamic compiler”. In: Pro-
ceedings of the 7th ACM workshop on Virtual machines
and intermediate languages. ACM. 2013, pages 1-10.

Gregory Essertel, Ruby Tahboub, James Decker, Kevin
Brown, Kunle Olukotun, and Tiark Rompf. “Flare:
Optimizing apache spark with native compilation for
scale-up architectures and medium-size data”. In: Pro-
ceedings of the 13" USENIX Symposium on Operating
Systems Design and Implementation (OSDI). 2018,
pages 799-815.

Julia Evans. Pandas Cookbook: Chapter 7 — Clean-
ing up messy data. URL: https://github.com/
jvns/pandas-cookbook/blob/master/cookbook/
Chapter%207%20-%20Cleaning%20up%20messy %
20data.ipynb (visited on 03/24/2020).

Python Software Foundation. The Python Profilers:
cProfile. URL: https: //docs . python.org/3/
library/profile.html #module-cProfile (vis-
ited on 05/15/2020).

Jiaan Geng. [SPARK-24884][SQL] Support regexp
function regexp_extract_all. Feb. 2020. URL: https:
//github.com/apache/spark/pull/27507 (vis-
ited on 04/21/2020).

GraalVM. https://www.graalvm.org/. (Accessed
on 04/17/2019).

Lars Grammel. Wrangling US Flight Data - Part 1.
https://www.trifacta.com/blog/wrangling-
us - flight - data - part - 1/. (Accessed on
09/14/2019). 2015.

Kay Hayen. Nuitka. 2018. URL: http://nuitka.
net/ (visited on 05/12/2019).

Anna Herlihy. PYLLVM: A compiler from a subset
of Python to LLVM-IR. May 2016. URL: https://
pycon.org.1i1/2016/static/sessions/anna-
herlihy.pdf (visited on 05/12/2020).

15

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Fabian Hueske, Mathias Peters, Matthias J Sax, Astrid
Rheinlénder, Rico Bergmann, Aljoscha Krettek, and
Kostas Tzoumas. “Opening the black boxes in data
flow optimization”. In: Proceedings of the VLDB En-
dowment 5.11 (2012), pages 1256—-1267.

Eunji Jeong, Sungwoo Cho, Gyeong-In Yu, Joo
Seong Jeong, Dong-Jin Shin, and Byung-Gon Chun.
“{JANUS}: Fast and Flexible Deep Learning via
Symbolic Graph Execution of Imperative Programs”.
In: 16th {USENIX} Symposium on Networked Sys-
tems Design and Implementation ({NSDI} 19). 2019,
pages 453-468.

Eunji Jeong, Sungwoo Cho, Gyeong-In Yu, Joo Seong
Jeong, Dong-Jin Shin, Taebum Kim, and Byung-Gon
Chun. “Speculative Symbolic Graph Execution of Im-
perative Deep Learning Programs”. In: SIGOPS Oper.
Syst. Rev. 53.1 (July 2019), pages 26-33.

Cy Jervis. Introducing S3Guard: S3 Consistency
for Apache Hadoop. 2017. URL: https: //blog.
cloudera . com / introducing - s3guard - s3 -
consistency - for - apache — hadoop/ (visited on
05/26/2020).

Li Jin. Introducing Pandas UDF for PySpark - The
Databricks Blog. https://databricks.com/blog/
2017/10/30/introducing-vectorized - udfs -
for - pyspark . html. (Accessed on 07/22/2019).
2017.

Sital Kedia, Shuojie Wang, and Avery Ching. Apache
Spark @Scale: A 60 TB+ production use case. (Ac-
cessed on 11/25/2018). 2016. URL: https://code.
fb.com/core-data/apache-spark-scale-a-60-
tb-production-use-case/.

Alfons Kemper and Thomas Neumann. “HyPer: A
hybrid OLTP&OLAP main memory database system
based on virtual memory snapshots”. In: 2011 IEEE
27th International Conference on Data Engineering.
IEEE. 2011, pages 195-206.

Timo Kersten, Viktor Leis, Alfons Kemper, Thomas
Neumann, Andrew Pavlo, and Peter Boncz. “Every-
thing you always wanted to know about compiled
and vectorized queries but were afraid to ask”. In:
Proceedings of the VLDB Endowment 11.13 (2018),
pages 2209-2222.

Yannis Klonatos, Christoph Koch, Tiark Rompf, and
Hassan Chafi. “Building Efficient Query Engines in a
High-Level Language”. In: Proceedings of the VLDB
Endowment 7.10 (June 2014), 853-864.

Sanjay Krishnan, Michael J. Franklin, Kenneth Gold-
berg, and Eugene Wu. “BoostClean: Automated Error
Detection and Repair for Machine Learning”. In: (Nov.
2017).

https://docs.databricks.com/spark/latest/spark-sql/handling-bad-records.html
https://docs.databricks.com/spark/latest/spark-sql/handling-bad-records.html
https://github.com/jvns/pandas-cookbook/blob/master/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb
https://github.com/jvns/pandas-cookbook/blob/master/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb
https://github.com/jvns/pandas-cookbook/blob/master/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb
https://github.com/jvns/pandas-cookbook/blob/master/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb
https://docs.python.org/3/library/profile.html#module-cProfile
https://docs.python.org/3/library/profile.html#module-cProfile
https://github.com/apache/spark/pull/27507
https://github.com/apache/spark/pull/27507
https://www.graalvm.org/
https://www.trifacta.com/blog/wrangling-us-flight-data-part-1/
https://www.trifacta.com/blog/wrangling-us-flight-data-part-1/
http://nuitka.net/
http://nuitka.net/
https://pycon.org.il/2016/static/sessions/anna-herlihy.pdf
https://pycon.org.il/2016/static/sessions/anna-herlihy.pdf
https://pycon.org.il/2016/static/sessions/anna-herlihy.pdf
https://blog.cloudera.com/introducing-s3guard-s3-consistency-for-apache-hadoop/
https://blog.cloudera.com/introducing-s3guard-s3-consistency-for-apache-hadoop/
https://blog.cloudera.com/introducing-s3guard-s3-consistency-for-apache-hadoop/
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
https://code.fb.com/core-data/apache-spark-scale-a-60-tb-production-use-case/
https://code.fb.com/core-data/apache-spark-scale-a-60-tb-production-use-case/
https://code.fb.com/core-data/apache-spark-scale-a-60-tb-production-use-case/

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

Mads R.B. Kristensen, Simon A.F. Lund, Troels Blum,
and James Avery. “Fusion of Parallel Array Opera-
tions”. In: Proceedings of the 2016 International Con-
ference on Parallel Architectures and Compilation.
PACT ’16. Haifa, Israel: Association for Computing
Machinery, 2016, 71-85.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert.
“Numba: A LLVM-based Python JIT Compiler”. In:
Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC. LLVM ’15. Austin,
Texas: ACM, 2015, 7:1-7:6.

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert
Cohen, Andy Davis, Jacques Pienaar, River Riddle,
Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr
Zinenko. MLIR: A Compiler Infrastructure for the End
of Moore’s Law. 2020. arXiv: 2002.11054 [cs.PL].

Chris Leary and Todd Wang. “XLA: TensorFlow, com-
piled”. In: TensorFlow Dev Summit (2017).

Tableau Software LLC. Tableau Hyper API.

LLVM Project. Itanium ABI Zero-cost Exception Han-
dling. Aug. 2019. URL: https://releases.llvm.
org/8.0.1/docs/ExceptionHandling . html #
itanium-abi-zero-cost-exception-handling

(visited on 05/01/2020).

LLVM Project. Setimp/Longjmp Exception Handling.
Aug. 2019. URL: https : / / releases . 1lvm .
org/8.0.1/docs/ExceptionHandling . html #
set jmp-longjmp-exception-handling (visited on
05/01/2020).

Wes McKinney et al. “pandas: a foundational Python
library for data analysis and statistics”. In: Python
for High Performance and Scientific Computing 14.9
(2011).

Micro Focus International, PLC. Vertica 9.2.x:
Capturing Load Rejections and Exceptions.
URL: https : / / www . vertica . com / docs /
9 . 2 . x / HIML / Content / Authoring /
AdministratorsGuide / BulkLoadCOPY /
CapturingLoadExceptionsAndRejections . htm
(visited on 05/26/2020).

Kevin Modzelewski. Pyston 0.6.1 released, and future
plans. https://blog.pyston.org/2017/01/31/
pyston-0-6-1-released-and-future-plans/.
(Accessed on 04/17/2019). 2017.

Kevin Modzelewski. Introducing Pyston: an upcom-
ing, JIT-based Python implementation. 2018. URL:
https://blogs.dropbox.com/tech/2014/04/
introducing-pyston-an-upcoming-jit-based-
python-implementation/.

16

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]
[49]

[50]

[51]

[52]

Yann Moisan. Spark performance tuning from the
trenches. URL: https : / /medium . com / teads -
engineering / spark - performance - tuning -
from- the - trenches - 7cbde521cf60 (visited on
03/24/2020).

Tobias Miihlbauer, Wolf Rodiger, Robert Seilbeck,
Angelika Reiser, Alfons Kemper, and Thomas Neu-
mann. “Instant loading for main memory databases”.
In: Proceedings of the VLDB Endowment 6.14 (2013),
pages 1702-1713.

Myip.ms. Blacklist IP Addresses Live Database (Real-
time). https://myip.ms/browse/blacklist.

Christian Navasca, Cheng Cai, Khanh Nguyen, Brian
Demsky, Shan Lu, Miryung Kim, and Guoqing Harry
Xu. “Gerenuk: thin computation over big native data
using speculative program transformation”. In: Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles. 2019, pages 538-553.

Thomas Neumann. “Efficiently compiling efficient
query plans for modern hardware”. In: Proceedings
of the VLDB Endowment 4.9 (2011), pages 539-550.

Khanh Nguyen, Lu Fang, Christian Navasca, Guoging
Xu, Brian Demsky, and Shan Lu. “Skyway: Connecting
managed heaps in distributed big data systems”. In:
ACM SIGPLAN Notices 53.2 (2018), pages 56—69.

NYC OpenData. 311 Service Requests from 2010 to
Present.

Shoumik Palkar.

Shoumik Palkar, James Thomas, Deepak Narayanan,
Pratiksha Thaker, Rahul Palamuttam, Parimajan Negi,
Anil Shanbhag, Malte Schwarzkopf, Holger Pirk,
Saman Amarasinghe, Samuel Madden, and Matei Za-
haria. “Evaluating End-to-end Optimization for Data
Analytics Applications in Weld”. In: volume 11. 9.
VLDB Endowment, May 2018, pages 1002-1015.

Shoumik Palkar and Matei Zaharia. “Optimizing data-
intensive computations in existing libraries with split
annotations”. In: Proceedings of the 27" ACM Sympo-
sium on Operating Systems Principles (SOSP). 2019,
pages 291-305.

Arash Partow. The Global Airport Database. URL:
https : / / www . partow . net / miscellaneous /
airportdatabase/ (visited on 03/24/2020).

Tejas Patil and Jing Zheng. Using Apache Spark for
large-scale language model training. (Accessed on
11/25/2018). 2017. URL: https://code. fb.com/
core-data/using-apache-spark-for-large-
scale-language-model-training/.

https://arxiv.org/abs/2002.11054
https://releases.llvm.org/8.0.1/docs/ExceptionHandling.html#itanium-abi-zero-cost-exception-handling
https://releases.llvm.org/8.0.1/docs/ExceptionHandling.html#itanium-abi-zero-cost-exception-handling
https://releases.llvm.org/8.0.1/docs/ExceptionHandling.html#itanium-abi-zero-cost-exception-handling
https://releases.llvm.org/8.0.1/docs/ExceptionHandling.html#setjmp-longjmp-exception-handling
https://releases.llvm.org/8.0.1/docs/ExceptionHandling.html#setjmp-longjmp-exception-handling
https://releases.llvm.org/8.0.1/docs/ExceptionHandling.html#setjmp-longjmp-exception-handling
https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/AdministratorsGuide/BulkLoadCOPY/CapturingLoadExceptionsAndRejections.htm
https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/AdministratorsGuide/BulkLoadCOPY/CapturingLoadExceptionsAndRejections.htm
https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/AdministratorsGuide/BulkLoadCOPY/CapturingLoadExceptionsAndRejections.htm
https://www.vertica.com/docs/9.2.x/HTML/Content/Authoring/AdministratorsGuide/BulkLoadCOPY/CapturingLoadExceptionsAndRejections.htm
https://blog.pyston.org/2017/01/31/pyston-0-6-1-released-and-future-plans/
https://blog.pyston.org/2017/01/31/pyston-0-6-1-released-and-future-plans/
https://blogs.dropbox.com/tech/2014/04/introducing-pyston-an-upcoming-jit-based-python-implementation/
https://blogs.dropbox.com/tech/2014/04/introducing-pyston-an-upcoming-jit-based-python-implementation/
https://blogs.dropbox.com/tech/2014/04/introducing-pyston-an-upcoming-jit-based-python-implementation/
https://medium.com/teads-engineering/spark-performance-tuning-from-the-trenches-7cbde521cf60
https://medium.com/teads-engineering/spark-performance-tuning-from-the-trenches-7cbde521cf60
https://medium.com/teads-engineering/spark-performance-tuning-from-the-trenches-7cbde521cf60
https://myip.ms/browse/blacklist
https://www.partow.net/miscellaneous/airportdatabase/
https://www.partow.net/miscellaneous/airportdatabase/
https://code.fb.com/core-data/using-apache-spark-for-large-scale-language-model-training/
https://code.fb.com/core-data/using-apache-spark-for-large-scale-language-model-training/
https://code.fb.com/core-data/using-apache-spark-for-large-scale-language-model-training/

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

PostgreSQL Global Development Group. Error log-

ging in COPY. URL: https://wiki.postgresql.

org/wiki/Error_logging_in_COPY (visited on
05/26/2020).

Armin Rigo, Maciej Fijalkowski, Carl Friedrich Bolz,
Antonio Cuni, Benjamin Peterson, Alex Gaynor,
Hakan Ardoe, Holger Krekel, and Samuele Pedroni.
PyPy. URL: http://pypy.org/.

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret
Catron, Summer Deng, Roman Dzhabarov, Nick Gib-
son, James Hegeman, Meghan Lele, Roman Levenstein,
et al. “Glow: Graph lowering compiler techniques for
neural networks”. In: arXiv preprint arXiv:1805.00907
(2018).

ScrapeHero. How to Scrape Real Estate Listings from
Zillow.com using Python and LXML. https: //www.
scrapehero.com/how-to-scrape-real-estate-
listings-on-zillow-com-using-python-and-
1xml/. Oct. 2017.

Amir Shaikhha, Yannis Klonatos, Lionel Parreaux,
Lewis Brown, Mohammad Dashti, and Christoph Koch.
“How to Architect a Query Compiler”. In: Proceed-
ings of the 2016 International Conference on Manage-
ment of Data. SIGMOD ’16. San Francisco, California,
USA, 2016, 1907-1922.

Juliusz Sompolski, Marcin Zukowski, and Peter Boncz.
“Vectorization vs. Compilation in Query Execution”.
In: Proceedings of the Seventh International Workshop
on Data Management on New Hardware. DaMoN °11.
Athens, Greece: Association for Computing Machin-
ery, 2011, 33-40.

Ruby Y. Tahboub, Grégory M. Essertel, and Tiark
Rompf. “How to Architect a Query Compiler, Revis-
ited”. In: Proceedings of the 2018 International Confer-
ence on Management of Data. SIGMOD ’18. Houston,
TX, USA, 2018, 307-322.

The PyPy Team. PyPy: Performance. URL: https :
/ /www . pypy . org/performance . html (visited on
11/15/2019).

The Truffle Language Implementation Framework.
http://www.ssw.uni-1linz.ac.at/Research/
Projects / JVM / Truffle . html. (Accessed on
04/17/2019).

United States Department of Transportation Bureau
of Transportation Statistics. Carrier history lookup
table. URL: https://www.transtats.bts.gov/
Download _ Lookup . asp ? Lookup =L _ CARRIER _
HISTORY (visited on 03/24/2020).

17

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

United States Department of Transportation Bureau of
Transportation Statistics. Reporting Carrier On-Time
Performance (1987-present). URL: https : / /www .
transtats.bts.gov/Fields.asp?Table_ID=236
(visited on 03/24/2020).

trstovall. [bug] dask.dataframe. DataFrame.merge fails
for inner join. (Accessed on 05/12/2020). 2019. URL:
https://github.com/dask/dask/issues/4643.

Gil Vernik, Michael Factor, Elliot K. Kolodner, Effi
Ofer, Pietro Michiardi, and Francesco Pace. “Stocator:
An Object Store Aware Connector for Apache Spark”.
In: Proceedings of the 2017 Symposium on Cloud Com-
puting. SOCC *17. Santa Clara, California: Association
for Computing Machinery, 2017, page 653.

Jiannan Wang, Sanjay Krishnan, Michael J Franklin,
Ken Goldberg, Tim Kraska, and Tova Milo. “A sample-
and-clean framework for fast and accurate query pro-
cessing on dirty data”. In: Proceedings of the 2014
ACM SIGMOD international conference on Manage-
ment of data. ACM. 2014, pages 469-480.

Eugene Wu, Samuel Madden, and Michael Stonebraker.
“A demonstration of DBWipes: clean as you query”.
In: Proceedings of the VLDB Endowment 5.12 (2012),
pages 1894—-1897.

Reynold Xin and Josh Rosen. Project Tungsten: Bring-
ing Apache Spark Closer to Bare Metal. 2015. URL:
https://databricks.com/blog/2015/04/28/
project - tungsten-bringing - spark - closer -
to-bare-metal.html.

Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu,
Ulfar Erlingsson, Pradeep Kumar Gunda, and Jon Cur-
rey. “DryadLINQ: A System for General-Purpose Dis-
tributed Data-Parallel Computing Using a High-Level
Language”. In: Proceedings of the 8" USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI). San Diego, California, USA, Dec. 2008.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael
J Franklin, Scott Shenker, and Ion Stoica. “Resilient
distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing”. In: Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation. USENIX Association. 2012, pages 2—
2.

M. Zukowski, M. van de Wiel, and P. Boncz. “Vector-
wise: A Vectorized Analytical DBMS”. In: Proceed-
ings of the 28" IEEE International Conference on Data
Engineering. 2012, pages 1349-1350.

https://wiki.postgresql.org/wiki/Error_logging_in_COPY
https://wiki.postgresql.org/wiki/Error_logging_in_COPY
http://pypy.org/
https://www.scrapehero.com/how-to-scrape-real-estate-listings-on-zillow-com-using-python-and-lxml/
https://www.scrapehero.com/how-to-scrape-real-estate-listings-on-zillow-com-using-python-and-lxml/
https://www.scrapehero.com/how-to-scrape-real-estate-listings-on-zillow-com-using-python-and-lxml/
https://www.scrapehero.com/how-to-scrape-real-estate-listings-on-zillow-com-using-python-and-lxml/
https://www.pypy.org/performance.html
https://www.pypy.org/performance.html
http://www.ssw.uni-linz.ac.at/Research/Projects/JVM/Truffle.html
http://www.ssw.uni-linz.ac.at/Research/Projects/JVM/Truffle.html
https://www.transtats.bts.gov/Download_Lookup.asp?Lookup=L_CARRIER_HISTORY
https://www.transtats.bts.gov/Download_Lookup.asp?Lookup=L_CARRIER_HISTORY
https://www.transtats.bts.gov/Download_Lookup.asp?Lookup=L_CARRIER_HISTORY
https://www.transtats.bts.gov/Fields.asp?Table_ID=236
https://www.transtats.bts.gov/Fields.asp?Table_ID=236
https://github.com/dask/dask/issues/4643
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html

A Supplementary Material
A.1 Zillow Pipeline

def extractBd(x):
val x['facts and features']
max_idx = val.find(' bd")
if max_idx < 0:
max_idx = len(val)
s = val[:max_1idx]

find comma before
split_idx = s.rfind(',")
if split_idx < 0:

split_idx += 2
r = s[split_idx:]
return int(r)

def extractBa(x):
val x['facts and features']
max_idx = val.find(' ba')
if max_idx < 0:
max_idx = len(val)
s = val[:max_1idx]

find comma before
split_idx = s.rfind(',")
if split_idx < 0:

split_idx = 0
else:

split_idx += 2
r = s[split_idx:]
return int (r)

def extractSqft(x):
val x['facts and features']
max_idx = val.find(' sqgft'")
if max_idx < 0:
max_idx = len(val)
s = val[:max_idx]

split_idx = s.rfind('ba ,")
if split_idx < 0:
split_idx = 0
else:
split_idx += 5
r = s[split_idx:]
r = r.replace(',', '")
return int (r)

def extractOffer(x):

offer = x['title'].lower()

if 'sale' in offer:
return 'sale'

if 'rent' in offer:
return 'rent'

if 'sold' in offer:
return 'sold'

if 'foreclose' in offer.lower():
return 'foreclosed'

return offer

def extractType(x):
t = x['title'].lower()

type = 'unknown'

if 'condo' in t or 'apartment' in t:
type = 'condo'

if 'house' in t:
type = 'house'

return type

def extractPrice(x):
price = x['price']
p=20
if x['offer'] == 'sold':
price is to be calculated using price/sqft x sqgft
val = x['facts and features']
s = val[val.find('Price/sqgft:') + len('Price/sgft:"') + 1:]

r = s[s.find('$")+1:s.find(', ") - 1]
price_per_sqft = int(r)
p = price_per_sqft * x['sqft']

elif x['offer'] == 'rent':

max_idx = price.rfind('/")

p = int(price[l:max_idx].replace(',"', ''))
else:

take price from price column

p = int(price[l:].replace(',', ""))
return p

def filterPrice(x):
return 1 0 < x['price'] <= 2e7

def filterType(x):
return x['type'] == 'house'

def filterBd(x):
return x['bedrooms'] < 10

ctx = tuplex.Context ()

ctx.csv(',"'.join(paths)) \
.withColumn ("bedrooms", extractBd) \
.filter(lambda x: x['bedrooms'] < 10) \
.withColumn ("type", extractType) \

.filter(lambda x: x['type'] == 'house') \
.withColumn ("zipcode", lambda x: '%05d' % int(x['postal_code'])) \
.mapColumn ("city", lambda x: x[0].upper() + x[1:].lower()) \

.withColumn ("bathrooms", extractBa) \
.withColumn ("sgft", extractSqgft) \
.withColumn ("offer", extractOffer) \
.withColumn ("price", extractPrice) \
.filter(lambda x: 100000 < x['price'] < 2e7) \
.selectColumns (["url", "zipcode", "address", "city", "state",
"bedrooms", "bathrooms", "sqft", "offer", "type", "price"]) \
.tocsv (output_path)

A.2 Flights Pipeline

We disabled the reordering optimization in the evaluation section, though it is also possible for this pipeline.

carrier_hist_path = 'data/L_CARRIER_HISTORY.csv'
airport_data_path = 'data/GlobalAirportDatabase.txt'

ctx = tuplex.Context (conf)
df = ctx.csv(',"'.join(perf_paths))

renamed_cols = list (map(lambda c: ''.join(map(lambda w: w.capitalize(), c.split('_"))), df.columns))
for i, ¢ in enumerate (df.columns):
df = df.renameColumn(c, renamed_cols[i])

df = df.withColumn('OriginCity', lambda x: x['OriginCityName'][:x['OriginCityName'].rfind(',")].strip())

df = df.withColumn('OriginState', lambda x: x['OriginCityName'][x['OriginCityName'].rfind(", ")+1:].strip())
df = df.withColumn('DestCity', lambda x: x['DestCityName'][:x['DestCityName'].rfind("',"')].strip())

df = df.withColumn('DestState', lambda x: x['DestCityName'][x['DestCityName'].rfind("',")+1:].strip())

df = df.mapColumn('CrsArrTime', lambda x: '{:02}:{:02}"'.format (int(x / 100), x % 100) if x else None)

df = df.mapColumn('CrsDepTime', lambda x: '{:02}:{:02}"'.format (int(x / 100), x % 100) if x else None)

def cleanCode (t):
if t["CancellationCode"] == 'A':
return 'carrier'
elif t["CancellationCode"] == 'B':
return 'weather'

elif t["CancellationCode"] == 'C':
return 'national air system'

elif t["CancellationCode"] == 'D':
return 'security'

else:

return None

def divertedUDF (row):
diverted = row['Diverted']
ccode = row['CancellationCode']
if diverted:
return 'diverted'
else:

19

if ccode:

return ccode
else:

return 'None'

def fillInTimesUDF (row) :
ACTUAL_ELAPSED_TIME = row['ActualElapsedTime']
if row['DivReachedDest']:

if float (row['DivReachedDest']) > 0:
return float (row['DivActualElapsedTime'])
else:

return ACTUAL_ELAPSED_TIME
else:
return ACTUAL_ELAPSED_TIME

df = df.withColumn('CancellationCode', cleanCode) # works...
df = df.mapColumn('Diverted', lambda x: True if x > (0 else False)
df = df.mapColumn('Cancelled', lambda x: True if x > 0 else False

df = df.withColumn('CancellationReason', divertedUDF)
df = df.withColumn('ActualElapsedTime', fillInTimesUDF)

df_carrier = ctx.csv(carrier_hist_path)

def extractDefunctYear (t):
x = t['Description']
desc = x[x.rfind('-") + Ll:x.rfind(')"')].strip()
return int (desc) if len(desc) > 0 else None

df_carrier = df_carrier.withColumn('AirlineName', lambda x: x['Description'][:x['Description'].rfind (' (")].strip())
df_carrier = df_carrier.withColumn('AirlineYearFounded', lambda x: int(x['Description'][x['Description'].rfind(' (") + 1l:x['Description'].rfind('-")1]))
df_carrier = df_carrier.withColumn('AirlineYearDefunct', extractDefunctYear)

airport_cols = ['ICAOCode', 'IATACode', 'AirportName', 'AirportCity', 'Country',
'LatitudeDegrees', 'LatitudeMinutes', 'LatitudeSeconds', 'LatitudeDirection',
'LongitudeDegrees', 'LongitudeMinutes', 'LongitudeSeconds',
'LongitudeDirection', 'Altitude', 'LatitudeDecimal', 'LongitudeDecimal']

df_airports = ctx.csv(airport_data_path, columns=airport_cols, delimiter=':', header=False, null_values=['"', 'N/a', 'N/A'])

df_airports = df_airports.mapColumn('AirportName', lambda x: string.capwords (x)
df_airports = df_airports.mapColumn ('AirportCity', lambda x: string.capwords(x))

df_all = df.join(df_carrier, 'OpUniqueCarrier', 'Code'")

df_all df_all.leftJoin(df_airports, 'Origin', 'IATACode', prefixes=(None, 'Origin'))
df_all = df_all.leftJoin(df_airports, 'Dest', 'IATACode', prefixes=(None, 'Dest'))
df_all = df_all.mapColumn('Distance', lambda x: x / 0.00062137119224)

df_all = df_all.mapColumn('AirlineName', lambda s: s.replace('Inc.', '') \
.replace('LLC', '") \
.replace('Co."', ''").strip())

df_all = df_all.renameColumn('OriginLongitudeDecimal', 'OriginLongitude') \
.renameColumn ('OriginlatitudeDecimal', 'OriginLatitude') \
.renameColumn ('DestLongitudeDecimal', 'DestLongitude') \
.renameColumn ('DestLatitudeDecimal’', 'DestLatitude')

df_all = df_all.renameColumn('OpUniqueCarrier', 'CarrierCode') \
.renameColumn ('OpCarrierF1Num', 'FlightNumber') \
.renameColumn ('DayOfMonth', 'Day') \
.renameColumn ('AirlineName', 'CarrierName') \
.renameColumn ('Origin', 'OriginAirportIATACode') \
.renameColumn ('Dest', 'DestAirportIATACode')

remove rows that make no sense, i.e. all flights where the airline is defunct which may happen after the join
def filterDefunctFlights (row):

year = row['Year']

airlineYearDefunct = row['AirlineYearDefunct']

if airlineYearDefunct:

return int (year) < int(airlineYearDefunct)
else:

return True

df_all = df_all.filter(filterDefunctFlights)
numeric_cols = ['ActualElapsedTime', 'AirTime', 'ArrDelay',
'CarrierDelay', 'CrsElapsedTime',

'DepDelay', 'LateAircraftDelay', 'NasDelay',
'SecurityDelay', 'TaxiIn', 'TaxiOut', 'WeatherDelay']

20

for ¢ in numeric_cols:
df_all = df_all.mapColumn(c, lambda x: int(x) if x else 0)

df_all.selectColumns(['CarrierName', 'CarrierCode', 'FlightNumber',
'Day', 'Month', 'Year', 'DayOfWeek',
'OriginCity', 'OriginState', 'OriginAirportIATACode', 'OriginLongitude', 'OriginLatitude',
'OriginAltitude’',
'DestCity', 'DestState', 'DestAirportIATACode', 'DestLongitude', 'DestLatitude', 'DestAltitude',
'Distance’,
'CancellationReason', 'Cancelled', 'Diverted', 'CrsArrTime', 'CrsDepTime',
'ActualElapsedTime', 'AirTime', 'ArrDelay',
'CarrierDelay', 'CrsElapsedTime',
'DepDelay', 'LateAircraftDelay', 'NasDelay',
'SecurityDelay', 'TaxiIn', 'TaxiOut', 'WeatherDelay',
'AirlineYearFounded', 'RirlineYearDefunct']).tocsv(output_path)

A.3 Weblogs Pipeline
A.3.1 strip

def ParseWithStrip(x):
y =x

i =y.find(" ")
ip = y[:i]
y=y[i+1:]

i=y.find(" ")
client_id = y[:1]
y =yli+1:]

i =y.find(" ")
user_id = y[:1]
y = yli+1:]

i =y.find("]")
date = y[:1][1l:]
y=yli+2:]

y = yly.find(""") + 1 :]

method = ""

endpoint = ""

protocol = ""

failed = False

if y.find(" ") < y.rfind('""):
i=y.find(" ")
method = y[:1]
y = yli+1:]

i=y.find(" ")
endpoint = y[:1]
y = yli+1:]

i=y.rfind("'"")

protocol = y[:i]

protocol = protocol[protocol.rfind(" ") + 1 :]

y =yli+2:]
else:

failed = True

i = y.rfind('"")

y=yli+ 2 :]
i=y.find(" ")
response_code = y
content_size = y[

[:1]
i+1]
if not failed:
return {"ip": ip,
"client_id": client_id,
"user_id": user_id,
"date": date,
"method": method,
"endpoint": endpoint,
"protocol": protocol,
"response_code": int (response_code),
"content_size": 0 if content_size == '-' else int (content_size)}
else:
return {"ip": "",

21

"client_id": "",
"yser id": "M,
"date": "M,
"method": "M,
"endpoint": "",
"protocol": "",
"response_code": -1,
"content_size": -1}

def randomize_udf (x):
return re.sub('"/~["/]+"', '/~' + ''.join([random.choice ('ABCDEFGHIJKLMNOPQRSTUVWXYZ') for t in range(10)]), x)

ctx = tuplex.Context ()

df = ctx.text(','.join(paths)).map(ParseWithStrip).mapColumn ("endpoint", randomize_udf)
bad_ip_df = ctx.csv(ip_blacklist_path)

df_malicious_requests = df.join(bad_ip_df, "ip", "BadIPs")
df_malicious_requests.selectColumns (["ip", "date", "method", "endpoint", "protocol", "response_code", "content_size"]).tocsv(output_path)

A.3.2 split

def randomize_udf (x):
return re.sub('"/~["/]+"', "/~'" 4+ ''.join([random.choice ('ABCDEFGHIJKLMNOPQRSTUVWXYZ') for t in range(10)]), x)

ctx = tuplex.Context ()

df = (
ctx.text (', '.join(paths))
.map (lambda x: {'logline': x})
.withColumn("cols", lambda x: x['logline'].split(' '))

.withColumn ("ip", lambda x: x['cols'][0].strip())

.withColumn ("client_id", lambda x: x['cols'][1l].strip())
.withColumn ("user_id", lambda x: x['cols'][2].strip())
.withColumn ("date", lambda x: x['cols'][3] + " " + x['cols'][4])
.mapColumn ("date", lambda x: x.strip())

.mapColumn ("date", lambda x: x[1:-1])

.withColumn ("method", lambda x: x['cols'][5].strip())

.mapColumn ("method", lambda x: x[1:])

.withColumn ("endpoint", lambda x: x['cols'][6].strip())
.withColumn ("protocol", lambda x: x['cols'][7].strip())
.mapColumn ("protocol™, lambda x: x[:-1])

.withColumn ("response_code", lambda x: int(x['cols'][8].strip()))
.withColumn ("content_size", lambda x: x['cols'][9].strip())
.mapColumn ("content_size", lambda x: 0 if x == '-' else int(x))
.filter(lambda x: len(x['endpoint']) > 0)

.mapColumn ("endpoint™, randomize_udf)

)
bad_ip_df = ctx.csv(ip_blacklist_path)

df_malicious_requests = df.join(bad_ip_df, "ip", "BadIPs")
df_malicious_requests.selectColumns (["ip", "date", "method", "endpoint", "protocol", "response_code", "content_size"]).tocsv(output_path)

A.3.3 single-regex

def ParselliithRegex (logline):
match = re.search ('~ (\S+) (\S+) (\S+) \[([\w:/J+\s[+\=]\d{4})\] "(\S+) (\S+)\s* (\s*)\s*" (\d{3}) (\S+)', logline)
if (match):
return {"ip": match[1],

"client_id": match[2],
"user_id": match[3],
"date": match[4],
"method": match[5],
"endpoint": match[6],
"protocol": match[7],
"response_code": int (match[8]),
"content_size": 0 if match[9] == '-' else int (match[9])}

else:

return {"ip": '',

"client_id": '',
"user_id": '',
"date": '"',
"method": '',
"endpoint": '"',
"protocol": '',
"response_code": -1,
"content_size": -1}

def randomize_udf (x):
return re.sub('"/~["/]+', '/~' + ''.join([random.choice ('ABCDEFGHIJKLMNOPQRSTUVWXYZ') for t in range(10)]), x)

22

ctx = tuplex.Context ()

df = ctx.text(','.join(paths)).map(ParseWithRegex) .mapColumn ("endpoint", randomize_udf)
bad_ip_df = ctx.csv(ip_blacklist_path)

df_malicious_requests = df.join(bad_ip_df, "ip", "BadIPs")
df_malicious_requests.selectColumns (["ip", "date", "method", "endpoint", "protocol", "response_code", "content_size"]).tocsv(output_path)

B UDF Example

Here, we show the resulting LLVM IR from the introductory example lambda m: m * 1.609 if m else 0.0 in Section 2 after
applying -03 passes. Note that Tuplex will inline functions and run additional optimization passes when these functions are used
within a pipeline.

; ModuleID = 'sampleudf.l1l'
source_filename = "tuplex"
Stuple = type { double }
Stuple.0 = type { i64 }

Stuple.l = type { [l x il1], i64 }
Stuple.2 = type {}

; Function generated when type is specialized
; to 1inté4 t
define i64 @lami64 (%tuple* SoutRow,
$tuple.0* readonly byval $inRow) #1 {

a0

= getelementptr %tuple.0, $tuple.0* %$inRow, i64 0, i32 0
= load i64, i64* %0, align 8

icmp eq i64 %1, 0

= sitofp i64 %1 to double
= fmul double %3, 1.6090
0 = select il %2, double 0.0 0, double %4

$5 = getelementptr %tuple, %$tuple* %outRow, 164 0, i32 0
store double %.0, double* %5, align 8

ret 164 0

a©

3

o
=W N e O
Il

oe

£

; Function generated when type is specialized
; to Nullable<inté4_ t>
define i64 (@lamopti64 (%tuple* %outRow,
S$tuple.l* readonly byval %$inRow) #1 {

o
s W N e o
I

o0

= getelementptr S$tuple.l, $tuple.l* %inRow, 164 0, i32 0, i64 0
= load il, il* %0, align 1

= getelementptr %tuple.l, S$tuple.l* %$inRow, i64 0, i32 1

= load i64, i64* %2, align 8

= icmp ne i64 %3, 0

not. = xor il %1, true

%$spec.select = and il %4, %not.

br il %spec.select, label %if, label %ifelse_exit

o

o0 oo

o

br il %1, label S%except, label $%next

%.0 = phi double [%7, %next], [0.000)e+00, %$body]
$5 = getelementptr %tuple, %$tuple* %outRow, 164 0, i32 0
store double %.0, double* %5, align 8

ret 164 0

$6 = sitofp i64 %3 to double
%7 = fmul double %6, 1.60
br label %ifelse_exit

ret 164 129

; Function generated when type is specialized

; to Null

define i64 @lamnone ($tuple* $%$outRow,

$tuple.2* readnone byval $inRow) #2 {

ly:
%0 = getelementptr Stuple, %tuple* %outRow, 164 0, i32 0
store double 0.000000e+00, double* %0, align 8
ret 164 0

23

	Introduction
	Background and Related Work
	Tuplex Overview
	Design
	Abstraction and Assumptions
	Establishing the Normal Case
	Code Generation
	Execution
	Joins
	Aggregates
	Optimizations

	Implementation
	Evaluation
	End-to-End Performance
	Zillow: String-heavy UDFs.
	Flights: Joins and Null Values.
	Log Processing: Regex and Randomness.

	Comparison To Other Systems
	Python Compilers.
	Data-parallel IR: Weld palkar2017weld.
	SQL query compiler: Hyper kemper2011hyper.
	Discussion.

	Tuplex Performance Breakdown
	Logical Optimizations.
	Stage Fusion.
	Optional Types off the Normal Path.

	Distributed, Scale-Out Execution

	Discussion and Experience
	Conclusion
	Supplementary Material
	Zillow Pipeline
	Flights Pipeline
	Weblogs Pipeline
	strip
	split
	single-regex

	UDF Example

