
Two-Dimensional Regular Expressions for
Compositional Bus Protocols

Kathi Fisler
WPI Department of Computer Science

Worcester, MA 01609 USA
kfisler@cs.wpi.edu

Abstract—Bus and interconnect protocols contain a few core
operations (such as read and write transfers) whose behaviors
interleave to form complex executions. Specifications of the core
operations should be flexible enough that simple composition
operators suffice for capturing most interleavings, even in the
presence of common hardware issues such as glitches. Oliveira
and Hu proposed a form of pipelined regular expressions to
specify atomic protocol compositions, but they abstracted away
clocking and glitches. This paper uses the AMBA-2 specification
to argue that a loosely-synchronized form of regular expressions
handles such timing subtleties while retaining the simplicity of
Oliveira and Hu’s pipelined compositions.

I. INTRODUCTION

Last year, we attempted to formalize portions of the AMBA-
2 interface specification for on-chip data transfers [1]. AMBA-
2 uses timing diagrams extensively to present its protocols.
Having worked on formalizing timing diagrams for many
years [2], our goal was to explore whether formal diagrams
were suitable for capturing such a complex specification. The
experience was highly instructive: while formalized timing
diagrams (ours or Amla et al’s [3]) could capture the individual
diagrams in the specification, they were too concrete to capture
the abstract compositional protocols underlying the diagrams.
Oliviera and Hu’s pipelined regular expressions [4] avoid some
the diagrams’ shortcomings, but overconstrain timing issues
that the diagrams support naturally. This paper describes our
early-stage efforts to identify specification language constructs
that capture the structure of AMBA-2 while drawing on the best
features of both timing diagrams and pipelined regular expres-
sions. As (readable) diagrams are generally more restrictive
semantically than text, this exploratory work extends textual
regular expressions. Finding a readable diagrammatic notation
that supports the constructs we identify is an interesting
problem for future work.

II. THE STRUCTURE OF BUS SPECIFICATIONS

Figure 1 reproduces several AMBA-2 diagrams. The first row
(document figures 5-9 and 5-11) shows basic read and write
transfers, the second (document figure 5-12) shows a burst
sequence of write transfers, and the third (document figure 5-
13) shows an interleaved sequence of read and write transfers.
The latter two diagrams are pipelined compositions of the
first two. A good formalization of this specification would
explicitly capture the basic transfers and exploit composition
operators to derive the complex behaviors. A closer look at the

diagrams reveals several issues that a formal rendering must
address to achieve this goal:

1) Pipelining is required, as seen in the overlapping in-
stances of the write protocol in diagram 5-12.

2) The number of clock cycles between events must be al-
lowed to vary between the basic and complex diagrams;
clock specifications in the basic diagram may indicate
alignment with edges rather than cycle counts.

3) The values on signals may differ when a basic protocol
appears in composition. The basic write diagram (5-
11) ends with PSEL low, but the burst diagram (5-12)
preserves the prior high value across adjacent transfers.

4) Names equate values across signals in the diagrams.
5) Glitches and regions of potential signal instability

(shown shaded) must be captured and can vary in length.
Other diagrams (not shown here) refine the basic protocols
with error handling and other features. The observations in
this paper are necessary, but not sufficient, for those cases.

Regular expressions are common for modeling protocols. As
Oliveira and Hu argue [4], however, defining an interleaved
sequence of protocols as a standard regular expression is
problematic because such sequences capture parallel execu-
tions which vastly complicate the expressions. Furthermore,
such expressions fail to reuse the specifications of the basic
protocols. Their elegant proposal was to introduce a variant
of the concatenation operator (denoted @ instead of ;) to
indicate the point in a regular expression at which a parallel
execution could begin. For example, the expression a;b@c
allows a new instance of the expression (starting from a)
to begin concurrently with c (as the first term after the
@ operator). With this notation, they can cleanly specify
pipelined compositions of protocols whose steps execute in
fixed numbers of cycles.

When the number of cycles between protocol steps is not
fixed, however, the regular expressions show a key limitation.
Consider the HADDR, HWDATA, and HREADY signals from the
basic write protocol (5-11). Associating each character in an
expression with a clock cycle, we could capture these as

HADDR = Addr1 ; dc∗
HWDATA = dc ; Data1 ; dc∗
HREADY = H ;H ; dc∗

(where dc stands for “don’t care” and H for “high”). These
specifications, however, are too rigid to capture the instances
of write transfers in the burst sequence (diagram 5-12). The



Fig. 1. Diagrams from the AMBA-2 specification [1] (pages 5-14 – 5-18) showing single read and write transfers (top), burst sequence of writes (middle),
and sequence of read and write transfers (bottom). The lower two diagrams consist of pipelined instances (compositions) of the behaviors in the two diagrams
in the top row. The figure numbers listed under the diagrams are from the original specification; we refer to the original numbers in the rest of the paper.



regular expressions require the Data value on HWDATA to
occur in the next clock cycle after the Addr value on HADDR,
but that does not happen for Addr3/Data3. Each of Addr3 and
Data3 may also extend beyond the single clock cycle shown
in the basic diagram. This suggests not equating clock cycles
with steps in the regular expression. In similar vein, the regular
expression for HREADY contains two cycles at high value,
with the first synchronized with Addr1. In the burst diagram,
the HREADY high value for Addr2 occurs simultaneously with
Addr3 on HADDR (due to pipelining), and only lasts a single
clock cycle. Rewriting the regular expression for HREADY

to expect only a single high value would address the latter
problem, but not the synchronization problem.

As these examples illustrate, the synchronization implicit in
regular expressions running concurrently is fundamentally lim-
iting for protocols in which relative position of terms matters
more than precise cycle counts. Regular expressions naturally
capture individual signals, but their composition needs to be
more nuanced. Modeling potential glitches exacerbates the
limitations of regular expressions. A combination of pipelined
regular expressions with the more flexible alignment of events
natural in timing diagrams seems promising. Specifically, we
decouple concatenation from clocking using synchronization
and ordering constraints inspired by timing diagrams to relate
atomic expressions across regular expressions. The resulting
combination of inter-signal and cross-signal specification, ex-
emplified by timing diagrams, inspires our term “two dimen-
sional regular expressions”.

III. 2D REGULAR EXPRESSIONS

We develop our 2D regular expression from the ground
up, working with the diagrams in figure 1. The basic read
protocol (diagram 5-9) suggests the atomic terms needed to
capture signals: high and low bit values (seen on HREADY),
denoted H and L, respectively; named bus values (such as
Addr1 on HADDR), denoted by variable names; unnamed but
stable values (on HADDR after T2 and HREADY after T4),
denoted by sd (for “stable but don’t care”) and potentially
unstable values (the shaded areas on all signals), denoted by
uv (for “unstable value”). We use the standard operators of ; for
concatenation, + for choice, and * for iteration, plus Oliveira
and Hu’s @ for pipelined concatenation. The diagrams we
have studied so far rarely, if ever, nest uses of the * operator,
so the expressions for signals tend to be relatively simple.

Using these atomic terms, the HADDR signal in the read
diagram appears to correspond to

sd ; uv ; Addr1 @ uv ; sd ; uv ; sd ; uv ; sd.

This expression expects three (potentially distinct) stable bus
values to occur on HADDR after Addr1 appears. Furthermore,
the corresponding Data1 value on HRDATA is expected after
two of those stable values have appeared. In the read/write
transfer sequence (diagram 5-13), the second transfer (starting
with Addr2) is a read transfer and should be consistent with
this expression. There, Data2 occurs after only one uv value
on HADDR. The proposed HADDR expression is therefore

overly specific relative to how the transfer gets instantiated
in sequence. The essence of the problem is that the basic
read protocol must specify the potential for unstable values,
whereas the semantics of regular expressions requires the
unstable period to occur. To retain flexibility for composition,
then, the regular expressions for a signal should capture
only required behavior, leaving optional behavior to auxiliary
annotations. We accordingly eliminate the uv values from the
regular expression. For flexibility, we also exploit * to avoid
fixing the number of stable regions that will follow Addr1. The
resulting specification of HADDR is sd ; Addr1 @sd∗. Figure 2
shows the full expression for the basic read diagram, and is
explained in the rest of this section.

While our treatment of HADDR suggests that uv values
should never appear in the regular expressions for signals,
PRDATA shows an example where uv is appropriate. On
PRDATA, the long period of instability is a standard part of the
protocol, and should be included in the regular expression. We
capture PRDATA as sd ; uv ; Data1 ; sd. The decision of whether
or not to model a shaded region as uv depends on whether the
depicted period of instability will necessarily occur.

The protocols require certain atomic terms to happen either
concurrently or in particular orders. In the core read protocol
(diagram 5-9), Data1 appears on HRDATA after the rising
transition on HREADY, and the fall of HREADY aligns with the
end of when Data1 is stable. The following two annotations
capture this, where STi denotes the ith concatenation operator
(; or @) in signal S (counting from 1):

Order(HREADYT 3, HRDATAT 1)
Event(HREADYT 4, HRDATAT 2)

These have the obvious semantics: Event requires its argu-
ments to be concurrent and Order requires the second term
to occur strictly after the first. Optional numeric arguments
to Order give lower and upper bounds on the time between
the events. Additional Event specifications align portions of
HADDR, HWRITE, and HREADY as shown in figure 2.

This leaves handling the potentially unstable regions
(glitches) in the signals. The unstable regions omitted from
HADDR occur around transitions. The regular expressions
defining the signals suggest that transitions consume no mea-
surable time: expression H;Addr1 has Addr1 stable in the time
unit immediately following H. To support glitches, we must
relax this. Our transitions have distinct start and end times
that may be separated by more than one unit of time. Often,
the fact that transitions may take time is more important than
the amount of time that they take. Annotation GlitchTrans(STi)
indicates that the ith transition on signal S may take multi-
ple units of time. Unlike the Event and Order annotations,
GlitchTrans annotations may be ignored (desirable for analyses
that abstract away timing): each GlitchTrans extends the set of
traces that satisfy the expression, whereas the other annotations
restrict the set of satisfying traces.

The read diagram contains two additional pieces of informa-
tion about glitches: many glitch regions span the same period
of time, and that period lies within the high clock period (the
unnamed signal at the top of the diagram). Event annotations



HADDR = sd ; Addr1 @ sd∗ [* allows multiple transfers]
HWRITE = sd ; L @ sd∗
HRDATA = sd∗ ; Data1 @ sd
HREADY = sd ; H ; L ; H @ sd

Event(HADDRT 1, HWRITET 1, HREADYT 1)
Event(HADDRT 2, HWRITET 2, HREADYT 2)
Event(HRDATAT 2, HREADYT 4)
Event(HRDATAT 1− f irst , HREADYT 3− f irst)
Order(HRDATAT 1, HREADYT 3−last)

ClockSignal(CLK)
GlitchTrans(HREADYT1)
Constrain(HADDRT 1− f irst , HADDRT 1−last , CLK = H)
[similar constraints for remaining glitch regions]

Fig. 2. 2D regular expression for the basic read transfer protocol (AMBA
diagram 5-9). The ClockSignal annotation indicates that the named signal
oscillates between high and low values as a clock is expected to do.

align the endpoints of glitch regions (STi− f irst and STi−last

refer to the start and end times of the ith transition on signal
S). Containing these regions within positive clock periods is
harder with the annotations given so far. Order constraints
require naming the clock transitions, which is difficult since
the number of clock cycles used in a composed transaction
may vary. Instead, we introduce an annotation Constrain(e1, e2,
s = v) that requires signal s to hold value v between events e1

and e2. An example appears in figure 2. An Order annotation
on the start and end times could bound glitch durations.

This discussion of glitches, events, and order constraints
potentially masks the more substantive points about using
regular expressions to effectively model the AMBA-2 protocols
compositionally. The protocols as shown in the diagrams cap-
ture different information at different granularities of clocking:
the glitch regions fall between the clock cycles governing the
logical heart of the protocols. Multiple clocking granularities
are also useful for capturing the essence of high-level signal
behaviors: a value that spans only one clock cycle in the basic
protocol diagram may span several in a composed sequence,
while corresponding to a single logical concept in the protocol.
Other AMBA protocols (such as multi-address burst commands
from a bus master [AMBA-2 figure 3-6, not shown]) contain
signals whose values change upon events in other signals.
Decoupling clocking from the notion of time implicit in the
regular expressions seems essential to handling these problems
cleanly; some system of synchronization and ordering con-
straints is needed to make up the difference. Various notations
suffice, from explicit Event and Order constraints on all related
pairs to statements that assign signals to clocks and rely on
the usual concurrent semantics of regular expressions. The
differences are syntactic and irrelevant for this paper.

IV. PERSPECTIVE AND DISCUSSION

This paper describes the early stages of a project to formal-
ize interface specifications while capturing the relationships

between their constituent protocols. AMBA-2 develops its pro-
tocols iteratively, refining basic behaviors through successive
sections of the document. Using the framework outlined here,
AMBA-2 figures 5-12 and 5-13 are instances of the protocols
shown in figures 5-9 and 5-11; only the latter two (the basic
protocols) must be specified explicitly. We are trying to iden-
tify composition constructs that enable this sort of reuse across
the entire specification without sacrificing readability or ease
of abstraction for different analysis tasks. Two principles have
emerged from our work so far: basic protocol specifications
must treat clocking and signal values sufficiently abstractly
to support pipelined composition, and clocking overall must
be decoupled from concatenation to enable specification at
different levels of time abstraction.

Pipelined regular expressions make it feasible to use regular
expression-like notation for some protocol compositions, but
lack the fine-grained timing control needed to composition-
ally specify AMBA-2. Timing diagrams handle multiple time
granularities well, but can be a bit too concrete in the face of
arbitrary * operators and cross-signal constraints that depend
on sequences of events. We could add a pipelining notation
to timing diagrams to handle the examples in this paper,
but that would be premature. Other AMBA-2 protocols that
extend the core operators (such as those for error handling)
demand different composition operators. We want to identify
these operators before choosing a notation. Aspect-oriented
programming [5] offers composition operators for fine-grained
behavior extensions that are promising for the additional
protocols. Balancing the rich information structure of the
diagrams while retaining sufficient abstraction and readability
is an important area for future work.

We are also applying our constructs to AXI, HyperTransport,
and the OVL assertion language (also specified largely dia-
grammatically). The latter effort is promising, but the former
two lack the explicit iterative development style of AMBA-
2. We are presenting this work as a short paper in hopes
of gaining early insight into what determines the high-level
structure of an interface protocol specification, and what kinds
of high-level structures lead to designer-friendly specifications.

Acknowledgements: Mike Gordon proposed studying the struc-
ture of timing diagrams in bus specifications via AMBA-2. NSF
grants CCR-0132659 and CCR-0305834 funded this work.
The reviewers provided several thought-provoking comments.

REFERENCES

[1] ARM Limited, “AMBA specification (rev 2.0),” May 1999,
http://www.arm.com/products/solutions/amba2overview.html.

[2] K. Fisler, “Timing diagrams: Formalization and algorithmic verification,”
Journal of Logic, Language, and Information, vol. 8, pp. 323–361, 1999.

[3] N. Amla, E. A. Emerson, and K. S. Namjoshi, “Efficient decompositional
model checking for regular timing diagrams,” in IFIP Conference on
Correct Hardware Design and Verification Methods, 1999.

[4] M. T. Oliveira and A. J. Hu, “High-level specification and automatic
generation of IP interface monitors,” in International Conference on
Design Automation. ACM Press, 2002, pp. 129–134.

[5] “Aspect oriented programming (article series),” Communications of the
ACM, vol. 44, no. 10, Oct. 2001.


