
Interfaces for Modular Feature Verification

Harry C. Li
Brown University, USA
hcli@cs.brown.edu

Shriram Krishnamurthi
Brown University, USA
sk@cs.brown.edu

Kathi Fisler
WPI, USA

kfisler@cs.wpi.edu

Abstract

Feature-oriented programming organizes programs
around features rather than objects, thus better supporting
extensible, product-line architectures. Programming lan-
guages increasingly support this style of programming, but
programmers get little support from verification tools. Ide-
ally, programmers should be able to verify features inde-
pendently of each other and use automated compositional
reasoning techniques to infer properties of a system from
properties of its features. Achieving this requires carefully
designed interfaces: they must hold sufficient information to
enable compositional verification, yet tools should be able
to generate this information automatically because experi-
ence indicates programmers cannot or will not provide it
manually. We present a model of interfaces that supports
automated, compositional, feature-oriented model check-
ing. To demonstrate their utility, we automatically detect
the feature-interaction problems originally found manually
by Robert Hall in an email suite case study.

1 Introduction

Modules are crucial to large-scale software construc-
tion [25]. Modules divide a system into coherent collections
of data structures and functionality that programmers can
assemble into a suite of services. The benefits that modules
bestow, such as independent development and code reuse,
have ensured the widespread adoption of modules in soft-
ware development.

Having different developers write the modules in a sys-
tem increases the likelihood of incompatibility between
modules. Programmers therefore need some level of com-
position verification to protect against latent errors that are
not detected until late into development or even deploy-
ment. Type checking at module boundaries is perhaps the
most basic and widespread form of verification. Each mod-
ule’s interface specifies its services as a series of function or
method names and the type signatures on their inputs and
outputs; the module also specifies the interfaces it expects

of the modules with which it will eventually compose. Type
checkers confirm that an individual module satisfies its own
interface and that it uses services from other modules type-
correctly. Modern languages such as ML [23] and Java [14]
support this basic notion of modular verification, and it is so
useful and convenient that programmers use it daily without
complaint.

While type-based modular verification is a handy first
line of defense, it proves only a very simple theorem (typ-
ically, that well-typed programs will not go “wrong” [22]);
furthermore, this theorem is fixed and built into the type sys-
tem. Developers often need to prove richer theorems about a
system’s behavior. Behavioral verification can uncover sub-
tle errors such as concurrency violations, race conditions,
deadlock, and progress failures. As programs grow more
complex, and increasingly use communication and concur-
rency, behavioral verification grows more critical.

The feasibility of modular behavioral verification is un-
fortunately diminished by a simple but critical practical
concern: the need for specifications. While programmers
voluntarily write types, decades of experience have shown
that programmers are highly unlikely to write more com-
plex specifications of a module’s behavior. This problem
persists even when these specifications are fed to tools that
can provide concrete feedback [13]. Worse, programmers
often simply lack sufficient understanding of the program’s
behavior and may not have the training necessary to cor-
rectly use the specification logics. Without specifications,
however, the modular verification tools cannot function,
leaving the programmers who most need verification unable
to exploit it.

One tempting proposition is to compose a complete pro-
gram out of the modules, then verify the program as a
whole. This idea fails for numerous reasons. First, not all
modules are available at the same place, because they are
written by independent authors and assembled (in a com-
ponential fashion [27]) by a client. Second, even when the
modules are available (say at the client), the total number of
system configurations can be too numerous: for instance, in
a product line construction [10], the total number of com-
binations of product line features can exhibit combinatorial

1

explosion. Finally, even a single one of those configurations
may be too large to verify en masse due to the well-known
problem of state explosion [8].

For behavioral verification to be useful and tractable in
practice, it must therefore apply to modules, rather than
only to whole programs. Ideally, a modular verification
methodology should support proving properties about indi-
vidual modules and inferring properties of composed sys-
tems from properties of the individual modules; further-
more, these methods should retain the automation of type
checking. Most importantly, given a behavioral property
expected of a whole system, the technique must automati-
cally generate the module specifications because program-
mers often will not, and sometimes may not be able to, sup-
ply them. This is the essence of automated software en-
gineering: to automatically handle tasks that programmers
cannot manually perform.

The verification technique that this paper defines specif-
ically addresses feature-oriented modules. These modules
encapsulate individual program features that cross-cut sys-
tems [18] and contain the code fragments that implement a
feature’s functionality for each actor in the overall system.
In recent years, researchers from a variety of applications
areas have noted that programming with cross-cutting con-
cerns can simplify a variety of software engineering prob-
lems such as maintenance, evolution, and product-line de-
velopment.

This paper focuses on the interfaces that feature-oriented
modules need in order to support modular model checking
of behavioral properties. Interfaces must contain sufficient
information for tools to prove whether composition would
violate the properties proven of an individual module. This
requires interfaces to contain constraints, similar to verifi-
cation conditions, that other modules must satisfy at com-
position time. Our methodology derives these conditions
automatically during feature verification. Thus, for feature-
oriented modules we are able to lift the benefits of auto-
mated modular verification to the level of behavioral prop-
erties. A companion paper [20] contains the algorithmic
details.

This paper also demonstrates the utility of our interfaces
through a case study. The case study is based on an anal-
ysis of an email system originally conducted by Robert
Hall [15]. This example is interesting because it contains
a substantial number of feature interactions; in our method-
ology, these manifest as properties that hold of individual
features, yet fail after composition. Hall originally identi-
fied these interactions manually. Using our methodology,
we can detect these interactions automatically and compo-
sitionally given desired properties of the individual features.

Section 2 provides an overview of the case study used
in this paper. Section 3 describes our approach to feature-
oriented verification and the interfaces that it engenders.

encrypt-outgoing

!has-key?

has-key?

encrypt-mail

encrypt-mail
encrypt

fwd-incoming

!fwd-address-provisioned?

fwd-address-provisioned?

fwd-deliver

fwd-forward

Figure 1. The encryption and forwarding fea-
tures. Dashed states resolve with concrete
ones during composition.

Section 4 presents the results of our case study. Section 5
reviews related work. Section 6 offers concluding remarks.

2 The Email Case Study

The email application offers several features, a charac-
teristic of product line systems; these features can, how-
ever, adversely interact with one another in many ways.
The application contains a database which stores informa-
tion pertinent to individual users, such as their encryption
keys, mail aliases, and forwarding addresses (if any). The
application contains the following features (Figure 1 shows
some of their state machines): basic mail delivery, digi-
tal signatures, forwarding, anonymous remailing, encryp-
tion, decryption, signature verification, auto-reply, filtering
(based on sender’s hostname), mail hosting.

Hall found a variety of interactions by manually inspect-
ing numerous configurations of these features. Many of
these interactions violate straightforward requirements on
the individual features; this paper studies ten of these re-
quirements. We state the requirements both informally and
as formal properties in the temporal logic CTL [8]. In the
descriptions, “deliver” refers to a message that reaches a
user on the local mail system and “received” refers to a mes-
sage that reaches an external recipient.

1. Once a message is signed, the sender field is not altered
until the message is delivered or received.
Formula:

��������� 	�

������	�����������
��������� �
"!$#�%�

	��&�('
) ����* � +�����,-�.�&!
��� +"�
��/10�0

2. When a message is ready to be remailed, it is never
mailed out with the sender’s identity exposed.
Formula:

�����32�%�

45�
67�$�8%$�9*:� ���;%�
"<=

>?��<= ��@6
A �B%$�C* 0D0

3. If one tries to verify a signature, then the message must
be verifiable.
Formula: ���������
	���
������ ��	���
������ ������� � �

4. When a message is encrypted, it is never decrypted and
then sent in the clear.
Formula: �����!�#"%$&�'	�(����)�*�,+.-���� �
����0/1�,��$2�%�
��2-4365
�7�98!+.-��2$&�'	�(%�:�2-�;=<>��8?�&"@$��
	�(��:��-6ACBD�&�E� ��3F�,�

5. If a message is to be remailed, it is formatted correctly
for the remailer to process it.
Formula: �������:G�5H�#BD�&�E� ���I�J�K"��L���&B �&�E� �&�'����G��FBD���M�

6. If an auto-response is generated, the response eventu-
ally is delivered or received.
Formula: �����N��O��:G��P�,�2QR(#G�"%QL�S�T�VUW+.-���� �
@�&�X/Y�����
$2�@�
��2-43F�

7. There is no loop where messages are infinitely mailed
back and forth.
Formula: ���Z�VU[�����@-#	

8. If a message is forwarded, it is eventually delivered or
received.
Formula: ��������G��
\�����-��]�VU^+�-��&� �
����7/_���2$��%�
@��-�3`�

9. If the auto-responder replies to a message, then that
message’s subject line must be in the clear.
Formula: �����H��O��:G��P�,�2QR(#Ga"�QP���:�E"@$2GaB �K"%bc�d$�� �%���
�

10. If an outgoing message is signed, then its body is never
changed unless is it delivered or retrieved.
Formula: �����eQf� b�"2�fBD�&�E�g;hQ�� b�"%��-i�j�*�I-��&� �
������2-S/
�,�R���k� �R
@��-l5S�#G4-#	��fO�"@$&m���"%b��2-n�,�

11. If a mailhost generates an error message, then that
message is eventually retrieved or delivered.
Formula: �����NB �&�o�om@G&Q:�`�F�&�.��G��`pX�&�E���q�VU_+.-���� �
����0/
�,��$2�@�
��2-43F�

Each of these properties holds in the feature that imple-
ments it. Each property also fails when the feature that
implements it is composed with another (specific) feature.
Section 4 describes these interactions and the specific as-
pects of our methodology that detect the failures.

3 Modular Feature Verification

Intuitively, a feature-oriented module contains the code
fragments that implement a feature across the actors of
a system. In a full email application, for example, a
message-forwarding feature would involve the mail client,
the database of user information (to retrieve the forward-
ing address), and the router that dispatches mail to users.
Rather than insert separate code into each of the database,
router, and client, feature-oriented programming keeps the

Feature 1

Feature 2

Figure 2. Features and their composition.

code together in the design. This organization makes it eas-
ier to add and remove features, thus making feature-oriented
programming well-suited to product-line development.

Inferring properties about feature-oriented systems from
individual features requires a formal semantics of feature
composition. Some popular versions of cross-cutting, such
as aspects [18], lack the level of formal semantics necessary
to support this task. Our work uses a somewhat restricted
model of features for which the composition semantics is
straightforward. Our model is similar at the high-level to
those of Batory [5] and Ossher and Tarr [24], but differs
at the low-level. We view features as fragments of state
machines and composition as inserting edges between the
fragments for the same actor; Figure 2 shows an example.
While a state-based model does not completely capture the
behavior of the software, it is rich enough to uncover inter-
esting technical problems with compositional verification.

The contents of feature interfaces arise from various as-
pects of our verification methodology. To simplify the pre-
sentation, we describe interfaces in stages, refining them as
we cover the methodology in more detail. We begin with
our formal model of features and their composition.

Definition 1 A state machine rtsYu�v?wfxNwfy�wfz%{�wP|nwL}VwL~0�
is a tuple where v is a set of states, x and y are sets of input
and output atomic propositions, z {�� v is the initial state,
|���v � PL(x) �Mv is the transition relation, }��av��d���
indicates which propositions are true in each state, and ~��
vZ���&� indicates which propositions are false in each state
(�gz � v?w:}0u�z��>��~�u�z��7s��).1

Definition 2 A feature is a tuple �.�D�&w2���2�2wP�V��� of state ma-
chines.

Given two features and the states at which to connect the
state machine fragments, we can compose the features by
inserting edges between the fragments. This leads to our
first definition of feature interfaces, as well as a definition
of composition:

Definition 3 (Interfaces, version 1) An interface for feature
���N�&w2���2�RwP�V�a� contains the following information:

1Our motivation for specifying both true and false propositions in state
machines will become clear shortly.

� For each
���

, a set exit of states in
���

from which con-
trol can enter another feature.

� For each
���

, a state re-enter in
���

to which control can
return from another feature.

Definition 4 Let � � and �	� be features with the same num-
ber of component state machines. Let
 � and
�� be inter-
faces of � � and ��� , respectively. Composing � � and ���
via
 � and

� yields a tuple of state machines ��� ���
���
��� ����� .
Each � � combines the ����� machines of � � and � � by insert-
ing a transition from each state in exit of � ��� to re-enter of
� � � and from each state in exit of � � � to re-enter of � ��� .
3.1 The Core Verification Methodology

Our verification methodology supports three tasks:

1. Proving a CTL property of an individual feature
through model checking (the verification step).

2. Automatically deriving preservation constraints on the
interface states of a feature that are sufficient to pre-
serve each property after composition.

3. Proving that a feature � � satisfies the preservation con-
straints of another feature � � (the preservation step).
We establish preservation by analyzing at most � � , not
the composition of � � and � � .

We derive the preservation constraints during the verifi-
cation step using (a variant of) CTL model checking. The
standard CTL algorithm works by labeling all states with
subformulas of the property to be verified. When we ver-
ify a property against a feature (in the verification step), the
interface states are labeled with some of these subformulas.
During the preservation step, we must check that adding
the new feature will preserve all of these labels. We there-
fore store these labels in the interface and confirm that they
still hold during preservation checks. We refer to this as the
original methodology later in the paper; the formal details
appear elsewhere [12].

The original methodology handled reasoning about con-
trol properties, but not data attributes. To handle data in
features, our methodology must support reasoning about
features as open systems and propositions whose interpre-
tations evolve upon composition; this also compels us to
enrich the interfaces. The remainder of this section uses the
email case study to illustrate why these needs arise, how
they affect our interfaces, and how we use the interface in-
formation. The algorithmic details appear elsewhere [20].

3.2 Deriving the Interfaces: The Verification Step

The verification step has two purposes: first, it verifies a
property against an individual feature; second, it computes

the state labels that we will store in the feature’s interface
for preservation checks at composition time. Two aspects
of our methodology, features as open systems and evolving
propositions, affect how we perform this step.

3.2.1 Open Systems

Consider property 4 of the email application, which states
that once a message is encrypted, it is never sent out on
the network in the clear. This property holds of the en-
cryption feature. If we compose the encryption feature and
the forwarding feature, we will need to check that the for-
warding feature preserves this property. The standard CTL
model checking algorithm [8] will not be able to perform
this check, however, because the forwarding feature’s state
machine does not contain the proposition �!#"%$'&)(+*,
- . This
is not a design error. Encryption is not part of forward-
ing, so the forwarding feature should not contain references
to the message attributes associated with encryption. This
separation of concerns, which underlies feature-oriented de-
sign, inherently yields verification tasks involving unknown
propositions; unknown propositions lead to open systems.

We handle open systems using Bruns and Godefroid 3-
valued CTL model checking algorithm [7]. This algorithm
allows propositions to have values *.$�/# , 0�1)2 34 , or /)!65�!#7+89! .
We interpret propositions from other features as /6!)5�!#7+89! ;
the *.$�/# and 0�1)2 3: labelings in Definition 1 capture the three
values (propositions not labeled with either *.$;/# or 0�1)2 3:
in a state are interpreted as /6!)5�!#7+89!). A 3-valued model
checker can return *.$;/+ , 0�1)2 3: , or /)!65�!#7+89! as the value of
a property in a structure. From a verification perspective,
the /6!65�!+7+8�! result is less useful than a *.$;/+ or 0�1)2 3: re-
sult. In the context of compositional verification, a result
of /6!)5�!#7+89! during a preservation check would require us
to verify the composition of the features, rather than the
individual features. To potentially increase the number of
cases yielding concrete results, Bruns and Godefroid per-
form two verifications which they call optimistic and pes-
simistic; in the former, all /)!65�!#7+89! s are interpreted as *.$;/+ ,
while the latter interprets them as 0�1)2 34 . Any property which
evaluates to 0�1)2 3: in the optimistic model is guaranteed to
be false, while any property which evaluates to *.$;/+ in the
pessimistic model is guaranteed to be true [7]. Thus, a 3-
valued model check actually involves two runs of the model
checker; we must store the labelings that arise from both
runs in our interfaces.

The open systems arising from features differ from those
arising from conventional model checking. In conventional
model checking, modules compose in parallel; propositions
defined in other, abstracted, modules can change value any-
time. Features, in contrast, compose sequentially2; propo-

2Parallel composition occurs within features (to synchronize actors),
but not across them. Our work exploits this refined architecture [12].

sitions arising from one feature do not change value while
another feature is executing. Furthermore, we can parti-
tion propositions from other features into data propositions,
which represent attributes of shared data (such as whether
a message is encrypted), and control propositions which
model the external (user) choices that drive the feature (such
as ����������	�

������� from property 2). Control propositions of
one feature are never true in another feature because fea-
tures do not execute simultaneously. Thus, we can set the
control propositions from other features to ����� ��
 (rather than� �����������) during model checking; reducing the number of� ����������� s increases the likelihood of obtaining concrete re-
sults during model checking.

Definition 5 (Interfaces, version 2) An interface for feature���� "!$#$#�#$!��&%('
contains the following information:

) For each
�+*

, a set exit of states in
�

from which con-
trol can enter another feature.

) For each
� *

, a state re-enter in
��

to which control can
return from another feature.

) A partition of
�+*

’s propositions (,.-0/) into control
and data propositions.

) For each state 1 in exit -�2 re-enter 3 , two sets of CTL
formulas: one containing the labels ascribed to 1 dur-
ing the pessimistic check, and the other containing the
labels ascribed to 1 during the optimistic check.

3.2.2 Evolving Propositions

Consider property 2, which requires messages passed
through the anonymizing remailer to not reveal any infor-
mation that identifies the sender. What is the definition of�����4�$56��� � � in this property? From the perspective of the
remailer feature alone, �����(��5���� � � is the same as the propo-
sition 78

������� 9:�����(��56�;� <$
 assigned in the remailer. Once we
add the signing feature, however, a message also needs to
be unsigned in order to be considered anonymous.

This example illustrates how adding features may change
our interpretation of existing propositions. In this sense,
the propositions in our formulas evolve over time; in our
running example, they capture concepts that arise in email
systems, but the concrete definitions of those concepts may
change based on the features included in the model. Our in-
terfaces must therefore handle evolving propositions while
retaining compositionality.

Our methodology views evolving propositions as propo-
sitions that do not label states in the state machines but that
may appear in properties. As we compose features, we re-
solve the evolving propositions into boolean combinations
of concrete propositions from the features. The follow-
ing definition captures these bindings. We model check a

formula under an interpretation by replacing all evolving
propositions in the formula with their bindings under the
interpretation.

Definition 6 An interpretation is a function from evolving
propositions to boolean formulas (containing = , > , ?). We
assume that no evolving propositions appear in the range of
an interpretation.

Verifying properties of individual features requires 3-
valued model checking. We wish to increase the number
of cases in which future preservation checks can be per-
formed compositionally; as modifying the interpretation
of an evolving proposition could affect whether a prop-
erty holds, we must anticipate the impact of changes to
the evolving propositions. Our methodology handles two
specific changes: those that logically strengthen a proposi-
tion’s interpretation, and those that logically weaken it. The
methodology thus verifies properties under three interpreta-
tions of evolving propositions, as detailed in the following
algorithm.

Verification step: Let @ be a feature, A be a prop-
erty to verify against @ , and B be an interpretation of the
evolving propositions in A . We verify A under three inter-
pretations:

1. The straightforward 3-valued check of A relative to B .

2. A strengthening check in which each evolving propo-
sition C in A is strengthened to BED�CGFH=JI�KML�NPO�QSR for
some new proposition I�KML�NPO�QSR .

3. A weakening check in which each evolving proposi-
tion C in A is weakened to BED�CGFS>PI�KML�NPO�QSR for some
new proposition I�KML�NPO�QSR .

Failure of the strengthened/weakened checks indicate cases
where the property would not hold if the propositions
evolved a particular way. In these cases, if the property fails,
we also store the generated counterexample in the interface,
so we can present it to the user at composition time. The
preservation step (Section 3.3) will choose which set of la-
bels to use based on the context of the composition.

Our use of separate strengthening and weakening checks
is analogous to Bruns and Godefroid’s use of pessimistic
and optimistic interpretations, in that it treats the extremal
cases. Treating all possible strengthening/weakening cases
would result in a combinatorial blowup, which would ren-
der the methodology impractical. Our case study demon-
strates that properties often involve only one evolving
proposition (since properties generally correspond to single
requirements), so this approach appears useful in practice.

The combination of evolving propositions and 3-valued
model checking leads to the following, final, definition of
interfaces:

Definition 7 (Interfaces, version 3) The new interface def-
inition replaces the last item from version 2 (Defn 5) with
the following information:

� For each state in exit
���

re-enter � , six sets of CTL
formulas, arising from the pessimistic, optimistic,
pessimistic strengthened, pessimistic weakened, opti-
mistic strengthened, and optimistic weakened checks.
We store two pieces of information with each set: the
interpretation of evolving propositions that was in ef-
fect when the formulas were derived, and whether the
conditions for that set guarantee the property to hold
or be violated. If a property is violated, we also store
the counterexample arising from the violation.

The number of different sets of labels required to support
compositional preservation checks would overwhelm de-
signers if we asked them to develop the interfaces manu-
ally. Fortunately, the CTL model checking algorithm gener-
ates the formula sets automatically (model checkers based
on LTL would not easily support this task). Thus, while
these interfaces are more complicated than standard, type-
based interfaces, our ability to generate them automatically
makes them tractable for designers to use. As the formulas
in these sets are short, representable as strings, and assigned
to only a few states, the sizes of our interfaces should not be
prohibitive in practice.

3.3 Using the Interfaces: The Preservation Step

We use the preservation step to check that composing
features ��� and �	� will preserve a property
 already
proven of ��� . In general, we perform this step by attaching
two dummy states to � � , representing the interface states of
� � to which � � will attach. We then seed the dummy state
that exits � � back into � � with the labels assigned to the
actual re-entry state from � � ; these labels are stored in � � ’s
interface. We then use the CTL model checking algorithm
to check that each label from � � ’s exit interface state holds
in the dummy state that enters ��� [12].3 If all of these labels
are preserved,
 is guaranteed to hold in the composition.
Because propositions evolve, however, a given composition
does not need to preserve all of the labels in the interface;
the following algorithm indicates which ones are relevant.

Preservation step: Let �
� be the interpretation used to
verify
 in ��� and let ��� be the new interpretation associ-
ated with �	� . We perform the following sequence of checks
to determine whether
 is preserved in the composition of
� � and � � under � � :
� If ��������� strengthens ��������� for all evolving proposi-

tions � in
 , check whether the pessimistic strength-
3CTL “until” properties also give rise to additional checks, but the for-

mulas to check are also derived automatically and stored in the interface.

ened case held in ��� . If so, copy/confirm the pes-
simistic interface labels that arose under the strength-
ened interpretation on � � ’s dummy states. If not, there
is no need to proceed with verification of � � because
� � already violates the property.

� If ��������� weakens �
������� for all evolving propositions �
in
 , follow the previous case using pessimistic weak-
ened in place of pessimistic strengthened.

� If � � ����� is logically equivalent to � � ����� for all evolv-
ing propositions � in
 , copy/confirm the pessimistic
interface labels that arose under ��� (with no strength-
ening or weakening) on ��� ’s dummy states.

� In all other cases, re-verify
 against � � using � � , then
apply version 2 of the preservation algorithm to check
preservation in � � .

4 Case Study Results

Our interfaces are only effective if they enable us to per-
form most preservation checks compositionally. To evaluate
the effectiveness of our interfaces, we searched for feature
interaction errors in the email application described in Sec-
tion 2. We used the case study to determine

� whether our interfaces and methodology can detect the
feature interaction errors compositionally,

� the extent to which each aspect of our method-
ology (original feature-oriented model checking, 3-
valued model checking, and evolving propositions)
contributed to detecting actual interactions, and

� whether interactions can be detected through combin-
ing small numbers of features.

Our experiments use a model checker that we built
specifically for handling our feature-oriented verification
methodology. We do not present performance figures here
in part because because the state machines for these models
are too small to generate meaningful performance figures,
and because the emphasis in developing the model checker
has been to support the methodology rather than provide
high performance.

We manually extracted the ten properties described in
Section 2 from the interactions that Hall reported in his
study [15]. Hall detected twenty-six interactions, of which
we detected sixteen.4 Of Hall’s remaining ten interactions,
two were too simple to detect at our level of model (we
would have had to artificially design a model to reflect the

4Our tables of results show only fifteen rows because the first of the
property 7 entries captures two related interactions from Hall’s study.

interactions, and the detection would have then been trivial).
Two arose from properties that could be expressed in LTL,
but not in CTL. Two appeared to require a property specifi-
cation language that supports alternation. Two interactions
involved human concepts such as rudeness that didn’t trans-
late well into logical formulas. Finally, two required a re-
mailer with different behavior than the one we had designed
based on the remainder of the study.

Each of the properties from Section 2 held when veri-
fied against the feature that was mainly responsible for im-
plementing it, but failed upon composition with other fea-
tures.5 Table 1 summarizes the feature interactions that we
detected using our modeling and verification methodology.
Each row describes the property (from Section 2) whose vi-
olation led to the undesired interaction, the (ordered) com-
position of features with which we detected the interaction,
a description of the undesirable interaction, and a statement
of which techniques detected the interaction. The values
in the table for the last column indicate one of three tech-
niques: the original compositional methodology, 3-valued
checks, and strengthened/weakened comparisons.

The tables show several results. First, seven of the six-
teen interactions required only the original methodology.
The remaining interactions required some combination of
the enhancements.

Our methodology detected the five interactions marked
with “pessimistic strengthened” based solely on the in-
formation in the interfaces; no additional model check-
ing runs were performed during the preservation step. In
these cases, the verification step determined that strength-
ening the evolving propositions would lead to a violation of
the property and recorded this fact in the interface. When
the violation did occur, the model checker extracted the
counter-example already stored in the interface.

We detected two interactions using evolving proposi-
tions sans 3-valued model checking; these are marked with
“Original” in the techniques column and a non-empty Re-
Interpretation column. In these cases, the preservation step
required model checking, but only for 2-valued logic. Find-
ing the remaining two interactions required both 3-valued
model checking and evolving propositions; in these cases,
the information stored about weakening and strengthening
was not enough to indicate a violation, so the preservation
step ran the 3-valued model checker, using the extended in-
terpretation listed in the table. In no case did we have to
verify the full composition of the listed features in order to
detect an interaction.

In nine of the sixteen interactions, the propositions
evolved at composition time. In all of these cases, the new
interpretations always either strictly strengthened or strictly

5For the rest of this section, we will implicitly assume that features are
composed with the basic mail delivery feature prior to verification; this
defines the propositions ��� ���

and ��� � � 	 ��
 .

weakened their earlier interpretations; due to our stored
interface information in these cases, we never needed to
re-verify a property already proven of a feature after re-
interpretation. This clearly shows that any methodology
for verifying feature-oriented designs must accommodate
evolving propositions. The propositions do, fortunately,
seem to evolve predictably, which verification techniques
should exploit.

The distinction between control and data propositions
was necessary to handle four of the interactions, specifi-
cally, the ones that violated properties 1 and 4. Each of
these compositional checks would have failed if the control
propositions had been interpreted as ��
���
�����
 , rather than
as ��� � � � , during model checking.

This case study suggests that our enriched methodology
is crucial for detecting many interactions. Our original tech-
nique could not find several of the feature interaction prob-
lems in this suite. In fact, our original modeling technique
could not even model the suite accurately due to the lack of
support for evolving propositions. We believe the enriched
technique better reflects the modeling and verification needs
of a broad range of realistic software systems.

An Interesting Interaction

Property 4, which requires an encrypted message to
never be decrypted and then mailed without first being re-
encrypted, led to some interesting results during this study.
The interactions arising from this property cannot occur
with fewer than three features:

� The property holds of the encryption feature alone.

� The property holds when the decryption feature is
composed with encryption because the decryption fea-
ture does not itself mail anything.

� The property holds when encryption is composed onto
either autorespond or forward because the message
stays encrypted until mailed.

� The property fails when autorespond or forward is
composed with encryption followed by decryption be-
cause this composition introduces a path from a state
where the message is clear (and stays clear) to mail. A
3-valued check exposes this.

� The property also fails when decryption follows either
encryption and autorespond or encryption and forward.
The proposition � � ����
 is weakened from ��� � � � to ��� � � ���
������
 ��!�"$# � ������� �%� �&� �

. A pessimistic weakened check on
��
���
 ��!�"$#&����"%��
'� � !(�)
�� or ��
���
 ��!�"$#*�+��
,�-��
'� exposes this.

This property differs from the others that yielded undesir-
able interactions because multiple orders of composition

among the features expose the interaction; furthermore, dif-
ferent techniques (3-valued checks versus evolving propo-
sitions) exposed the interaction depending upon the compo-
sition order.

5 Related Work

Compositional verification has a long history dating back
to Abadi and Lamport’s work on assume-guarantee reason-
ing [1]. In this framework, a designer states manually-
developed constraints (assumptions) on the behavior of a
module as part of its interface; this framework was designed
to support separate development of components. Proof rules
govern when a composition of modules is valid according to
the assumptions, and dictate when safety properties hold of
a composition of modules.

Pnueli [26], McMillan [21], and others have developed
proof rules for compositional model checking; these frame-
works capture module constraints through temporal logic
formulas. These works, however, are really about decompo-
sitional verification, in which the whole system is available
at the same time, but is verified piecewise for tractability.
Having the whole system specification enables designers to
derive assumptions about the behaviors of the surrounding
system. Our modules, in contrast, are developed indepen-
dently of their eventual deployment context. We can, nev-
ertheless, exploit the sequential composition in our frame-
work to automatically derive temporal logic interface con-
straints that must hold at composition time. de Alfaro and
Henzinger capture interfaces through automata [11] for par-
allel composition contexts.

Houdini infers annotations for modular checking in
ESC/Java [13]. The framework infers candidate annota-
tions through static analysis, then uses ESC/Java to check
whether the annotations satisfy the program; if so, the an-
notations can become part of the program’s interface. Our
approach differs in several ways. First, we infer properties
during individual feature verification. Second, our inter-
faces capture sufficient information to preserve properties
upon composition; Houdini’s annotations are not property-
driven, and thus may not be useful for a given property. Fi-
nally, our approach is truly modular in that we do not re-
quire information about the modules we may compose with
in order to derive our interfaces; Houdini requires some as-
sumptions on the remainder of the program to perform its
modular analysis.

Our case study uses modular model checking to detect
certain feature interactions. Feature interaction problems
have received substantial attention in the software engineer-
ing literature [17, 28]. Our emphasis here is on modular
verification, not on model checking as a tool for detecting
feature interaction. Several researchers have attempted the
latter in non-modular settings [4, 6, 16, 17]. While we ap-

preciate that model checking has limitations in detecting
feature interaction, we believe our work enhances the op-
tions for using it when applicable in this domain.

Our email example uses a pipe-and-filter model of fea-
ture composition; this model resembles Zave and Jackson’s
Distributed Feature Composition [16]. Our work differs be-
cause our full methodology supports features that span mul-
tiple actors; we do not cover multiple actors in this paper
as they are orthogonal to our discussion of module inter-
faces. Our work also differs in that its focus is on verifica-
tion rather than architecture and specification.

Other verification researchers have discussed method-
ologies for reasoning under sequential composition [2, 3,
9, 19]. These efforts differ from ours in many ways: none
handle open systems, none were created towards support-
ing cross-cutting design methodologies, and all arise in a
decompositional verification context rather than a modular
design one. Our interfaces and verification methodology are
designed to support modularity at the design level.

6 Conclusions

The automated verification of modern software systems
requires effort in two directions. First, it must address the
structure of modern software: as a third-party composition
of independently-produced components that, increasingly,
encapsulate software features (as in a product line). Sec-
ond, it must realize that, even as this style of software could
greatly benefit from sophisticated verification techniques,
programmers are unwilling and sometimes even unable to
write the specifications necessary for verification tools. Au-
tomatically synthesizing a suitable alternative to these spec-
ifications is a critical software engineering challenge.

The verification technique used in this paper is model
checking, restricted to a modular context. Modular verifica-
tion is critical in this domain for several reasons. Most im-
portant of all, there is usually no clear notion of a “whole”
program, since independent fragments may be produced by
several different developers. In addition, the sizes of whole
programs can easily defeat the various techniques model
checkers deploy to combat state explosion.

This paper’s contributions are twofold. First, it presents
a series of definitions of interfaces that support modular ver-
ification in this component-based programming universe.
The definitions grow to handle both the nature of the soft-
ware itself, and the needs of the verification methodol-
ogy. Second, it presents a study of verifying a suite of
email features. Our technique identifies most of the feature-
interaction problems previously found manually in this case
study, thus validating the utility of our interfaces.

This work does suffer from the problem that a feature
developer may not know which particular features to verify
together to detect errors. This is not a problem for a client,

Property Features
Involved

Problem Description Re-Interpretation
Verification
Techniques

1 sign, forward
The sender field of a signed message
can be altered by a forwarding feature,
and then mailed out.

���������	��

����������������� strength-
ened from � ����� to ����� ������� � Original

1 sign, remail
The remailer changes the sender field
of a signed message.

���������	��

����������������� strength-
ened from � �!��� to � ��� � ��"�#%$ &�� Original

2 sign, remail
Signing a messages gives away the
identity irrespective of whether the
sender field is changed.

��� � �'"(# � ��� strengthened from��� � �'"(#)$ &'� to ��� � �'"(#)$ &'�
* � �+$ �,���'�

Pessimistic
Strengthened

3 encrypt, verify
If a message is signed and then en-
crypted, the encryption defeats signa-
ture verification.

- ���.$ /0��1�2 � strengthened from
� �!��� to � ��������"�3 � �'�

Pessimistic
Strengthened

4 encrypt, decrypt,
forward

A message can be encrypted, mailed
out, decrypted, and then forwarded in
the clear.

�����	��"�3 � �'� weakened from
� ��2 �
� to �����	��"�3 �
!�������'�'�4� � ��2 3-valued

check

4
encrypt, decrypt,
auto-respond

A message can be encrypted, mailed
out, decrypted, and then auto-
responded such that the auto-response
contains the original text of the
message.

�����	��"�3 � �'� weakened from
� ��2 �
� to �����	��"�3 �
!�������'�'�4� � ��2 3-valued

check

5 encrypt, remail
A message intended to be remailed
cannot be processed by the remailer if
the message is originally encrypted.

$5��

�6��#7��$52 �	��
 ��� ��#7� � strength-
ened from � ����� to � �����	��"�3 � �'�

Pessimistic
Strengthened

6 auto-respond, fil-
ter

The filter feature can potentially dis-
card messages generated by the auto-
responder.

Original

7 forward, remail

If a user establishes a pseudonym
on a remailer and forwards to that
pseudonym, then any message sent to
the user will be forwarded to the re-
mailer, sent to the user, forwarded to
the remailer, etc.

Original

7 forward
A user can provision a forward mes-
sages back to himself, thus creating an
infinite loop.

Original

7 forward, mailhost

If forwarding is setup to a non-existent
user, then the mailhost generates error
messages that are then forwarded back
to the non-existent user, resulting in
longer and longer error responses from
the mailhost.

Original

8 forward, filter
The filter feature can potentially dis-
card forwared messages.

Original

9
auto-respond, de-
crypt, encrypt

An encrypted message can fail decryp-
tion and thus be given to the auto-
responder in which it cannot read the
subject line.

�	2 ����� strengthened from � ����� to
� �����	��"�3 � �'� .

Pessimistic
Strengthened

10 remail, sign
The remailer will alter the body of a
signed message if the user wants re-
mailing.

1 � ��"�

����������������� strengthened
from � �!��� to � ��� � ��"(#)$ &'� .

Pessimistic
Strengthened

11 filter, mailhost

If a user sends a message to an un-
known recipient at a mailhost, then er-
ror messages from that mailhost can be
discarded by the filter.

Original

Table 1. Each feature interaction is listed with the property it violates, the interpretation of proposi-
tions it requires, and the verification techniques used to expose the problem.

who presumably handles only a particular composition.
Even a producer can, however, exploit our methodology to
identify potential problems. As Section 4 showed, a failed
pessimistic strengthened test stores a counter-example in
the interface. Thus, any other feature that strengthens a fea-
ture’s propositions is guaranteed to raise an error: the devel-
oper can detect this without even verifying the second fea-
ture. This (and, dually, optimistic weakening) should pro-
vide a useful diagnostic for a feature developer.

There are numerous directions for future work. Natu-
rally, we need to conduct more case studies to identify other
weaknesses in our interfaces. Second, we need experience
with a broader user base to determine the true usability of
our tools. More significantly, we intend to explore other
kinds of verification tools, such as declarative specification
solvers, that might better support the incomplete informa-
tion that we currently model with 3-valued logic.

Acknowledgements: We thank Bob Hall for discussions
about his case study, Colin Blundell for his feedback, and
the anonymous reviewers for their detailed comments.

References

[1] M. Abadi and L. Lamport. Conjoining specifications.
ACM Transactions on Programming Languages and Sys-
tems, 17(3):507–534, 1995.

[2] R. Alur, R. Grosu, and M. McDougall. Efficient reacha-
bility analysis of hierarchic reactive machines. In Interna-
tional Conference on Computer-Aided Verification, volume
1855 of Lecture Notes in Computer Science, pages 280–295.
Springer-Verlag, 2000.

[3] R. Alur and M. Yannakakis. Model checking of hierarchical
state machines. In Symposium on the Foundations of Soft-
ware Engineering, pages 175–188, 1998.

[4] C. Areces, W. Bouma, and M. de Rijke. Feature interaction
as a satisfiability problem. In M. Calder and E. Magill, ed-
itors, Feature Interactions in Telecommunications Systems.
IOS Press, 2000.

[5] D. Batory. Product-line architectures. In Smalltalk and Java
Conference, Oct. 1998.

[6] K. Braithwaite and J. Atlee. Towards automated detection
of feature interactions. In Feature Interactions in Telecom-
munications Systems, pages 36–59. IOS Press, 1994.

[7] G. Bruns and P. Godefroid. Model checking partial state
spaces with 3-valued temporal logics. In International
Conference on Computer-Aided Verification, number 1633
in Lecture Notes in Computer Science, pages 274–287.
Springer-Verlag, 1999.

[8] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 2000.

[9] E. M. Clarke and W. Heinle. Modular translation of Stat-
echarts to SMV. Technical Report CMU-CS-00-XXX,
Carnegie Mellon University School of Computer Science,
August 2000.

[10] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, 2002.

[11] L. de Alfaro and T. A. Henzinger. Interface automata. In
Symposium on the Foundations of Software Engineering,
pages 109–120, 2001.

[12] K. Fisler and S. Krishnamurthi. Modular verification of
collaboration-based software designs. In Joint European
Software Engineering Conference and ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, pages
152–163, Sept. 2001.

[13] C. Flanagan and K. R. M. Leino. Houdini, an annotation
assistant for ESC/Java. In Formal Methods Europe, 2001.

[14] J. Gosling, B. Joy, and G. L. Steele, Jr. The Java Language
Specification. Addison-Wesley, 1996.

[15] R. J. Hall. Feature interactions in electronic mail. In Fea-
ture Interactions in Telecommunications Systems. IOS Press,
2000.

[16] M. Jackson and P. Zave. Distributed feature composi-
tion: A virtual architecture for telecommunications services.
IEEE Transactions on Software Engineering, 24(10):831–
847, Oct. 1998.

[17] D. O. Keck and P. J. Kuehn. The feature and service inter-
action problem in telecommunications systems: A survey.
IEEE Transactions on Software Engineering, 24(10):779–
796, Oct. 1998.

[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In European Conference on Object-Oriented
Programming, June 1997.

[19] K. Laster and O. Grumberg. Modular model checking of
software. In Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 1998.

[20] H. Li, S. Krishnamurthi, and K. Fisler. Verifying cross-
cutting features as open systems. In Symposium on the Foun-
dations of Software Engineering, 2002.

[21] K. McMillan. A compositional rule for hardware design re-
finement. In International Conference on Computer-Aided
Verification, Lecture Notes in Computer Science, pages 24–
35. Springer-Verlag, 1997.

[22] R. Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17(3):348–375,
Dec. 1978.

[23] R. Milner, M. Tofte, and R. Harper. The Definition of Stan-
dard ML. MIT Press, Cambridge, MA, 1990.

[24] H. Ossher and P. Tarr. Multi-dimensional separation of con-
cerns in hyperspace. Technical Report RC 21452(96717),
IBM, Apr. 1999.

[25] D. L. Parnas. On the criteria to be used in decompos-
ing systems into modules. Communications of the ACM,
15(12):1053–1058, Dec. 1972.

[26] A. Pnueli. In transition from global to modular temporal rea-
soning about programs. In Logics and Models of Concurrent
Systems, volume 13 of NATO ASI series. Springer-Verlag,
1984.

[27] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, 1998.

[28] P. Zave. Calls considered harmful and other observations: A
tutorial on telephony. In T. Margaria, editor, Second Inter-
national Workshop on Advanced Intelligent Networks, 1997.

