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Introduction

Probabilistic models pervade almost all areas of computer science today (e.g., computer vi-

sion, graphics, intelligent agents, and natural language processing). One common modeling

tool is that of a finite-state, stationary Markov chain, which is characterized by an initial

probability distribution and a (Markov) transition matrixthat satisfies the Markov prop-

erty. The long-term behavior of such a chain can be summarized by another probability

distribution, which is a particular example of astabledistribution, or “mixed” equilibium.

Under certain conditions, a Markov matrix has a unique stable distribution, which may

then be computed using standard linear algebra techniques.In general, however, a Markov

matrix may have an infinite number of mixed equilibria, so that determining the long-term

behavior of the chain requires more difficult analysis.

Economists and game theorists have also used such models to study, for example, mar-

ket dynamics and learning in repeated games. It is quite common for such models to

have multiple mixed equilbria. Since individuals do not always behaverationally (i.e., op-

timally), some researchers have introduced an additional parameter,ǫ, that captures the

“mistakes” (i.e., sub-optimal choices) that individuals sometimes make, which has the

added benefit of forcing the model to a unique long-run equilibrium. The resulting model

is called aperturbedMarkov chain, and the corresponding transition matrix is then aper-

turbedMarkov matrix (PMM), with entries that arefunctionsof ǫ. Of particular interest is

the limit of the stable distributions of a PMM asǫ → 0, the so-calledstochastically stable

distribution (SSD) of a PMM (Kandori et al., 1993; Young, 1993), which is known to exist

and is unique.

A naive approach to computing the SSD of a PMM is to simply to fixǫ at a very small

value and to compute the corresponding stable distributionof the resulting unperturbed

Markov matrix using traditional linear algebra techniques. Repeating this computation for

a decreasing sequence ofǫs yields a sequence of approximations to the SSD. However,
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without precise analytic bounds on the error of such approximations (as a function ofǫ),

they do not really say anything about the SSD. An exact combinatorial algorithm for com-

puting the SSD is known (Friedlin and Wentzell, 1984), but itinvolves enumerating certain

spanning subtrees of the graph associated with the PMM. Because sufficiently expressive

Markov models tend to be very high-dimensional, and becausethe number of spanning

subtrees grows exponentially with the dimension, such an approach is not feasible in gen-

eral.

Recently, Gambin and Pokarowski (2001) have attempted to exploit state-aggregation

techniques to compute stable distributions of high-dimensional Markov matrices. While

these researchers have devised an efficient, recursive algorithm, their results are only ap-

proximate. We improve upon past results by presenting a novel state aggregation technique,

which we use to give the first (to our knowledge) scalable, exact algorithm for computing

the stochastically stable distribution of a perturbed Markov matrix. Since it is not com-

binatorial in nature, our algorithm is computationally feasible even for high-dimensional

models. Researchers in economics have already used our approach to study the dynamics

of housing markets. Given the widespread use of Markov models in computer science, we

imagine that it will soon find direct applications there, as well.
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Overview

This thesis is divided into three parts. Part I focuses on Markov matrices and their stable

distributions. This part sets the groundwork for Part II, onperturbed Markov matrices

(PMMs) and their stochastically stable distributions (SSDs). It is here where we present

our algorithm for computing the SSD of a PMM. Part III presents two additional algorithms,

which were inspired by our algorithmic work on computing theSSD of a PMM; however,

making these theoretical connections precise remains for future work.

Overview of Part I

In more detail, the main goal of Part I is to introduce our novel approach to state aggregation

in a Markov chain, which we callreduction, given in chapter 5. Unlike related techniques,

reduction actually “eliminates” states from consideration by compressing time. In fact,

state aggregation is only a side-effect of reduction that arises when we choose to eliminate

a maximal number of states.

In Part II, we show that reduction can be generalized to PMMs in a manner that is

amenable to (real) analysis. While the primary goal of Part Iis to introduce the construction

of chapter 5 for use in Part II, we will illustrate its usefulness immediately (in Part I) by

proving a number of “structure” theorems for Markov matrices. That is, we will use the

construction to develop novel proofs of classic results on the nature of the set of stable

distributions of a Markov matrix.

We first present our reduction construction in the context ofMarkovmatrices, deferring

making the connection with Markov chains until later. Although the construction may be

defined algebraically, the intuition behind it is geometric. So we begin with a combination

of graph theory and linear algebra in chapter 1, showing how algebraic properties of a
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Markov matrix,M , may be expressed in terms of its associated graphs, where the vertices

of the graph correspond to indices ofM .

Two key concepts defined in chapter 1 areopenandclosedsets of vertices in a graph.

We will show, for example, that there always exists a walk from any vertex in open set that

exits that set, and that we can apply our construction to eliminate a sets of indices ofM iff s

corresponds to an open set of vertices in the graph ofM . We will also begin to demonstrate

the connection between closed sets ofM and its collection of stable distributions.

Because the reduction construction is defined in terms of submatrices, in chapter 2, we

develop sufficient theory to carefully define and analyze thebehavior of certain submatrices

of a Markov matrix. In chapter 3, we give a novel proof thatM∞ ≡ limN→∞
1
N

∑N−1
j=0 M j

exists for any Markov matrix,M . This will allow us to prove the first of our structure the-

orems, characterizing the set of stable distributions of a Markov matrix. Next, in chapter 4,

we give an algebraic characterization of open sets, which prepares us for chapter 5.

Finally, in chapter 5, we present our main construction,reduction, along with another

important one we callscaling. For unperturbed matrices, scaling may be recognized as

right-preconditioning, a standard technique used to solvelinear systems of equations. Re-

duction is more subtle, in that it will allow us to “eliminate” open sets of indices.

In this chapter we also define two novel notions ofequivalencebetween Markov matri-

ces, and show that we may recover the set of stable distributions of a given Markov matrix

from the corresponding set of any equivalent one. This is a non-trivial result, in that, even

though reduction produces a Markov matrix of strictly smaller dimension, we can still

prove that the result is, in a precise sense, equivalent to the original. Thus, if we are only

interested in computing stable distributions, reduction is a powerful tool for simplifying

high-dimensional Markov models.

Overview of Part II

The heart of Part II is our algorithm for computing the SSD of aPMM, presented in chap-

ter 7, section 7.7. However, we begin by taking time to prove the Markov Chain Tree

Theorem (MCTT) in detail. As we will explain in the followingparagraph, this theorem

relates the stable distributions of a Markov matrix to the collection of directed spanning

subtrees of its associated graph. Although it is not computationally practical, the MCTT
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provides the theoretical basis for most of chapter 7. We present a novel proof of the MCTT,

which exploits basic properties of the determinant and which, we feel, has a pleasing geo-

metric flavor to it.

Thus, in chapter 6, we will establish some geometric preliminaries on directed spanning

trees. We will show that there always exists a walk from any vertex that enters some closed

set of vertices, and in particular, if a graph contains exactly one closed set, then it contains

a directed, spanning subtree rooted at each vertex of that set. We will then define a vector,

wM , which, in the case thatM is unichain (i.e., its associated graph has a single closed

class), will turn out to be proportional to its unique stabledistribution. We will prove that

this is the case by defining another vector in terms of determinants (specifically, as the

diagonal of theadjoint of the laplacian, M − I), which is easily seen to be proportional to

that stable distribution, as well as towM .

In chapter 7, we move on to give a precise definition of a perturbed Markov matrix,Mǫ,

and its associated stochastically stable distribution. The key issue throughout the chapter is

that we must be able to take limits asǫ goes to 0 (i.e., continuity). Thus, the entries ofMǫ

must be sufficiently well-behaved, they must remain so as such as we operate onMǫ, and,

for sufficiently smallǫ, the entries inMǫ are either identically zero or positive. These three

conditions on the analytic nature ofMǫ, effectively force the entries of a PMM to be in a

certain class of functions, known asexponentially convergentfunctions.

Continuity is an obvious restriction. Although somewhat vaguely stated, at this point,

since we will want to perform standard linear algebraic operations onMǫ, the second con-

dition is also plausible. The third condition is a bit more subtle. As suggested in the

Introduction,Mǫ is supposed to have a unique stable distribution (i.e., mixed equilibrium)

for small, positiveǫ. This corresponds to the property thatMǫ beunichainfor sufficiently

smallǫ > 0. This property is defined in terms of the (unweighted) graph (cf. section 1.2)

associated withMǫ (for each fixed value ofǫ > 0), i.e., that it has a unique closed class. For

consistency, it is reasonble to require that thisunweightedgraph not change as we varyǫ.

This corresponds exactly to our third requirement on the entries of a PMM. This allows us

to define the unweighted graph associated withMǫ, which we will denote byG− (Mǫ). and

not worry about whether this refers to the graph of the PMM or the graph of the Markov

matrix for a fixedǫ, since these must be equal.

Thus, in section 7.1, we introduce the class of exponentially convergent functions and
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discuss how members of this class behave both algebraicallyand analytically. After

first definingperturbedmatrices in section 7.2 (as matrices with exponentially convergent

entries), we define perturbedMarkovmatrices PMMs in section 7.3. Using the MCTT, we

show that the unique stable distribution ofMǫ is a perturbed matrix, so that its limit as

ǫ→ 0, i.e., the stochastically stable distribution ofMǫ, is well-defined. In sections 7.4-7.6,

we show how the concepts of equivalence, scaling, and reduction from chapter 5 generalize

to PMMs.

We then use these constructions, in section 7.7, to give our algorithm for computing the

SSD of a PMM. The two fundamental difficulties with designingsuch an algorithm are:

• how to efficiently represent a PMM for algebraic computation, and

• how to carry out the necessary algebraic computationswithout ever inverting a PMM.

By a careful appeal to the MCTT, we show that:

• we may represent any PMM by a pair of real-valued matrices, and

• by applying reduction to eliminate open sets with respect toM0 ≡ limǫ→0 Mǫ, we

need only invert submatrices ofM0, i.e., unperturbed Markov matrices.

Finally, in order to guarantee that our algorithm makes progress and eventually terminates,

we use scaling in a rather subtle manner (cf. Corollary 7.17).

Overview of Part III

Part III presents two additional algorithms, which were inspired by our algorithmic work

on computing the SSD of a PMM.

In chapter 8, we reformulate the problem of topologically sorting a directed graph,

usually restricted to directed,acyclic graphs, as a multi-objective optimization problem

overarbitrary, weighted, directed graphs. We present an algorithm and prove that it yields

an optimal weighted, topological sort. When combined with suitable empirical techniques

for generating meaningful graphs, this algorithm could yield interesting results in several

application domains, including ranking, preference aggregation, and information retrieval.

As such, we have dubbed our algorithmGraphRank. We conjecture that a variation of
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the SSD algorithm, tailored to only compute the “exponents”of the stable distribution, will

compute precisely the same solution asGraphRank. If true, this would give us a Markov

chain interpretation for our ranking solution, a la Dwork etal. (2001) In brief, we would

model each edge of the original graph as an individual PMM, and represent the entire

graph by a convex combination of all such PMMs. We conjecturethat the “exponents” of

the stable distribution of the resulting PMM yield the same optimal, weighted topological

sort of the original graph as produced byGraphRank.

In chapter 9, we present another algorithm ranking algorithm, which we callQuick-

Rank. This algorithm is recursive, and can be used to rank individuals in social network,

based on an associated hierarchy. For example, these individuals may be research articles,

in which case the social network would be given by citations,and the hierarchy specified

by areas of specialization.

This is actually not simply a single algorithm, but a whole class of algorithms parame-

terized by a given “base” ranking algorithm, which we apply at each level in the hierarchy.

One view of our approach is that it suitably modifies a given “base” ranking algorithm so

that the resulting ranking satisfies two intuitively desireable axioms, which we have dubbed

peer reviewandBonacich’s hypothesis.

The idea of exploiting a hierarchy in this way has been suggested in in previous work.

For example, using only a 2-level hierarchy, determined essentially by URL domains, with

PageRank as the base ranking algorithm, yields the BlockRank algorithm of Kamvar et al.

(2003b). It should be noted that they did not argue to use the results of BlockRank directly,

but only as a good, first approximation to PageRank. In contrast, we argue that the ranking

scheme ofQuickRank may produce superior results, in that they more acurately reflect

the judgements of “local” experts and are resistant to the ranking manipulation technique

of “web-spamming”.

As withGraphRank, we conjecture that, when the base ranking algorithm has a Markov

chain interpretation (such as in the case of PageRank), the ranking whichQuickRank pro-

duces may characterized as the SSD of an appropriately framed PMM. While we have been

able to do this for a 2-level hierarchy, this remains an open problem for general hierarchies.
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Chapter 1

Markov Matrices and “Markov” Graphs

In this chapter, we compile a collection of definitions and facts regarding Markov matrices

and their associated graphs. Throughout, we will rely on thefollowing notation. We letSn

denote the set of integers from1 to n, and we letS0
n denote the set of integers from0 to n.

Often,Sn will represent the index set for ann× n square matrix. We will also useSn and

S0
n to define sequences, whereσ : S0

l → Sn defines a sequence onSn of lengthl + 1. We

will denote theith element ofσ by σi (instead ofσ(i)).

1.1 Graph Theory Essentials

We begin with some basic notions from graph theory. Specifically, we will:

• give formal definitions of (un)directed, (un)weighted graphs,

• define (strongly) connected components of a graph, as well as, open and closed sets

of vertices, and

• state and prove some basic properties of open and closed setsof vertices that we will

need in subsequent chapters.

1.1.1 Basic Definitions

We will define adirected graph, G = (V, E, s, t), as a 4-tuple in whichV is a set of

vertices, E is a set ofedges, ands : E → V andt : E → V are mappings from edges

3
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to vertices. We will restrict our attention to graphs in which bothV andE are finite. In

this figure, vertices are drawn as geometric points, and edges as arrows from one vertex to

another. Specifically, the arrow corresponding to an edge,α ∈ E, starts at the points(α)

and terminates (i.e., ends) att(α). If s(α) = t(α), thenα is called aself-loop.

We will define anundirectedgraph as a directed graph,G = (V, E, s, t), with the

property that it contains the “reverse” of every edge. That is, for eachα ∈ E, there exists

anα′ ∈ E such thats(α) = t(α′) andt(α) = s(α′). Intuitively, we may view the pairα

andα′ as a single “composite” edge, drawn as an arrow with arrowheads on both ends, or

alternatively, as a line segment with no arrowheads at all.

When there are norepeatededges in a graphG, (i.e., when there are no two edges,

αi ∈ E, with the same starting and ending points,s(α1) = s(α2) andt(α1) = t(α2)), we

can representE by the set of ordered pairs,{(s(α), t(α)) ∈ V × V | α ∈ E}. In this case,

s andt are just the respective projections onto the first and secondcoordinates of each edge,

and we can refer to the graph simply asG = (V, E), with each edge represented as a pair

of vertices. The order of this pair matters only when the graph is directed.

A walk of lengthl in a (directed or undirected) graph is a sequence ofl edges,{αi}
l
i=1

such thatt(αi) = s(αi+1) for 1 ≤ i ≤ l − 1. The walk starts ats(α1) and ends at

t(αl). A path is a walk that does not revisit any edges or vertices, i.e.,{αi}
l
i=1 is a path iff

l = |{αi | 1 ≤ i ≤ l}| and l + 1 = |{s(αi) | 1 ≤ i ≤ l} ∪ {t(αi) | 1 ≤ i ≤ l}|. Note that

since a path is a walk, and since we can always drop edges from awalk to obtain a path,

there is a walk fromv to w iff there is a path fromv to w.

In a graph that has no repeated edges, a walk may also be specified by a sequence

σ : S0
l → S|V | of l + 1 vertices. Here,vσ0

= s(α1) is the first vertex in the walk and

vσl
= t(αl) is the last, with(vσi

, vσi+1
) ∈ E andvσi

= t(αi) = s(αi+1), for all 1 ≤ i ≤ l−1.

In this definition, a path is a walk for which the corresponding σ is 1-1 (i.e., distinct inputs

map to distinct outputs), so that no vertex is revisited. Note that this second definition is

more general than the first (for graphs that have no repeated edges), since it allows walks

(and paths) of length 0, which we specify by a single vertex,{vi}. When we encounter

such walks (and paths), we will say that they both start and end atvi.

A cycle is a path of length 1 or more with the additional condition that the initial and

final vertices are the same; that is,σ0 = σl, or s(α1) = t(αl). A self-loopis a cycle of

length 1.
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Given a directed graph,G = (V, E), its transitive closure, GT = (V, ET ), is defined

such that(vi, vj) ∈ ET iff there is a directed walk (or path) fromvi to vj in G. Because we

allow walks of length 0,(vi, vi) ∈ ET for all i. This definition allows us to define a natural

preorder1 on V , given by the “leads to” relation,;, wherevi ; vj iff
(
vi, vj

)
∈ ET .

This preorder gives rise to an equivalence relation,∼, wherei ∼ j (read, “vi is strongly

connectedto vj”) iff i ; j andj ; i. Equivalence classes with respect to∼ are often

called thestrongly connected components(SCCs) ofG.2 Note that SCCs are maximal,

meaning they do not contain other SCCs; further, the SCCs ofG partition the vertices of

G, meaning each vertex belongs to exactly one SCC.

Similarly, we have a “connects to” relation,!, associated with the undirected graph

corresponding toG. That is,vi ! vj iff there is anundirectedwalk (or path) fromvi

to vj in G. The equivalence classes associated with this relation arecalled theconnected

componentsof G. A tree is a connected component with no cycles. A graph is called

completeif there is an edge from every vertex to every other vertex. A complete graph

consists of only one connected component, which is in fact strongly connected.

Thus far, we have restricted our attention to directed and undirectedunweightedgraphs.

Much of this thesis is actually concerned with weighted graphs. A weighted (directed or

undirected) graph is one augmented with a functiond : E → R, which assigns a real-

valued “weight” to each edge in the graph. The weight of an edge,d(α), is drawn as a label

on the corresponding arrow, and can be thought of as a cost or alikelihood of traversingα.

Sometimes, we will be given a weighted graphG = (V, E, d), but will wish to refer to the

corresponding unweighted graph. To do so, we will use the notation,G− = (V, E).

Finally, we define therestrictionof a (directed/undirected, weighted/unweighted) graph,

G, with vertex set,V , and edge set,E, as follows. Given a set of vertices,V ′ ⊂ V , G|V ′

will be the subgraph with vertex set,V ′, the setE ′ of all edges with both ends inV ′, and

the corresponding restrictions of all other ancillary functions (e.g.,d).

1A preorderis a reflexive (i.e.,v ; v) and transitive (i.e.,u ; v andv ; w impliesu ; w) relation.
2Strongly connected components may also reasonably be called communicating classes, to conform with
the literature on Markov chains (see section 5.3).
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1.1.2 Open Sets and Closed Classes

We will say that a subset of vertices,V ′ ⊂ V , is invariant iff V ′ has no outgoing edges, i.e.,

for all
(
vi, vj

)
∈ E, if vi ∈ V ′, thenvj ∈ V ′. An invariant SCC is referred to as aclosed

class. IfV ′ does not contain a closed class, we will say thatV ′ is open. Vertices that are do

not belong to a closed class are calledtransient.

Note that the terms “open” and “closed” are not opposites here. “Closed” refers only

to single (invariant) SCCs, while “open” can refer to a set ofvertices larger than a single

SCC. In fact, the vertices in an open set need not even be connected. However, any single

SCC is either open or closed. If it is not open, it contains some closed class, which must

be the entire SCC since SCCs are maximal, and so it is closed. If it is not closed, it cannot

contain a closed class since SCCs are maximal, and so it is open.

We prove two simple lemmas in this section. The first is an intuitive observation about

closed classes, namely that there is always a walk entering and terminating in a closed class.

It follows immediately from this fact that every directed graph contains a closed class. The

second is an intuitive observation about open classes, namely that there is always a walk

exiting an open class. This second lemma follows as a simple consequence of the first.

Lemma 1.1.Starting from any vertex in a directed graphG, there exists a walk terminating

in a closed class. In particular, every directed graph contains a closed class.

Proof. Let {C1, . . . , Cm} be the SCCs ofG. Pick an arbitrary vertexv, and call its SCCCσ1
.

If Cσ1
is closed, then we have a walk (of length 0) starting atv and terminating in a closed

class, and we are done. Otherwise,Cσ1
is open, and there is an outgoing edge(s1, t1) with

s1 ∈ Cσ1
andt1 ∈ Cσ2

for someσ2 6= σ1. Now sincev ands1 are in the same SCC, there is

a walk fromv to s1, and continuing along the edge(s1, t1), there is a walk fromv to t1.

As above, ifCσ2
is closed, there is a walk terminating in a closed class, and we are done.

Otherwise, we can repeat the process and find an outgoing edge(s2, t2) with s2 ∈ Cσ2
and

t2 ∈ Cσ3
for someσ3 6= σ2. Now sincet1 ands2 are in the same SCC, there is a walk from

t1 to s2, and continuing along the edge(s2, t2), there is a walk fromv to t2. Proceeding

inductively, we either encounter a closed class, in which case we have found a walk from

v terminating in a closed class and we are done, or we continue the sequenceσ of open

SCCs, and the walk fromv to the vertices in each of these SCCs. In general,si ∈ Cσi
,

ti ∈ Cσi+1
, andCσi

6= Cσi+1
.
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Suppose we never encounter a closed class. Since there are only finitely many SCCs in

G, at some pointσ must include a SCC that it had already included. So for somei < j, we

have thatσi = σj . There is a walk fromv to sj−1, the starting vertex of the incoming edge

to Cσj
, that has two halves: a walk fromv to si, the starting vertex of the outgoing edge

from Cσi
, and a walk fromsi to sj−1. Specifically,si ; sj−1. But sj−1 ; tj−1 (because

of the edge(sj−1, tj−1)), andtj−1 ; si (becausetj−1 ∈ Cσj
= Cσi

), sosj−1 ; si. In

particular,si ∼ sj−1, which is a contradiction, sinceCσj−1
6= Cσj

= Cσi
.

As an immediate corollary, for any directed graphG, the fact that there is a walk from

any vertexv that terminates in a closed class implies thatG contains at least one closed

class.

Lemma 1.2. A subsetV ′ ⊂ V of vertices in a directed graph,G = (V, E), is open iff for

everyv ∈ V ′ there is a walk fromv to some vertexz /∈ V ′.

Proof. Assume thatV ′ is open, and consider an arbitrary vertex,v ∈ V ′. By Lemma 1.1,

there is a walk fromv to some vertex,w, in some closed class,C. SinceV ′ is open,C 6⊂ V ′.

Choosez ∈ C \V ′. Sincew andz are in the same SCC, there is a walk fromw to z. Hence,

there is a walk fromv to z /∈ V ′.

Now assume thatV ′ is not open, i.e., that it contains a closed class,C. We must produce

a v ∈ V ′ for which no walk inG from v leavesV ′. We can choose anyv ∈ C. Since there

is no edge leavingC, there can be no walk fromv that leavesC, much lessV ′.

1.1.3 Closed Classes in Subgraphs

In this section, we examine the relationship between the closed classes of a graph and

the closed classes of certain subgraphs and restrictions. In particular, we observe that the

number of closed classes in a graph cannot decrease as we remove its edges. In other words,

the number of closed classes cannot increase as we add new edges. This observation will

be particularly relevant in Chapter 7.

Lemma 1.3. Given a directed graphG = (V, E) with V ′ ⊂ V an invariant set of vertices,

if C′ is a closed class ofG′ = G|V ′, then it is also a closed class ofG.

Proof. First, we will show thatC′ is invariant inG. By assumption,V ′ is invariant. So

there are no edges inG starting at vertices insideC′ and ending at verticesoutsideV ′. It
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remains to show that there are no edges inG starting at vertices insideC′ and ending at

verticesinsideV ′. SinceC′ is closed inG′, there are no such edges inG′. Further, sinceG′

is a restriction ofG, their edge sets coincide on the restricted set of vertices.Hence, there

cannot be any such edges inG either, andC′ is invariant inG.

Second, we must show thatC′ is a SCC ofG, that is, for allv ∈ C′, w ∈ V , v ∼ w in

G iff w ∈ C′. If v ∼ w, thenw must be inC′, becauseC′ is invariant inG. Conversely, if

w ∈ C′, thenv ∼ w in G′, sov must also be strongly connected tow in G, since any edge

in G′ is also inG. Therefore,C′ is a closed class ofG.

Lemma 1.4.Any closed classC in a connected componentG = (V , E) of a directed graph

G is also a closed class ofG.

Proof. Connected components have no incoming or outgoing edges, soV is invariant, and

the restrictionG|V is exactlyG. Hence, we can apply Lemma 1.3 withG′ = G andC′ = C

to conclude thatC is a closed class ofG.

Lemma 1.5. If G ⊂ G with V = V andE ⊂ E, then every closed class ofG contains

some closed class ofG.

Proof. Let C be a closed class ofG, and considerG
∣∣
C
. (Note that this restriction is not

well-defined unlessV = V .) By Lemma 1.1,G
∣∣
C

contains a closed class, call itC. By

construction,C is contained inC, so we have only to argue thatC is closed inG. BecauseC

is invariant inG, it is also invariant inG, sinceE ⊂ E. Hence, we can apply Lemma 1.3,

with G = G, G′ = G
∣∣
C
, andC′ = C, to conclude thatC is a closed class ofG which is

contained inC.

1.2 Markov Matrices

We will now introduce our fundamental objects of study, Markov matrices and their stable

distributions. Specifically, we will:

• define a Markov matrix, its laplacian, and its set of stable distributions;

• associate a weighted directed graph with any principal submatrix of a Markov matrix

(i.e., a sub-Markov matrix); and
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• carry over the graph-theoretic concepts of Section 1.1 to Markov matrices in order to

define irreducible and unichain Markov matrices.

An m× n matrixM hasm rows andn columns. We writeMi,j to refer to the element

in the ith row andj th column ofM . Observe thatMi,j = et
iMej , where(ei)j = [i = j],3

i.e.,ei has a 1 in theith component, and 0s elsewhere.

Two special cases of matrices arise when one of thedimensions(eitherm or n) equals

1. Specifically, acolumnvector is ann×1 matrix; likewise, arow vector is an1×n matrix.

To keep our notation brief, we will index vectors using one variable instead of two. That

is, for a column vectorv, vi = vi,1, and for a row vectorw, wj = w1,j. The set of column

vectors of dimensionn×1 comprise the vector spaceR
n. Unless otherwise specified, when

we say “vector,” we mean a column vector inR
n.

A submatrixof ann×n matrix,M , is obtained by eliminatingm < n rows and columns

of M to obtain an(n−m)× (n−m) matrix. A submatrix is calledprincipal if the set of

removed rows is the same as the set of removed columns.

We denote thel1-norm onR
n by ‖ · ‖1. For anyv ∈ R

n, this is the sum of the absolute

values of its entries:

‖v‖1 =
n∑

i=1

|vi| .

We will use the same notation to denote the corresponding induced matrix norm on the set

of n× n matrices with real-valued entries,

‖M‖1 = max {‖Mv‖1 | v ∈ R
n, ‖v‖1 = 1} ,

and we will take as known the fact (Horn and Johnson, 1985, p. 294) that

‖M‖1 = max

{
n∑

i=1

∣∣Mi,j

∣∣ | 1 ≤ j ≤ n

}
.

In other words,‖M‖1 is the maximum of the column sums of the absolute values of the

entries ofM . As a matrix norm,‖ · ‖1 obeys the triangle inequality (i.e.,‖M + N‖1 ≤

‖M‖1 + ‖N‖1) and is sub-multiplicative (i.e.,‖MN‖1 ≤ ‖M‖1‖N‖1).

We denote the set of alln × n square matrices with non-negative, real-valued entries

by Matn

(
R

+
)
. A matrix M ∈ Matn

(
R

+
)

is calledMarkov iff JM = J , whereJ =

3We use Iverson’s convention: for any proposition,Q, [Q] = 1, if Q is true, and 0 otherwise (Knuth,
1997, p. 32).
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(1, . . . , 1) ambiguously denotes a row vector of 1s of arbitrary length. In other words,

all columns in a Markov matrix sum to 1. Observe that: for any Markov matrix,M ,

‖M‖1 = 1; likewise, for any submatrixM ′ of M , ‖M ′‖1 ≤ 1.

We will sometimes refer to a principal submatrix,M , of a Markov matrix,M , as a

sub-Markovmatrix. Given a sub-Markov matrix,M , we can define itslaplacian, Λ
(
M
)
≡

M − I. By convention, we will abbreviateΛ
(
M
)

asΛ, Λ (M1) asΛ1, etc.

Notice that ifM is Markov, then:

• Λi,j = Mi,j ≥ 0, if i 6= j, i.e.,Λ has non-negative off-diagonal entries;

• for any j,
∑

i6=j Λi,j =
∑

i6=j Mi,j = 1 − Mj,j ≤ 1, i.e., Λ’s off-diagonal column

sums are less than or equal to 1; and

• JΛ = JM − JI = J − J = 0, i.e.,Λ’s columns sum to 0.

Conversely, it is easy to check that ifΛ satisfies these three conditions, thenM = Λ + I is

Markov.

For any matrixM and vectorv, if Mv = λv, we say thatv is aneigenvectorof M

with eigenvalueλ. Given a Markov matrix,M , a stablevector ofM is an eigenvector

with eigenvalue 1, i.e.,Mv = v. A distribution is a vectorv ∈ R
n such thatv ≥ 0 and

‖v‖1 = Jv = 1. So, astable distributionis a stable vector that is also a distribution.

Observe that the set of stable vectors ofM is a subset of the kernel4 of Λ, sinceMv =

v = Iv implies that(M−I)v = 0 so thatΛv = 0. More specifically, the stable distributions

of M are precisely the non-negative, norm-1 vectors inker Λ, i.e.,stab (M) = ker Λ∩∆n.

Here,∆n = {x ≥ 0 | ∀i, xi ≥ 0 and
∑n

i=1 xi = 1}, the standardn-simplex.

We naturally associate a weighted graphG(M) = (V, E, d) with any non-negative

matrix, M ≥ 0. Specifically, letV = {v1, . . . , vn}, with (vi, vj) ∈ E iff Mj,i > 0

andd(vi, vj) = Mj,i. Graphs obtained in this way cannot have multiple edges withthe

same starting and ending vertices. Also, every vertex in such a graph must have at least one

outgoing edge. By ignoring the weights onG(M), we obtain the corresponding unweighted

graph,G−(M) = (V, E).

For our purposes,M will usually be a Markov or a sub-Markov matrix. For example,

the Markov matrixM on the left of Figure 1.1 gives rise to the “Markov” weighted graph

4Basic linear algebra concepts that are not defined in the mainbody of the thesis are reviewed in Ap-
pendix A.



11

Figure 1.1: Markov Matrix and its associated “Markov” Weighted Graph
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on the right. Intuitively, the entries ofM correspond to probabilities of traversing the

corresponding edges. We do not include an edge fromj to i in the graph whenMj,i = 0,

since there is 0 probability of traversing such an edge, so itshould not be the case that

vi ; vj , i.e., there should not be a walk (or path) fromj to i.

A Markov matrixM is said to bereducibleif G(M) consists of more than one SCC;

otherwise it is said to beirreducible. To conform with the literature on Markov chains, we

call a Markov matrixunichainiff it has exactly one closed class. By Lemma 1.1, we can be

sure that every Markov matrix has at least one closed class. Further, by Lemma 1.5, if we

increase the number of non-zero entries ofM , the number of closed classes cannot increase

and must eventually decrease, since a complete graph consists of exactly one SCC, which

is necessarily closed.

We will carry over the terminology of strongly connected components, closed classes,

and invariant and transient sets of vertices inG(M) and apply it to subsets of the indices of

M in Sn. For example,s ⊂ Sn is closed iffVs = {vi | i ∈ s} is closed inG(M). We can

also define the submatrix,Ms,s
′, of M corresponding to two subsets of indicess, s′ ⊂ Sn

by removing rowi and columnj from M iff i /∈ s andj /∈ s′. This submatrix is principal

iff s = s′, in which case we say thatMs,s is the principal submatrix ofM corresponding

to s. In the next chapter, we will present a more explicit means ofconstructing such sub-

matrices.
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Chapter 2

Existence of a Stable Vector

Because the reduction construction we present in Chapter 5 is defined in terms of sub-

matrices, in this chapter, we carefully lay the groundwork for proving theorems about sub-

matrices. Givens ⊂ Sn, we define two special matrices,πs andıs, that we use to extract

the rows and columns, respectively, whose indices are ins of another matrixM . We

then demonstrate howπs andıs can be used to permute a matrix, yielding a partition that

isolates the submatrix,Ms,s. Further, we prove thatıs is always injective and thatπs is

always surjective, and we show how their corresponding images and kernels are intimately

related. Finally, and most notably,we show that the laplacian of any sub-Markov matrix,

corresponding to a sets′, has a non-zero kernel, ifs′ contains a closed class. In particular,

the laplacian of any Markov matrix has a non-zero kernel. While this doesnot prove the

existence of a stable distribution (because the stable vector need not be non-negative), it

does hint at this important fact, which we will prove in Chapter 3.

2.1 Submatrix Construction

Given a subset of indices,s ⊂ Sn, with cardinalityk = |s|, we can uniquely enumerate

s in increasing order to obtain a sequence(si)
k
i=1. Mathematically, such a sequence is a

bijective mapping fromSk to s, so we can also define its inverse,s−1 : s → Sk, such

that forj ∈ s, s−1(j) = i iff si = j. Further, we can enumerate the complement ofs, s,

which has cardinalityk = n − k, and its inverse in exactly the same way. For example,

if s = {1, 4} ⊂ S4, so thats = {2, 3} ⊂ S4, thens1 = 1, s2 = 4, s−1(1) = 1, and

13
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s−1(4) = 2; ands1 = 2, s2 = 3, s−1(2) = 1, ands−1(3) = 2.

Equipped with this notation, we can now present our method for constructing sub-

matrices. Fors ⊂ Sn, we will define the matrix

ıs =
(

es1
· · · esk

)
.

It is easy to check that multiplying ann × n matrix, M , on the right byıs eliminates the

columns ofM whose indices are not ins and leaves the other columns intact, meaning in

the same order. We will also define the matrix

πs = ıts =




et
s1

...

et
sk


 .

Again, it is easy to check that multiplying ann× n matrix,M , on the left byπs eliminates

the rows ofM whose indices are not ins and leaves the other rows intact.

Now, given ann × n matrix M and two subsetss, s′ ⊂ Sn, Ms,s
′ ≡ πsMıs′ is the

submatrix that results from removing rowi and columnj from M iff i /∈ s andj /∈ s′.

Notice that
(
Ms,s

′

)
i,j

= et
iπsMıs′ej = (ısei)

t Mıs′ej = et
si
Mes

′
j

= Msi,s
′
j
.

Example 2.1. For example, lets = {1, 4}, andM =




1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16




. Here,ıs =

(
e1 e4

)
=




1 0

0 0

0 0

0 1




, andπs =


 et

1

et
4


 =


 1 0 0 0

0 0 0 1


. Further,Mıs =




1 4

5 8

9 12

13 16




, πsM =


 1 2 3 4

13 14 15 16


, andπsMıs =


 1 4

13 16


 = Ms,s. Hence,

Ms,s is the (principal) submatrix corresponding tos.
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2.2 Matrix Permutations

A permutationof a sets is a bijective mappings → s. Whens ⊆ Sn is viewed as a

sequence, we can think of a permutation as a reordering of theelements ofs.

Given a permutationρ of Sn, thematrix permutationof ann×n matrixM according to

ρ is a rearrangement ofM ’s entries resulting in the permuted matrixM ′ such thatMi,j =

M ′
ρ(i),ρ(j), or equivalently,M ′

i,j = M
ρ
−1

(i),ρ
−1

(j)
. In the graph-theoretic representation of

M , G(M), this corresponds to relabelling the vertices, without changing the edges or their

weights.

Using the submatrix construction given above, for any subset s ⊂ Sn, we can define

permutation matricesPs andP t
s such thatP t

sMPs is a permutation ofM that moves the

principal submatrixMs,s to the lower-right-hand corner ofM .

If Ps =
(

ıs ıs

)
, so thatP t

s =


 πs

πs


, then

P t
sMPs =


 πs

πs


M

(
ıs ıs

)
=


 πsMıs πsMıs

πsMıs πsMıs


 =


 Ms,s Ms,s

Ms,s Ms,s


 .

We will refer to this collection of sub-matricesMs,s, Ms,s, Ms,s, andMs,s as apartitioning

of M with respect tos. Now recalling our enumeration ofs ands, with cardinalitiesk and

k, respectively, let

ρs(i) =





s−1(i), i ∈ s

k + s−1(i), i ∈ s
.

We will see thatP t
sMPs is a matrix permutation ofM according toρs.

Example 2.2.With s = {1, 4} ⊂ S4 andM =




1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16




as above,

P t
sMPs =




0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1







1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16







0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1




=




6 7 5 8

10 11 9 12

2 3 1 4

14 15 13 16




,



16

so thatM has the partitioningMs,s =


 1 4

13 16


, Ms,s =


 5 8

9 12


, Ms,s =


 2 3

14 15


,

andMs,s =


 6 7

10 11


 with respect tos.

Notice thatMi,j = (P t
sMPs)ρs(i),ρs(j). For example,M1,2 = 2, and(P t

sMPs)ρs(1),ρs(2) =

(P t
sMPs)3,1 = 2.

Theorem 2.3.Givens ⊂ Sn, with ρs : Sn → Sn and the matricesPs, P
t
s as defined above,

ρs is a permutation ofSn, andP t
sMPs is the permutation ofM according toρs for any

n× n matrixM .

Proof. First we will show thatρs is a permutation ofSn. Recall thats−1 and s−1 are

bijective mappingss → Sk ands → Sk, with k + k = n. So fori ∈ Sn, ρs is a bijective

mappings → Sk if i ∈ s, andρs is a bijective mappings → (k + Sk) if i ∈ s. Here

(k + Sk) ≡ {k + l | l ∈ Sk}. In the first case,1 ≤ ρs(i) ≤ k, and in the second,

k + 1 ≤ ρs(i) ≤ k + k = n. The domainss, s are disjoint withs∪ s = Sn, and the images

Sk, (k + Sk) are disjoint withSk ∪ (k + Sk) = Sn, soρs is a bijective mappingSn → Sn,

that is, a permutation ofSn. This leads to the formula for

ρ−1
s (i) =





si, 1 ≤ i ≤ k

si−k, k + 1 ≤ i ≤ n
.

Now for M ′ = P t
sMPs, we will show thatM ′

i,j = M
ρ
−1
s (i),ρ

−1
s (j)

. Notice thatM ′
i,j =

et
iM

′ej = et
iP

t
sMPsej = (Psei)

tM(Psej). But Psei is the ith column ofPs, which by

definition isesi
if i ≤ k andes

i−k
otherwise. In other words,Psei = e

ρ
−1
s (i)

. Similarly,

Psej = eρ
−1
s (j). SoM ′

i,j = et
ρ
−1
s (i)

Meρ
−1
s (j) = Mρ

−1
s (i),ρ

−1
s (j), andP t

sMPs is the permutation

of M according toρs.

Corollary 2.4. For the permutation matrixPs corresponding tos ⊂ Sn, P t
s = P−1

s , that

is, P t
sPs = I.

Proof. P t
sPs = P t

sIPs = I ′, the permutation ofI according toρs. ThenI ′
i,j = I

ρ
−1
s (i),ρ

−1
s (j)

,

and sinceρ−1
s is bijective,ρ−1

s (i) = ρ−1
s (j) iff i = j. SoI ′

i,j = 1 iff i = j, andI ′
i,j = 0

otherwise. That is,I ′ = I, soP t
s = P−1

s .
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Corollary 2.5. For the permutation matrixPs corresponding tos ⊂ Sn, Ps and P t
s are

Markov. The product of Markov matrices (of the same dimension) is Markov, and, in par-

ticular, andP t
sMPs is Markov for anyn× n Markov matrix,M .

Proof. By definition, the columns ofPs are the standard basis vectors. Thus they are

non-negative and sum to1, andPs is Markov. In particular,JPs = J . Therefore,J =

JPsP
−1
s = JP−1

s = JP t
s , so that the columns ofP t

s sum to 1 as well. SinceP t
s is non-

negative,P t
s is also Markov.

If M1, M2 are Markov and of the same dimension, thenM1M2 ≥ 0 andJ (M1M2) =

(JM1)M2 = JM2 = J , so thatM1M2 is Markov. SinceP t
s andPs are Markov, so is

P t
sMPs, whenM is n× n and Markov.

2.3 Projection and Inclusion

For a subsets ⊂ Sn, with k = |s|, ıs has dimensionn× k, andπs has dimensionk× n. So

by left-multiplication,ıs is a mappingRk → R
n, andπs is a mappingRn → R

k. We callı

an inclusionoperator, because forv ∈ R
k, w = ısv ∈ R

n is the vector whose coordinates

with indices ins are given by the coordinates ofv (in order), while its coordinates with

indices ins are all 0. Likewise, we callπs a projectionoperator, because forv′ ∈ R
n, the

coordinates ofw′ = πsv
′ ∈ R

k are just the coordinates ofv′ with indices ins.

Example 2.6. Let s = {1, 4} ⊂ S4 andv =




1

2

3

4



∈ R

4. The vectorw = πsv =


 1 0 0 0

0 0 0 1







1

2

3

4




=


 1

4


 is the projection ofv on R

2. The vectoru = ısw =



18




1 0

0 0

0 0

0 1





 1

4


 =




1

0

0

4




is the inclusion ofw in R
4.

Next, we will defineR
s ≡ span {ei | i ∈ s}, a subspace ofRn of dimensionk. Simi-

larly, R
s ≡ span {ei | i ∈ s} is a subspace ofRn of dimensionk. The next lemma high-

lights the key algebraic and geometric properties of these projection and inclusion opera-

tors.

Lemma 2.7. Givens ⊂ Sn,

a) πsıs = I = πsıs, πsıs = 0 = πsıs, andısπs + ısπs = I;

b) ker ıs = 0 = ker ıs, im πs = R
k, andim πs = R

k;

c) im ıs = R
s = ker πs, andim ıs = R

s = ker πs.

Proof. Proof of part a): SincePs andP t
s are inverses,

I = P t
sPs =


 πs

πs



(

ıs ıs

)
=


 πsıs πsıs

πsıs πsıs




so thatπsıs = πsıs = I andπsıs = πsıs = 0. Likewise,

I = PsP
t
s =

(
ıs ıs

)

 πs

πs


 = ısπs + ısπs

Proof of part b): By part a),πsıs = πsıs = I. So,ıs andıs are left-invertible, hence injec-

tive with ker ıs = ker ıs = {0}. Likewise,πs andπs are right-invertible, hence surjective

with im πs = R
k andim πs = R

k.
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Proof of part c): The fact thatim ıs = R
s can be seen as follows:

im ıs =
{

ısv | v ∈ R
k
}

=

{
ıs

k∑

i=1

viei | vi ∈ R, ei ∈ R
k

}

=

{
k∑

i=1

viısei | vi ∈ R, ei ∈ R
k

}

=

{
k∑

i=1

viesi
| vi ∈ R, esi

∈ R
n

}

= span
{
ej | j ∈ s

}

= R
s

Likewise,im ıs = R
s.

Now sinceπsıs = 0, it follows that im ıs ⊂ ker πs. Conversely, ifv ∈ ker πs, then by

part a),v = (ısπs + ısπs) v = ısπsv + ısπsv = ısπsv. But ısπsv ∈ im ıs. Thus,ker πs ⊂

im ıs, so thatker πs = im ıs = R
s. Likewise,im ıs = ker πs = R

s.

The compound operationısπs takes any vectorv ∈ R
n and maps it to a vectoru ∈ R

s

such thatui = vi if i ∈ s andui = 0 otherwise. This allows us to take any vector,v ∈ R
n,

and easily decompose it asv = vs + vs, with vs ∈ R
s andvs ∈ R

s.

Example 2.8. As in Example 2.6, lets = {1, 4} ⊂ S4 andv =




1

2

3

4



∈ R

4. Define

vs = ısπsv = ısπsv =




1 0

0 0

0 0

0 1





 1 0 0 0

0 0 0 1







1

2

3

4




=




1

0

0

4




. Similarly, define
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vs = ısπsv =




0 0

1 0

0 1

0 0





 0 1 0 0

0 0 1 0







1

2

3

4




=




0

2

3

0




. Now observe thatvs ∈ R
s,

vs ∈ R
s, andvs + vs = v.

Theorem 2.9. Givens ⊂ Sn, R
n = R

s ⊕ R
s. Further, for anyv ∈ R

n, v = vs + vs, with

vs = ısπsv ∈ R
s andvs = ısπsv ∈ R

s.

Proof. Supposev ∈ R
s ∩ R

s, v 6= 0. Thenv =
∑

i∈s aiei, andv =
∑

j∈s bjej, with

ai, bj 6= 0 for somei, j. But then
∑

i∈s aiei−
∑

j∈s bjej = 0, which is impossible since the

standard basis vectors are linearly independent. SoR
s ∩ R

s = 0.

Now for anyv ∈ R
n, by Lemma 2.7 a),v = Iv = (ısπs + ısπs) v = ısπsv + ısπsv =

vs + vs. Sinceim ıs = R
s andim ıs = R

s, it follows thatvs ∈ R
s andvs ∈ R

s. But then

v ∈ R
s + R

s, so thatRn = R
s + R

s. Therefore,Rn = R
s ⊕R

s.

2.4 Existence Theorem

In this section, we compile a collection of basic facts regarding the structure of a Markov

matrix, its closed classes, and stable vectors, which will be needed in subsequent chapters.

Most notably, we show that the laplacian of any sub-Markov matrix, corresponding to a set

s′, has a non-zero kernel, ifs′ contains a closed class. In particular, the laplacian of any

Markov matrix has a non-zero kernel, which contains a linearly independent set of vectors

corresponding to its closed classes.

Lemma 2.10.LetM be ann× n Markov matrix, and a subset of indicess ⊂ Sn, wheres

is a closed class or union of closed classes ofM .

a) Ms,s = 0.

b) Ms,s is Markov.

c) If s′ is a subset of indices such thats ⊂ s′ ⊂ Sn, thenıs(ker Λs,s) ⊂ ıs′(ker Λs
′
,s

′).

d) ıs
(
stab Ms,s

)
⊂ stab M .
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Proof. Proof of part a): By assumption,s is a union of closed classes. So there are no

edges inG(M) from s to s, which means thatMsi,sj
= 0, for any 1 ≤ i ≤ |s| and

1 ≤ j ≤ |s|. But
(
Ms,s

)
i,j

= Msi,sj
, so

(
Ms,s

)
i,j

= 0, andMs,s is the zero matrix.

Proof of part b): By part a),

P t
sMPs =


 Ms,s Ms,s

Ms,s Ms,s


 =


 Ms,s 0

Ms,s Ms,s


 .

SinceP t
sMPs is Markov, its columns sum to1, and in particular the columns ofMs,s sum

to 1. FurtherMs,s ≥ 0, sinceM ≥ 0. Hence,Ms,s is Markov.

Proof of part c): Take anyv ∈ ker Λs,s, so thatMs,sv = v. Becauses ⊂ s′, R
s ⊂ R

s
′

, and

so im ıs ⊂ im ıs′ , sinceim ıs = R
s and im ıs′ = R

s
′

. In particular,ısv ∈ im ıs′, so there

exists av′ ∈ R
|s

′
| such thatıs′v

′ = ısv. Now observe the following:

Ms
′
,s

′v′ = πs
′Mıs′v

′

= πs
′Mısv

= πs
′IMısv

= πs
′ (ısπs + ısπs) Mısv by Lemma 2.7 a)

= πs
′ısπsMısv + πs

′ısπsMısv

= πs
′ısMs,sv + πs

′ısMs,sv

= 0 + πs
′ısMs,sv by part a)

= πs
′ısv by assumption

= πs
′ıs′v

′

= v′ by Lemma 2.7 a)

Thus,v′ ∈ ker Λs
′
,s

′, andıs
(
ker Λs,s

)
⊂ ıs′

(
ker Λs

′
,s

′

)
.

Proof of part d): Considerv ∈ stab Ms,s, so v ≥ 0, Jv = 1, andv ∈ ker Λs,s. We

will apply part c) with s′ = Sn. The columns ofıs′ are the standard basis vectors in

R
n, ei, such thati ∈ s′. But sinces′ = Sn, this includes all of them, andıs′ = I. So

ṽ = ısv ∈ I ker Λ = ker Λ. Hence, we need only show thatṽ is a distribution. Since
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v, ıs ≥ 0, it follows that ṽ ≥ 0. ṽi = vs
−1

(i) for i ∈ s, andṽi = 0 otherwise, soJṽ =
∑n

i=1 ṽi =
∑

i∈s ṽi =
∑|s|

i=1 vi = Jv = 1. so that̃v ∈ stabM .

Theorem 2.11.LetM be ann× n Markov matrix.

a) ker Λ 6= 0.

b) For any subset of indicess′ ⊂ Sn such thats′ contains a closed class,ker Λs
′
,s

′ 6= 0.

Proof. Proof of part a): The matrixM is Markov, soJM = J . But thenM tJ t = (JM)t =

J t. This implies that(M t− I)J t = 0, soJ t ∈ ker Λt, meaningdim ker Λt 6= 0. Finally, by

Theorem A.1,dim ker Λ 6= 0, soker Λ 6= 0.

Proof of part b): By assumption,s′ contains a closed class. Call its. By Lemma 2.10 b),

Ms,s is Markov, so by part a),ker Λs,s 6= 0. Pick v ∈ ker Λs,s such thatv 6= 0. Now

by Lemma 2.10 c),ıs(ker Λs,s) ⊂ ıs′
(
ker Λs

′
,s

′

)
, so there existsv′ ∈ ker Λs

′
,s

′ such that

ısv = ıs′v
′. Further, by Lemma 2.7 b),ıs is injective, sov′ 6= 0. Therefore,ker Λs

′
,s

′ 6= 0.

As a consequence of this theorem, every Markov matrixM has a stable vector. In

fact, this is true of any principal submatrix,Ms,s, of M containing a closed class,s. By

Lemma 2.10 c), any stable vector ofMs,s can be extended to be a stable vector ofM . Thus,

the kernel ofΛ contains a stable vector ofM corresponding to each of its closed classes,

and these vectors are necessarily independent (since they are non-zero on disjoint sets of

indices). Once we show, in Chapter 3, that every Markov matrix has anon-negativestable

vector, and hence a stable distribution, Lemma 2.10 d) will likewise guarantee the existence

of a set of independent stabledistributionscorresponding to the closed classes ofM .



Chapter 3

Existence of a Stable Distribution

Given any distribution,v0, and a Markov matrix,M , of the same dimension, we can con-

struct a sequence of distributions via iteration,vi = Mvi−1, i ≥ 1. While vi need not

converge asi→∞, it necessarily convergesin the Cesaro sense(Marsden, 1974, p. 363),

that is, 1
N

∑N−1
i=0 vi converges asN →∞. More generally, for any Markov matrix,M j con-

verges in the Cesaro sense (Doob, 1953), that is, the matrix,M∞ ≡ limN→∞
1
N

∑N−1
j=0 M j

is well-defined. Sincevi = M iv0, this implies thatvi converges in the Cesaro sense to

limN→∞
1
N

∑N−1
i=0 vi = limN→∞

1
N

∑N−1
i=0 M iv0 = M∞v0.

In this chapter, we prove a sharper result. We show that the laplacian,Λ, of M induces

a natural splitting ofRn into the kernel and the image ofΛ, and thatM∞ is the associated

projection,πker, ontoker Λ. This allows us to prove our first structure theorem for Markov

matrices, in which we characterize the set of stable distributions of a Markov matrix,M ,

in terms of the columns ofM∞. Specifically, we prove thatM∞ei ∈ stab(M), for all

1 ≤ i ≤ n. This proves the existence of a stable distribution for any Markov matrix.

Lemma 3.1. If M is Markov, then

a) ker Λ⊕ im Λ = R
n,

b) α : ker Λ× im Λ→ R
n, such thatα(v, w) = v + w, is linear and invertible,

c) there are well-defined linear mappings,πker : R
n → ker Λ andπim : R

n → im Λ

such that

i) α(πker, πim) = πker + πim = I,

23
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ii ) πker|ker Λ = I, πim|im Λ = I,

iii ) im πker = ker Λ = ker πim, and

iv) im πim = im Λ = ker πker.

Proof. We first show thatker Λ ∩ im Λ = 0. Takev ∈ ker Λ ∩ im Λ. Sincev ∈ im Λ,

there existsw such thatv = Λw = (M − I)w = Mw − w so thatMw = v + w.

In addition, sincev ∈ ker Λ, Λv = 0, andMv = v. Therefore, by a straightforward

induction,Mkw = w + kv for any k ≥ 1. Solving for v yields v = 1
k

(
Mk − I

)
w.

But ‖v‖1 =
∥∥∥ 1

k

(
Mk − I

)
w
∥∥∥

1
≤ 1

k

∥∥∥Mk − I
∥∥∥

1
‖w‖1 ≤

1
k

(∥∥∥Mk
∥∥∥

1
+ ‖I‖1

)
‖w‖1 ≤

1
k

(
‖M‖k1 + ‖I‖1

)
‖w‖1 = 2

k
‖w‖1. Since0 ≤ ‖v‖1 ≤

2
k
‖w‖1, which is as small as we

like for largek, it follows that‖v‖1 = 0, and thereforev = 0.

For general vector spaces,dim (V + W ) = dim V +dim W−dim (V ∩W ). Applying

this identity toV = ker Λ andW = im Λ, and using the fact thatV ∩W = 0, we have that

dim (ker Λ + im Λ) = dim ker Λ+dim im Λ. By Theorem A.1,dim im M +dim ker M =

n for anym×n-dimensional matrix,M , dim (ker Λ + im Λ) = n, andker Λ+im Λ ⊂ R
n,

so it must be the case thatker Λ⊕ im Λ = R
n.

This means that the mappingα : ker Λ × im Λ → R
n, such thatα(v, w) = v + w, for

v ∈ ker Λ andw ∈ im Λ, is surjective. It is also injective. If0 = α(v, w) = v + w, then

v = −w, that is,v andw are multiples of one another. Butv ∈ ker Λ andw ∈ im Λ, so

v, w ∈ ker Λ ∩ im Λ = 0. In particular,v = w = 0, soker α = (0, 0). Further,α is linear,

since it is just addition.

Thus, there exists an inverse linear mapping,α−1 : R
n → ker Λ× im Λ, corresponding

to a pair of linear mappings,πker and πim, with im πker ⊂ ker Λ and im πim ⊂ im Λ.

In particular, α(πker, πim) = πker + πim = I, sincev =
(
αα−1

)
v = α

(
α−1v

)
=

α (πkerv, πimv) = πkerv + πimv = (πker + πim) v.

Moreover, ifv ∈ ker Λ, sinceα(v, 0) = v and(v, 0) = α−1(v) = (πkerv, πimv), πkerv =

v. In particular,πker|ker Λ = I, so thatker Λ ⊂ im πker. Since by definition,im πker ⊂ ker Λ,

im πker = ker Λ. Also, πimv = 0, so ker Λ ⊂ ker πim. Supposew ∈ ker πim. Then

w = Iw = (πker + πim)w = πkerw + πimw = πkerw. Thenw ∈ im πker = ker Λ, and

ker πim ⊂ ker Λ, soker πim = ker Λ.

Similarly, if v ∈ im Λ, sinceα(0, v) = v and(0, v) = α−1(v) = (πkerv, πimv), πimv =

v. In particular,πim|imΛ = I, so thatim Λ ⊂ im πim. Since by definition,im πim ⊂ im Λ,
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im πim = im Λ. Also, πkerv = 0, so im Λ ⊂ ker πker. Supposew ∈ ker πker. Then

w = Iw = (πker + πim)w = πkerw + πimw = πimw. Thenw ∈ im πim = im Λ, and

ker πker ⊂ im Λ, soker πker = im Λ.

Although we will prove thatM∞ is well-defined without it, the following lemma, which

characterizesπker, will also will turn out to provide an interesting characterization ofM∞.

Lemma 3.2. For any Markov matrix,M , there exists exactly one matrix,M ′, satisfying the

following conditions:

MM ′ = M ′ (3.1)

M ′M = M ′ (3.2)

M ′M ′ = M ′ (3.3)

rk M ′ = dim ker Λ (3.4)

In fact, we must haveM ′ = πker andI −M ′ = πim from Lemma 3.1.

Proof. Existence.We begin by showing thatM ′ = πker satisfies Equations 3.1-3.4. Equa-

tion 3.1 is equivalent to(M − I)πker = Λπker = 0, which is clearly true, sinceim πker =

ker Λ. Likewise, Equation 3.2 is equivalent toπker(M−I) = πkerΛ = 0, which is also true,

sinceim Λ = ker πker. Equation 3.3 follows from Lemma 3.1 c) ii). Sinceim πker = ker Λ

andπker|ker Λ = I, we haveπkerπker = Iπker = πker. Finally, Equation 3.4 follows from the

definition of rank (cf. Theorem A.1) and the fact thatim πker = ker Λ.

Uniqueness.Equation 3.1 implies thatΛM ′ = 0, so thatim M ′ ⊂ ker Λ, and, by

Equation 3.4, we havedim im M ′ = rk M ′ = dim ker Λ, so thatim M ′ = ker Λ. Likewise,

Equation 3.2 implies thatM ′Λ = 0, so thatim Λ ⊂ ker M ′. By Equation 3.4,dim im Λ =

n− dim ker Λ = n− rk M ′ = n− dim im M ′ = dim ker M ′, soim Λ = ker M ′ as well.

By Equation 3.3,M ′(I −M ′) = M ′ −M ′ = 0, so thatim(I −M ′) ⊂ ker M ′. Thus,
(
M ′, (I −M ′)

)
is mapping fromR

n to im M ′ × im Λ′ = im M ′ × ker M ′ = ker Λ× im Λ

such that, using the notation of Lemma 3.1,α
(
M ′, Λ′

)
= M ′ + Λ′ = I. Since inverses are

unique, we must have thatM ′ = πker andI −M ′ = πim.

Next, we prove thatM∞ exists, and further, that it is the unique matrix satisfyingthe

conditions of Lemma 3.2. In particular,M∞ = πker. Hence,πker is Markov.
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Theorem 3.3. For any Markov matrix,M , the sequence of Markov matrices,MN ≡
1
N

∑N−1
j=0 M j converges toM∞ asN →∞. Moreover,M∞ = πker, and it is Markov.

Proof. First, we show thatM∞, the limit of MN asN → ∞, is well-defined. We will

appeal to the classic result from real analysis which says that a sequence converges iff

every subsequence has a convergent subsequence with a common limit (Royden, 1968, p.

37, ex. 11). SinceMN is a bounded sequence (0 ≤
∥∥M j

∥∥
1
≤ 1, so that

∑N−1
j=0

∥∥M j
∥∥

1
≤

N), any subsequence is also bounded. Thus, by a standard argument from real analysis,

(Royden, 1968, p. 37, ex. 8), every subsequence, in turn, hasa convergent subsequence,

call it MNi
.

By Lemma 3.1, any vector,v = πkerv + πimv. If {v1, . . . , vk} is a basis forker Λ, then

there existβr ∈ R
k andw ∈ R

n such thatπkerv =
∑k

r=1 βrvr ∈ ker Λ (i.e.,
∑k

r=1 βrvr is a

stable distribution ofM j , j ≥ 0) andπimv = Λw. So,

MNi
v =

1

Ni

Ni−1∑

j=0

M jv

=
1

Ni

Ni−1∑

j=0

M j

[
k∑

r=1

βrvr + Λw

]

=
k∑

r=1

βrvr +
1

Ni

Ni−1∑

j=0

M j(M − I)w

=
k∑

r=1

βrvr +
1

Ni

[
MNiw − w

]

Now sincelimi→∞
1

Ni

[
MNiw − w

]
= 0, it follows that limi→∞ MNi

v =
∑k

r=1 βrvr =

πkerv. That is,limi→∞ MNi
= πker.

Since every such convergent subsequence has thesamelimit, πker, we know thatMN

converges. It must necessarily converge to the same limit asany of its subsequences. That

is, it must also converge toπker.

Finally, we argue thatM∞ is Markov. Observe thatMN is Markov for all N . It is

non-negative by definition, andJMN = J 1
N

∑N−1
j=0 M j = 1

N

∑N−1
j=0 JM j = 1

N

∑N−1
j=0 J =

J . Now sinceMN ≥ 0, M∞ = limN→∞ MN ≥ limN→∞ 0 = 0. Moreover,JM∞ =

J limN→∞ MN = limN→∞ JMN = limN→∞ J = J .

We close this chapter with our first structure theorem in which we characterize the

stable distributions ofM in terms ofM∞. Specifically, we show that each column ofM∞



27

is a stable distribution ofM . This result immediately implies that every Markov matrix,

M , has a stable distribution.

Corollary 3.4. For any Markov matrix,M , stab(M) = stab (M∞) = M∞∆n. In partic-

ular, for all i, M∞ei ∈M∞∆n = stab (M∞) = stab(M).

Proof. By Theorem 3.3 and Lemma 3.2,M∞ = πker and I − M∞ = πim, so that

ker Λ∞ = ker (I −M∞) = ker πim. Then, by Lemma 2.10 iii),ker Λ∞ = ker Λ. There-

fore,stab (M∞) = ker Λ∞ ∩∆n = ker Λ ∩∆n = stab(M).

By Theorem 3.3,M∞ is Markov, so thatM∞∆n ⊂ ∆n. SinceM∞∆n ⊂ im M∞ =

im πker = ker Λ, it follows thatM∞∆n ⊂ ker Λ ∩ ∆n = stab(M). Conversely, ifv ∈

stab(M), sincev ∈ ker Λ, M∞v = πkerv = v, by Lemma 3.1 c) ii). Thus,v ∈ M∞∆n,

sincev ∈ ∆n.

Example 3.5. For example, considerM =




0 1 0 1
6

1 0 0 1
6

0 0 1 1
6

0 0 0 1
2




. By induction, one may

easily check that

M i =




[i is even] [i is odd] 0 1
3

(
1− 1

2
i

)

[i is odd] [i is even] 0 1
3

(
1− 1

2
i

)

0 0 1 1
3

(
1− 1

2
i

)

0 0 0 1

2
i




and

1

N

N−1∑

i=0

M i =




1
2

+
[N is odd]

2N
1
2
−

[N is odd]
2N

0 1
3

+ 1−2
N

3N2
N−1

1
2
−

[N is odd]
2N

1
2

+
[N is odd]

2N
0 1

3
+ 1−2

N

3N2
N−1

0 0 1 1
3

+ 1−2
N

3N2
N−1

0 0 0 2
N
−1

N2
N−1




so thatM∞ =




1
2

1
2

0 1
3

1
2

1
2

0 1
3

0 0 1 1
3

0 0 0 0




. In particular, we see thatM∞e4 = 2
3
M∞e1 + 1

3
M∞e3.
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SinceM∞e1 = M∞e2 =




1
2

1
2

0

0




andM∞e3 =




0

0

1

0




are clearly stable distributions of

M , all the columns ofM∞ are instab(M), as Corollary 3.4 predicts.



Chapter 4

Sub-Markov Matrix Invertibility

We begin this chapter by constructing a sets of walks in a directed, weighted graph corre-

sponding to a given matrix. We then show how by aggregating the weights of such walks

we arrive at an alternate formula for the powers of a matrix. Finally, we apply these tools

to Markov matrices to obtain results about the invertibility of sub-Markov matrices.

4.1 Sequences and Walks

Let Sn(l) =
{
σ : S0

l → Sn

}
be the set of sequences inSn of length l + 1. Likewise,

let Sn(i, j, l) = {σ ∈ Sn(l) | σ0 = j andσl = i} be the set of sequences inSn of length

l + 1 starting withj and ending withi. For any sets ∈ Sn, we also defineSn(s, i, j, l) =

{σ ∈ Sn(i, j, l) | σt ∈ s, ∀ 0 < t < l} to be the set of sequences inSn of lengthl + 1 from

j to i that include elements ofs only. Note thatj andi do not themselves need to be ins,

so for anys, Sn(s, i, j, 1) = Sn(i, j, 1). Finally,Sn(s, i, j) =
⋃∞

l=1 Sn(s, i, j, l) is the set of

all such sequences of arbitrary length (greater than 1).

For any non-negative matrix,M ≥ 0, and for any sets ⊂ Sn, we definePM(s, i, j, l) ⊂

Sn(s, i, j, l) as follows:

PM(s, i, j, l) =
{
σ ∈ Sn(s, i, j, l) |Mσt+1,σt

6= 0, ∀0 ≤ t < l
}

.

This represents the set of walks of lengthl in G(M) from vj to vi that include vertices in

Vs only. In addition,PM(s, i, j) =
⋃∞

l=1P(s, i, j, l) is the set of all such walks of arbitrary

length (greater than or equal to 1). There are correspondingdefinitions forPM (i, j, l) and

29
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PM(l), representing the set of walks inG(M) of lengthl that start atvj and end atvi, and

the set of walks inG(M) of lengthl, respectively.

Lemma 4.1. For anyn× n Markov matrix,M , for any sets ⊂ Sn that is open inM , and

for anyj ∈ s,
⋃

i∈s PM(s, i, j, n) is a proper subset of
⋃

i∈Sn
PM (i, j, n).

Proof. Certainly
⋃

i∈s PM(s, i, j, n) is a subset of
⋃

i∈Sn
PM(i, j, n), since

⋃
i∈Sn
PM (i, j, n)

corresponds to walks inG(M) of lengthn starting atvj , and
⋃

i∈sPM(s, i, j, n) corre-

sponds to those same walks with the additional condition that they end ins and include

only vertices ins.

SinceVs is open, by Lemma 1.2, from any vertex inVs there is a walkσ that starts

at vj and ends at some vertexvk /∈ Vs. SinceM is Markov, every vertex inG(M) must

have at least one outgoing edge, soσ can be extended to a walkσ′ of lengthn. But then

σ′ ∈
⋃

i∈Sn
PM(i, j, n), andσ′ /∈

⋃
i∈sPM(s, i, j, n), since it containsvk /∈ Vs. Thus

⋃
i∈sPM (s, i, j, n) is a proper subset of

⋃
i∈Sn
PM (i, j, n).

4.2 Matrix Powers and Walks

Given ann× n matrix,M , and a sequence of indices,σ ∈ Sn(l), l ≥ 1 we will define

W (M, σ) ≡
l∏

k=1

Mσk ,σk−1
. (4.1)

The matrix entryMσk,σk−1
corresponds to the weight on the edge fromvσk−1

to vσk
in

G(M). So the functionW (M, σ) has a graph-theoretic interpretation as the “total” weight

of the walk σ in G(M), where we aggregate weights by multiplication. Sequences of

indices of length 1 correspond to walks of length 0, so following the usual convention that

a product over an empty set is 1,W (M, σ) = 1 wheneverσ ∈ Sn(0).

Lemma 4.2. For anyn× n matrix,M , andσ ∈ Sn(l), W (M, σ) 6= 0 iff σ is a walk in the

graphG(M), that is, iffσ ∈ PM(l). Additionally, for anyi, j ∈ Sn,
∑

σ∈Sn(i,j,l)

W (M, σ) =
∑

σ∈PM (i,j,l)

W (M, σ).

Proof. If σ ∈ PM(l), thenMσi,σi−1
6= 0, for all 1 ≤ i ≤ l. SinceW (M, σ) is the product

of non-zero values, it itself is not zero. Conversely, ifW (M, σ) 6= 0, all of the terms in the

product must be non-zero, soσ must be a walk of lengthl, i.e.,σ ∈ PM(l).
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By definition,PM(i, j, l) ⊂ Sn(i, j, l) ⊂ Sn(l). By the above argument,W (M, σ) = 0,

for σ ∈ Sn(i, j, l) \ PM (i, j, l). Thus, when summing over allσ ∈ Sn(i, j, l), we can drop

the zero terms, so that
∑

σ∈Sn(i,j,l) W (M, σ) =
∑

σ∈PM (i,j,l) W (M, σ).

We can now give a graph-theoretic interpretation of matrix powers in terms of walks in

G(M). In words, for anyn × n matrixM , the(i, j)th entry inM l can be computed as the

sum of the “total” weights of all walks inG(M) from j to i of lengthl.

Lemma 4.3. For anyn× n matrixM ,
(
M l
)

i,j
=
∑

σ∈PM (i,j,l) W (M, σ).

Proof. Using the facts that the standard basis vectorsek can be used to isolate matrix entries

(Mi,j = et
iMej) and decompose the identity matrix (I =

∑n
k=1 eke

t
k), we have

(
M l
)

i,j
= et

iM
lej

= et
i M . . .M︸ ︷︷ ︸

l times

ej

= et
iMIM . . .MIMej

= et
iM




n∑

rl−1=1

erl−1
et

rl−1


M . . . M

(
n∑

r1=1

er1
et

r1

)
Mej

=

n∑

rl−1=1

. . .

n∑

r1=1

et
iMerl−1

et
rl−1

M . . .Mer1
et

r1
Mej

=

n∑

rl−1=1

. . .

n∑

r1=1

Mi,rl−1
Mrl−1,rl−2

. . .Mr2,r1
Mr1,j .

We now apply the substitutionσ(k) = rk, σ(0) = j, σ(l) = i, so that each choice of

values for the summation variables,{r1, . . . , rl−1}, represents a unique choice ofσ : S0
l →

Sn, a sequence of lengthl + 1 which starts atj and ends ati. So this set ofσs is precisely

Sn(i, j, l). Thus,
(
M l
)

i,j
=

∑

σ∈Sn(i,j,l)

Mσl,σl−1
Mσl−1,σl−2

. . . Mσ2,σ1
Mσ1,σ0

=
∑

σ∈Sn(i,j,l)

W (M, σ)

=
∑

σ∈PM (i,j,l)

W (M, σ) .

The final equality follows from Lemma 4.2.
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4.3 Sub-Markov Matrix Invertibility

We will now show that the laplacian,Λs,s, of a sub-Markov matrix,Ms,s, is invertible iff

s is open with respect toM . The first half of this theorem will be crucial for specifying

the reduction presented in Chapter 5, and its generalizations presented in Chapter 7. The

second half will come into play when we make the connection between the reduction on

Markov matrices and the associated construction on Markov chains, in section 5.3.

First, we must prove the following technical lemma relatingwalks in the graph of a

principal submatrix,Ms,s, and certain walks in the graph ofM .

Lemma 4.4. For anyn× n Markov matrix,M , for any sets ⊂ Sn,

∑

σ∈PMs,s
(i,j,l)

W (Ms,s, σ) =
∑

σ
′
∈PM (s,si,sj ,l)

W (M, σ′)

Proof. Recall that becauseMs,s contains only the rows and columns ofM with indices in

s, (Ms,s)i,j = Msi,sj
. For anyσ ∈ PMs,s

(i, j, l), σ0 = j andσl = i. SoW (Ms,s, σ) =
∏l

k=1(Ms,s)σk ,σk−1
= (Ms,s)i,σl−1

. . . (Ms,s)σ1,j = Msi,sσl−1
. . .Msσ1

,sj
. Now we can define

a newσ′ such thatσ′
0 = sj, σ′

l = si, andσ′
k = sσk

for all 1 ≤ k ≤ l − 1. Since all interior

indicesσ′ are ins, σ′ ∈ PM(s, si, sj, l). Moreover,W (Ms,s, σ) = W (M, σ′).

We can also go the other direction. For anyσ′ ∈ PM (s, si, sj, l), there is a correspond-

ing σ ∈ PMs,s
(i, j, l) given byσk = s−1(σ′

k) for 0 ≤ k ≤ l. Similarly, W (M, σ′) =

W (Ms,s, σ). So there is a one-to-one correspondence between elementsσ ∈ PMs,s
(i, j, l)

and elementsσ′ ∈ PM(s, si, sj, l) with W (Ms,s, σ) = W (M, σ′), and, therefore,

∑

σ∈PMs,s
(i,j,l)

W (Ms,s, σ) =
∑

σ
′
∈PM (s,si,sj ,l)

W (M, σ′)

Theorem 4.5. If M is ann× n Markov matrix, with a principal submatrix,Ms,s, defined

by an open set of indices,s ⊂ Sn, then

a) For all integersi ≥ 0,
∥∥M i

s,s

∥∥
1
≤ c⌊

i
n
⌋ for some0 ≤ c < 1, andlimi→∞ M i

s,s = 0.

b) I −Ms,s is invertible, and
(
I −Ms,s

)−1
=
∑∞

i=0 M i
s,s.

Inversely, ifs contains an entire closed class ofM , then
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c) I −Ms,s is not invertible, and

d) limi→∞ M i
s,s 6= 0.

Proof.

Proof of part a): Letc =
∥∥Mn

s,s

∥∥
1
≥ 0. We first show that

∥∥M i
s,s

∥∥
1

is bounded above by

c⌊
i
n
⌋. SinceM is Markov, and sinceMs,s is a submatrix ofM , 0 ≤

∥∥Ms,s

∥∥
1
≤ 1. Since

the matrix norm is sub-multiplicative, for alli,
∥∥M i+1

s,s

∥∥
1
≤
∥∥M i

s,s

∥∥
1

∥∥Ms,s

∥∥
1
≤
∥∥M i

s,s

∥∥
1
,

so the sequence
∥∥M i

s,s

∥∥
1
, i ≥ 1, is decreasing. Looking at everynth term, we have the

subsequence
∥∥∥Mnk

s,s

∥∥∥
1
≤
(∥∥Mn

s,s

∥∥
1

)k
= ck, k ≥ 0. Settingk = ⌊ i

n
⌋, nk ≤ i, so

∥∥M i
s,s

∥∥
1
≤

∥∥∥Mnk
s,s

∥∥∥
1
≤ ck = c⌊

i
n
⌋.

To prove thatc < 1, we will show that thej th column sum ofMn
s,s (i.e., thesth

j column sum

of M) is strictly less than 1, so that all column sums ofMn
s,s are strictly less than 1:

1 =
∑

i∈Sn

(
Mi,sj

)n

(4.2)

=
∑

i∈Sn

∑

σ∈PM (i,sj ,n)

W (M, σ) (4.3)

>
∑

i∈s

∑

σ∈PM (s,i,sj,n)

W (M, σ) (4.4)

=
∑

i∈S|s|

∑

σ∈PM (s,si,sj ,n)

W (M, σ)

=
∑

i∈S|s|

∑

σ∈PMs,s
(i,j,n)

W (Ms,s, σ)

=
∑

i∈S|s|

(
Mn

s,s

)
i,j

. (4.5)

Equation 4.2 follows from the fact thatJM = J , so thatJMn = J , i.e., all column

sums ofMn equal 1. Equation 4.3 follows from Lemma 4.3. Equation 4.4 follows from

Lemma 4.1. Since
⋃

i∈s PM(s, i, sj, n) is a proper subset of
⋃

i∈Sn
PM(i, sj , n), when we

restrict the sum we throw away some positive terms. Finally,we rewrite the equation in

terms of walks inG
(
Ms,s

)
to arrive at Equation 4.5. Therefore, thej th column sum of

Mn
s,s < 1 for arbitraryj, so

∥∥Mn
s,s

∥∥
1

< 1.

Now, since0 ≤ c =
∥∥Mn

s,s

∥∥
1

< 1, it follows that limi→∞ c⌊
i
n
⌋ = 0. Further, since
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0 ≤
∥∥M i

s,s

∥∥
1
≤ c⌊

i
n
⌋, it follows thatlimi→∞

∥∥M i
s,s

∥∥
1

= 0. Finally, since the entries ofM i
s,s

are non-negative and bounded above by
∥∥M i

s,s

∥∥
1
, limi→∞ M i

s,s = 0.

Proof of part b): By part a),
∑∞

i=0

∥∥M i
s,s

∥∥
1
≤
∑∞

i=0 c⌊
i
n
⌋. If we setk = ⌊ i

n
⌋, then every

n consecutive terms in this sum (for anyp ∈ N, pn ≤ i < (p + 1)n) can be grouped

by a constantk (specifically,k = p), so that
∑∞

i=0 c⌊
i
n
⌋ = n

∑∞
k=0 ck = n

1−c
. Hence, the

summation
∑∞

i=0

∥∥M i
s,s

∥∥
1

is bounded above by a convergent series, and so it converges.

Further, since the entries ofM i
s,s are all non-negative and bounded above by

∥∥M i
s,s

∥∥
1
, the

summation
∑∞

i=0 M i
s,s also converges.

Next, we argue that
∑∞

i=0 M i
s,s is the inverse of

(
I −Ms,s

)
. Since both matrices are square,

by Theorem A.2, it suffices to show that the sum is a right-inverse, as follows:

(
I −Ms,s

) ∞∑

i=0

M i
s,s =

(
I −Ms,s

)
lim
j→∞

j−1∑

i=0

M i
s,s

= lim
j→∞

j−1∑

i=0

(I −Ms,s)M
i
s,s

= lim
j→∞

j−1∑

i=0

(M i
s,s −M i+1

s,s )

= lim
j→∞

(M0
s,s −M j

s,s)

= I − lim
j→∞

M j
s,s

= I .

The final step in this derivation follows by part a).

Proof of part c): Inversely, assumes contains an entire closed class ofM . By Theo-

rem 2.11 a),ker Λs,s 6= 0. But (I−Ms,s) = (−1)(Ms,s−I) = (−1)Λs,s, soker(I−Ms,s) =

ker Λs,s 6= 0, andI −Ms,s is not invertible.

Proof of part d): As above, by Theorem 2.11 a),ker Λs,s 6= 0. So there existsv ∈ ker Λs,s

with v 6= 0. Now Ms,sv = v, so(limi→∞ M i
s,s)v = limi→∞(M i

s,sv) = limi→∞ v = v. But

v 6= 0. Therefore,limi→∞ M i
s,s 6= 0.



Chapter 5

Two Useful Constructions

In this chapter, we present our two fundamental constructions, scaling and reduction. We

will show that the result of these constructions applied to aMarkov matrix is another

Markov matrix which is, in a certain sense, equivalent, in that the stable distributions of

the former can be recovered from those of the latter. Appropriate generalizations of these

constructions to perturbed Markov matrices will form the basis of our main algorithm,

presented in Chapter 7.

In addition, the reduction construction will allow us to sharpen the structure theorem

shown in Corollary 3.4 by proving Theorem 5.17 and Corollary5.18. We will also give a

Markov chain interpretation of the construction in section5.3. This will allow us to prove

that the construction “composes” well; that is, if we use it to first eliminate one set of states,

s1, and then proceed to eliminate an additional set of states,s2, we could obtain the same

result by simply eliminating all the states,s1 ∪ s2, at once.

5.1 Scaling

In this section, we introduce the notion ofD-equivalent Markov matrices, whereD is a

matrix satisfying certain conditions. We will see that, intuitively, if we are only interested

in stable distributions, we may replace any Markov matrix with one that isD-equivalent.

Definition 5.1. If M1 andM2 are Markov matrices, we will say thatM2 is D-equivalent

to M1, and writeM2 ≈D M1, iff D ≥ 0 has a non-negative left-inverse andker Λ1 =

D ker Λ2. WhenD = I, we will say thatM2 is equivalentto M1, and writeM2 ≈M1.

35
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In the next Lemma we see that that that for two matrices which are D-equivalent,D

induces a 1-1 correspondence (i.e., a bijective mapping) between their sets of stable dis-

tributions. We will justify the term “equivalent” in Section 5.2, by showing that the other

direction holds; that is, two matrices are equivalent iff they have the same set of stable

distributions.

Lemma 5.2. If M1 andM2 are Markov matrices,M2 ≈D M1, withD, L ≥ 0 andLD = I,

thenD∗(v) = Dv
‖Dv‖1

is a bijective mapping fromstab (M2) to stab (M1).

Proof. First, observe thatD∗ mapsstab (M2) to stab (M1). The matrixD mapsker M2

to ker M1, while the mappingD∗ normalizes that result, dividing by‖Dv‖1. SinceD is

non-negative, the image ofstab (M2) underD∗ is non-negative, norm-1 vectors inker M1.

Next, we will show thatD∗ is bijective.

Injective: If D∗(v) = D∗(w) for v, w ∈ stab (M2), thenDv = kDw for k = ‖Dv‖1

‖Dw‖1
>

0. So,0 = Dv − kDw = D(v − kw). Further,0 = LD(v − kw) = v − kw. Hence,

v = kw. But v andw are distributions, so1 = Jv = Jkw = kJw = k, andv = w. Thus,

D∗ is injective fromstab (M2) into stab (M1).

Surjective: For anyw ∈ stab (M1) ⊂ ker (Λ1), sinceM2 is D-equivalent toM1,

w = Du for someu ∈ ker (Λ2). Let v = u
‖u‖1

. u = LDu = Lw ≥ 0, sov ∈ stab (M2).

Now Dv = Du
‖u‖1

= w
‖u‖1

, andD∗v = Dv
‖Dv‖1

= w/‖u‖1

‖w/‖u‖1‖1
= w/‖u‖1

‖w‖1/‖u‖1
= w

‖w‖1
= w. Thus,

D∗ is surjective fromstab (M2) ontostab (M1), and hence a bijection betweenstab (M2)

andstab (M1).

We now give a simple construction that operates on certain Markov matrices and pro-

ducesD-equivalent results. For any Markov matrix,M , and any diagonal matrix,D, with

0 < Di,i andDi,i

(
1−Mi,i

)
≤ 1 (i.e.,Di,i is positive and sufficiently small) for alli ∈ Sn,

we defineMD = ΛD + I (and the correspondingΛD = ΛD). We say thatMD is the

result ofscalingM by D. Note thatD is diagonal with positive diagonal entries; hence,

it is invertible with positive inverse (it is easy to check that D−1 is also diagonal, with

D−1
i,i = (Di,i)

−1). In particular, it has both left and right inverses, and is thus both injective

and surjective.
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For example, if

M =




1
2

1
3

1
4

1
2

1
3

3
4

0 1
3

0




and D =




1
3

0 0

0 3
2

0

0 0 1
2




, then MD =




5
6

1
2

1
8

1
6

0 3
8

0 1
2

1
2




.

These correspond to the graphs in Table 5.1.

Table 5.1:G(M) andG (MD) with D = diag
(

1
3
, 3

2
, 1

2

)
.

G(M) v1 1
2

v2

1
3

v3

1
2

1
3

3
4

1
3

1
4

G (MD) v1 5
6

v2 v3

1
2

1
6

1
2

3
8

1
2

1
8

By looking at the corresponding graphs, we see that scaling by D adjusts the weight

of the self-loop at each vertex with a proportional adjustment of the weights on the corre-

sponding outgoing edges. WhenDi,i is close to0, the weight of the self-loop ati is large

(near1), and whenDi,i is close to
(
1−Mi,i

)−1
, the the weight of the self-loop is small

(near0). In Section 5.3, we will see that this may be viewed intuitively as adjusting the

“diameter” of each vertex, in that the corresponding scaledMarkov process spends either

more or less time at that vertex.

Lemma 5.3. Given a Markov matrixM , and any diagonal matrix,D, with 0 < Di,i and

Di,i

(
1−Mi,i

)
≤ 1 for all i ∈ Sn, MD is a Markov matrix andMD ≈D M .

Proof. We first show thatMD is Markov. SinceJΛ = 0, JMD = JΛD + J = J , so the

columns ofMD sum to 1. Moreover, all the off-diagonal entries ofMD are nonnegative,

since, fori 6= j, (MD)ij = (ΛD + I)i,j = ((M − I)D)i,j + Ii,j = (MD)i,j − Di,j =

(MD)i,j andM, D ≥ 0, so (MD)i,j ≥ 0. Finally, we must show that all the diagonal

entries ofMD are nonnegative. Observe that(MD)i,i = (ΛD + I)i,i = (ΛD)i,i + Ii,i =

Λi,iDi,i + 1 = (Mi,i − 1)Di,i + 1 = (−1)(1−Mi,i)Di,i + 1. Now (1 −Mi,i)Di,i ≤ 1, so

(−1)(1−Mi,i)Di,i ≥ −1, so(MD)i,i ≥ −1 + 1 = 0.
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SinceD is non-negative with a non-negative inverse,D is surjective. So, by Lemma A.3 b),

ker Λ = D ker ΛD = D ker ΛD. That is,MD ≈D M .

We can use this scaling construction to produce infinitely many Markov matrices which

are equivalent to a given Markov matrix. In particular, we have the following Corollary.

Corollary 5.4. Given a Markov matrixM , if 0 < ǫ and ǫ maxi

(
1−Mi,i

)
≤ 1, then

Mǫ ≡ Λǫ + I is a parameterized family of Markov matrices equivalent toM .

Proof. Letting Dǫ = ǫI, Mǫ = MDǫ
so that Lemma 5.3 implies thatMǫ ≈Dǫ

M . But D

is simply scalar multiplication. So by Lemma 5.3,ker Λ = Dǫ ker Λǫ = ǫ ker Λǫ = ker Λǫ,

andMǫ ≈ M .

5.2 Reduction

In this section, we present a construction which allows us to“eliminate” an open set of

indices,s, of a Markov matrix,M . Specifically, it produces a Markov matrix of strictly

smaller dimension which is equivalent in the sense of Definition 5.1. In this way, itreduces

the dimensionality of the matrix in a principled manner thatdoes not lose any information

regarding its long-term behavior. In Section 5.3, we will see that this corresponds directly to

compressing the time spent in the corresponding states of a Markov chain to 0. Graphically,

it effectively collapses the corresponding vertices inG(M).

ForM Markov withs ∈ Sn an open set of indices inM , we may define:

ı = Ps


 I

−Λ−1
s,s Ms,s


 , (5.1)

p =
(

I −Ms,s Λ−1
s,s

)
P t

s , and (5.2)

M̂ = pΛı + I . (5.3)

Example 5.5. In the Markov matrixM =




0 1
2

1
4

1 0 1
4

0 1
2

1
2


, the vertex with index 3 is an

open set. We will take the reduction ofM with respect tos = {3}.

s is already positioned in the lower-right corner ofM , so the permutation matricesPs

andP t
s are just the identity.
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We haveΛs,s =
(
−1

2

)
, Λ−1

s,s =
(
−2

)
, Ms,s =




1
4

1
4


, Ms,s =

(
0 1

2

)
.

So we can calculateı =




1 0

0 1

0 1


, p =


 1 0 1

2

0 1 1
2


,

M̂ = pΛı+I =


 1 0 1

2

0 1 1
2







−1 1
2

1
4

1 −1 1
4

0 1
2
−1

2







1 0

0 1

0 1


+


 1 0

0 1


 =


 0 3

4

1 1
4


.

Theorem 5.6.For M , ı, p, andM̂ as defined above,

a) ı, p ≥ 0 andJp = J ,

b) p is surjective, andı is injective.

c) M̂ = Ms,s −Ms,s Λ−1
s,s Ms,s,

d) M̂ is Markov.

Proof.

By Theorem 4.5 b),

−Λ−1
s,s =

(
I −Ms,s

)−1
= lim

i→∞

i−1∑

j=0

M j
s,s ≥ 0

Ms,s andMs,s are also both non-negative, sop andı are both well-defined and non-negative.

We now show that the columns ofp sum to 1. SinceP t
sMPs is Markov,JP t

sMPs = J . In

particular,JMs,s + JMs,s = J . Therefore,JMs,s = J − JMs,s = JI − JMs,s = −JΛs,s,

so that

Jp = J
(

I −Ms,s Λ−1
s,s

)
P t

s =
(

JI JΛs,s Λ−1
s,s

)
P t

s

=
(

JI JI
)

P t
s = JP t

s = J

Proof of part a): Proof of part b): Letk = |s|. Thenp is k × n and ı is n × k. Now p

has rankk because its columns include the standard basis forR
k. Similarly, ı has rank
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k because the columns ofıt include the standard basis forR
k, and rk ı = rk ıt. Then

rk p+dim ker pt = k, sodim ker pt = 0, andp is surjective. Similarly,rk ı+dim ker ı = k,

sodim ker ı = 0, andı is injective.

Proof of part c):

M̂ = pΛı + I

=
(

I −Ms,s Λ−1
s,s

)
P t

sΛPs


 I

−Λ−1
s,s Ms,s


+ I

=
(

I −Ms,s Λ−1
s,s

)

 Λs,s Ms,s

Ms,s Λs,s




 I

−Λ−1
s,s Ms,s


+ I

=
(

Λs,s −Ms,s Λ−1
s,s Ms,s 0

)

 I

−Λ−1
s,s Ms,s


 + I

= Λs,s −Ms,s Λ−1
s,s Ms,s + I

= Ms,s −Ms,s Λ−1
s,s Ms,s

Proof of part d): Since−Λ−1
s,s , Ms,s, Ms,s, Ms,s ≥ 0, M̂ ≥ 0. The columns of̂M also sum

to 1, sinceJM̂ = J(pΛı + I) = JΛı + J = J , becauseJΛ = 0. SoM̂ is Markov.

This motivates the following definition.

Definition 5.7. Thereductionof M with respect tos is the triple,(M̂, p, ı).

We will refer to p and ı as theprojectionand inclusionoperators of the reduction, since

they are surjective and injective mappings, respectively.We will also sometimes refer to

M̂ itself as the reduction.

Now we will examine the effect of this construction on the corresponding graphs. We

will show that the entries of̂M may be identified with walks of length at least 1 onG−(M)

between vertices inVs which only pass through vertices inVs.
1

For convenience, we will defineP(M) ≡ (G−(M))T , so that there is a path fromu to

v in G−(M) (or, equivalently, inG(M)) iff there is a walk from fromu to v in G−(M) iff

1That is, whose interior/non-end vertices are inVs. In particular, this vacuously includes walks of length
1, since such walks have no interior vertices.
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(u, v) is an edge inP(M). We will denote any of these equivalent propositions brieflyby

(u, v) ∈ P(M).

Theorem 5.8. If M is Markov withs ∈ Sn an open set of indices inM ,
(
M̂
)

i,j
=

∑
σ∈PM(s,si,sj) W (M, σ), andP

(
M̂
)

= P (M)|Vs
, wherevi in P

(
M̂
)

T
corresponds

to vsi
in P (M)T .

Proof. From Theorem 5.6 and Theorem 4.5 b), we haveM̂ = Ms,s − Ms,s Λ−1
s,s Ms,s =

Ms,s + Ms,s

(∑∞
l=0 M l

s,s

)
Ms,s = Ms,s +

∑∞
l=0 Ms,s M l

s,sMs,s. Therefore,
(
M̂
)

i,j
=

(
Ms,s

)
i,j

+
∑∞

l=0

(
Ms,s M l

s,sMs,s

)
i,j

.

By Lemma 4.3 and Lemma 4.4,
(
Ms,s

)
i,j

=
(
M1

s,s

)
i,j

=
∑

σ∈PMs,s
(i,j,1) W (Ms,s, σ) =

∑
σ∈PM (s,si,sj ,1) W (M, σ). We may require that the interior vertices of the walkσ lie in s

(PM(s, si, sj, 1) instead ofPM (s, si, sj, 1)), since walks of length1 have no interior ver-

tices.

If we let k = |s| andk = |s|, Ms,s is k × k, M l
s,s is k × k, andMs,s is k × k. Applying

matrix multiplication and Lemma 4.3,

(
Ms,s M l

s,sMs,s

)
i,j

=
k∑

q=1

(
(Ms,sM

l
s,s)i,q(Ms,s)q,j

)

=
k∑

q=1

(
k∑

p=1

(
(Ms,s)i,p(M

l
s,s)p,q

)
(Ms,s)q,j

)

=

k∑

q=1

k∑

p=1

(
(Ms,s)i,p(M

l
s,s)p,q(Ms,s)q,j

)

=
k∑

q=1

k∑

p=1


(Ms,s)i,p




∑

σ∈PMs,s
(p,q,l)

W (Ms,s, σ)


 (Ms,s)q,j


 .

Looking at these terms in the scope of the entire matrixM ,

(
Ms,s M l

s,sMs,s

)
i,j

=

k∑

q=1

k∑

p=1


Msi,sp


 ∑

σ∈PM (s,sp,sq,l)

W (M, σ)


Msq,sj




=
k∑

q=1

k∑

p=1


 ∑

σ∈PM (s,sp,sq,l)

Msi,sp
Msp,sσl−1

. . .Msσ1
,sq

Msq ,sj




=
∑

σ
′
∈PM (s,si,sj ,l+2)

W (M, σ′) .
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By applying the substitutionσ′
0 = sj , σ′

1 = sq, σ′
k = sσsk−1

for 2 ≤ k ≤ l, σ′
l+1 = sp,

σ′
l+2 = si. Now σ′ corresponds to a walk of lengthl + 2, and all interior indices ofσ′ are

in s, soσ′ ∈ PM(s, si, sj, l + 2), and since we are summing over all possibilities forp and

q, the set ofσ′ is all ofPM(s, si, sj, l + 2).

Now,
(
M̂
)

i,j
=
(
Ms,s

)
i,j

+
∑∞

l=0

(
Ms,s M l

s,sMs,s

)
i,j

=
∑

σ∈PM (s,si,sj ,1) W (M, σ) +
∑∞

l=0

∑
σ
′
∈PM (s,si,sj ,l+2) W (M, σ′) =

∑∞
l=1

∑
σ∈PM (s,si,sj ,l) W (M, σ) =

∑
σ∈PM (s,si,sj)

W (M, σ),

sincePM(s, si, sj) =
⋃∞

l=1PM(s, si, sj , l).

If there is an edge,
(
vj , vi

)
∈ P (M), for i 6= j, then there a walk of length at least 1

from vj to vi in G (M). If i, j ∈ s, this walk may then be decomposed into a concatenation

of walks whose interior vertices are inVs which originate and terminate inVs. Each of these

walks correspond to an edge inG
(
M̂
)

, and together they make a walk inG
(
M̂
)

and a

single edge inP
(
M̂
)

. Conversely, any edge between distinct vertices inP
(
M̂
)

corre-

sponds to a walk inG
(
M̂
)

, which corresponds to a walk inG (M) and an edge inP (M).

Since, by definition, both graphs also contain all self-loops,P
(
M̂
)

= P (M)|Vs
.

Example 5.9.Recall that in Example 5.5, we calculated that the reductionof M =




0 1
2

1
4

1 0 1
4

0 1
2

1
2




with respect to the open sets = {3} is M̂ =


 0 3

4

1 1
4


.

Now we can see that is the result we would expect from our graphical intuition. InM ,

there is no path with interior vertices ins from v1 back to itself, sôM1,1 = 0. There is one

such path (of length one - it has no interior vertices) fromv1 to v2 with weight 1, soM̂2,1 =

1.

M̂1,2 andM̂2,2 are more complicated. There are infinitely many paths beginning atv2

and ending atv1 or v2 with interior vertices ins, since there is a self-loop atv3.

SoM̂1,2 is the sum of the weight of the edge(2, 1) and the weights of all paths which

begin at2, cycle at3 i times, and end at1. That is,M̂1,2 = M1,2+
∑∞

i=0 M1,3(M3,3)
iM3,2 =

1
2

+
∑∞

i=0
1
4
(1

2
)i 1

2
= 1

2
+ 1

4
· 2 · 1

2
= 3

4
.

Similarly, M̂2,2 =
∑∞

i=0 M2,3(M
i
3,3)M3,2 =

∑∞
i=0

1
4
(1

2
)i 1

2
= 1

4
.

Theorem 5.8 leads to the following important geometric property of the reduction con-

struction. Intuitively, it says that the reduction of an open set is open.
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Theorem 5.10.If s ands′ are open sets of indices ofM such thats ∪ s′ is also open, and

M̂ is the reduction ofM with respect tos, thens−1
(
s′
)
≡
{
j ∈ S|s| | sj ∈ s′

}
, the indices

of M̂ that correspond to indices ins′, is open with respect tôM .

Proof. Consider any ifj ∈ s−1
(
s′
)
. By Lemma 1.2, sinces∪s′ is open with respect toM ,

andsj ∈ s′, there is an edge inP (M) from vsj
to somevsk

, wheresk ∈ s ∪ s′ = s ∩ s′.

That is, by Theorem 5.8, there is an edge inP
(
M̂
)

from j to k /∈ s−1
(
s′
)
. Hence, by

Lemma 1.2,s−1
(
s′
)

is open with respect tôM .

Corollary 5.11. If M is unichain or irreducible, then for any open set,s, so is the corre-

sponding reduction̂M .

Proof. First, observe thatM is unichain iff there is an open set,s, with |s| = n − 1. For

example, ifM is unichain andi is a chosen index in the closed class, thens = Sn − {i} is

open. Conversely, if there is an open set,s, with |s| = n−1, s = {i} can only be contained

in at most one closed class. In particular, ifM has more than one closed class, at least one

of them must be contained ins. Since, by Lemma 1.1,M has at least one closed class, it

must have exactly one, that is,M must be unichain.

Now assume thatM is unichain ands is open. Then there must be somei ∈ s which is

in its closed class. In particular,Sn − {i} is open. If we takes′ ≡ Sn − {i} − s, then we

may apply Theorem 5.10 to conclude thats−1
(
s′
)

is open with respect tôM . Sinces′ ⊂ s,∣∣s′ ∩ s
∣∣ =

∣∣s′
∣∣ = |s| − 1, andM̂ is |s|-dimensional, we may conclude that̂M is unichain.

If M is irreducible, thenP (M) must be complete. SinceP
(
M̂
)

= P (M)|Vs
,P
(
M̂
)

must be complete, as well. In particular,̂M is irreducible.

We will show in Section 5.3 that if we consider a Markov process,X∗, with transition

matrix,M , and any initial distribution,̂M corresponds to another Markov chain,X̂∗, which

is justX∗, except that we pass through states ofs without pause. We will likewise obtain

a compelling probabilistic interpretation ofp as a mapping from the initial distribution of

X∗ to that ofX̂∗.

While there is no obvious probabilistic interpretation ofı, it possesses several use-

ful properties. Most importantly, the reduction construction “preserves” the kernel of the

laplacian in the following sense.

Theorem 5.12.Given a Markov matrixM and an open set of indices,s, using the notation

of Theorem 5.6,ı has a non-negative left-inverse,πs, andker Λ = ı ker Λ̂, so thatM̂ ≈ı M .
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Proof. Consider the matrixB =


 Λ̂ 0

0 I


. Multiply it on the left by three invertible

matrices:A1 =


 I Ms,s

0 I


, which has inverse


 I −Ms,s

0 I


, A2 =


 I 0

0 Λs,s


,

which has well-defined inverse


 I 0

0 Λ−1
s,s


 becauses is open (by Theorem 4.5,Λs,s =

−(I −Ms,s) is invertible), andA3 = Ps, which has inverseP t
s .

A3A2A1B = Ps


 I 0

0 Λs,s




 I Ms,s

0 I




 Λ̂ 0

0 I




= Ps


 Λ̂ Ms,s

0 Λs,s




= Ps


 Λs,s −Ms,sΛ

−1
s,sMs,s Ms,s

0 Λs,s


 (5.4)

= Ps


 Λs,s Ms,s

Ms,s Λs,s




 I 0

−Λ−1
s,s Ms,s I




= Ps

(
P t

sΛPs

)

 I 0

−Λ−1
s,s Ms,s I


 (5.5)

= ΛPs


 I 0

−Λ−1
s,s Ms,s I


 .

Equation 5.4 follows from Theorem 5.6 c), and Equation 5.5 isrewritten according

to the principal submatrix permutation ofΛ. Now sinceA1, A2, A3 are invertible, in

particular they are injective. So by Lemma A.3 c),ker A3A2A1B = ker B. That is,

ker ΛPs


 I 0

−Λ−1
s,s Ms,s I


 = ker


 Λ̂ 0

0 I


.

Now consider Lemma 2.7 withs′ = Sn − S|s|, so thatıs′ =


 I

0


, ıs′ =


 0

I


,

πs
′ =

(
I 0

)
, and πs

′ =
(

0 I
)

. Since


 Λ̂ 0

0 I


 =


 I

0


 Λ̂

(
I 0

)
+
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 0

I



(

0 I
)

, we then have

ker


 Λ̂ 0

0 I


 = ker




 I

0


 Λ̂

(
I 0

)
+


 0

I



(

0 I
)



= ker
[
ıs′Λ̂πs

′ + ıs′πs
′

]

= ker
[
ıs′Λ̂πs

′

]
∩ ker [ıs′πs

′] by Lemma A.3 d)

= ker
[
Λ̂πs

′

]
∩ ker πs

′ by Lemma A.3 c)

= ker
[
Λ̂πs

′

]
∩ im ıs′ by Lemma 2.7 c)

= ıs′ ker
[
Λ̂πs

′ıs′
]

by Lemma A.3 a)

= ıs′ ker Λ̂ . by Lemma 2.7 a)

To summarize, we haveker ΛPs


 I 0

−Λ−1
s,s Ms,s I


 = ıs′ ker Λ̂. Ps has inverseP t

s ,

and


 I 0

−Λ−1
s,s Ms,s I


 has inverse


 I 0

Λ−1
s,s Ms,s I


, so in particular both matrices are

surjective, and therefore by Lemma A.3 b),

ker Λ = Ps


 I 0

−Λ−1
s,s Ms,s I


 ker ΛPs


 I 0

−Λ−1
s,s Ms,s I




= Ps


 I 0

−Λ−1
s,s Ms,s I


 ıs′ ker Λ̂

= Ps


 I 0

−Λ−1
s,s Ms,s I




 I

0


 ker Λ̂

= Ps


 I

−Λ−1
s,s Ms,s


 ker Λ̂

= ı ker Λ̂ .
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It is easy to check thatπs =
(

I 0
)

 πs

πs


 = πs

′P t
s ≥ 0 is a left-inverse ofi:

πsı = πs
′P t

sPs


 I

−Λ−1
s,s Ms,s


 =

(
I 0

)

 I

−Λ−1
s,s Ms,s


 = I .

Now sinceı has a non-negative left-inverse, andker Λ = ı ker Λ̂, M ≈ı M̂ by defini-

tion.

Theorem 5.12 and Lemma 5.2 then give the following importantresult.

Corollary 5.13. Given a Markov matrixM if s is an open set of indices, with corresponding

reductionM̂ , thenı∗(v) = ıv
‖ıv‖1

is a bijective mapping fromstab
(
M̂
)

to stab (M).

This allows us to give simple and direct proofs of important structure theorems for

Markov matrices. For example, we may prove the uniqueness ofstable distributions in a

very general setting, without restrictive assumptions of aperiodicity or ergodicity, etc.

Theorem 5.14.Given a Markov matrixM with k closed classes,dim ker Λ = k.

Proof. Take any maximal, open set of indices,s. Thens must have exactly one element

from each distinct closed class ofM , so that|s| = k. Now consider the reduction,̂M , with

respect tos. Since there are no walks between closed classes, by Theorem5.8
(
M̂
)

i,j
= 0

for i 6= j. In particular,M̂ = I andker Λ̂ = R
k. Therefore, by Corollary 5.13,dim ker Λ =

k.

Corollary 5.15. Every unichain Markov matrixM with closed class,s, has a unique stable

distributionv such thatvi 6= 0 ⇐⇒ i ∈ s.

Proof. By Corollary 3.4,|stab M | > 1. More specifically, by Lemma 2.10 d),stab M

containsısv, wherev ∈ stab Ms,s, the stable distribution of the principal submatrix,Ms,s.

SinceM is unichain, by Theorem 5.14,dim ker Λ = 1. Thus, ifv, w ∈ stab M ⊂ ker Λ,

we would havev = kw. However, since1 = Jv = kJw = k, v = w, so that|stab M | = 1,

namely,stab M = {ısv}.

Letting v = ısv, considers′ = {i | vi 6= 0}. We first show thats′ ⊂ s by considering

the contrapositive. Ifi 6∈ s, theni = sj for somej. Therefore,vi = et
iv = et

sj
v = et

jπsv =

et
jπsısv = 0, by Lemma 2.7 a).
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Sincev ∈ ker Λ, v = Mv. For anyi ∈ s − s′, 0 = vi = et
iv = et

iv = et
iMv =

et
iM
∑

j vjej =
∑

j∈s
′ vje

t
iMej , sincevj = 0 for all j ∈ s − s′. Sincevj > 0 and

et
iMej ≥ 0 for all j ∈ s′, we must haveet

iMej = 0 for all j ∈ s′. That is, there are no

edges fromj ∈ s′ to i ∈ s − s′ in G(M). In particular, there are no walks fromj ∈ s′ to

i ∈ s − s′. Sinces is an SCC, this is impossible, unlesss − s′ = ∅, i.e.,s′ = s. In other

words,vi 6= 0 ⇐⇒ i ∈ s.

This immediately gives the following well-known result Horn and Johnson (1985).

Corollary 5.16. Every irreducible Markov matrixM has a unique stable distribution,v >

0.

This leads to the following structure theorem for Markov matrices (cf., the proof of

Theorem 2.1 in (Karlin and Taylor, 1981, p. 4)). The reduction construction provides a

conceptually satisfying, constructive proof.

Theorem 5.17.Given a Markov matrixM , with closed classes,sj, j = 1, . . . , k, let M j

be the principal submatrix onsj with unique, stable distribution,vj . Letvj = ı
s
jvj .

• ker Λ = span
{
v1, . . . , vk

}
;

• ker (Λ) = span (stab (M)); and

• everyv ∈ stab M is a convex combination ofvj = ı
s
jvj, i.e., v =

∑k
j=1 αjv

j for

0 ≤ αj ≤ 1 with
∑k

j=1 αj = 1.

Proof. We should first observe that, by Lemma 2.10,M i is Markov. Moreover, since

G−

(
M i

)
is strongly connected,M i is irreducible. Therefore, by Corollary 5.16,M i does

have a unique, stable distribution,vj > 0.
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Now defineD =
(

v1 · · · vk
)
≥ 0 andL =




Jπ
s
1

...

Jπ
s
k


 ≥ 0. Notice that

LD =




Jπs
1v1 · · · Jπs

1vk

...
. . .

...

Jπ
s
kv1 · · · Jπ

s
kvk




=




Jπs
1ıs1v1 · · · Jπs

1ı
s
kvk

...
. . .

...

Jπ
s
k ıs1v1 · · · Jπ

s
k ı

s
kvk




=




Jv1 · · · 0

...
. . .

...

0 · · · Jvk


 = I

By Lemma 2.10,D mapsRk into ker Λ. By Theorem 5.14, mapsRk = ker I ontoker Λ,

so thatker Λ = im D = span
{
v1, . . . , vk

}
. Since

{
v1, . . . , vk

}
⊂ stab M ⊂ ker M , we

may infer thatspan
{

v1, . . . , vk
}
⊂ span stab M ⊂ ker M . In particular,span stab M ⊂

ker M .

SinceD is left-invertible, it is also injective. In other words,I ≈D M . In fact,

sincevj ∈ stab M , JD =
(

Jv1 · · · Jvk

)
= J , so that for anyv ∈ stab I = ∆k,

‖Dv‖1 = JDv = Jv = 1, andD∗ = D on∆k. That is, by Lemma 5.2,D gives a bijection

of ∆k with stab M . In particular, element instab M is a convex combination of thevj.

We may now give a further characterization ofı whens is maximal.

Corollary 5.18. Given a Markov matrixM and any maximal, open set of indices,s, with

corresponding reduction,(M̂, p, ı),

• there is a 1-1 correspondence,α, between thevj from Theorem 5.17 andSs, such

thatsα(j) ∈ sj , and

• vj ∝ ıeα(j), theα(j)th column ofı.
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Proof. First, remember from the proof of Theorem 5.14, if we letk = |s|, for eachj ∈ Sk,∣∣s ∩ sj
∣∣ = 1. Thus, there is a well-defined mapping,α : Sk → Sk, such thats ∩ sj =

{
sα(j)

}
. Moreover,M̂ = I, andı mapsker Λ̂ = R

k onto ker Λ, i.e., im ı = ker Λ. In

particular, for a givenj, vj = ıβ, for someβ.

But from Theorem 5.12, we know thatπs is a left-inverse forı, so thatβ = πsv
j =

πsısjvj . The components ofβ areet
rβ = et

rπsısjvj = et
sr

ı
s
jvj , which is 0 unlesssr ∈

sj, that is, r = α(j). Thus, β has exactly one non-zero component andvj = ıβ =
∑

r∈Sk
ıere

t
rβ = ıeα(j)e

t
α(j)β. In particular,vj ∝ ıeα(j).

Theorem 5.19.Under the assumptions and notation of Corollary 5.18, ifβ = α−1, then

• ı(pı)−1 =
(

vβ(1) · · · vβ(k)
)

and

• M∞ = ı(pı)−1p.

Proof. Lets be a maximal, open set of states with corresponding reduction, (M̂, p, ı). From

the proof of Theorem 5.14, we know that̂M = I. We will begin by deriving two additional

properties of such a maximal reduction.

SinceI = M̂ = pΛı + I, we see thatpΛı = 0. In fact, we may show thatpΛ = 0, that

is, p(M − I) = 0 or pM = p. Using the notation of Theorem 5.6,

pM =
(

I −Ms,s Λ−1
s,s

)
P t

sPs


 Ms,s Ms,s

Ms,s Ms,s


P t

s =
(

Ms,s −Ms,s Λ−1
s,s Ms,s Ms,s −Ms,s Λ−1

s,s M

=
(

M̂ Ms,s −Ms,s Λ−1
s,s

(
Λs,s + I

) )
P t

s =
(

I −Ms,s Λ−1
s,s

)
P t

s = p

In addition, we may show that the product,pı, is an invertible diagonal matrix. Again,

using the notation of Theorem 5.6,pı =
(

I −Ms,s Λ−1
s,s

)
P t

sPs


 I

−Λ−1
s,s Ms,s


 =

I + Ms,s Λ
−2

Ms,s. SinceI is diagonal, it suffices to show thatMs,s Λ−2
s,sMs,s is diagonal

with non-negative entries.

As in the proof of Theorem 5.8,

Ms,s Λ−2
s,sMs,s = Ms,s

(
∞∑

k=0

Mk
s,s

)(
∞∑

l=0

M l
s,s

)
Ms,s =

∞∑

k=0

∞∑

l=0

Ms,s Mk+l
s,s Ms,s

To prove that this is diagonal, it suffices to show that, for any l ≥ 0 andi 6= j, et
iMs,s M l

s,sMs,sej =

0. As before, this is equal to
∑

σ∈Sn(s,si,sj ,l+1) Mσ. As in the proof of Theorem 5.14, when
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i 6= j, there are no walks inG(M) from sj to si, sincesj andsi are in different closed

classes. Thus, this sum is 0. By Theorem 5.6,Jpı = Jı, so that the diagonal entries ofpı

correspond to the column sums ofı. In particular, sinceı ≥ 0, they are non-negative.

We now prove the first part of the theorem to give a formula forı. By the above dis-

cussionı(pı)−1 is the result of dividing each column by its corresponding sum, so that the

resulting columns are all distributions. By Corollary5.18, vr ∝ ıeα(r), so thatvβ(j) ∝ ıej

and thej th column ofı(pı)−1 must bevβ(j).

Finally, we will now show thatı(pı)−1p = M∞ by appealing to Theorem 3.3. That is,

we will show thatı(pı)−1p = πker. First, observe that, by Theorem 5.17 and Corollary 5.18,

im ı = ker Λ. By Lemma 3.1 i), for anyv ∈ R
n, v = πkerv + πimv. Sinceim πker = im ı,

we may writeπkerv = ıα for someα. Likewise, sincepΛ = 0, and im πim = im Λ,

pπimv = 0. Thus,ı(pı)−1pv = ı(pı)−1pπkerv = ı(pı)−1pıα = ıα = πkerv. In particular,

ı(pı)−1pv = πkerv.

Example 5.20.Returning to Example 3.5 withM =




0 1 0 1
6

1 0 0 1
6

0 0 1 1
6

0 0 0 1
2




, we may verify

the conclusions of Theorem 5.19. This matrix has two closed classes,{1, 2} and {3}.

ReducingM with respect to the maximal open set,s = {2, 4} yields the2-dimensional

identity matrix with ı =




1 0

1 0

0 1

0 0




and p =


 1 1 0 2

3

0 0 1 1
3


. Then,pı


 2 0

0 1


,

ı(pı)−1 =




1
2

0

1
2

0

0 1

0 0




. The two columns of this matrix are clearly the stable distributions

associated with the corresponding closed classes. Moreover, multiplying this on the right
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by p yieldsı(pı)−1p =




1
2

1
2

0 1
3

1
2

1
2

0 1
3

0 0 1 1
3

0 0 0 0




= M∞, as previously computed

We can also justify our definition of equivalence.

Corollary 5.21. For any two Markov matrices,M1 ≈ M2 ⇐⇒ stab (M1) = stab (M2).

That is, two Markov matrices are equivalent if and only if they have the same set of stable

distributions.

Proof. If M1 andM2 are equivalent, thenker (Λ1) = ker (Λ2) by definition, so thatstab (M1) =

ker (Λ1) ∩ ∆n = ker (Λ2) ∩ ∆n = stab (M2). Conversely, ifstab (M1) = stab (M2), by

Theorem 5.17,ker (Λ1) = span (stab (M1)) = span (stab (M2)) = ker (Λ2). In particular,

M1 andM2 are equivalent.

5.3 A Markov Chain Interpretation of the Constructions

In this section, we will review the basic definitions regarding finite-state, stationary, Markov

chains, assuming the reader is familiar with basic probability and measure theory. Our goal

is to show how the construction of section 5.2 corresponds toa corresponding construction

on finite-state, stationary Markov chains. Adiscrete-time stochastic process(or chain) is

a sequence,X∗ ≡ {Xt}
∞
t=0, of random variables i.e., real-valued measurable functions

on some shared probability space,(Ω, µ). As is common, we will writePr[ω] for the

probability of a measurable subsetω ⊂ Ω. Likewise, given a random variable,X, we will

write Pr[X ∈ β] for Pr[X−1(β)], assuming thatβ ∈ B, the so-called Borel sets ofR.2

In this way, we avoid explicit reference toΩ andµ. We will also writePr[X = x] for

Pr[X ∈ {x}]. Thesupport, suppX , of a random variable,X, is the smallest Borel set,β,

such thatPr[X ∈ β] = 1. In this paper, we will restrict attention to those chains whose

state space, S =
⋃

i suppXi
, is a finite set, and we establish the convention thatβ ≡ S−β.

2B is the smallest collection of subsets ofR which contains all half-intervals (i.e.,[a,∞)) and is closed
under countable unions/intersections and taking complements; in particular, it contains all countable
subsets.
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A chain,X∗, isMarkoviff for all t ands0, . . . , st+1 ∈ S, such thatPr[Xt = st, . . . , X0 =

s0] 6= 0, Pr[Xt+1 = st+1 | Xt = st, . . . , X0 = s0] = Pr[Xt+1 = st+1 | Xt = st]. This

so-calledMarkov property(sometimes called the memoryless property) implies that the

probability of transitions to future states, such asst+1, depend only on the present statest,

and so are independent of the remote past, namelyst−1, . . . , s0 (Iosifescu, 1980).

A Markov chain isstationaryiff ∀ t s. t. Pr [Xt = st] > 0, Pr[Xt+1 = st+1 | Xt =

st] remains constant. Since∀s ∈ S, ∃ts ≥ 0 such thatPr
[
Xts

= s
]

> 0, given an

enumeration,ι, of the state space,S, there is ann × n matrix, M , such thatPr[Xt+1 =

ι(i) | Xt = ι(j)] = Mi,j, wheneverPr [Xt = ι(j)] > 0. Notice that this implies that

n ≥ |S|. When this holds, we say thatM is atransition matrixof the chainconsistent with

ι. If n = |S|, thenM is uniquely defined, and we say thatM is aminimaltransition matrix

of the chain.

Notice that ifM1 andM2 are two minimal transition matrices, consistent withι1 and

ι2, respectively, thenM2 = P−1M1P , whereP is the permutation matrix such thatPi,j =

[ι1(i) = ι2(j)]. In particular, there is a unique minimal,ι-consistent transition matrix for

which ι is increasing. As we will see, using the following Lemma, onecan show that, in a

certain sense, the converse holds, as well.

Lemma 5.22.For every sequence,σ ∈ Sn(k),

a) Pr [Xt−k = ι (σ0) , . . .Xt = ι (σk)] 6= 0 iff σ ∈ PM (k) andPr [Xt−k = ι (σ0)] 6= 0.

b) More specifically,

Pr [Xt−k = ι (σ0) , . . .Xt = ι (σk)] = Mσ Pr [Xt−k = ι (σ0)] (5.6)

Proof. We prove both parts by induction onk. Whenk = 0, Mσ = 1 andσ ∈ PM (0),

so both parts are trivially true. In general, for anyσ ∈ Sn(k), takeσ′ ∈ Sn(k − 1) so that

σ′
i = σi for 0 ≤ i < k. We may then prove part b) in two cases.

If Pr [Xt−k = ι (σ0) , . . .Xt−1 = ι (σk−1)] = 0, thenPr [Xt−k = ι (σ0) , . . .Xt = ι (σk)] =

0. Moreover, by induction, we know that eitherPr [Xt−k = ι (σ0)] = 0, in which case

Equation 5.6 is trivially satisfied, orσ′ 6∈ PM (k − 1), in which case,σ 6∈ PM (k), as well,

so thatMσ = 0, and Equation 5.6 again holds.
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Now assume thatPr [Xt−k = ι (σ0) , . . .Xt−1 = ι (σk−1)] > 0. The Markov property,

along with the induction hypothesis, then implies that

Pr [Xt−k = ι (σ0) , . . .Xt = ι (σk)] = Pr [Xt = ι (σk) | Xt−k = ι (σ0) , . . .Xt−1 = ι (σk−1)]

Pr [Xt−k = ι (σ0) , . . .Xt−1 = ι (σk−1)]

= Pr [Xt = ι (σk) | Xt−1 = ι (σk−1)]

Mσ
′ Pr

[
Xt−k = ι

(
σ′

0

)]

= Mσk ,σk−1
Mσ

′ Pr
[
Xt−k = ι

(
σ′

0

)]

= Mσ Pr [Xt−k = ι (σ0)]

where we also appeal to the definition ofMσ and the fact thatσ0 = σ′
0.

Obviously, the joint distribution of{Xt}
k
t=0, for anyk, is determined by the joint distri-

bution ofX∗. Conversely, the sequence of all such joint distributions (i.e., fork = 0, . . . )

determine the joint distribution of theX∗. Lemma 5.22 says that, for a stationary Markov

process, this sequence of joint distributions is equivalent, up to labelling of the states,ι, to

an initial distribution (i.e., forX0) and a transition matrix,M .

While ι allows us to associate states with indices, it is also helpful to associate states

with the vertices of the standard,n-simplex,∆n. Specifically, let the stateι(i) correspond

with the vertex,ei of the standard,n-simplex,∆n. That is, given a chain,X∗, and an

enumeration of its state space,i, we may define an associated, vector-valued chain,~X∗,

where ~Xt(ω) = ej, if Xt(ω) = ι(j), and 0, otherwise. This form of the chain has the

advantage that we may cleanly establish the connection between the probability distribution

of Xt and the corresponding distribution vector.

Lemma 5.23. Given a Markov chain,X∗, and an enumeration of its state space,ι, define

the associated, vector-valued chain,~X∗, as above. For anyt, E

[
~Xt

]
is then a vector with

(
E

[
~Xt

])
j
= Pr [Xt = ι (j)] for all j.

Proof. By definition,E
[

~Xt

]
=
∑

k∈Sn
ek Pr

[
~Xt = ek

]
=
∑

j∈Sn
ek Pr [Xt = ι (k)]. Thus,

(
E

[
~Xt

])
j
= et

jE

[
~Xt

]
=
∑

j∈Sn
et

jek Pr [Xt = ι (k)] = Pr [Xt = ι (j)].

Alternatively, we may associate states with vertices in a directed graph. Specifically,

we may view a stationary Markov chain with transition matrixM in terms of a random
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walk on the weighted graph,G(M), where the state,ι(i), corresponds to the vertex,vi.

SinceG(M) has no repeated edges, a walk of lengthN is equivalent to a sequence of ad-

jacent vertices, which, by Lemma 5.22 a), corresponds to a possible sample from{Xt}
N
t=0.

Moreover, if we choose the initial vertex according to the distribution ofX0 and the subse-

quent edges according to the edges weights, by Lemma 5.22 b),the probability of obtaining

any given walk is the same as the probability of obtaining thecorresponding sample from

{Xt}
N
t=0. Thus, the graph,G(M), and an initial distribution give an alternative, geometric

characterization of the chain.

As before, we may carry over the terminology of strongly connected components,

closed classes, invariant and transient sets of vertices inG(M) from Section 1.1 and apply

it to sets of states of a stationary Markov process. NoticeMσ is represents the conditional

probability of the random walk realizing the specific sequence of states corresponding to

σ, given thatX0 = ι (σ0). Thus, a subset of states is invariant iff the probability ofever

transitioning away from the set is 0. Likewise, any transient state has a positive probability

of transitioning away from it without ever returning.

Given a chain,X∗, and a Borel set,β ∈ B, we want to define a new chain,̃X∗, where

we “collapse” the time spent inβ. To make this precise, define the functionsτβ,k : Ω→ R

inductively, as follows. Setτβ,−1(ω) = −1, and define

τβ,k(ω) = min
{
t > τβ,k−1(ω) | Xt(ω) 6∈ β

}

with the convention thatmin ∅ =∞.

Lemma 5.24. If τβ,k
′(ω) <∞, for all 0 ≤ k ≤ k′,

τβ,k(ω) = min
{
t ≥ 0 | k + 1 =

∣∣{0 ≤ t′ ≤ t | Xt
′(ω) ∈ β

}∣∣} (5.7)

Proof. By definition, sinceτβ,k
′(ω) < ∞, τβ,k

′
−1(ω) < τβ,k

′(ω), so thatτβ,k
′
−1(ω) < ∞,

and so on. In particular,
{
τβ,k(ω)

}k
′

k=0
is an increasing sequence. For the remainder of the

proof, we will drop the notation for evaluation, since all random variables (i.e.,Xt’s and

τβ,k’s) will always be evaluated at a fixed value,ω. Likewise, we will always assume that

0 ≤ k ≤ k′.

Now defineTt =
{
0 ≤ t′ ≤ t | Xt

′ ∈ β
}

andT ′
t =

{
t′ > t | Xt

′ ∈ β
}

. With this nota-

tion, τβ,k = min T ′
τβ,k−1

. We now show that

T ′
τβ,k−1

∩ Tτβ,k
=
{
τβ,k

}
(5.8)
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Sinceτβ,k ∈ T ′
τβ,k−1

, we must haveτβ,k ∈ Tτβ,k
. Moreover, this is the only value in

T ′
τβ,k−1

∩Tτβ,k
. If t were a different value in the intersection, sinceτβ,k is minimum inT ′

τβ,k−1
,

we must haveτβ,k < t. But sincet ∈ Tτβ,k
, we should havet ≤ τβ,k, a contradiction.

Now defineδ(t) ≡ |Tt|. Now observe that|Tt| = |Tt−1| +
[
Xt ∈ β

]
, so thatδ(t) ≡

|Tt| is non-decreasing. Using this notation, Equation 5.7 may berewritten asτβ,k =

min δ−1({k + 1}). In particular, we must show thatδ
(
τβ,k

)
= k + 1.

Since theτβ,j ’s are increasing for0 ≤ j ≤ k′, we have that

Tτβ,k
= Tτβ,k

∩
(
τβ,−1, τβ,k

]
= Tτβ,k

∩
k⋃

j=0

(
τβ,j−1, τβ,j

]

=
k⋃

j=0

Tτβ,k
∩
(
τβ,j−1, τβ,j

]
=

k⋃

j=0

T ′
τβ,j−1

∩ Tτβ,j
=

k⋃

j=0

{
τβ,j

}

Therefore, since theτβ,j ’s are distinct,

δ
(
τβ,k

)
=
∣∣∣Tτβ,k

∣∣∣ =

∣∣∣∣∣

k⋃

j=0

{
τβ,j

}
∣∣∣∣∣ = k + 1

Thus,τβ,k ∈ δ−1({k + 1}).

Now if τβ,k is not minimum, then there is somet < τβ,k such thatδ (t) = k + 1. Since,

δ
(
τβ,k−1

)
= k andδ is increasing, we must haveτβ,k−1 < t < τβ,k. As before,

Tt = Tt ∩
(
τβ,−1, τβ,k

]
= Tt ∩

k⋃

j=0

(
τβ,j−1, τβ,j

]

=
k⋃

j=0

Tt ∩
(
τβ,j−1, τβ,j

]
= T ′

τβ,k−1
∩ Tt ∪

k−1⋃

j=0

T ′
τβ,j−1

∩ Tτβ,j

= T ′
τβ,k−1

∩ Tt ∪
k−1⋃

j=0

{
τβ,j

}

Sinceδ (t) = |Tt| = k + 1, we must have
∣∣∣T ′

τβ,k−1
∩ Tt

∣∣∣ = 1; in particular, there is some

t′ ∈ T ′
τβ,k−1

∩ Tt.

Sincet′ ≤ t < τβ,k, Tt ⊂ Tτβ,k
. Therefore,t′ ∈ T ′

τβ,k−1
∩ Tt ⊂ T ′

τβ,k−1
∩ Tτβ,k

=
{
τβ,j

}
,

so thatt′ = τβ,k, a contradiction.

Thus, τβ,k = min δ−1({k + 1}). Sincek ∈
[
0, k′

]
was arbitrary, we have proven

Equation 5.7 for all0 ≤ k ≤ k′.
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Using the language of Markov chain theory,τβ,k is thek + 1st “hitting time” for β.

Notice that

{
τβ,k = t

}
=





{
Xt ∈ β

}
∩
{
τβ,k−1 = t′

}
∩
⋂

t
′
<t

′′
<t {Xt

′′ ∈ β} if t <∞

{
τβ,k−1 = t′

}
∩
⋂

t
′
<t

′′ {Xt
′′ ∈ β} if t =∞

Therefore, by induction, this event be expressed solely in terms ofX0, . . . , Xt. In this case,

we sayτβ,k is aMarkov time(Iosifescu, 1980).

We now prove thatτβ,k is almost always finite, whenβ is open. In fact, this effectively

characterizes open sets of states.

Lemma 5.25. A set of states,β, of a finite-state, stationary Markov process,X∗, is open

iff Pr
[⋂

r≥j X−1
r (β)

]
= 0, ∀j. In particular, if β is open,τβ,0 < τβ,1 < · · · < ∞ with

probability 1.

Proof. Assume that the process isι-consistent with a matrix,M , with state space,S, and

let s = ι−1(β). Then, using the notation of Theorem 4.5, theuth column sum ofM
q

is

J M
q
eu =

|s|∑

v=1

(
M

q)
v,u

=
∑

v∈S|s|

∑

σ∈S|s|(v,u,q)

Mσ =
∑

v∈S|s|

∑

σ∈S|s|(v,u,q)

Msσ
(5.9)

Therefore,

Pr

[
j+q⋂

r=j

X−1
r (β)

]
= Pr

[
Xj ∈ β, . . . , Xj+q ∈ β

]
= Pr

[
Xj ∈ β ∩ S, . . . , Xj+q ∈ β ∩ S

]

=
∑

i0,...,iq∈s

Pr
[
Xj = ι (i0) , . . .Xj+q = ι

(
iq
)]

=
∑

σ∈S|s|(q)

Pr
[
Xj = ι

(
sσ0

)
, . . .Xj+q = ι

(
sσq

)]

and

Pr

[
j+q⋂

r=j

X−1
r (β)

]
=

∑

σ∈S|s|(q)

Msσ
Pr
[
Xj = ι

(
sσ0

)]
by Equation 5.6

=
∑

u,v∈S|s|

∑

σ∈S|s|(v,u,q)

Msσ
Pr
[
Xj = ι (su)

]

=
∑

u∈S|s|

J M
q
eu Pr

[
Xj = ι (su)

]
by Equation 5.9

= J M
q ∑

u∈S|s|

eu Pr
[
Xj = ι (su)

]



57

Thus,

Pr

[
⋂

r≥j

X−1
r (β)

]
= lim

q→∞
Pr

[
j+q⋂

r=j

X−1
r (β)

]
= lim

q→∞
J M

q ∑

u∈S|s|

eu Pr
[
Xj = ι (su)

]

If β is open, by Theorem 4.5 a),limq→∞ J M
q

= 0 so thatPr
[⋂

r≥j X−1
r (β)

]
= 0.

Conversely, assume thatPr
[⋂

r≥j X−1
r (β)

]
= 0, ∀ j. For anyu′, sinceι(su

′) ∈ S,

there is somej for whichPr
[
Xj = ι(su

′)
]

> 0. Moreover,

Pr

[
j+q⋂

r=j

X−1
r (β)

]
= J M

q ∑

u∈S|s|

eu Pr
[
Xj = ι (su)

]
≥ J M

q
eu

′ Pr
[
Xj = ι (su

′)
]
≥ 0

Since the left-hand side goes to 0 asq → ∞, andPr
[
Xj = ι(su

′)
]
6= 0, we must have

limq→∞ J M
q
eu

′. Sinceu′ was arbitrary,0 = J
(
limq→∞ M

q)
J t = 0, so thatlimq→∞ M

q
=

0. Appealing to the contrapositive of Theorem 4.5 d), we may conclude thatβ is open.

By definition, τβ,t(ω) ≤ τβ,t+1(ω), with inequality, unlessτβ,t(ω) = ∞. However,

τβ,t(ω) = ∞ iff
{
t′ > τβ,t−1(ω) | Xt

′(ω) 6∈ β
}

= ∅, that is,Xt
′(ω) ∈ β, ∀ t′ > τβ,t−1(ω).

Thus,τβ,0 < τβ,1 < · · · <∞, outside of the set
⋃

j

⋂
r≥j X−1

r (β). But we have just shown

that, whenβ is open,

Pr

[
⋃

j

⋂

r≥j

X−1
r (β)

]
=
∑

j

Pr

[
⋂

r≥j

X−1
r (β)

]
=
∑

j

0 = 0

That is,τβ,0 < τβ,1 < · · · <∞ occurs with probability 1.

By Lemma 5.25,τβ,t is a Markov time withPr[τβ,t <∞] = 1. Such a random variable

is known as astopping time. Evaluating a Markov chain at a stopping time is also a random

variable (Iosifescu, 1980). Thus, ifβ is open, we may defineπβ,t (X∗) ≡ Xτβ,t
, where

we defineπβ,t (X∗) = min β, whenτβ,t = ∞. In this way, we have defined the desired

chain,X̃∗ ≡ πβ,∗ (X∗). We will show thatπβ,∗ is an operator on Markov chains which

corresponds directly to applying the reduction construction of section 5.2 to the transition

matrix of the chain. Notice that, as we mentioned in section 5.2, from a Markov chain point

of view, we have simply reduced the time spent in the states ofβ to 0.

We now wish to identify the transition matrix forπβ,∗ (X∗). The proof will be similar

to that of Theorem 5.8, but we will need to generalize the notation from Chapter 1 a bit.

Define

Sn (s, i, j, l, m) = {σ ∈ Sn (i, j, l + m) | m = |{k ∈ (0, l + m) | σk 6∈ s}|}
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i.e., sequences of lengthl+m+1 starting atj, ending ati, whose interior values lie outside

of s exactlym times. Thus, for example,Sn (s, i, j, l, 0) = Sn (s, i, j, l).

Using this notation, we may now identify the distribution ofX̃t = πβ,t (X∗). That is,

we can give a formula forPr
[
X̃t = x

]
.

Theorem 5.26.If X∗ is a finite state, stationary Markov chain with state space,S, which is

ι-consistent with a minimal,n×n transition matrix,M , β is open, and̃X∗ = πβ,∗ (X∗), then

β is the state space for̃X∗, so thatι′(k) = ι (sk) enumeratesβ, wheres = ι−1(β) ⊂ Sn.

For t > 0,

Pr
[
X̃t = ι′ (k)

]
=

∞∑

l=0

∑

j∈s

∑

σ∈Sn(s,sk,j,l,t)

Mσ Pr [X0 = ι (j)]

+
∞∑

l=0

∑

j∈s

∑

σ∈Sn(s,sk,j,l,t−1)

Mσ Pr [X0 = ι (j)] (5.10)

and

Pr
[
X̃0 = ι′ (k)

]
=
∑

j

pk,j Pr [X0 = ι(j)] (5.11)

where(M̂, p, ı) is the reduction ofM with respect tos. That is, the distribution of̃X0, is re-

sult of applying the projection,p, to the distribution ofX0, where we view each distribution

as an column vector, as in Lemma 5.23.

Proof. By definition,πβ,t (X∗) (ω) ∈ β for all t andω. Notice also that, sinceι(s∗) enu-

meratesβ ∩ S, ι′ = ι(s∗) enumeratesβ. In particular, the state space for̃X∗ is contained

in β andX̃t = x iff x = ι (sk) for somek ∈ S|s|.

Now remember that, whenτβ,t <∞,
{
τβ,j

}t

j=−1
is an increasing sequence of integers.
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In particular,τβ,t ≥ t. Thus, by Lemma 5.25,

Pr
[
X̃t = ι′ (k)

]
= Pr

[
X̃t = ι′ (k) , τβ,t <∞

]
=

= Pr
[
Xτβ,t

= ι (sk)
]

=

∞∑

l=0

Pr
[
Xl+t = ι (sk) , l = τβ,t − t

]

= [t = 0] Pr
[
Xt = ι (sk) , l = τβ,t − t

]
+

∞∑

l=[t=0]

Pr
[
Xl+t = ι (sk) , l = τβ,t − t

]

= [t = 0] Pr
[
X0 = ι (sk) , τβ,0 = 0

]
+

∞∑

l=[t=0]

Pr
[
Xl+t = ι (sk) , l = τβ,t − t

]

= [t = 0] Pr
[
X0 = ι (sk) , τβ,0 = 0

]
+

∞∑

l=[t=0]

n∑

j=1

Pr
[
Xl+t = ι (sk) , X0 = ι(j), l = τβ,t − t

]

where divided into cases, based onl = τβ,t − t and the initial state of the process, and we

used a notational trick to pull out thel = 0 term from the summation, whent = 0. Notice

that, for all the terms in the summation, we are guaranteed that l + t > 0.

Assuming thatX0 = ι(j), Xl+t = ι (sk), l = τβ,t − t, andl + t > 0 (i.e., in the context

of any of the summation terms), by Lemma 5.24,{Xi}
l+t
i=0 takes exactlyt + 1 values inβ

and l values inβ. In this case, we may writeXi = ι (σi) for 0 ≤ i ≤ l + t, for some
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σ ∈ Sn(s, sk, j, l, t− 1), if j 6∈ s, andσ ∈ Sn(s, sk, j, l, t), if j ∈ s. Thus,

Pr
[
X̃t = ι′ (k)

]
= [t = 0] Pr

[
X0 = ι (sk) , τβ,0 = 0

]

+

∞∑

l=[t=0]

∑

j∈s

Pr
[
Xl+t = ι (sk) , X0 = ι(j), andl = τβ,t − t

]

+

∞∑

l=[t=0]

∑

j∈s

Pr
[
Xl+t = ι (sk) , X0 = ι(j), andl = τβ,t − t

]

= [t = 0] Pr
[
X0 = ι (sk) , τβ,0 = 0

]

+

∞∑

l=[t=0]

∑

j∈s

∑

σ∈Sn(s,sk,j,l,t)

Pr [Xi = ι (σi) , 0 ≤ i ≤ l + t]

+

∞∑

l=[t=0]

∑

j∈s

∑

σ∈Sn(s,sk,j,l,t−1)

Pr [Xi = ι (σi) , 0 ≤ i ≤ l + t]

= [t = 0] Pr
[
X0 = ι (sk) , τβ,0 = 0

]

+

∞∑

l=[t=0]

∑

j∈s

∑

σ∈Sn(s,sk,j,l,t)

Mσ Pr [X0 = ι (j)]

+

∞∑

l=[t=0]

∑

j∈s

∑

σ∈Sn(s,sk,j,l,t−1)

Mσ Pr [X0 = ι (j)] (5.12)

where we appeal to Lemma 5.22 b) for the final step.

Equation 5.12 simplifies to Equation 5.10, whent > 0. Moreover, it implies that the

state space for̃X∗ equals all ofβ, because, for any stateι′(k) ∈ β ⊂ S, there is somet for

which Pr
[
Xt = ι′(k)

]
> 0. If t = 0, the first term in Equation 5.12 is non-zero, so that

Pr
[
X̃t = ι′(k)

]
> 0.

Otherwise, by Lemma 5.22, and the fact thatι enumerates the state space ofX∗,

Pr
[
Xt = ι′(k)

]
=
∑

j∈Sn

Pr [Xt = ι (sk) , X0 = ι (j)]

=
∑

j∈Sn

∑

σ∈Sn(sk,j,t)

Pr [Xi = ι (σi) , i = 0, . . . , t] =
∑

j∈Sn

∑

σ∈Sn(sk,j,t)

Mσ Pr [X0 = ι (j)]

Since this is non-zero, it must have at least one non-zero term, corresponding to somej ∈

Sn andσ ∈ Sn(sk, j, t), such that0 < Pr [X0 = ι (j)] , Mσ. If l +1 is the number of values

of σ in s, then eitherσ ∈ Sn(s, sk, j, l, t), if j ∈ s, or σ ∈ Sn(s, sk, j, l, t − 1), otherwise.

In any case, Equation 5.10 has at least one non-zero term, so that Pr
[
X̃t = ι′(k)

]
> 0.

Therefore,β is the state space for̃X∗.
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To prove Equation 5.11, taket = 0. SinceSn(s, sk, j, l, t − 1) = ∅, Equation 5.12

simplifies to

Pr
[
X̃0 = ι′ (k)

]
= Pr

[
X0 = ι (sk) , τβ,0 = 0

]
+

∞∑

l=1

∑

j∈s

∑

σ∈Sn(s,sk,j,l,0)

Mσ Pr [X0 = ι (j)]

= Pr [X0 = ι (sk)] +
∞∑

l=1

∑

j∈s

∑

σ∈Sn(s,sk,j,l)

Mσ Pr [X0 = ι (j)]

= Pr [X0 = ι (sk)] +
∞∑

l=0

∑

j∈s

∑

σ∈Sn(s,sk,j,l+1)

Mσ Pr [X0 = ι (j)]

= Pr [X0 = ι (sk)] +
∞∑

l=0

∑

j∈S|s|

∑

σ∈Sn(s,sk,sj ,l+1)

Mσ Pr
[
X0 = ι

(
sj

)]

= Pr [X0 = ι (sk)] +
∑

j∈S|s|

∞∑

l=0

∑

σ∈Sn(s,sk,sj ,l+1)

Mσ Pr
[
X0 = ι

(
sj

)]
(5.13)

Now observe that from Theorem 5.6 and Theorem 4.5 b),

p =
(

I −N Λ
−1
)

P t
s =

(
I −N Λ

−1
)

 πs

πs




= πs −N Λ
−1

πs = πs +

∞∑

l=0

N M
l
πs

Thus, using Lemma 2.7 a), we have

∑

j∈Sn

pk,j Pr [X0 = ι(j)] =
∑

j∈s

pk,j Pr [X0 = ι(j)] +
∑

j∈s

pk,j Pr [X0 = ι(j)]

=
∑

j∈s

et
kpej Pr [X0 = ι(j)] +

∑

j∈s

et
kpej Pr [X0 = ι(j)]

=
∑

j∈s

et
kπsej Pr [X0 = ι(j)] +

∑

j∈s

et
k

∞∑

l=0

N M
l
πsej Pr [X0 = ι(j)]

= Pr [X0 = ι (sk)] +
∑

j∈S|s|

∞∑

l=0

et
kN M

l
ej Pr

[
X0 = ι

(
sj

)]
(5.14)

Comparing Equations 5.13 and 5.14, we see that it only remains to show thatet
kN M

l
ej
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equals
∑

σ∈Sn(s,sk,sj ,l+1) Mσ. As in the proof of Theorem 5.8,

et
kN M

l
ej =

∑

j
′
∈S|s|

et
kNej

′ej
′M

l
ej =

∑

j
′
∈S|s|

Msk,s
j
′

∑

σ
′
∈Sn

“

s,sj ,s
j
′ ,l

”

Mσ
′

=
∑

j
′
∈S|s|

∑

σ
′
∈Sn

“

s,sj,sj
′ ,l

”

Msk,s
j
′Mσ

′ =
∑

σ∈Sn(s,sk,sj ,l+1)

Mσ

We may also identify a transition matrix for̃X∗ = πβ,∗ (X∗). Intuitively, the follow-

ing theorem says that the transition matrix forX̃∗ is the result of applying the reduction

construction of section 5.2 to the transition matrix forX∗. The proof is similar to that of

Theorem 5.26, but it will be helpful to alter our notation a bit. Define

S ′
n (s, i, l, m) = {σ ∈ Sn (l + m) | σl+m = i, m = |{k < l + m) | σk 6∈ s}|}

i.e., sequences of lengthl +m+1, ending ati, whose values, excepting the last, lie outside

of s exactlym times. Notice that this time we do not specify the initial value and we do

not exclude it from our count of values ins.

Theorem 5.27. If X∗ is a finite state, stationary Markov chain which isι-consistent with

transition matrix, M , and β is open, thenπβ,∗ (X∗) is a stationary Markov chainι′-

consistent with transition matrix,̂M , whereM̂ is the reduction ofM with respect to

s = ι−1(β) andι′(j) = ι(sj).

Proof. The proof is similar to that of Theorem 5.26. As before, defineX̃t = πβ,t (X∗), and

recall thatι(s∗) andι(s∗) enumerateβ ∩ S andβ, respectively. By Lemma 5.25, we may

restrict attention to the case,τβ,t < τβ,t+1 <∞ and again exploit the fact thatt ≤ τβ,t.

Pr
[
X̃t+1 = ι′ (k) , X̃t = ι′

(
k′
)]

= Pr
[
X̃t+1 = ι′ (k) , X̃t = ι′

(
k′
)
, τβ,t+1 <∞

]
=

=

∞∑

m=0

∞∑

l=0

Pr
[
Xl+m+t+1 = ι (sk) , Xm+t = ι (sk

′) , l = τβ,t+1 −m− t− 1, m = τβ,t − t
]

Assuming thatXm+t = ι (sk
′) andm = τβ,t− t, Lemma 5.24 implies thatXl+m+t+1 =

ι (sk) with l = τβ,t+1−m−t−1 iff Xi ∈ β for m+t < i ≤ l+m+t with Xl+m+t+1 = ι (sk).
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Thus,

Pr
[
X̃t+1 = ι′ (k) , X̃t = ι′

(
k′
)]

=

=
∞∑

m=0

∞∑

l=0

∑

σ
′
∈Sn(s,sk,s

k
′ ,l+1)

Pr
[
Xm+t+i = ι

(
σ′

i

)
, i = 0, . . . , l + 1, m = τβ,t − t

]

Appealing again to Lemma 5.24, we see thatXm+t = ι (sk
′) andm = τβ,t−t iff {Xi}

m+t−1
i=0

takes exactlyt values inβ, i.e., we may writeXi = ι
(
σ′′

i

)
for 0 ≤ i ≤ m + t, for some

σ′′ ∈ S ′
n(s, sk, m, t). Thus, forσ′ ∈ Sn (s, sk, sk

′, l + 1),

Pr
[
Xm+t+i = ι

(
σ′

i

)
, i = 0, . . . , l + 1, m = τβ,t − t

]
=

=
∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

Pr
[
Xm+t+i = ι

(
σ′

i

)
, i = 0, . . . , l + 1, Xi = ι

(
σ′′

i

)
, i = 0, . . . , m + t

]

Therefore,

Pr
[
X̃t+1 = ι′ (k) , X̃t = ι′

(
k′
)]

=

=

∞∑

m=0

∞∑

l=0

∑

σ
′
∈Sn(s,sk,s

k
′ ,l+1)

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

Pr
[
Xi = ι (σi) , i = 0, . . . , l + t, σ = σ′ ∗ σ′′

]

whereσ′ ∗ σ′′ is the concatenation of the walks given byσ′ andσ′′. Specifically,σi = σ′′
i ,

for 0 ≤ i ≤ m + t andσi+m+t = σ′
i, for 0 ≤ i ≤ l + 1.3

Now appealing to Lemma 5.22 b), we have

Pr
[
X̃t+1 = ι′ (k) , X̃t = ι′

(
k′
)]

=

=

∞∑

m=0

∞∑

l=0

∑

σ
′
∈Sn(s,sk,s

k
′ ,l+1)

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

Mσ
′
∗σ

′′ Pr
[
X0 = ι

(
σ′′

0

)]

=

∞∑

m=0

∞∑

l=0

∑

σ
′
∈Sn(s,sk,s

k
′ ,l+1)

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

Mσ
′Mσ

′′ Pr
[
X0 = ι

(
σ′′

0

)]

=

∞∑

m=0

∞∑

l=0

∑

σ
′
∈Sn(s,sk,s

k
′ ,l+1)

Mσ
′

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

Mσ
′′ Pr

[
X0 = ι

(
σ′′

0

)]

3Notice that we concatenate aswalks, rather than as sequences; for example(3, 1, 4) ∗ (4, 7, 2) =
(3, 1, 4, 7, 2), instead of(3, 1, 4, 4, 7, 2).
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We may then exploit Theorem 5.8 as follows,

Pr
[
X̃t+1 = ι′ (k) , X̃t = ι′

(
k′
)]

=

=
∞∑

m=0

∞∑

l=0

∑

σ
′
∈Sn(s,sk,s

k
′ ,l+1)

Mσ
′

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

Mσ
′′ Pr

[
X0 = ι

(
σ′′

0

)]

=

∞∑

m=0

∑

σ
′
∈Sn(s,sk,s

k
′)

Mσ
′

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

Mσ
′′ Pr

[
X0 = ι

(
σ′′

0

)]

=

∞∑

m=0

∑

σ
′
∈PM(s,sk,s

k
′)

Mσ
′

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

Mσ
′′ Pr

[
X0 = ι

(
σ′′

0

)]

=

∞∑

m=0

M̂k,k
′

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

Mσ
′′ Pr

[
X0 = ι

(
σ′′

0

)]

= M̂k,k
′

∞∑

m=0

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

Mσ
′′ Pr

[
X0 = ι

(
σ′′

0

)]

Reversing our previous calculations gives

∞∑

m=0

∑

σ
′′
∈S

′
n(s,s

k
′ ,m,t)

Mσ
′′ Pr

[
X0 = ι

(
σ′′

0

)]
=

=

∞∑

m=0

Pr
[
Xm+t = ι′

(
k′
)
, m = τβ,t − t

]
= Pr

[
X̃t = ι′

(
k′
)]

Therefore,

Pr
[
X̃t+1 = ι′ (k) , X̃t = ι′

(
k′
)]

= M̂k,k
′ Pr

[
X̃t = ι′

(
k′
)]

so that,Pr
[
X̃t+1 = ι′ (k) | X̃t = ι′

(
k′
)]

= M̂k,k
′, whenPr

[
X̃t = ι′

(
k′
)]

> 0. In partic-

ularX∗ is a stationary Markov chainι′-consistent with transition matrix,̂M .

We now give an alternative description of the sequence,πβ,t (X∗) (ω), which applies

almost always.

Lemma 5.28.Given a Markov chain,X∗, and an open Borel set,β,

Pr
[
ω ∈ Ω | τβ,k(ω) for k ≥ 0 is an increasing enumeration of

{
t ≥ 0 | Xt(ω) ∈ β

}]
= 1
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Proof. DefineT (ω) ≡
{
t ≥ 0 | Xt(ω) ∈ β

}
. We must show that, fork ≥ 0, τβ,k(ω) is an

increasing enumeration ofT (ω), except on a set of probability 0. However, by definition,

{τβ,k(ω)}∞k=−1 is a non-decreasing sequence starting at -1. Moreover, wheneverτβ,k(ω)

is finite, andk 6= −1, it is in T . By Lemma 5.25, it is strictly increasing and finite with

probability 1.

Thus, choose anω ∈ Ω for which this is the case. For convenience, in the remainderof

this proof, we will omit the notation for evaluation byω, since everything can be assumed

to be evaluated atω. It remains to prove that, ift ∈ T , thent = τβ,k for somek ≥ 0. We

may prove this by considering the contrapositive. If for allk ≥ 0, t 6= τβ,k, there must be

somek ≥ 0 such thatτβ,k−1 < t < τβ,k. By definition, sinceτβ,k is defined as a minimum

value, we must haveXt ∈ β, that is,t 6∈ T .

In other words, with probability 1,πβ,∗ (X∗) is the result of deleting those entries ofX∗

with values inβ.

Lemma 5.28 implies that this reduction operator is “natural” in the sense that it behaves

as expected under iteration. Intuitively, if we first deleteentries from a sequence with

values inβ2 and then delete from the remaining entries those with valuesin β2, we get the

same result as if we had simply deleted those entries with values inβ1 ∪ β2.

Theorem 5.29.Given a Markov chain,X∗, and open Borel sets,β = β1 ∪ β2, πβ,∗ (X∗) =

πβ1,∗

(
πβ2,∗ (X∗)

)
with probability 1.

Proof. Let X2
∗ = πβ2,∗ (X∗), X1

∗ = πβ1,∗

(
X2

∗

)
, andX̃∗ = πβ,∗ (X∗). Likewise, letT2 =

{
t ≥ 0 | Xt ∈ β2

}
, T1 =

{
t ≥ 0 | X2

t ∈ β1

}
, andT =

{
t ≥ 0 | Xt ∈ β

}
. For k ≥ 0,

we may assume thatτβ2,k, τβ1,k, andτβ,k are increasing enumerations ofT2, T1, andT ,

respectively, since, by Lemma 5.28, this holds except on a set of probability 0.
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Now notice that

∃ k ≥ 0, t = τβ2,τβ1,k
⇐⇒ ∃ k, t′ ≥ 0, t′ = τβ1,k andt = τβ2,t

′

⇐⇒ ∃ t′ ∈ T1, t = τβ2,t
′ sinceτβ1,∗ enumeratesT1

⇐⇒ ∃ t′ ≥ 0, X2
t
′ ∈ β1 andt = τβ2,t

′ by definition ofT1

⇐⇒ ∃ t′ ≥ 0, Xτ
β2,t

′ ∈ β1 andt = τβ2,t
′ by definition ofX2

∗

⇐⇒ ∃ t′ ≥ 0, Xt ∈ β1 andt = τβ2,t
′

⇐⇒ Xt ∈ β1 andt ∈ T2 sinceτβ2,∗ enumeratesT2

⇐⇒ Xt ∈ β1 andXt ∈ β2

⇐⇒ Xt ∈ β1 ∩ β2 = β1 ∪ β2 = β

⇐⇒ t ∈ T by definition ofT

In particular,τβ2,τβ1,t
maps ontoT . Sinceτβ2,t, τβ1,t : N → N are both assumed to be

strictly increasing mappings, so is their composite. In particular, τβ2,τβ1,t
is an increasing

enumeration ofT . Since we are assuming thatτβ,t is theuniqueincreasing enumeration of

T , τβ2,τβ1,t
= τβ,t, andπβ1,∗

(
πβ2,∗ (X∗)

)
= πβ1,∗

(
X2

∗

)
= X2

τβ1,∗
= Xτβ2,τβ1,t

= Xτβ,t
.

Theorem 5.27 allows us to easily show that the reduction construction on matrices of

section 5.2 is “natural”, as well.

Theorem 5.30. If M ∈ Matn(R) is Markov, s = s1 ∪ s2 is open with respect toM ,

(M1, p1, i1) is the reduction ofM with respect tos1, (M2, p2, i2) is the reduction ofM1

with respect tos′2 = s−1
1 (s2), and

(
M̂, p, i

)
is the reduction ofM with respect tos, then

M2 = M̂ , p = p2p1, andi = i1i2.

Proof. First, notice that, by Theorem 5.10,s′2 is open with respect toM1, so that the

statement of the Theorem makes sense. Ifι is the identity onSn, and v is somen-

dimensional distribution, we may define a chain,X∗, which is ι-consistent withM such

thatPr[X0 = j] = vj , ∀j ∈ Sn. By Theorem 5.27,M1 is ι1-consistent withX∗ = πs1
(X∗)

andPr
[
X0 = ι1(j)

]
= (p1v)j , whereι1 = s1. Likewise,M2 is ι2-consistent withX̃∗ =

πι1(s
′
2)
(
X∗

)
= πs1∩s2

(
X∗

)
andPr

[
X̃0 = ι2(j)

]
= (p2p1v)j, whereι2 = ι1s

′
2 = s. Thus,

if we let X̂∗ = πs (X∗), by Theorem 5.29,̃X∗ = πs1∩s2

(
πs1

(X∗)
)

= πs (X∗) = X̂∗ with

probability 1. SinceX̃∗ is ι2-consistent withM2, andX̂∗ is ι2-consistent witĥM , M̂ = M2.
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For anyk ∈ Sn, if v = ek, then(p2p1ek)j = Pr
[
X̃0 = s(j)

]
= Pr

[
X̂0 = s(j)

]
=

(pek)j, so thatp = p2p1. Finally, by Theorem 5.12,i(v) is the unique extension of an

eigenvectorv ∈ ker
(
M̂ − I

)
to an eigenvector inker (M − I). Likewise, i1i2(v) is an

extension of an eigenvectorv ∈ ker (M2 − I) first to an eigenvector inker (M1 − I), and

then to an eigenvector inker (M − I). Therefore, sincêM = M2, by uniqueness,i1i2(v) =

i(v).
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Chapter 6

Markov Chain Tree Theorem

In this chapter, we sharpen a result, often known as the Markov Chain Tree Theorem,

proven for example by Freidlin and Wentzell (Friedlin and Wentzell, 1984), specifically

for irreducible Markov matrices. It gives a combinatorial formula for the unique stable

distribution of an irreducible Markov matrix. Because thistheorem will form the basis

of all key results in Chapter 7, we give a detailed proof. Moreover, because wish wish to

apply it tounichainMarkov matrices, we generalize the theorem to that setting.We present

a novel proof which exploits the properties of the determinant function.

6.1 Directed Spanning Trees

As given by Theorem 6.17, the Markov Chain Tree Theorem givesa combinatorial formula

for the unique stable distribution of a unichain Markov matrix in terms of the weights of its

directed spanning subtrees. In this section, we will:

• define what we mean by a directed tree and show how they are intimately related

with unichain Markov matrices,

• show how we may enumerate all directed trees onn vertices by certain class of

functions onSn, and

• define a vector,wM , for any Markov matrix,M , in terms of the collection of all

directed spanning subtrees ofG−(M), which will turn out to be proportional to the

stable distribution ofM .
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6.1.1 DST Facts

A directed graphG that contains a unique directed walk from any vertex inG to some

distinguished vertexv has been called an “oriented” tree (Knuth, 1997, p. 373). We will

refer to such a graph as adirected tree. We will also describe it as beingrooted atv. This

terminology is justified by the following theorem:

Theorem 6.1. If G = (V, E) is a directed tree rooted atv, then

• there is a well-defined functionlG : V → N such thatlG(v) = 0 and for all (u, w) ∈

E, lG(u) = lG(w) + 1;

• v has no outgoing edges, while everyu ∈ V \ {v} has exactly one outgoing edge;

and

• the undirected graph associated withG cannot contain any cycles, i.e., it is a tree.

Proof. DefinelG : V → N such thatlG(u) is the length of the unique walk inG from u to

v. By definition,lG(v) = 0. Given a walk between two vertices, say, fromu to w, the walk

from u to v must be the concatenation of the given walk (fromu to w) and the walk from

w to v. This holds for any edge(u, w), solG(u) = lG(w) + 1.

The vertexv cannot have an outgoing edge,(v, u), since that would imply that0 =

lG(v) = lG(u) + 1, andlG(u) = −1, which is impossible sincelG(u) is a length. Since

there is a walk from every otheru to v, every otheru must have at least one outgoing edge.

It cannot have more than one, however, because that would imply two distinct walks from

u to v.

Since lG is strictly decreasing along any walk,G cannot contain a (directed) cycle.

In particular, it cannot contain any self-loops. More generally, the associated undirected

graph,G−, cannot contain an (undirected) cycle. If it did, we could find a vertex,u, in

the cycle such thatlG(u) is maximum among all vertices in the cycle. SinceG contains

no self-loops, the cycle has length at least 1, and there are two edges in the cycle incident

with u in G′. These edges correspond to directed edges inG. SincelG(u) is maximum,u

must be the starting vertex for both edges. Butu has only one outgoing edge, so this is a

contradiction.

We know from Lemma 1.1 that every directed graph contains at least one closed class.

The main result established in this section is: if a directedgraph containsexactlyone closed
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class, then it contains directed spanning (i.e., containing all vertices) subtrees rooted at each

of the vertices in that class.

We will say that a graph,G = (V, E), contains astar at v iff for every w ∈ V ,

(w, v) ∈ E. Likewise, we will say thatG is starry iff it contains a star at somev ∈ V . Note

thatGT contains a star atv iff there is a walk from every other vertex inG to v.

Lemma 6.2. For any directed graphG = (V, E), GT contains a star at the vertexv iff G

contains exactly one closed class andv is a vertex in that class.

Proof. AssumeG contains exactly one closed class,C, and choose an arbitrary vertex

v ∈ C. Now for any other vertexw ∈ V , eitherw ∈ C or w /∈ C. If w ∈ C, w andv are in

the same SCC, so there is a walk fromw to v. If w /∈ C, w is transient, sinceG contains

only one closed class, so by Lemma 1.1 there is a path fromw terminating in a closed class,

which must beC. Let u ∈ C be the vertex at which this path terminates. Sinceu andv are

in the same SCC, there is a walk fromu to v, and therefore there is a walk fromw to v. So

there is a walk inG from every vertex tov, andGT contains a star atv.

Conversely, assume thatGT contains a star atv. First, by Lemma 1.1,GT must contain

at least one closed class, call itC. Second,v must be inC. If it were not, there could be no

walk from w ∈ C to v, sinceC has no outgoing edges. Third, there cannot be more than

one closed class, since by the same argumentv would have to be in all of them.

Lemma 6.2 says that ifG contains exactly one closed class, then it contains a directed

walk from any vertex inG to each vertex in that class. In the remainder of this section,

we establish a stronger result, namely that the assumption of exactly one closed class inG

implies that for each vertexv in the closed class,G contains a subgraphG′ in which there

is auniquedirected walk (which is necessarily a path) from any vertex in G′ to v (i.e., G

contains directed spanning subtrees rooted at each of the vertices in the closed class).

Lemma 6.3. For any directed graph,G, GT contains a star at the vertexv iff G contains a

directed spanning subtree rooted atv.

Proof. Assume thatG contains a directed spanning subtree rooted atv. By definition, it

then contains a (unique) directed walk from any vertex tov. This means thatGT contains

an edge from any vertex tov. In other words,GT contains a star atv.

Conversely, ifGT contains a star atv, we can use the well-known graph algorithm

breadth-first search to construct a directed spanning subtree rooted atv. Breadth-first search
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starts with the root node,v, in a graph,G = (V, E). Each vertex reached by the algorithm

is first discovered, then placed in queue, then processed when it is dequeued. To process

a vertex, the algorithm discovers and enqueues all undiscovered vertices adjacent to the

current vertex. It then dequeues the next vertex for processing. In this way, the algorithm

processes all vertices a certain number of edges away fromv before descending to the

next level of depth. The algorithm uses a “color” decorationto guarantee that no vertex is

processed more than once. Vertices not yet discovered are WHITE, vertices discovered but

not yet processed are GRAY, and processed vertices are BLACK.

The pseudo-code below is a modification of the basic algorithm. Since the edges in a

directed spanning tree point toward the root, this algorithm traverses edges backwards, that

is, at any iteration it discovers a vertexu iff there is an edge pointing fromu to the vertex

currently being processed. In addition, it keeps track of the edges traversed this way in the

setE ′. We will argue that the returned graphG′ = (V, E ′), clearly a subgraph ofG, is a

directed spanning tree contained inG.

Algorithm 1 BFS Tree
Q = new Queue()
E ′ = ∅
for (u ∈ V )

color[u] = WHITE
color[v] = GRAY
Q.enqueue(v)
while (!Q.isEmpty()) {

u = Q.dequeue()
for (; w | (w, u) ∈ E; ) {

if (color[w] = WHITE) {
color[w] = GRAY
E ′.insert((w, u))
Q.enqueue(w)

}
}
color[u] = BLACK

}
return

(
G′ = (V, E ′)

)
;

For any non-root vertexu 6= v ∈ V ,

• u is eventually discovered (turned GRAY) by the algorithm. SinceGT contains a
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star atv, there is a path fromu to v in G. Enumerate the vertices on this path

p1, . . . , pl with p1 = v, pl = u, and(pi, pi−1) ∈ E. Claim: every vertex on the

path will be discovered.p1 = v is discovered in the initialization step. Supposepi−1

is discovered. Thenpi−1 is enqueued, which guarantees that it will eventually be

processed. When it is processed,pi is examined, since(pi, pi−1) ∈ E. If pi is GRAY,

it has already been discovered. If not, it is discovered, turned GRAY, and enqueued.

So by induction,pl = u will eventually be discovered.

• there is a path fromu to v in G′. Enumerate the non-root verticesw1, . . . , wm in the

order they are discovered. The first,w1, is discovered because there is an edge, and

therefore a path,(w1, v) in G, and this edge is added toE ′. Suppose there is a path

from wk to v in G′ for all k < i. Then whenwi is discovered, an edge(wi, wj) is

added toE ′ from wi to the vertex currently being processed. Since all verticesare

discovered before they are processed,j < i. So there is a path fromwj to v, and with

the new edge, there is a path fromwi to v in G′. By induction, there is a path fromu

to v, sinceu is discovered.

• this path is unique. When a non-root vertex is discovered, one edge is added toE ′

out of that vertex. Since each vertex is discovered exactly once, exactly one edge

leaves each non-root vertex inG′. The path fromu to v uses the only edge out of

each vertex in the path, so it must be unique.

Thus,G′ is a directed spanning tree by definition.

Lemma 6.2 says thatG contains a star atv iff G contains exactly one closed class and

v is in that class. Lemma 6.3 says thatGT contains a star atv iff G contains a directed

spanning subtree rooted atv. Therefore,

Theorem 6.4. A directed graphG contains a directed spanning subtree rooted at a vertex

v iff G contains exactly one closed class, andv is a vertex in that class.

6.1.2 DST Construction

We now give a way to represent the set of directed spanning trees of the complete graph on

n vertices in terms of certain mappings. This will allow us to give a constructive proof, in
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Section 6.2, of the Markov Chain Tree Theorem using determinants.

Among all directed unweighted graphs onn vertices, we restrict attention to those

which are1-regular, that is, those in which each vertex has a unique outgoing edge. There

is a 1-1 correspondence between such graphs and the setT of mappingsσ : Sn → Sn,

which we will suggestive refer to as “1-regular” mappings. Specifically, for a 1-regular

graphG = (V, E), let map(G) = σ such thatσ(i) = j iff (vi, vj) ∈ E. Conversely, any

suchσ defines a 1-regular graph,G−(σ), such that(vi, vj) ∈ E iff σ(i) = j. Clearly,

G−(map(G)) = G andmap(G−(σ)) = σ.

There is also a 1-1 correspondence between 1-regular mappings and the setM of n×n

square Markov matrices with a single non-zero entry (i.e., 1) in each column, which we will

again refer to as “1-regular”. To any 1-regular mappingσ ∈ T , we associate a 1-regular

matrix mat(σ) ∈ M as follows:(mat(σ))i,j = 1 iff σ(j) = i. Observe that each column

j of mat(σ) is the standard basis vectoreσ(j), somat(σ) =
(
eσ(1) . . . eσ(n)

)
. Conversely,

for any matrixM ∈ M we can definemap(M) ∈ T such that(map(M)) (j) = i iff

Mi,j = 1. Again,mat andmap are inverses and so give a 1-1 correspondence between the

set of 1-regular mappings andM.

Finally, note that these correspondences induce a 1-1 correspondence between the set

of 1-regular matrices and 1-regular graphs, which is just the usual procedure of associating

with a matrixM its unweighted graphG−(M). We will also definemat(G) for any 1-

regular graphG to be the corresponding 1-regular matrix.

Four such 1-regular matrices, with their corresponding graphs, are shown in Table 6.1.

Table 6.1: Four 1-Regular Markov Matrices and Graphs.M3 ∈ M3 (equivalently,
map(M3) ∈ T3) andM4 ∈M1 (equivalently,map(M4) ∈ T1).

M1 =




0 0 1

1 0 0

0 1 0


 M2 =




0 1 1

1 0 0

0 0 0


 M3 =




0 1 0

1 0 0

0 0 1


 M4 =




1 1 1

0 0 0

0 0 0




G− (M1) v1

v2 v3

G− (M2) v1

v2 v3

G− (M3) v1

v2 v3

G− (M4) v1

v2 v3
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Fori ∈ Sn, defineMi =
{
M ∈M |Mj,j = 1 iff j = i

}
andTi = {map(M) |M ∈Mi}.

These sets correspond to 1-regular graphs with exactly one self-loop atvi, such asM3 and

M4 in Table 6.1. Now restrict attention further to graphs of unichain Markov matrices,

definingMi = {M ∈Mi |M unichain} andT i =
{
map(M) |M ∈Mi

}
. By defini-

tion, for everyM ∈ Mi, G−(M) has exactly one closed class, which must be the single-

ton,{vi}. For example,M4 ∈ M1. Notice that whileM2 is unichain, it does not contain a

self-loop. Likewise, whileM3 has a self-loop atv3, it has two closed classes,{v1, v2} and

{v3}, so it is not unichain.

Table 6.2 depicts all members of the setM1 with vertices inS3. Note that the diagonal

entries and the entries in the first column of each matrix are determined by the definition

ofM1. This leaves two possibilities each for the two non-zero entries in columns 2 and 3,

resulting in the four members. Of these four,M1, M2, andM3 are unichain (each has only

one closed class,{v1}) so they are members ofM1. M4, on the other hand, has two closed

classes,{v1} and{v2, v3}, so it is not a member ofM1.

Table 6.2: The setM1 of 3 × 3 matrices. M1, M2, M3 ∈ M1 (equivalently,
map(M1), map(M2), map(M3) ∈ T 1).

M1 =




1 1 1

0 0 0

0 0 0


 M2 =




1 1 0

0 0 1

0 0 0


 M3 =




1 0 1

0 0 0

0 1 0


 M4 =




1 0 0

0 0 1

0 1 0




G− (M1) v1

v2 v3

G− (M2) v1

v2 v3

G− (M3) v1

v2 v3

G− (M4) v1

v2 v3

Now for σ ∈ T i, let G0
−(σ) be the graph obtained by removing the self-loop atvi from

G−(σ). We will call the set of all such graphsDi = {G0
−(σ) | σ ∈ T i}. Notice that these

graphs are directed spanning trees. In fact, this method constructs all directed spanning

trees rooted atvi, as shown in the following theorem. An illustration is givenin Table 6.3,

showing the associated Markov matrices,mat(σ) ∈Mi for σ ∈ T i.

Theorem 6.5.Di is the set of all directed spanning trees onn vertices rooted atvi.
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Table 6.3: The setD1 of directed spanning trees with vertices inS3 rooted atv1 and their
associated matrices. These are the elements ofM1 with the self-loops atv1 removed.

M1 =




1 1 1

0 0 0

0 0 0


 M2 =




1 1 0

0 0 1

0 0 0


 M3 =




1 0 1

0 0 0

0 1 0




G0
− (M1) v1

v2 v3

G0
− (M2) v1

v2 v3

G0
− (M3) v1

v2 v3

Proof. For any mappingσ ∈ T i, mat(σ) is unichain, soG−(mat(σ)) = G−(σ) contains

exactly one closed class, which must be the vertexvi with the self-loop. By Theorem 6.4,

G−(σ) contains a directed spanning tree subgraph rooted atvi. By removing the self-loop

at vi, we obtainG0
−(σ), which, sinceG−(σ) is 1-regular, has no outgoing edges fromvi

and one outgoing edge from every other vertex. But by Theorem6.1, the directed span-

ning subtree has no outgoing edges from the root,vi, and one outgoing edge from every

other vertex.G0
−(σ) is the only possible subgraph with these properties, so it isa directed

spanning tree.

Moreover, every such tree can be constructed in this fashion. Given a directed spanning

treeG′ rooted atvi, add a self-loop atvi to obtain a 1-regular graph,G, with associatedσ.

Since the directed spanning treeG′ is a subgraph ofG, by Theorem 6.4,G contains exactly

one closed class. In particular,mat(σ) is unichain, i.e.,mat(σ) ∈ Mi, so thatσ ∈ T i and

G0
−(σ) = G′. Thus,G′ ∈ Di, andDi is the set of all directed spanning trees rooted atvi.

6.1.3 The vectorwM

Now that we have a construction for the set of directed spanning trees, for any given Markov

matrix,M , we may enumerate the directed spanning subtrees ofG−(M), and their associ-

ated “weights”. We will see that whenM is unichain, these are closely related to the stable

distribution ofM .

Given any Markov matrix,M , and anyσ ∈ Ti, we define

W (M, σ) = Πj 6=iMσ(j),j (6.1)
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Intuitively, this is the “total” weight inG(M) of the edges inG0
−(σ) (where we aggregate by

multiplication rather than addition), which is a directed spanning tree whenσ ∈ T i. Notice

how we take the product overj 6= i, so that the “total” weight excludes the weight on the

self-loop ati in G−(σ). Notice further that, while we will usually apply this definition to

σ ∈ T i, W (M, σ) is well-defined for anyσ ∈ Ti.

Given a Markov matrixM , we now define the vectorwM such that

(wM)i =
∑

σ∈T i

W (M, σ) (6.2)

The ith entry ofwM is the sum of the “total” weights inG(M) of all directed spanning

subtrees rooted atvi.

Example 6.6. Throughout the remainder of this chapter, we will use the Markov matrix

M =




0 1
2

1
4

1 0 1
4

0 1
2

1
2


 as a running example. To calculate(wM)1, we must sum over all

σ ∈ T 1, which correspond to the matricesM1, M2, M3 ∈M1 enumerated in Table 6.2.

First, calculateW (M, σ1), for σ1 = map(M1); in particular,σ1(1) = 1, σ1(2) = 1, and

σ1(3) = 1. Here,W (M, σ1) = Πj 6=1Mσ1(j),j = Mσ1(2),2Mσ1(3),3 = M1,2M1,3 = 1
2
× 1

4
= 1

8
.

Similarly, W (M, σ2) = Πj 6=1Mσ2(j),j = Mσ2(2),2Mσ2(3),3 = M1,2M2,3 = 1
2
× 1

4
= 1

8
, and

W (M, σ3) = Πj 6=1Mσ3(j),j = Mσ3(2),2Mσ3(3),3 = M3,2M1,3 = 1
2
× 1

4
= 1

8
.

Finally, (wM)1 =
∑

σ∈T 1
W (M, σ) = 1

8
+ 1

8
+ 1

8
= 3

8
. Repeating this process forσ ∈ T 2

andσ ∈ T 3, we find thatwM =




3
8

1
2

1
2


.

Lemma 6.7. For anyn × n Markov matrixM , all i ∈ Sn, andσ ∈ T i, W (M, σ) 6= 0 iff

the directed spanning tree associated toσ, G0
−(σ), is a subgraph ofG−(M).

Proof. Abbreviate the directed spanning tree associated toσ by G. We may enumerate all

the edges ofG as
(
vj, vσ(j)

)
for j ∈ Sn \ {i}. An edge,

(
vj, vσ(j)

)
, is in G−(M) iff it is

in G(M) iff it has positive weight, i.e.,Mσ(j),j > 0. Thus,G is a subgraph ofG−(M) iff

Mσ(j),j > 0 for all j ∈ Sn \ {i} iff 0 6= Πj 6=iMσ(j),j = W (M, σ).
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By Lemma 6.7, whenG0
−(σ) is not a subgraph ofG−(M), the corresponding term in

∑
σ∈T i

W (M, σ) is zero. ForM Markov, defineT (M, i) to be only those mappingsσ in

T i whose associated direct spanning trees are subgraphs ofG−(M): i.e.,

T (M, i) = {σ ∈ T i | G
0
−(σ) ⊂ G−(M)} (6.3)

We may now give an equivalent definition ofwM with zero terms removed from the sum:

(wM)i =
∑

σ∈T (M,i)

W (M, σ) (6.4)

We will use this definition from now on.

Theorem 6.8. The vectorwM 6= 0 iff M is unichain. Specifically, ifM is unichain,

(wM)i 6= 0 iff vi is in the closed class ofG(M).

Proof. SupposeM is unichain. By Theorem 6.4 there exists a subgraphG′
i ⊂ G−(M)

which is a directed spanning tree rooted at the vertexvi iff vi is in the closed class of

G−(M). If vi is in the closed class, letσi ∈ T i be mapping associated toG′
i (so thatG′

i =

G0
−(σi)). Thenσi ∈ T (M, i), and there is at least one term in the sum

∑
σ∈T (M,i) W (M, σ).

Since this is a sum of positive terms,(wM)i 6= 0. If vi is not in the closed class,G(M) has

no directed spanning subtree rooted atvi, soT (M, i) is empty and(wM)i = 0.

If M is not unichain, by Theorem 6.4G(M) has no directed spanning subtree rooted at

any vertex. SoT (M, i) is empty for alli, andwM = 0.

6.2 A Proof Using Determinants

Having established all necessary combinatorial definitions in section 6.1, we now move

on the proof of the Markov Chain Tree Theorem. The proof will depend primarily on

the multi-linearity of the determinant function from linear algebra. Thus, we will begin by

reviewing basic facts and definitions associated with the determinant function. Specifically,

we will:

• review the basic properties of the determinant,

• define what we mean by minors, cofactors, and the adjoint of a matrix,
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• show how the vector,wm, from section 6.1 naturally occurs as the diagonal of the

adjoint of the laplacian of a unichain Markov matrix,M , and

• use linear algebra to show that this must then be proportional to the stable distribution

of M .

6.2.1 Determinants

We begin by recalling some basic facts regarding the determinant function on square matri-

ces. For notational convenience, we will sometimes writev1 ∧ · · · ∧ vn for the determinant

of then× n square matrix withvis as columns, wherevi ∈ R
n.

The determinant of a2 × 2 matrix,

∣∣∣∣∣∣
a b

c d

∣∣∣∣∣∣
= ad − bc. The determinant of ann × n

matrix,N , for n > 2 can be calculated recursively as follows, using the Laplaceexpansion

formula. The(i, j)th minorof N , N i,j , is the(n−1)×(n−1) matrix obtained by removing

the ith row andj th column fromN . The(i, j)th cofactor ofN , Ci,j
N = (−1)i+j|N i,j |. Now,

for any rowi or columnj of N ,

|N | =
n∑

k=1

Ni,kC
i,k
N =

n∑

k=1

Nk,jC
k,j
N . (6.5)

Example 6.9. For example, the determinant of the matrixM =




0 1
2

1
4

1 0 1
4

0 1
2

1
2


 can be

calculated by applying the Laplace expansion along the firstcolumn: |M | = M1,1C
1,1
M +

M2,1C
2,1
M +M3,1C

3,1
M = 0×C1,1

M +1× (−1)2+1

∣∣∣∣∣∣

1
2

1
4

1
2

1
2

∣∣∣∣∣∣
+0×C3,1

M = −1(1
2
× 1

2
− 1

4
× 1

2
) =

−1
8
.

Theorem 6.10.The determinant function on square matrices has the following well-known

properties (see, for example, (Horn and Johnson, 1985)):

a) |NM | = |N ||M |, or equivalently, settingvi = Mei, so that|M | = v1 ∧ · · · ∧ vn,

(Nv1) ∧ · · · ∧ (Nvn) = |N | v1 ∧ · · · ∧ vn (6.6)
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b) |I| = 1 and
∣∣M−1

∣∣ = |M |−1.

c) |N | = 0 iff N is not invertible.

d) |M−1NM | = |N |, and in particular, for any permutation matrixP ,
∣∣P tMP

∣∣ =

|M |.

e)
∣∣M t

∣∣ = |M |

f ) If N is block-triangular with square diagonal blocks,Ni, then|N | =
∏

i |Ni|.

g) The determinant function ismulti-linear, meaning it is linear in each “factor”, i.e.,

v1∧· · ·∧(αvi + w)∧· · ·∧vn = α (v1 ∧ · · · ∧ vi ∧ · · · ∧ vn)+v1∧· · ·∧w∧· · ·∧vn

Another key property of the determinant involves the adjoint operator,adj. Theadjoint

of a matrix is the transpose of its matrix of cofactors, i.e.,for anyn× n square matrix,N ,

(adjN)i,j = Cj,i
N = (−1)i+j

∣∣N j,i
∣∣ (6.7)

The adjoint satisfies the following equations (Wicks, 1996):

adj(N) N = |N | I = N adj(N) (6.8)

These equations are equivalent to the Laplace expansion formula for determinants.

Example 6.11.Recall our matrixM =




0 1
2

1
4

1 0 1
4

0 1
2

1
2


.

M1,1 =


 0 1

4

1
2

1
2


, andadj(M)1,1 = (−1)1+1

∣∣M1,1
∣∣ = −1

8
.

Similarly, M1,2 =


 1 1

4

0 1
2


, andadj(M)2,1 = (−1)1+2

∣∣M1,2
∣∣ = −1

2
.

Continuing this process, we find thatadj(M) =




−1
8
−1

8
1
8

−1
2

0 1
4

1
2

0 −1
2


.



83

Now it is easy to check thatadj(M)M = M adj(M) =




−1
8

0 0

0 −1
8

0

0 0 −1
8


 =

|M | I.

6.2.2 The Stable Distribution

DefinewM to be the vector consisting of the diagonal entries ofadj (Λ). That is,(wM)i ≡

adj(Λ)i,i = Ci,i
Λ =

∣∣Λi,i
∣∣. In this section, we will show thatwM is closely related to

the vectorwM defined earlier. This will lead to a formula for the stable distribution of a

unichain Markov matrix in terms of its directed spanning trees.

In order to proceed, we need a bit of additional notation, letRi (N) denote the result of

replacing theith column ofN by the standard basis vector,ei.
1

Example 6.12.ForM in the examples above,

Λ = M − I =




−1 1
2

1
4

1 −1 1
4

0 1
2
−1

2


, andadj (Λ) =




3
8

3
8

3
8

1
2

1
2

1
2

1
2

1
2

1
2


, sowM =




3
8

1
2

1
2


.

Further,R1 (Λ) =




1 1
2

1
4

0 −1 1
4

0 1
2
−1

2


. Computing the determinant of this matrix (using

the Laplace expansion formula) yields|R1 (Λ)| = 1×

∣∣∣∣∣∣
−1 1

4

1
2
−1

2

∣∣∣∣∣∣
= −1×−1

2
− 1

4
× 1

2
=

3
8

= (wM)1, which holds in general, as the following lemma shows.

Lemma 6.13.For any Markov matrix, M,(wM)i = |Ri (Λ)|.

Proof. By the Laplace expansion formula for determinant along theith column,|Ri (Λ)| =
∑n

k=1(Ri(Λ)k,i)C
k,i
Ri(Λ) = Ci,i

Ri(Λ) = (−1)2i|Ri(Λ)i,i| = (−1)2i|Λi,i| = adj(Λ)i,i = (wM)i.

From our examples, it appears thatwM = wM . We will now work to show that this is

(almost) true, in general. We will do this by gradually rewriting wM via a series of lemmas,

until we obtainwM .
1More formally,Ri (N) = N + (I −N)eie

t
i, so thatRi (N) ej = Nej + (I −N)eie

t
iej = Nej + (I −

N)ei[i = j] = eI [i = j] + N(ej − ei[i = j]) = eI [i = j] + Nej[i 6= j].
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Lemma 6.14. For any Markov matrix, M,(wM)i =
∑

σ∈Ti
W (M, σ) |Ri(Λ(mat(σ)))|,

where, by our usual convention,Λ(mat(σ)) = mat(σ)− I.

Proof. By Lemma 6.13, remembering thatΛ ≡M − I, we may first write(wM)i in terms

of the columns ofRi(Λ),

(wM)i = |Ri (Λ)|

= Ri (Λ) e1 ∧ · · · ∧ Ri (Λ) ei ∧ · · · ∧ Ri (Λ) en

= Λe1 ∧ · · · ∧ ei ∧ · · · ∧ Λen (6.9)

Since the columns ofΛ sum to 0 (i.e., are inker J), we may write thejth column ofΛ, Λej,

in terms ofei,j ≡ ei − ej for i 6= j (i.e., a choice of basis forker J). We begin, as follows:

Λej = Mej − ej =

n∑

i=1

Mi,jei − ej =
∑

i6=j

Mi,jei +
(
Mj,j − 1

)
ej .

Since thejth column ofM sums to 1, we obtain the desired expansion:

Λej =
∑

i6=j

Mi,jei +

(
−
∑

i6=j

Mi,j

)
ej =

∑

i6=j

Mi,j(ei − ej) =
∑

i6=j

Mi,jei,j (6.10)

Applying Equation 6.10 to Equation 6.9, we have, by the multi-linearity of the deter-

minant,

(wM)i =
∑

s1 6=1

Ms1,1es1,1 ∧ · · · ∧ ei ∧ · · · ∧
∑

sn 6=n

Msn,nesn,n

=
∑

s1 6=1

· · ·
∑

sn 6=n

(
Ms1,1 · · ·Msn,n

) (
es1,1 ∧ · · · ∧ ei ∧ · · · ∧ esn,n

)

=
∑

s1 6=1

· · ·
∑

sn 6=n

(
Πj 6=iMsj ,j

) (
es1,1 ∧ · · · ∧ ei ∧ · · · ∧ esn,n

)
(6.11)

We now apply the substitutionsj = σ(j), so that each choice of values for the summation

variables,{s1, . . . , ŝi, . . . , sn}, represents a unique choice ofσ : Sn \{i} → Sn. No choice

of σ(i) is made because Equation 6.11 does not include a summation over si. Notice that

the sum now requiresσ(j) 6= j for all j 6= i. We may also requiresi = σ(i) = i to obtain

a unique choice ofσ : Sn → Sn, such thatσ(j) = j iff j = i, i.e., σ ∈ Ti. Therefore,

Equation 6.11 may be rewritten as

(wM)i =
∑

σ∈Ti

(
Πj 6=iMσ(j),j

) (
eσ(1),1 ∧ · · · ∧ ei ∧ · · · ∧ eσ(n),n

)

=
∑

σ∈Ti

W (M, σ)
(
eσ(1),1 ∧ · · · ∧ ei ∧ · · · ∧ eσ(n),n

)
(6.12)
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Now considereσ(1),1 ∧ · · · ∧ ei ∧ · · · ∧ eσ(n),n. Converting back to standard determinant

notation, we have

eσ(1),1 ∧ · · · ∧ ei ∧ · · · ∧ eσ(n),n =
∣∣∣ eσ(1),1 · · · ei · · · eσ(n),n

∣∣∣

=
∣∣∣Ri

(
eσ(1),1 · · · eσ(i),i · · · eσ(n),n

)∣∣∣

=
∣∣∣Ri

(
eσ(1) − e1 · · · eσ(n) − en

)∣∣∣

=
∣∣∣Ri

((
eσ(1) · · · eσ(n)

)
− I
)∣∣∣

= |Ri(Λ(mat(σ)))| (6.13)

Combining Equations 6.12 and 6.13 give our desired equation

(wM)i =
∑

σ∈Ti

W (M, σ) |Ri(Λ(mat(σ)))|

The formula from Lemma 6.14 may be simplified significantly, once we prove the fol-

lowing lemma.

Lemma 6.15. For any σ ∈ Ti, |Ri(Λ(mat(σ)))| = (−1)n−1, wheneverσ ∈ T i, and 0

otherwise.

Proof. Suppose thatσ ∈ T i. Consider the associated directed spanning tree,D = G0
−(σ).

We can assign each vertex inG−(M) a number according to the length functionlG on D,

given in Theorem 6.1. By sorting the vertices from low to highby their value under the

length function, and renumbering the vertices in this sorted order, we achieve the property

that the edge out of each non-root vertex ends at a lower numbered vertex. This is because

for (u, w) ∈ E, with u 6= vi, lG(u) = lG(w) + 1. SincelG(vi) = 0, vi is renumbered as the

first vertex.

From a matrix perspective, if we permute the rows and columnsaccording to this

renumbering of the vertices, the result is upper-triangular, since edges always go from a

higher (column) index to a lower (row) index. Moreover, the diagonal contains all 0’s

except in the(1, 1)-entry, corresponding to the fact that the graph has a self-loop only at

the root, which gets renumbered with index 1. Therefore, thesame permutation ofΛ is

upper-triangular with -1’s on the diagonal, except for a 0 inthe(1, 1)-entry, and the same
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permutation ofRi (Λ) is upper-triangular with -1’s on the diagonal, except for a 1in the

(n, n)-entry. By Theorem 6.10 d), permuting the rows and columns does not affect the de-

terminant. So by Theorem 6.10 f), the determinant is the product of these1 × 1 diagonal

blocks, and|Ri (Λ(mat(σ)))| = (−1)n−1.

Now suppose thatσ /∈ T i. M = mat(σ) is not unichain, so it has at least two closed

classes. Pick two such closed classes,s1 ands2. By Lemma 2.10, there exists a permu-

tation matrix such thatP t
sMPs =




∗0 0 0

∗1 M1 0

∗2 0 M2


, whereM1 andM2 are the Markov

principal sub-matrices corresponding tos1 and s2, and the∗’s are unknown entries. In

particular, it is block lower-triangular, as isP tΛP =




∗0 − I 0 0

∗1 Λ1 0

∗2 0 Λ2


, with diagonal

blocks,D1 = ∗0 − I, D2 = M1 − I = Λ1, andD3 = M2 − I = Λ2. P tRi (Λ)P is also

block lower-triangular with exactly one of the diagonal blocks,Dj, replaced byRi
′

(
Dj

)
,

for somei′ (determined byP andi) andj = 1, . . . , 3.

By Theorem 6.10 d),|Ri(Λ)| =
∣∣P tRi (Λ)P

∣∣, which, by Theorem f), is either|Ri
′ (∗0 − I)| |Λ1| |Λ2|,

|∗0| |Ri
′ (Λ1)| |Λ2|, or |∗0| |Λ1| |Ri

′ (Λ2)|. SinceΛ1 andΛ2 correspond to Markov matrices

M1 andM2, neither is invertible. In other words, both have determinant zero, so there is at

least one zero term in each product, and|Ri(Λ)| = 0.

We can now show thatwM andwM are equal, up to a change in sign.

Theorem 6.16.For any Markov matrix,M , wM = (−1)n−1wM .

Proof. Focusing attention on theith components, we must show that

(wM)i = (−1)n−1(wM)i = (−1)n−1
∑

σ∈T (M,i)

W (M, σ) .

By Lemma 6.14,

(wM)i =
∑

σ∈Ti

W (M, σ) |Ri(Λ(mat(σ)))| .

By Lemma 6.15,|Ri(Λ(mat(σ)))| = 0, if σ 6∈ T i. Thus, this simplifies to

∑

σ∈T i

W (M, σ) |Ri(Λ(mat(σ)))| .
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Moreover, whenσ ∈ T i, Lemma 6.15 says that|Ri(Λ(mat(σ)))| = (−1)n−1, so that this

simplifies to

∑

σ∈T i

W (M, σ)(−1)n−1 = (−1)n−1
∑

σ∈T i

W (M, σ) = (−1)n−1
∑

σ∈T (M,i)

W (M, σ) ,

as desired.

Theorem 6.17(Markov Chain Tree Theorem). For any unichain Markov matrix,M , stab M =

{vM}, where

(vM)i =
1

K


 ∑

σ∈T (M,i)

W (M, σ)


 =

1

K
(wM)i (6.14)

with normalizing constant,K = ‖wM‖1 =
∑n

i=1(wM)i =
∑n

i=1

∑
σ∈T (M,i) W (M, σ).

Proof. By Theorem 5.14, sinceM has 1 closed class,dim ker Λ = 1. This means that

|Λ| = 0, and, by Equation 6.8,0 = |Λ| I = adj (Λ)Λ. In other words, all rows ofadj(Λ)

are in ker Λt. By Theorem A.1,dim ker Λt = dim ker Λ = 1, sinceΛ is square, and

J ∈ ker Λt, so each row ofadj(Λ) must be a multiple ofJ , i.e., for each row, all entries in

that row must be equal. This means that the columns ofadj(Λ) are all identical.

Similarly, 0 = |Λ| I = Λ adj(Λ). In other words, all columns ofadj(Λ) are inker Λ.

Now wM is defined as the diagonal entries ofadj (Λ). Since the columns ofadj(Λ) are

identical,wM is also equal to each column. In particular,wM ∈ ker Λ, and alsowM ∈

ker Λ. SinceM is unichain, by Theorem 6.8,wM 6= 0, and hence{wM} is a basis for

ker Λ.

The stable distributions ofM are the positive norm-1 vectors inker Λ. We know that

wM is positive, since its entries are the sums of products of positive weights. By letting

K = ‖wM‖1 andvM = 1
K

wM , we see thatvM > 0, and‖vM‖1 =
∑n

i=1(wM)i/K =
1
K
‖wM‖1 = 1, sovM is a stable distribution ofM . Sincedim ker Λ = 1, vM is the unique

stable distribution ofM .

Example 6.18.Completing the ongoing example, we calculate the normalization constant

as follows:K = (wM)1 + (wM)2 + (wM)3 = 11
8

, sovM =




3
11

4
11

4
11


. Indeed,vM is a stable
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distribution, sinceMvM =




0 1
2

1
4

1 0 1
4

0 1
2

1
2







3
11

4
11

4
11


 =




3
11

4
11

4
11


 = vM .

Notice that Theorem 6.17 suggests that(vM)i may be viewed as the conditional prob-

ability that a randomly selected directed spanning subtreeis rooted ati, where the relative

probability of each tree is given by product of the weights ofits edges. This implies that, if

we could efficiently sample from the corresponding distribution of directed spanning sub-

trees, we would have a Monte Carlo algorithm for computingvM . While Broder (1989)

provides such a sampling algorithm, it is not sufficiently fast to render the associated pro-

cedure for computingvM competitive with other more direct techniques.



Chapter 7

Perturbed Markov Matrices

We now wish to generalize our our study of Markov matrices to the case when the entries

are sufficiently “nice” functions of a non-negative parameter, ǫ, to so called “perturbed”

Markov matrices (PMMs). If we denote such a matrix byMǫ, we will be interested in the

stable distributions ofMǫ asǫ → 0. As such, we will need to combine the linear algebra

and graph theory of Part I with some careful real analysis.

We will show that:

• a PMM,Mǫ, has a well-defined stable distribution,vǫ, which is a “perturbed” matrix

(i.e., column vector),

• v0 ≡ limǫ→0 vǫ exists, the so-called “stochastically stable distribution” (SSD) ofMǫ,

• v0 only depends onMǫ up to an equivalence relation (“asymptotic” equality) defined

over its entries,

• the asymptotic equivalence class of an entry is determined by two real-valued invari-

ants, which we call theresistanceandcostof the entry, respectively,

• likewise, the asymptotic equivalence class of a PMM,Mǫ, may be specified by two

real-valued matrices (i.e., its resistance,R (Mǫ), and cost,C (Mǫ)),

• the two constructions from Chapter 5 (i.e., scaling and reduction), as well as the

corresponding notions of equivalence andD-equivalence, generalize to PMMs, and

• by careful application of the Markov Chain Tree Theorem, we can guarantee that we

only need invertconstantmatrices in our constructions.

89



90

By alternating these two constructions, we are able to give the first exact algorithm for

computingv0. Moreover, since the SSD only depends on the asymptotic equivalence class

of Mǫ, we may represent all perturbed matrices in the computationby the corresponding

pair of resistance and cost matrices.

Because we will only be interested in functional values for “sufficiently small” non-

negative values ofǫ, it will be useful to establish the following two conventions. If Q(ǫ)

is a proposition containing the variableǫ, we will write “Q(ǫ) for ǫ � 0” as an short-

hand for “∃δ > 0 s. t. Q(ǫ) for ǫ ∈ [0, δ]”. Likewise, “Q(ǫ) for ǫ ≻ 0” will mean “

∃δ > 0 s. t. Q(ǫ) for ǫ ∈ (0, δ]”. In other words,ǫ � 0 may be read as “for sufficiently

small non-negativeǫ”, while ǫ ≻ 0 will mean “for sufficiently small positiveǫ”.

7.1 Exponentially Convergent Functions

In this section, we will establish the groundwork for our study of PMMs by defining pre-

cisely what we mean by “sufficiently nice functions ofǫ”. The fundamental issue is that

we need to restrict to a class of functions which:

• could serve as entries to a Markov matrix,

• have a well-defined limit asǫ→ 0, and

• is closed under basic algebraic operations.

In particular, we will want the collection of (Markov)matrices, Mǫ, with such entries to be

closed under standard matrix operations. Moreover, we willwantstab (Mǫ) to correspond

to a matrix with such entries, so that we may take limits. In addition, since we are primarily

interested in functional values asǫ→ 0, they will not need to be defined forall non-negative

ǫ. In particular, we will only be interested in such functionsup to “asymptotic” equivalence.

Thus, to begin it is natural to require that the entries should at least be positive and

continuous. In fact, we will be a bit more stringent. We will restrict attention to the col-

lection of functions,f(ǫ), which are continuous for sufficiently small non-negativeǫ, and

either positive for sufficiently small positiveǫ or zero for sufficiently small non-negativeǫ.

We will denote this collection asC+[0, ∗], and, using our convention, we may define it as

follows:

C+[0, ∗] = {f continuous forǫ � 0 | f(ǫ) > 0, ∀ ǫ ≻ 0 or f(ǫ) = 0, ∀ ǫ � 0}
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Alternatively, if C0[0, δ] denotes the set of real-valued, continuous functions on[0, δ], then

C0[0, ∗] =
⋃

δ>0

{
f ∈ C0[0, δ] | f(ǫ) > 0, ∀ 0 < ǫ ≤ δ or f(ǫ) = 0, ∀ 0 ≤ ǫ ≤ δ

}

However, this collection is too big. Anyf ∈ C0[0, δ] andδ′ ∈ (0, δ), defines a re-

striction,g ∈ C0[0, δ′], so thatg(ǫ) = f(ǫ), for all 0 ≤ ǫ ≤ δ′. We would clearly like to

consider those as the “same” function.1 Thus, we define the following relation onC+[0, ∗].

Definition 7.1. For f, g ∈ C+[0, ∗], we will say thatf is asymptotically equal tog and

write f ≃ g iff either:

i) g(ǫ) = 0 = f(ǫ) for ǫ � 0, or

ii ) g(ǫ) > 0 for ǫ ≻ 0 andlimǫ→0
+

f(ǫ)
g(ǫ)

= 1.

Notice that, ifg ∈ C0[0, ∗], then eitherg(ǫ) = 0 for ǫ � 0 or g(ǫ) > 0 for ǫ ≻ 0 (but not

both), so that Definition 7.1 makes sense.

We now show that this relation is, in fact, anequivalencerelation, along with some

other useful facts.

Lemma 7.2. For fi, gi ∈ C0[0, ∗], i = 1, 2,

a) if f1(ǫ) = g1(ǫ) > 0 for ǫ ≻ 0, thenf1 ≃ g1;

b) f1 + f2, f1f2 ∈ C0[0, ∗], that is, this collection of functions is “closed” under

addition and multiplication;

c) ≃ is an equivalence relation onC0[0, ∗];

d) if fi ≃ gi, i = 1, 2, thenf1f2 ≃ g1g2, that is,≃ is “preserved” under multiplica-

tion.

Proof. The proof of part a) is almost immediate. Assuming thatf(ǫ) = g(ǫ) > 0 for ǫ ≻ 0,

limǫ→0
+

f(ǫ)
g(ǫ)

= limǫ→0
+ 1 = 1, so thatf ≃ g, by Definition 7.1 ii). Part b) is also clear,

since the sum or product of continuous/positive functions is continuous/positive.

1Mathematically, we want to look at the “germs” ofC
+[0,∞) at 0 (Warner, 1984).
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To prove part c), we must show that≃ is reflexive, symmetric, and transitive. For any

f ∈ C+[0, ∗], eitherf(ǫ) = 0, for ǫ � 0, so thatf ≃ f by Definition 7.1 i), orf(ǫ) > 0, so

that, by part a),f ≃ f . Thus,≃ is reflexive.

Likewise, if f ≃ g, eitherg(ǫ) = 0 for ǫ � 0, so we must be in case i) whenf(ǫ) = 0

for ǫ � 0, as well. In which case, Definition 7.1 i) givesg ≃ f , as well. Alternatively,

g(ǫ) > 0 for ǫ ≻ 0 and we must be in case ii). Sincelimǫ→0
+

f(ǫ)
g(ǫ)

= 1, we cannot have

f(ǫ) = 0 for ǫ � 0, so thatf(ǫ) > 0 for ǫ ≻ 0. We may then say thatlim
ǫ→0

+
g(ǫ)
f(ǫ)

= 1, so

thatg ≃ f by Definition 7.1 ii). That is,≃ is symmetric.

To finish part c), assume thatf ≃ g andg ≃ h. Since we have already shown≃ to be

symmetric, we know thath ≃ g, as well. Now assume thatg(ǫ) = 0 for ǫ � 0, so we must

be in case i), that is, we may conclude thatf(ǫ) = 0 andh(ǫ) = 0 for ǫ � 0, as well. In

particular,f ≃ h. Otherwise,g(ǫ) > 0 for ǫ ≻ 0, and we must be in case ii). Therefore,

h(ǫ) > 0 for ǫ ≻ 0 and we may conclude thatlim
ǫ→0

+
f(ǫ)
g(ǫ)

= 1 = lim
ǫ→0

+
g(ǫ)
h(ǫ)

. Thus,

1 = 1 · 1 = lim
ǫ→0

+

f(ǫ)

g(ǫ)
lim

ǫ→0
+

g(ǫ)

h(ǫ)
= lim

ǫ→0
+

(
f(ǫ)

g(ǫ)

g(ǫ)

h(ǫ)

)
= lim

ǫ→0
+

f(ǫ)

h(ǫ)

and by Definition 7.1 ii),f ≃ h. Thus, we have proven that≃ is transitive.

Now we must prove part d). First consider the case when at least one of thefi or gi is

identically 0. Assume, for example, thatf1 ≃ 0. Using the fact that≃ is an equivalence

relation, we may reason as follows. By assumption,g1 ≃ f1 ≃ 0, so thatf1(ǫ) = 0 = g1(ǫ)

for ǫ � 0. Thenf1(ǫ)f2(ǫ) = 0 = g1(ǫ)g2(ǫ) for ǫ � 0, andf1f2 ≃ 0 ≃ g1g2.

Otherwise, sincefi ≃ gi, lim
ǫ→0

+
fi(ǫ)
gi(ǫ)

= 1. Therefore,

lim
ǫ→0

+

f1(ǫ)f2(ǫ)

g1(ǫ)g2(ǫ)
= lim

ǫ→0
+

f1(ǫ)

g1(ǫ)
lim

ǫ→0
+

f2(ǫ)

g2(ǫ)
= 1 · 1 = 1

so thatf1f2 ≃ g1g2.

Since≃ is an equivalence relation, we can partitionC0[0, ∗] into equivalence classes,

and denote the corresponding collection of equivalence classes byC. In particular, there is

a unique equivalence class containing the constant function, 0. For convenience, we will

denote this class (and any member function) by 0, as well. Notice that if f 6≃ 0, then

f(ǫ) > 0 for ǫ ≻ 0.

Lemma 7.2 d) says that multiplication is a well-defined operation on C. To perform

addition, subtraction, or division on equivalence classes, we must restrict attention to func-

tions which are “nice” enough. A standard restriction is to look at only those functions
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which “look like” exponentials, i.e., those classes which contain an exponential of the form

cǫr ∈ C0[0, ∗] for c, r ≥ 0. Thus, we define the set ofexponentially convergent(Young,

1993) functions,C+ ⊂ C as those equivalence classes containingcǫr for somer, c ≥ 0. In-

tuitively, we want to focus on the collection of functions
{
f ∈ C+[0, ∗] | ∃ r, c ≥ 0, f ≃ cǫr

}
.

For simplicity, we will blur the distinction between an equivalence class inC+ and its

member functions. Likewise, we will abuse notation slightly and writef ∈ C+ instead

of f ∈ C+[0, ∗] andf ≃ cǫr, for somer, c ≥ 0. For example, we may observe that, as

constant functions,R+ ⊂ C+.

Theorem 7.3.There exist functionsR : C+ → [0,∞] andC : C+ → [0,∞), such that, for

all f, g ∈ C+:

a) f ≃ cǫr 6≃ 0 iff C(f) = c > 0 andR(f) = r <∞, and

b) f ≃ 0 iff C(f) = 0 iff R(f) =∞

Moreover:

a) for f, g ∈ C+, f ≃ g iff C(f) = C(g) andR(f) = R(g);

b) if f is continuous forǫ � 0 andlimǫ→0
+

f(ǫ)

cǫ
r = 1, with c > 0, thenf ∈ C+ \ 0 with

R(f) = r andC(f) = c.

Proof. First, observe that the mappingα : (0,∞)× [0,∞) → C+ such thatα(c, r) = cǫr

gives a 1-1 correspondence between(0,∞)× [0,∞) andC+ \ 0. Assume thatα (c1, r1) =

α (c2, r2), that isc1ǫ
r1 ≃ c2ǫ

r2 . Sinceci > 0, i = 1, 2, we are in case ii) of Definition 7.1.

Therefore,1 = limǫ→0
+

c1ǫ
r1

c2ǫ
r2 = c1

c2
limǫ→0

+ ǫr1−r2. If r1 > r2 this limit is 0. If r1 < r2, the

limit is ∞. Thus, we must haver1 = r2. Moreover,1 = c1
c2

limǫ→0
+ ǫ0 = c1

c2
andc1 = c2.

Thus,α is 1-1.

By definition, if f ∈ C+ \ 0, thenf ≃ cǫr for somec, r ≥ 0. Sincef 6≃ 0, we

must havec > 0, so thatf ≃ α(c, r). Thus,α maps ontoC+ \ 0. In particular, there are

unique functions,R andC, such that(R, C) : C+ \ 0 → (0,∞) × [0,∞) is the inverse

of α. Notice that, iff ≃ cǫr 6≃ 0, then0 < c = C(α(c, r)) = C(cǫr) = C(f) and

∞ > r = R(α(c, r)) = R(cǫr) = R(f). Conversely, if0 < c = C(f) and∞ > r = R(f),

thenf ≡ α(C(f), R(f)) = cǫr 6≃ 0.
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We may extend both functions to all ofC+ by settingC(0) = 0 andR(0) = ∞. Thus,

if f ≃ 0 thenC(f) = 0 andR(f) = ∞. Conversely, ifC(f) = 0 or R(f) = ∞, we must

havef ≃ 0, sinceC(f) > 0 andR(f) <∞ onC+ \ 0.

Next, observe that, sinceC andR are defined on equivalence classes, iff ≃ g, then

necessarilyC(f) = C(g) andR(f) = R(g). Conversely, ifC(f) = C(g) andR(f) =

R(g), we may show thatf ≃ g. If C(f) = C(g) = 0, thenf ≃ 0 ≃ g. Otherwise,

C(f) = C(g) > 0, so thatR(f) = R(g) <∞, andf ≃ C(f)ǫR(f) = C(g)ǫR(g) ≃ g.

Finally, assume thatf is continuous forǫ � 0 and limǫ→0
+

f(ǫ)

cǫ
r = 1. Then we must

have f(ǫ)

cǫ
r , and hencef(ǫ), be positive forǫ ≻ 0. In particular,f ∈ C \ 0. However, by

assumptionf ≃ cǫr 6≃ 0, so by part a),C(f) = c andR(f) = r.

By our comments preceding Theorem 7.3, we can and will also view C(f) andR(f) as

functions defined for allf ∈ C+[0, ∗] with f ≃ cǫr, for somer, c ≥ 0, which are constant

on equivalence classes.

We call the functions,R(f) andC(f), of Theorem 7.3, theresistanceand commu-

nication cost, respectively, off . The following Lemma shows how the resistance and

communication cost functions behave with respect to addition, subtraction, multiplication,

division, and taking limits.

Theorem 7.4.The following hold for anyf, g ∈ C+.

a) limǫ→0
+ f (ǫ) = [R(f) = 0]C(f).

b) f + g ∈ C+, with R(f + g) = min{R(f), R(g)} andC(f + g) = [R(f + g) =

R(f)]C(f) + [R(f + g) = R(g)]C(g).

c) If R(f) < R(g), or R(f) = R(g) andC(f) > C(g), thenf−g ∈ C+, C (f − g) =

C(f)− [R(f) = R(g)]C(g), andR (f − g) = R(f).

d) fg ∈ C+, with C(fg) = C(f)C(g) andR(fg) = R(f) + R(g).

e) If g 6≃ 0, R(f) ≥ R(g), and we define
(

f
g

)
(0) = [R(f) = R(g)]C(f)

C(g)
, thenf

g
∈ C+,

C
(

f
g

)
= C(f)

C(g)
, andR

(
f
g

)
= R(f)− R(g).

Proof. We first prove part a). Iff 6≃ 0, by Theorem 7.3 a), sincef ∈ C+, f ≃ C(f)ǫR(f).

Therefore,

C(f)[R(f) = 0] = lim
ǫ→0

+
C(f)ǫR(f) = lim

ǫ→0
+

C(f)ǫR(f)

f(ǫ)
lim

ǫ→0
+

f(ǫ) = lim
ǫ→0

+
f(ǫ)
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Otherwise,f ≃ 0, R(f) =∞, C(f) = 0, and[R(f) = 0]C(f) = 0 = limǫ→0
+ f (ǫ).

We will approach the proof of part b) in by cases. First, assume that eitherf ≃ 0 or

g ≃ 0. Since the statement of part b) is symmetric inf andg, we may assume, without

loss of generality, thatg ≃ 0. Thus,g(ǫ) = 0 andf(ǫ) + g(ǫ) = f(ǫ), for ǫ � 0, so

that, by Lemma 7.2 a),f + g ≃ f ∈ C+. Moreover, by Theorem 7.3 a),R(f + g) =

R(f) = min{R(f),∞} = min{R(f), R(g)} andC(f + g) = C(f) = [R(f + g) =

R(f)]C(f) + [R(f + g) = R(g)]C(g), as desired.

To complete the proof of part b), we may then assume thatf 6≃ 0 and g 6≃ 0. In

particular, we know thatf(ǫ), g(ǫ) > 0 for ǫ ≻ 0, C(f), C(g) > 0, andlimǫ→0
+

f(ǫ)

C(f)ǫ
R(f) =

1 = lim
ǫ→0

+
g(ǫ)

C(g)ǫ
R(g) . By symmetry, we may assume thatR(g) ≤ R(f).

Letting c = [R(f) = R(g)]C(f) + C(g), we have

lim
ǫ→0

+

f(ǫ) + g(ǫ)

cǫR(g)
=

1

c

(
C(f) lim

ǫ→0
+

f(ǫ)ǫR(f)−R(g)

C(f)ǫR(f)
+ C(g) lim

ǫ→0
+

g(ǫ)

C(g)ǫR(g)

)

=
1

c

(
C(f) · 1 · lim

ǫ→0
+

ǫR(f)−R(g) + C(g) · 1

)

=
1

c
(C(f)[R(f) = R(g)] + C(g)) = 1

Thus, we have shown thatf + g ≃ ([R(f) = R(g)]C(f) + C(g))ǫR(g). In particular,

f + g ∈ C+. Sincef(ǫ) + g(ǫ) > 0 for ǫ ≻ 0, f + g 6≃ 0, so by Theorem 7.3 a), we

may conclude thatR(f + g) = R(g) = min{R(g), R(f)} andC(f + g) = [R(f) =

R(g)]C(f) + C(g) = [R(f + g) = R(f)]C(f) + [R(f + g) = R(g)]C(g), as desired.

Now consider part c). First, consider the case wheng ≃ 0, so thatR(g) = ∞, C(g) =

0, g(ǫ) = 0, for ǫ � 0. Therefore,f(ǫ) − g(ǫ) = f(ǫ), for ǫ � 0 and, by Lemma 7.2

a), f − g ≃ f . Thus,R (f − g) = R(f) and, sinceC(g) = 0, C (f − g) = C (f) =

C(f)− [R(f) = R(g)]C(g), as desired.

Now assume thatg 6≃ 0, so thatC(f), C(g) > 0. We know thatf(ǫ)−g(ǫ) is continuous

for ǫ � 0, since bothf andg are. Therefore, by Theorem 7.3 b), it only remains to calculate

R(f − g) andC(f − g). As in the proof of part b), letc = C(f) − [R(f) = R(g)]C(g).

EitherR(f) < R(g), soC(f) > 0, or R(f) = R(g), so thatC(f) > C(g). In both cases,
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c > 0 and we may compute

lim
ǫ→0

+

f(ǫ)− g(ǫ)

cǫR(f)
=

1

c

(
C(f) lim

ǫ→0
+

f(ǫ)

C(f)ǫR(f)
+ C(g) lim

ǫ→0
+

g(ǫ)

C(g)ǫR(g)
ǫR(g)−R(f)

)

=
1

c

(
C(f) · 1 + C(g) · 1 · lim

ǫ→0
+
ǫR(g)−R(f)

)

=
1

c
(C(f)− [R(f) = R(g)]C(g)) = 1

Therefore, by Theorem 7.3 b),f − g ∈ C+, C (f − g) = c = C(f)− [R(f) = R(g)]C(g),

andR (f − g) = R(f), as desired, completing the proof of part c).

To prove part d), by Lemma 7.2 b), we know thatfg ∈ C, so it remains to show that

fg ≃ cǫr for appropriately chosenr andc. First, consider the case when one of the factors,

say,f ≃ 0. Then,C(f) = 0, R(f) = ∞, andf(ǫ) ≡ 0 for ǫ � 0. Thus,f(ǫ)g(ǫ) ≡ 0 for

ǫ � 0 andfg ≃ 0. In particular,fg ∈ C+, with C(fg) = 0 = 0 · C(g) = C(f)C(g) and

R(fg) = R(0) =∞ =∞+ R(g) = R(f) + R(g) as desired.

Now assume that neither factor is 0, so thatC(f), C(g) > 0, R(f), R(g) < ∞,

f(ǫ)g(ǫ) > 0 for ǫ ≻ 0, andlim
ǫ→0

+
f(ǫ)

C(f)ǫ
R(f) = 1 = lim

ǫ→0
+

g(ǫ)

C(g)ǫ
R(g) . In this case,

lim
ǫ→0

+

f(ǫ)g(ǫ)

(C(f)C(g))ǫR(f)+R(g)
= lim

ǫ→0
+

f(ǫ)

C(f)ǫR(f)
lim

ǫ→0
+

g(ǫ)

C(g)ǫR(g)
= 1 · 1 = 1

Thus,fg ≃ (C(f)C(g))ǫR(f)+R(g), andfg ∈ C+. Sincefg 6≃ 0, the equationsC(fg) =

C(f)C(g) andR(fg) = R(f)+R(g) then follow directly from Theorem 7.3 a), as desired,

completing the proof of part d).

Now to prove part e), we assume thatg 6≃ 0 andR(f) ≥ R(g). Thus,C(g) > 0,

R(g) < ∞, g(ǫ) > 0 for ǫ ≻ 0, andlimǫ→0
+

g(ǫ)

C(g)ǫ
R(g) = 1. First, consider the case when

f ≃ 0, so thatC(f) = 0, R(f) = ∞, andf(ǫ) ≡ 0 for ǫ � 0. Then f(ǫ)
g(ǫ)
≡ 0 for ǫ ≻ 0,

lim
ǫ→0

+
f(ǫ)
g(ǫ)

= 0, and f
g
∈ C with

(
f
g

)
(0) = 0 = [R(f) = R(g)]C(f)

C(g)
. Moreover,f

g
≃ 0,

so that f
g
∈ C+, with C

(
f
g

)
= 0 = 0

C(g)
= C(f)

C(g)
andR

(
f
g

)
= ∞ = ∞ − R(g) =

R(f)−R(g), as desired.

Otherwise,f 6≃ 0, so thatC(f) > 0, R(f) <∞, f(ǫ) > 0 for ǫ ≻ 0, andlimǫ→0
+

f(ǫ)

C(f)ǫ
R(f) =

1. Then

lim
ǫ→0

+

f(ǫ)

g(ǫ))
= lim

ǫ→0
+

f(ǫ)

C(f)ǫR(f)
lim

ǫ→0
+

C(f)ǫR(f)

C(g)ǫR(g)
lim

ǫ→0
+

C(g)ǫR(g)

g(ǫ)

= lim
ǫ→0

+

C(f)ǫR(f)

C(g)ǫR(g)
=

C(f)

C(g)
lim

ǫ→0
+
ǫR(f)−R(g) = [R(f) = R(g)]

C(f)

C(g)
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Thus, setting
(

f
g

)
(0) = [R(f) = R(g)]C(f)

C(g)
, f

g
∈ C[0, ∗], and

(
f
g

)
(ǫ) > 0 for ǫ ≻ 0, so

that f
g
∈ C \ 0. In addition,

lim
ǫ→0

+

f(ǫ)/g(ǫ))

C(f)ǫR(f)−R(g)/C(g)
= lim

ǫ→0
+

f(ǫ)

C(f)ǫR(f)
lim

ǫ→0
+

C(g)ǫR(g)

g(ǫ)
= 1 · 1 = 1

so that f
g
≃ C(f)

C(g)
ǫR(f)−R(g). In particular, f

g
∈ C+ with R

(
f
g

)
= R(f) − R(g), and

C
(

f
g

)
= C(f)

C(g)
, as desired.

Parts b) and d) of Theorem 7.4 generalize to finite sums and products, as follows.

Corollary 7.5. If fi ∈ C
+, i = 1, . . . , k, then

a) f =
∑k

i=1 fi ∈ C
+, with R (f) = mini∈Sk

{R (fi)} andC (f) =
∑

i∈Sk
[R(f) =

R (fi)]C (fi).

b) f = Πk
i=1fi ∈ C

+, with R (f) =
∑

i∈Sk
{R (fi)} andC (f) = Πi∈Sk

C (fi).

Proof. Both parts may be proven by induction. First, consider part a). The case whenk = 1

is trivially true, sincef = f1. Fork > 1, let f =
∑

i∈Sk−1
fi and apply Theorem 7.4 b) to

f andfk, along with the induction hypothesis, to obtain

R (f) = R
(
f + fk

)
= min

{
R
(
f
)
, R (fk)

}
= min

{
min

i∈Sk−1

R (fi) , R (fk)

}
= min

i∈Sk

{R (fi)

Likewise,

C (f) = C
(
f + fk

)
= [R(f) = R

(
f
)
]C
(
f
)

+ [R(f) = R (fk)]C (fk)

=
∑

i∈Sk−1

[R(f) = R
(
f
)
][R
(
f = R (fi)

)
]C (fi) + [R(f) = R (fk)]C (fk)

Since we want this to equal
∑

i∈Sk
[R(f) = R (fi)]C (fi), it remains to show that[R(f) =

R
(
f
)
][R
(
f = R (fi)

)
] = [R(f) = R (fi)] for i ∈ Sk−1.

In general, since[P ][Q] = [P andQ], this reduces to showing that, for anyi ∈ Sk−1,

R(f) = R (fi) ⇐⇒ R(f) = R
(
f
)

andR
(
f
)

= R (fi). Equivalently, we must show

that R(f) = R (fi) ⇐⇒ R(f) = R
(
f
)

andR(f) = R (fi). This is true iffR(f) =

R (fi) =⇒ R(f) = R
(
f
)
, or equivalently,R(f) = R (fi) =⇒ R (fi) = R

(
f
)
.

Thus, by the formula forR given above, it suffices to observe that, for anyi ∈ Sk−1,

R (fi) = minj∈Sk
R
(
fj

)
=⇒ R (fi) = minj∈Sk−1

R
(
fj

)
.
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The proof of part b) is a bit easier. The case ofk = 1 is trivial. Whenk > 1, define

f = Πi∈Sk−1
fi and apply Theorem 7.4 b) tof andfk, along with the induction hypothesis,

to obtain

R (f) = R
(
ffk

)
= R

(
f
)

+ R (fk) =


 ∑

i∈Sk−1

R (fi)


+ R (fk) =

∑

i∈Sk

R (fi)

Likewise,

C (f) = C
(
ffk

)
= C

(
f
)
C (fk) =

(
Πi∈Sk−1

C (fi)
)

C (fk) = Πi∈Sk
C (fi)

7.2 Perturbed Matrices

Before defining a PMM (perturbedMarkov matrix), we first define simply a ”perturbed

matrix”. Notice that Theorem 7.4 implies thatC+ is closed under addition and multipli-

cation. Thus, we may define aperturbed matrixas a matrix,Mǫ ∈ Mat
(
C+
)
, that is, a

matrix with entries inC+. As we mentioned in Section 7.1, by this we mean a matrix with

entries inC+[0, ∗] which are exponentially convergent (i.e., whose equivalence class inC

belongs toC+). Denoting the set ofn × m perturbed matrices asPert(n, m), and the set

of all perturbed matrices byPert, while subtraction and inversion are only defined in very

limited circumstances, we will show thatPert is closed under addition and multiplication

(assuming compatible dimensions).2

We begin by extending the definitions ofR andC toPert. For any perturbed matrixMǫ,

we may define the associatedresistancematrix, R (Mǫ), whereR (Mǫ)i,j = R
(
(Mǫ)ij

)
.

We likewise define its associatedcostmatrix,Cǫ (Mǫ), whereC (Mǫ)i,j = C
(
(Mǫ)ij

)
.3

We will say that two perturbed matrices,Mǫ andM ′
ǫ areasymptotically equaland write

Mǫ ≃ M ′
ǫ iff (Mǫ)ij ≃

(
M ′

ǫ

)
ij

for all i, j. Notice that, by Theorem 7.3,Mǫ ≃ M ′
ǫ iff

C (Mǫ) = C
(
M ′

ǫ

)
andR (Mǫ) = R

(
M ′

ǫ

)
.

Theorem 7.4 then generalizes as follows.

2Thus, we may also multiply by “scalars” inC+, since multiplication byf ∈ C+ is the same as multiplying
by fI, the diagonal matrix with all diagonal entries equal tof

3In some contexts, this is also known as thecommunicationmatrix ofMǫ.
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Theorem 7.6.Assume thatMǫ, M
′
ǫ ∈ Pert(n, m), whileM̃ǫ ∈ Pert(m, p).

a) Mǫ + M ′
ǫ ∈ Pert(n, m)

b) C
(
Mǫ + M ′

ǫ

)
i,j

=
[
R
(
Mǫ + M ′

ǫ

)
i,j

= R (Mǫ)i,j

]
C (Mǫ)i,j

+
[
R
(
Mǫ + M ′

ǫ

)
i,j

= R
(
M ′

ǫ

)
i,j

]
C
(
M ′

ǫ

)
i,j

c) R
(
Mǫ + M ′

ǫ

)
i,j

= min
{
R (Mǫ)i,j , R

(
M ′

ǫ

)
i,j

}

d) MǫM̃ǫ ∈ Pert(n, p)

e) C
(
MǫM̃ǫ

)
i,j

=
∑

k∈Sm
C
(
M ′

ǫ

)
i,k

C
(
M̃ǫ

)
k,j

[
R
(
MǫM̃ǫ

)
i,j

= R (Mǫ)i,k + R
(
M̃ǫ

)
k,j

]

f ) R
(
MǫM̃ǫ

)
i,j

= mink∈Sm

{
R (Mǫ)i,k + R

(
M̃ǫ

)
k,j

}

In particular, addition and multiplication of perturbed matrices is well-defined on equiva-

lence classes under≃.

Proof. Parts a), b), c) and d) follow immediately from the definitions and parts b) and d) of

Theorem 7.4. To prove part e), apply Corollary 7.5 and Theorem 7.4 d):

C
(
MǫM̃ǫ

)
i,j

= C

((
MǫM̃ǫ

)
i,j

)
= C


∑

k∈Sm

(Mǫ)i,k

(
M̃ǫ

)
k,j




=
∑

k∈Sm

C

((
M ′

ǫ

)
i,k

(
M̃ǫ

)
k,j

)[
R
(
MǫM̃ǫ

)
i,j

= R

(
(Mǫ)i,k

(
M̃ǫ

)
k,j

)]

=
∑

k∈Sm

C
(
M ′

ǫ

)
i,k

C
(
M̃ǫ

)
k,j

[
R
(
MǫM̃ǫ

)
i,j

= R (Mǫ)i,k + R
(
M̃ǫ

)
k,j

]

Similarly, by Corollary 7.5 and Theorem 7.4 d)

R
(
MǫM̃ǫ

)
i,j

= R

((
MǫM̃ǫ

)
i,j

)
= R


∑

k∈Sm

(Mǫ)i,k

(
M̃ǫ

)
k,j




= min
k∈Sm

R

((
M ′

ǫ

)
i,k

(
M̃ǫ

)
k,j

)

= min
k∈Sm

{
R
(
M ′

ǫ

)
i,k

+ R
(
M̃ǫ

)
k,j

}
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7.3 Perturbed Markov Matrices and Stable Distributions

In this section, we formally define what we mean by a “perturbed” Markov matrix,Mǫ, and

all the associated concepts from Part I. That is, we define

• the weighted and unweighted graphs associated withMǫ,

• the additional graphs associated with the “unperturbed” Markov matrix,M0,

• the stable and stochastically stable distributions ofMǫ, and

• the collections of rooted, directed spanning subtrees associated withMǫ with their

corresponding weight functions.

The most delicate issue in this section is to prove that the stable distribution is sufficiently

well-behaved (i.e., is a perturbed matrix) so that we may take its limit asǫ → 0 to even

define its stochastically stable distribution. This will involve a careful application of the

Markov Chain Tree Theorem from chapter 6, where we will defineboth the “resistance”

and “cost” of a subtree, and restrict attention to minimal weight directed, spanning subtrees.

We now define aperturbed Markov matrix(PMM) as a perturbed matrixMǫ such that,

for ǫ � 0, Mǫ is a Markov matrix and is unichain forǫ ≻ 0.4 Notice that to say thatMǫ

is Markov is equivalent to saying that(Mǫ)j,j = 1 −
∑

i6=j (Mǫ)i,j ∈ C
+. SinceC+ is

not closed under subtraction, in general, this is a somewhatsubtle assumption. We will

denote the set ofn × n perturbed Markov matrices byPMM(n). We define its associated

perturbed graph, as a weighted, directed graph, but where the weight on each edge is inC+.

Formally,G (Mǫ) = (V, E, d), so thatV = {v1, . . . , vn}, with
(
vi, vj

)
∈ E iff (Mǫ)j,i 6≃ 0,

andd
(
vi, vj

)
= (Mǫ)j,i. Notice, in particular, that the graph does not contain edge

(
vi, vj

)

iff R (Mǫ)j,i =∞, corresponding to the intuition that current does not flow through a wire

with “infinite” resistance. As before, we will denote the underlying unweighted graph as

G− (Mǫ), and its transitive closure byP (Mǫ) ≡ (G− (Mǫ))T . Remember that
(
vi, vj

)
is

an edge inP (Mǫ) iff there is a walk fromvi to vj in G− (Mǫ) iff there is a path fromvi to

vj in G− (Mǫ). Thus, we may call this the “path” graph ofMǫ.

As before, we define strongly connected components, closed classes, invariant and tran-

sient sets of indices in terms of the corresponding collection of vertices inG− (Mǫ). We

4This generalizes the usual definition of a perturbed Markov matrix, which requires thatMǫ be irreducible.
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should point out that the unweighted graphs corresponding to Mǫ for eachǫ ≻ 0 (which we

would also denote byG− (Mǫ)), are all the same (by definition ofC+[0, ∗]) and equal to

G− (Mǫ).
5 That is, although we could interpret the notationG− (Mǫ) in two ways, either

interpretation leads to exactly the same unweighted graph.Thus, for example, the closed

classes of the perturbed matrix are just the same as those of the Markov matrix at any fixed,

sufficiently smallǫ.

Moreover, we define the associatedunperturbedgraph,G0 (Mǫ) = G(M0), i.e., the

Markov graph on the (unperturbed) Markov matrix,M0. Notice that, sincec · 0r = c > 0

iff r = 0 (andc > 0), G(M0) may also be thought of as the “zero-resistance” subgraph

of G (Mǫ), that is, the weighted directed subgraph ofG (Mǫ) containing all edges,(vi, vj),

with R
(
d
(
vi, vj

))
= 0 and edge weights given byC

(
d
(
vi, vj

))
.

Let stab (Mǫ) denote the unique stable distribution ofMǫ for ǫ ≻ 0 given by Corol-

lary 5.15.6 Using the notation of Theorem 6.17,stab (Mǫ) = vMǫ
for ǫ ≻ 0. We will

show thatstab (Mǫ) may be defined atǫ = 0 so that its entries are all inC+. In par-

ticular, ssd (Mǫ) ≡ limǫ→0
+ stab (Mǫ) exists. We call this limit thestochastically stable

distributionof Mǫ.

To prove this, we will need to extend the notation of Chapter 6. SinceG (Mǫ) has

weights inC+, we have three notions of the total weight of a directed subtree. For any

directed spanning tree rooted ati corresponding toσ ∈ T i, the total weight ofσ in Mǫ

may be defined, just as in Chapter 6, asW (Mǫ, σ) = Πj 6=i (Mǫ)σ(j),j. By Corollary 7.5 b),

W (Mǫ, σ) ∈ C+. Thus, we may also define theresistance ofσ in Mǫ asR (Mǫ, σ) ≡

R (W (Mǫ, σ)). Similarly, we define thecost ofσ in Mǫ asC (Mǫ, σ) ≡ C (W (Mǫ, σ)).

By Corollary 7.5 b), the resistance and cost of the tree,σ, satisfy the following equations:

R (Mǫ, σ) = R (W (Mǫ, σ)) = R
(
Πj 6=i (Mǫ)σ(j),j

)
=
∑

j 6=i

R
(
(Mǫ)σ(j),j

)
(7.1)

C (Mǫ, σ) = C (W (Mǫ, σ)) = C
(
Πj 6=i (Mǫ)σ(j),j

)
= Πj 6=iC

(
(Mǫ)σ(j),j

)
(7.2)

In particular, sinceσ ∈ T i, σ (j) 6= j for j 6= i, so thatR (Mǫ, σ) andC (Mǫ, σ) do not

depend on the diagonal entries entries ofMǫ.

5In fact, this is the main reason why we define perturbed matrices in terms ofC+[0, ∗].
6This is a slight abuse of notation, since, up to this point,stab would have referred to the singleton set
containing the stable distribution.
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Notice that, ifG−(σ) is not a subgraph ofG− (Mǫ), it does not contain some edge,
(
vσ(j), vj

)
, so that(Mǫ)σ(j),j ≃ 0. In terms of the resistance, the resistance of such an edge

is∞, so that the sum,R (Mǫ, σ) = ∞. Conversely, if the sum is infinite, the resistance of

some edge is infinite, implyingσ is not a subgraph ofG− (Mǫ). Likewise,C (Mǫ, σ) = 0

iff σ is not a subgraph ofG− (Mǫ). Thus, we may define the set of directed spanning

subtrees ofG− (Mǫ), rooted ati, as

T (Mǫ, i) ≡
{
σ ∈ T i | R (Mǫ, σ) <∞

}
=
{
σ ∈ T i | C (Mǫ, σ) > 0

}

As before, letT (Mǫ) ≡
⋃

i∈Sn
T (Mǫ, i).

We now prove the statement above regardingstab (Mǫ). Moreover, we give formu-

las for its resistance and cost in terms of the resistance andcost of the directed spanning

subtrees ofG− (Mǫ).

Theorem 7.7. If Mǫ ∈ PMM(n), if we define

ri ≡ min
σ∈T (Mǫ,i)

R (Mǫ, σ) andr ≡ min
σ∈T (Mǫ)

R (Mǫ, σ)

T (Mǫ, i) ≡
{
σ ∈ T i | R (Mǫ, σ) = ri

}
andT (Mǫ) ≡

{
σ ∈ T i | i ∈ Sn, R (Mǫ, σ) = r

}

then

a) there exists a perturbed column vector,stab (Mǫ) ∈ Pert(n, 1), which, for each

ǫ ≻ 0, is the unique stable distribution ofMǫ,

b) ri = minσ∈T i
R (Mǫ, σ) andr = mini ri,

c) R (stab (Mǫ))i = ri − r, and

d) C (stab (Mǫ))i =
P

σ∈T(Mǫ,i) C(Mǫ,σ)
P

σ∈T(Mǫ)
C(Mǫ,σ)

Proof. Using the notation of Theorem 6.17, fix a perturbed Markov matrix, Mǫ, and ab-

breviatewMǫ
as wǫ. We first show thatwMǫ

∈ Pert(n, 1). By Equation 6.4,(wǫ)i =
∑

σ∈T (Mǫ,i)
W (Mǫ, σ). Therefore, by Corollary 7.5,(wǫ)i ∈ C

+ and

R ((wǫ)i) = R


 ∑

σ∈T (Mǫ,i)

W (Mǫ, σ)


 = min

σ∈T (Mǫ,i)
R (Mǫ, σ) = ri
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SinceR (Mǫ, σ) =∞, for anyσ ∈ T i\T (Mǫ, i), we also haveri = minσ∈T (Mǫ,i)
R (Mǫ, σ) =

minσ∈T i
R (Mǫ, σ). Moreover, sinceT (Mǫ) =

⋃
i T (Mǫ, i),

r = min
σ∈T (Mǫ)

R (Mǫ, σ) = min
i

min
σ∈T (Mǫ,i)

R (Mǫ, σ) = min
i

ri

SetKǫ ≡ Jwǫ. ThenKǫ ∈ C
+ and

Kǫ =
∑

i

(wǫ)i =
∑

i

∑

σ∈T (Mǫ,i)

W (Mǫ, σ) =
∑

σ∈T (Mǫ)

W (Mǫ, σ)

Corollary 7.5 again gives

R (Kǫ) = R


 ∑

σ∈T (Mǫ)

W (Mǫ, σ)


 = min

σ∈T (Mǫ)
R (Mǫ, σ) = r

SinceMǫ is unichain,Kǫ > 0 for ǫ ≻ 0, so thatr < ∞. Moreover, sincer ≤ ri,

Theorem 7.4 e) implies thatwǫ

Kǫ
∈ Pert(n, 1).

Thus, we may definestab (Mǫ) = wǫ

Kǫ
. For ǫ ≻ 0, by Theorem 6.17, we then have

vMǫ
= wǫ

Jwǫ
= stab (Mǫ). Moreover, by Theorem 7.4 e),R (stab (Mǫ)i) = R (wǫ) −

R (Kǫ) = ri − r.

By Corollary 7.5 a),

C ((wǫ)i) = C


 ∑

σ∈T (Mǫ,i)

W (Mǫ, σ)


 =

∑

σ∈T (Mǫ,i)

[ri = R (Mǫ, σ)] C (Mǫ, σ)

=
∑

σ∈T (Mǫ,i)

C (Mǫ, σ)

Likewise,

C (Kǫ) = C


 ∑

σ∈T (Mǫ)

W (Mǫ, σ)


 =

∑

σ∈T (Mǫ)

[r = R (Mǫ, σ)]C (Mǫ, σ)

=
∑

σ∈T (Mǫ)

C (Mǫ, σ)

Thus, by Theorem 7.4 e),C (stab (Mǫ)i) = C(wǫ)
C(Kǫ)

=
P

σ∈T (Mǫ,i) C(Mǫ,σ)
P

σ∈T(Mǫ) C(Mǫ,σ)
.
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Example 7.8.To illustrate the ideas of Theorem 7.7, consider

Mǫ =




1− ǫ− ǫ2 ǫ ǫ

ǫ 1− ǫ− ǫ2 ǫ3

ǫ2 ǫ2 1− ǫ− ǫ3




then

Λǫ = Mǫ − I =




−ǫ− ǫ2 ǫ ǫ

ǫ −ǫ− ǫ2 ǫ3

ǫ2 ǫ2 −ǫ− ǫ3




Let’s compute(wǫ)1. First way:

(wǫ)1 = det

∣∣∣∣∣∣
−ǫ− ǫ2 ǫ3

ǫ2 −ǫ− ǫ3

∣∣∣∣∣∣
= ǫ2 + ǫ3 + ǫ4

Second way: Find the set of mappingsσ : {1, 2, 3} − {1} → {1, 2, 3} s. t. σ specifies the

parent relation of a directed , spanning tree on{1, 2, 3}. In particular,σ(i) 6= i (i.e., no

loops), for alli ∈ {2, 3}. There are three such mappings:2 7→ 1, 3 7→ 1; 2 7→ 3, 3 7→ 1;

2 7→ 1, 3 7→ 2.

(wǫ)1 =
∑

σ

∏

p 6=1

Mσ(p),p = (Mǫ)12(Mǫ)13 + (Mǫ)32(Mǫ)13 + (Mǫ)12(Mǫ)23 = ǫ2 + ǫ3 + ǫ4

Likewise,(wǫ)2 = ǫ2 + 2ǫ4 and(wǫ)3 = ǫ2 + 2ǫ3. Thus,m = 2 andu0 = (1, 1, 1)t. The

entries ofu0 correspond to theǫ2 terms inwǫ, which in turn correspond to the directed

spanning trees given by:2 7→ 1, 3 7→ 1; 3 7→ 1, 1 7→ 2; 2 7→ 1, 1 7→ 3.

By Theorem 7.7, for each index,i ∈ Sn, R (stab (Mǫ))i is well-defined. We will call

this thevirtual energy7 at i in Mǫ. By Theorem 7.4 a), we have that(v0 (Mǫ))i > 0 iff

R (stab (Mǫ))i = 0. Since, as we have seen in section 5.3, indices correspond tostates

in a Markov process, the collection of such indices are called thestochastically stableor

groundstates ofMǫ, since these are precisely the indices for which the stochastically stable

distribution,v0 (Mǫ), has a non-zero component, and the stable distributionstab (Mǫ) has

zero virtual energy (i.e., resistance).

7Desai, et. al. (Desai et al., 1994) call this the “stationaryorder” ati.
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7.4 Equivalence of PMMs and Scaling

Since we are primarily focused, at present, on computing thestochastically stable distribu-

tion (SSD) of a PMM, we introduce an equivalence relation on PMMs for which the SSD is

invariant. Likewise, we generalize the notion of aD-equivalence from chapter 5 to PMMs,

whereD may itself be a perturbed matrix. As in the non-perturbed case, such an equiva-

lence will allow us to determine the SSD of a PMM from the SSD ofanDǫ-equivalent one.

Specifically, we will

• define an equivalence relation on PMMs and show that equivalent PMMs have equal

SSDs,

• observe that asymptotically equal PMMs are equivalent,

• generalize the scaling construction from chapter 5 in two rather specific settings

(“uniform” and “non-uniform” scaling), which will be crucial to our main algorithm

in section 7.7,

• prove that these two constructions lead to equivalent orDǫ-equivalent results, respec-

tively, and

• show these two constructions always guarantee “progress” in our algorithm to a so-

lution.

Because scaling is defined in terms of subtraction and division, these results are rather

delicate, since these operations are not generally defined in Pert.

To begin, we say that two perturbed Markov matrices are equivalent if they have asymp-

totically equal stable distributions. To state this formally,

Definition 7.9. Two perturbed Markov matrices,Mǫ and M ′
ǫ are equivalent, denoted by

Mǫ ∼M ′
ǫ, iff stab (Mǫ) ≃ stab

(
M ′

ǫ

)
.

For example, we can show that asymptotically equal PMMs are equivalent.

Theorem 7.10.If Mǫ ≃M ′
ǫ, thenMǫ ∼M ′

ǫ.

Proof. This follows from Theorem 7.7, Equations 7.1 and 7.2, and Theorem 7.3. Specifi-

cally, for Mǫ, M
′
ǫ ∈ Pert(n), to show thatMǫ ∼ M ′

ǫ, by Theorem 7.3, we must show that
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R (stab (Mǫ))i = R
(
stab

(
M ′

ǫ

))
i

andC (stab (Mǫ))i = C
(
stab

(
M ′

ǫ

))
i

for i ∈ Sn. By

Theorem 7.7, sinceri andr can be defined with respect toT i, it suffices to show that for

all σ ∈ T i, R (Mǫ, σ) = R
(
M ′

ǫ, σ
)

andC (Mǫ, σ) = C
(
M ′

ǫ, σ
)
. By Equations 7.1 and

7.2 the resistance and cost of a tree depend only on the resistance and cost matrices. But,

again by Theorem 7.3, sinceMǫ ≃ M ′
ǫ, R (Mǫ) = R

(
M ′

ǫ

)
andC (Mǫ) = C

(
M ′

ǫ

)
, so that

R (Mǫ, σ) = R
(
M ′

ǫ, σ
)

andC (Mǫ, σ) = C
(
M ′

ǫ, σ
)

for all σ.

When a uniform scaling of a PMM,Mǫ, by f ∈ C+ yields another PMM,M ′
ǫ, they are

equivalent. That is, we have an analog of Lemma 5.3 for PMMs.

Theorem 7.11.Givenf ∈ C+ \ 0 andMǫ ∈ PMM(n), such that

a) R(f) ≤ R (Mǫ)i,j for all i 6= j,

b) (Mǫ)j,j + f(ǫ)− 1 ∈ C+, and

c) R(f) ≤ R
(
(Mǫ)j,j + f(ǫ)− 1

)
for all j,

if we defineM ′
ǫ = 1

f
(Mǫ − I) + I, thenM ′

ǫ ∈ PMM(n) andMǫ ∼M ′
ǫ.

Proof. The proof is similar to that of Lemma 5.3. The real work is in proving thatM ′
ǫ ∈

PMM(n). Sincef 6≃ 0 andR(f) ≤ R (Mǫ)i,j, we have, by Theorem 7.4 e), that
(
M ′

ǫ

)
i,j
∈

C+ for all i 6= j. Moreover,f(ǫ) > 0, JΛ′
ǫ = 1

f(ǫ)
JΛǫ = 0 for ǫ ≻ 0, and by continuity,

also atǫ = 0. Thus,
(
M ′

ǫ

)
j,j

= 1−
∑

i6=j

(
M ′

ǫ

)
i,j

, for all j ∈ Sn andǫ � 0. Moreover, by

Theorem 7.4 e),
(
M ′

ǫ

)
j,j

=
(Mǫ)j,j+f−1

f
∈ C+. Thus,

(
M ′

ǫ

)
i,j
∈ C+

It is now easy to show thatMǫ ∼ M ′
ǫ. Sincef 6≃ 0, f(ǫ) > 0, Λ′

ǫ = 1
f(ǫ)

Λǫ, and

ker Λ′
ǫ = ker Λǫ, so thatstab (Mǫ) = stab

(
M ′

ǫ

)
for ǫ ≻ 0. In particular, by Lemma 7.2 a),

stab (Mǫ) ≃ stab
(
M ′

ǫ

)
, so thatMǫ ∼ M ′

ǫ.

In particular, when computing an SSD, we can always assume that R (Mǫ)j,j = 0, for

all j.

Corollary 7.12. GivenMǫ ∈ PMM(n), if we defineM ′
ǫ = 1

2
(Mǫ − I) + I, thenM ′

ǫ ∈

PMM(n), Mǫ ∼M ′
ǫ, andR

(
M ′

ǫ

)
j,j

= 0, for all j ∈ Sn.

Proof. While we could prove this directly fairly easily, we will instead appeal to Theo-

rem 7.11 withf(ǫ) = 2 6≃ 0. As are all positive, constant functions,f ∈ C+, and by

Theorem 7.4 a),C(f) = f(0) = 2 and R(f) = 0. Thus, it only remains to observe
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that, by Theorem 7.4 b),(Mǫ)j,j + f(ǫ) − 1 = (Mǫ)j,j + 1 ∈ C+. SinceR(f) = 0,

the remaining two conditions of the theorem follow immediately. Thus, by Theorem 7.11,

M ′
ǫ = 1

f
(Mǫ − I) + I = 1

2
(Mǫ − I) + I = 1

2
(Mǫ + I) ∈ PMM(n), andMǫ ∼ M ′

ǫ.

Moreover, by parts b) and e) of Theorem 7.4,R
(
M ′

ǫ

)
j,j

= 0, for all j ∈ Sn.

Notice that equivalent PMMs must have equal virtual energies, since the energy ati is

just the resistance of theith component of the stable distribution, and resistance is invariant

under asymptotic equivalence. Likewise, their SSDs are equal, since, by Theorem 7.4 a),

the components of their SSDs may be expressed a in terms of theresistance and cost of

their respective stable distributions. Specifically,limǫ→0
+ stab (Mǫ)i = [R (stab (Mǫ)i) =

0]C (stab (Mǫ)i), which is again is constant on asymptotic equivalence classes. In addition,

they have the same path graphs.

Lemma 7.13.GivenMǫ, M
′
ǫ PMM(n), if Mǫ ∼ M ′

ǫ, thenP (Mǫ) = P
(
M ′

ǫ

)
.

Proof. By Theorems 6.8 and 6.17, sincestab (Mǫ) ≃ stab
(
M ′

ǫ

)
,

s = {i ∈ Sn | (stab (Mǫ))i 6≃ 0} =
{
i ∈ Sn |

(
stab

(
M ′

ǫ

))
i
6≃ 0
}

= s′

SinceP (Mǫ) andP
(
M ′

ǫ

)
are both complete, directed graphs on their corresponding (unique)

closed classes,Vs andVs
′, sinces = s′, they must be equal.

We also should generalize the notion ofD-equivalence from section 5.1 to apply to

PMMs.

Definition 7.14. For Dǫ ∈ Pert, we will say that two perturbed Markov matrices,Mǫ

and M ′
ǫ, are Dǫ-equivalent, and write M ′

ǫ ∼Dǫ
Mǫ, iff M ′

ǫ ≈Dǫ
Mǫ for ǫ ≻ 0 and

R
(∥∥Dǫ stab

(
M ′

ǫ

)∥∥
1

)
= 0.

We then have the following analog to Lemma 5.2.

Theorem 7.15.If Mǫ ∼Dǫ
M ′

ǫ, thenD0 ssd
(
M ′

ǫ

)
∝ ssd (Mǫ).

Proof. SinceMǫ andM ′
ǫ are both unichain, forǫ ≻ 0, we must havestab (Mǫ) ∝ Dǫ stab

(
M ′

ǫ

)
,

so thatf(ǫ) stab (Mǫ) = Dǫ stab
(
M ′

ǫ

)
for some function,f . In fact, sincef(ǫ) =

f(ǫ)J stab (Mǫ) = JDǫ stab
(
M ′

ǫ

)
=
∥∥Dǫ stab

(
M ′

ǫ

)∥∥
1
, which by Theorem 7.6 d) is in

Pert(1, 1), i.e.,f ∈ C+. By assumption,R (f(ǫ)) = 0, so by Theorem 7.4 a),C(f) ssd (Mǫ) =

D0 ssd
(
M ′

ǫ

)
. In particular,D0 ssd

(
M ′

ǫ

)
∝ ssd (Mǫ).
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Our algorithm in section 7.7 requires that, if it is not unichain, M0 should possess at

least one non-trivial (i.e., containing more than one element) communicating class, which

is not always the case for an arbitrary perturbed Markov matrix, Mǫ. However, in this case

we may transformMǫ to a closely related perturbed Markov matrix.

Lemma 7.16. GivenMǫ PMM(n), such that all communicating classes ofM0 are single-

tons, defines = minj 6∈T mini6=j R (Mǫ)i,j, whereT is the set of transient states ofM0.

Likewise, letc = 2 maxj 6∈T

∑
s=R(Mǫ)i,j

C (Mǫ)i,j. If M0 possesses more than one closed

class orMǫ is irreducible withn > 1, then0 < s <∞ andc > 0. In addition, iff(ǫ) = cǫs

and

(iǫ)i,j =





0 if i 6= j

f(ǫ) if i = j andj ∈ T

1 otherwise

theniǫ ∈ Pert(n) and, using the notation of Chapter 5,M ǫ ≡ (Mǫ)iǫ
∈ PMM(n) and

M ǫ ≈iǫ
Mǫ, for ǫ ≻ 0. Moreover,f satisfies the assumptions of Lemma 7.11 with respect

to M ǫ, so thatM ′
ǫ = 1

f

(
M ǫ − I

)
+ I is iǫ-equivalent toMǫ.

Proof. We first show that0 < s < ∞. Notice that since all communicating classes are

singletons,j ∈ T iff 1 > (M0)j,j. By Theorem 7.4 a), this is equivalent to

0 < 1− (M0)j,j = lim
ǫ→0

+

(
1− (Mǫ)j,j

)
= lim

ǫ→0
+

∑

i6=j

(Mǫ)i,j

=
∑

i6=j

lim
ǫ→0

+
(Mǫ)i,j =

∑

i6=j

[R(Mǫ)i,j = 0]C(Mǫ)i,j

By definition,s is the minimum resistance of the outgoing edges (excluding self-loops) of

the closed classes ofM0, i.e., indicesj 6∈ T . For suchj and all i 6= j, we must have

[R(Mǫ)i,j = 0]C(Mǫ)i,j = 0. This implies thatR(Mǫ)i,j > 0 for i 6= j, so that0 < s.

By Lemma 1.5, each closed class/vertex ofM0 is contained in the closed class ofMǫ.

Thus, ifM0 possesses at least two closed classes, since both both vertices are in the closed

class ofMǫ, there are paths inG− (Mǫ) between them; in particular, there are outgoing

edges inG− (Mǫ) from them, so thats < ∞. Alternatively, if M0 possesses only one

closed class/vertex, butMǫ is irreducible, there are paths inG− (Mǫ) from that vertex to

every other vertex; in particular, there is at least one outgoing edge, so thats < ∞ in this

case, as well.
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Likewise, sinces is a minimum, there exists somei 6= j 6∈ T , such thats = R (Mǫ)i,j.

Sinces <∞, we must then haveC (Mǫ)i,j > 0, as well. Thus,c = 2 maxj 6∈T

∑
s=R(Mǫ)i,j

C (Mǫ)i,j >

0.

Now observe that the entries ofiǫ are either non-negative constants orf(ǫ), all of which

are functions inC+, so thatiǫ ∈ Pert(n). Moreover, forǫ ≻ 0, f(ǫ) > 0, so that0 < (iǫ)j,j

for j ∈ Sn. We now show that, forj ∈ Sn andǫ ≻ 0, (iǫ)j,j

(
1− (Mǫ)j,j

)
≤ 1, so that,

for ǫ ≻ 0, Lemma 5.3 implies thatM ǫ ≡ (Mǫ)iǫ
is Markov (by continuity,M 0 is Markov,

as well) andM ǫ ≈iǫ
Mǫ. Since(Mǫ)j,j ≥ 0, (iǫ)j,j

(
1− (Mǫ)j,j

)
≤ (iǫ)j,j. But either

(iǫ)j,j = 1 or, sinceR(f) = s > 0, Theorem 7.4 a) implies that(iǫ)j,j = f(ǫ) ≤ 1 for

ǫ ≻ 0.

Since, forǫ � 0, we are only multiplying some off-diagonal entries by the non-zero

number,f(ǫ), G−

(
M ǫ

)
is the same asG− (Mǫ), except for possible differences is their

self-loops. In particular, sinceMǫ is unichain, so isM ǫ. More generally, since we are only

multiplying some off-diagonal entries byf ∈ C+,
(
M ǫ

)
i,j
∈ C+ for i 6= j.

To show thatM ǫ ∈ Pert(n), since
(
M ǫ

)
j,j

= (Mǫ)j,j ∈ C
+ for j 6∈ T , it only remains

to verify that
(
M ǫ

)
j,j
∈ C+ for j ∈ T . In this case, since

(
M ǫ

)
j,j

= f(ǫ) (Mǫ)j,j +1−f(ǫ),

by parts b) and d) of Theorem 7.4, it suffices to show that1 − f(ǫ) ∈ C+. SinceR(f) =

s > 0 = R(1), we may apply Theorem 7.4 c) to conclude that1 − f(ǫ) ∈ C+. Thus,

M ǫ ∈ Pert(n).

Next, we verify thatf satisfies the assumptions of Lemma 7.11 with respect toM ǫ.

Starting with a), notice that, fori 6= j,
(
M ǫ

)
i,j

either equalsf(ǫ) (Mǫ)i,j, if j ∈ T , or

(Mǫ)i,j, if j 6∈ T . In the former case,R(f) ≤ R
(
M ǫ

)
i,j

, by Theorem 7.4 d). In the latter,

the inequality follows by construction, sinceR(f) = s ≤ R
(
M ǫ

)
i,j

for all i 6= j and

j 6∈ T . Thus, we have verified assumption a) of Theorem 7.11.

Now observe that, by Theorem 7.4 d), ifj ∈ T ,
(
M ǫ

)
j,j

+f(ǫ)−1 = f(ǫ) (Mǫ)j,j ∈ C
+

andR(f) ≤ R
(
f(ǫ) (Mǫ)j,j

)
. Thus, assumptions b) and c) are satisfied, in this case. On

the other hand, ifj 6∈ T ,
(
M ǫ

)
j,j

+f(ǫ)−1 = (Mǫ)j,j +f(ǫ)−1 = f(ǫ)−
[∑

i6=j (Mǫ)i,j

]
.

We will again want to apply Theorem 7.4 c) to show that this is inC+, as well, with resis-

tance no less thanR(f) = s. There are two cases to consider. For a givenj 6∈ T , if there is

somei 6= j such thatR(f) = s = R (Mǫ)i,j, thenR
(∑

i6=j (Mǫ)i,j

)
= mini6=j R (Mǫ)i,j =

s = R(f). In this case,C
(∑

i6=j (Mǫ)i,j

)
=
∑

i6=j [s = R (Mǫ)i,j]C (Mǫ)i,j = s =

R(f) ≤ c
2

< c = C(f). Otherwise,R(f) = s < R (Mǫ)i,j for all i 6= j, so that
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R
(∑

i6=j (Mǫ)i,j

)
= mini6=j R (Mǫ)i,j > R(f). In either case, the conditions of Theo-

rem 7.4 c) are satisfied, so thatf(ǫ)−
[∑

i6=j (Mǫ)i,j

]
∈ C+ with resistance,R(f). Thus,

we have verified assumptions b) and b) of Theorem 7.11.

We now show thatM ǫ is iǫ-equivalent toMǫ. Since we already know thatM ǫ ≈iǫ
Mǫ

for ǫ ≻ 0, it only remains to show thatR
(∥∥iǫ stab

(
M ′

ǫ

)∥∥
1

)
= 0. As in the proof of

Theorem 7.15, we havef(ǫ) stab (Mǫ) = iǫ stab
(
M ′

ǫ

)
for somef ∈ C+, specifically,

f(ǫ) = Jiǫ stab
(
M ′

ǫ

)
=
∥∥iǫ stab

(
M ′

ǫ

)∥∥
1
. Thus, we must show thatR(f) = 0.

Therefore, ifvǫ = stab (Mǫ) andv′
ǫ = stab

(
M ′

ǫ

)
, iǫv

′
ǫ = f(ǫ)vǫ, wheref(ǫ) =

∥∥iǫv′
ǫ

∥∥
1
.

It remains to show thatr(f) = 0. In particular, since
(
iǫv

′
ǫ

)
j

=
(
v′

ǫ

)
j

for j 6∈ T , it suffices

to show thatsuppv
′
0
∩T 6= ∅. In this case,lim0

+ f(ǫ) ≥ lim0
+

(
iǫv

′
ǫ

)
j

= lim0
+

(
v′

ǫ

)
j

> 0,

for j ∈ suppv
′
0
∩T , so thatr(f) = 0.

To see this, let{C1, . . . , Cm} be the closed classes ofG (M0), so thatT =
⋃m

j=1 Ci.

Likewise, let
{
C′1, . . . , C

′
m

′

}
be the closed classes ofG

(
M ′

0

)
. By Theorem??, suppv

′
0

=
⋃

j
′
∈J

′ C′j′ for someJ ′ ⊂
{
1, . . . , m′

}
. Now observe thatG (M0) ⊂ G

(
M ′

0

)
, so that, by

Lemma 1.5, for every1 ≤ j′ ≤ m′, there is1 ≤ j ≤ m so thatC′j′ ∩ Cj 6= ∅. In particular,

for anyj′ ∈ J , ∅ 6= C′j′ ∩
⋃m

j=1 Ci ⊂ suppv
′
0
∩T

By repeatedly applying Lemma 7.16, we may then guarantee that Mǫ always possesses

a non-trivial communicating class, as long as we keep track of the corresponding shift in

virtual energies.

Corollary 7.17. Given anyn × n perturbed Markov matrix,Mǫ, if M0 possesses more

than one closed class, there is aniǫ-equivalent perturbed Markov matrix,M ′
ǫ, such that

eitherM ′
0 possesses a non-trivial communicating class or a single closed class, whereiǫ ∈

Matn

(
C+
)

is a diagonal matrix. In particular, if we denote the stable distributions ofMǫ

andM ′
ǫ byvǫ andv′

ǫ, respectively, thenvǫ = iǫv
′
ǫ

‖iǫv
′
ǫ‖1

andr ((vǫ)s) = r
((

v′
ǫ

)
s

)
+ r
(
(iǫ)s,s

)
.

Similarly, if Mǫ is irreducible withn > 1, there is such a matrix,M ′
ǫ, whereM ′

0 possesses

a non-trivial communicating class andM ′
ǫ is irreducible.

Proof. In any case, we will proceed by repeatedly applying Lemma 7.16. In other words,

at each step,M ′
ǫ = (Mǫ)Dǫ

, for a diagonal matrix,Dǫ, so thatP
(
M ′

ǫ

)
= P (Mǫ). In

particular, ifMǫ is irreducible, then so isM ′
ǫ.

Now if M0 possesses a non-trivial communicating class, then we may take iǫ = I.

Otherwise, ifM0 possesses more than one closed class orMǫ is irreducible withn > 1, we
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may apply Lemma 7.16 to obtain aniǫ-equivalent perturbed Markov matrix,M ′
ǫ, so that

G
(
M ′

0

)
⊃ G (M0) is a strictly larger graph. We may repeat this construction until either

M ′
0 possesses a non-trivial communicating class or, ifMǫ is not irreducible,M0 possesses

only one closed class. This is guaranteed to terminate by thetimeG
(
M ′

0

)
is complete, if

not sooner.

7.5 Equivalence of PMMs and the MCCT

Our algorithm in section 7.7 will consist of alternately applying the scaling construction

from Lemma 7.16 and the reduction construction of Theorem 5.6, generalized to PMMs.

However, since reduction involves matrix inversion, we will want to choose the sets of

indices to eliminate, so that we will only need to invertreal-valued (i.e., zero-resistance)

matrices, so that the required calculations are tractable.In this section, we appeal to the

Markov Chain Tree Theorem to show how this is always possible. Specifically, we will

show that

• given anMǫ ∈ PMM(n), we may find an equivalent one for which the off-diagonal

zero-resistance terms are actually constant;

• we may also find an equivalent one for which all edges within anSCC (excluding

self-loops) are constant; and

• we may construct an equivalent one which, for each non-zero resistance path fromvi

to vj in G (Mǫ), contains a edge fromvi to vj with the same resistance.

We first show that the stochastically stable distribution ofa perturbed Markov matrix

depends only on the off-diagonal entries of the constant term, C0 (Mǫ), of its cost matrix

and the resistance matrix,R (Mǫ).

Theorem 7.18.Assume thatMǫ andM ′
ǫ are perturbed Markov matrices. If

• T (Mǫ, i) = T
(
M ′

ǫ, i
)
,

• R (Mǫ)σ(j),j = R
(
M ′

ǫ

)
σ(j),j

, ∀j 6= i, σ ∈ T (Mǫ, i)

for every1 ≤ i ≤ n, thenMǫ ⌣ M ′
ǫ. If, in addition,
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• C (Mǫ)σ(j),j = C
(
M ′

ǫ

)
σ(j),j

, ∀j 6= σ (j) , σ ∈
⋃

i∈Sn
T (Mǫ, i),

thenMǫ ∼M ′
ǫ.

Proof. GivenMǫ andM ′
ǫ satisfying the first three conditions in the statement of theCorol-

lary, ri = minσ∈T (Mǫ,i)
r (Mǫ, σ) = minσ∈T(M

′
ǫ,i) r

(
Mǫ, σ

′
)
, for 1 ≤ i ≤ n. Thus, Theo-

rem 7.7 implies thatr ((vǫ)i) = r
((

v′
ǫ

)
i

)
, so thatMǫ ⌣ M ′

ǫ. Likewise,
∑

σ∈T (Mǫ,i)
c (Mǫ, σ) =

∑
σ∈T(M

′
ǫ,i) c

(
Mǫ, σ

′
)
, and

∑
σ∈T (Mǫ)

c (Mǫ, σ) =
∑

σ∈T(M
′
ǫ) c
(
Mǫ, σ

′
)
. Therefore, Lemma 7.7

implies thatMǫ andM ′
ǫ have identical stochastically stable distributions, so that Mǫ ∼

M ′
ǫ.

Corollary 7.19. Mǫ is equivalent to another perturbed Markov matrix,M ′
ǫ, such that

Cǫ

(
M ′

ǫ

)
i,j

is constant with respect toǫ, if i 6= j, andR
(
M ′

ǫ

)
i,i

= 0 for all i.

Proof. Consider(Mǫ)s,s = 1
2
I + 1

2
Mǫ, a matrix whose diagonal entries necessarily have

0-resistance. By Theorem 7.18,Mǫ ∼ (Mǫ)s,s. Further, denote the cost and resistance

matrices of(Mǫ)s,s by Cǫ andR, respectively, and define

(
M ′

ǫ

)
i,j

=





1−
∑

k 6=j ǫRk,j
(
C0

)
k,j

if i = j

ǫRi,j
(
C0

)
i,j

otherwise

Notice thatR = R
(
M ′

ǫ

)
. This is clear for all off-diagonal entries. Moreover, theyboth

have 0-resistance on the diagonal. In fact,
(
M ′

0

)
i,i

=
(
M 0

)
i,i

=
1+(M0)i,i

2
> 0. This

also insures that
(
M ′

ǫ

)
i,i
� 0, so thatM ′

ǫ is Markov. Moreover,C0 = C0

(
M ′

ǫ

)
, while

G
(
(Mǫ)s,s

)
andG

(
M ′

ǫ

)
share the same underlying unweighted graph,G

(
R
)
. In particu-

lar,P
(
(Mǫ)s,s

)
= P

(
M ′

ǫ

)
. Therefore, by Theorem 7.18,Mǫ ∼ (Mǫ)s,s ∼M ′

ǫ.

Notice that this means that, if we are only interested in computing stochastically sta-

ble distributions, we may represent a perturbed Markov matrix simply by the twon × n

matrices,C0 (Mǫ) andR (Mǫ), and we may assume thatri,i = 0, 1 ≤ i ≤ n.

Example 7.20.We may briefly illustrate the construction of Corollary 7.19as follows:



0 · · ·

1− ǫ

ǫ


→




1
2

· · ·

1
2
− ǫ

2

ǫ
2


→




1
2
− ǫ

2
· · ·

1
2

ǫ
2
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As we have seen in Chapter 1, the self-loops of a Markov matrixmay be adjusted to

a certain degree without significantly affecting its dynamics. Similarly, we may specify a

perturbed Markov matrix, with 0-resistance diagonal elements (such as in Corollary 7.19),

by simply specifying its off-diagonal elements, so long as their column sums whenǫ = 0

are all strictly less than 1.

Lemma 7.21. If Mǫ ∈ Matn

(
C+
)

with
∑

i6=j (M0)i,j < 1 for 1 ≤ j ≤ n andP (Mǫ) is

starry for ǫ ≻ 0, then there is a unique8 perturbed Markov matrix,Mǫ, such that
(
M ′

ǫ

)
i,j

=

(Mǫ)i,j for 1 ≤ i 6= j ≤ n.

Proof. For 1 ≤ i 6= j ≤ n, let
(
M ′

ǫ

)
i,j

= (Mǫ)i,j, and define
(
M ′

ǫ

)
j,j

= 1−
∑

i6=j (Mǫ)i,j

for 1 ≤ j ≤ n. Now observe that by continuity
∑

i6=j (Mǫ)i,j ≺ 1, so that
(
M ′

ǫ

)
j,j
≻ 0.

Therefore,
(
M ′

ǫ

)
j,j
∈ C+ andR

(
M ′

ǫ

)
j,j

= 0. In particular,R
(
M ′

ǫ

)
= R (Mǫ), so that

P
(
M ′

ǫ

)
is starry and, by Lemma 6.2,M ′

ǫ is regular forǫ ≻ 0. Thus,M ′
ǫ is a perturbed

Markov matrix of the desired form.

Given a regular, perturbed Markov matrix,Mǫ, consider a submatrix ofMǫ consisting of

all the transitions within a given communicating class ofM0. The following Lemma shows

that, without loss of generality, we may assume that such a submatrix is constant off the

diagonal. For instance, consider Example 7.8: we may drop the (3, 2)– and(2, 3)–entries

(adjusting the diagonal entries accordingly) without changing its stochastically stable dis-

tribution, since they are not in any of the minimal resistance spanning trees.

Lemma 7.22.

For any regular, perturbed Markov matrix,Mǫ, there is an equivalent one,M ′
ǫ such that

M ′
0 = M0 and if [p, q] ∈ P

(
M ′

0

)
, R
(
M ′

ǫ

)
p,q

= 0 or∞.

Proof. By Corollary 7.19, we may assume thatri,i = 0, 1 ≤ i ≤ n. Consider any arbitrary

pair of distinct states,p andq, in the same communicating class ofM0 with a non-zero

resistance edge,rp,q > 0, between them. Notice that this impliesp 6= q. In this case,

we may defineM ′
ǫ = Mǫ − (Mǫ)p,q

(
ep,q − eq,q

)
, where

{
ei,j

}
is the standard basis for

Matn (R). This is justMǫ without an edge fromq to p. Since [p, q] ∈ P (M0), and

M ′
0 = M0, [p, q] ∈ P

(
M ′

0

)
, andP

(
M ′

ǫ

)
= P (Mǫ). In particular,M ′

ǫ is regular. Since

8Up to equality inMatn (C).
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(
M ′

ǫ

)
p,q

= 0 and
(
M ′

ǫ

)
q,q

= (Mǫ)p,q + (Mǫ)q,q � 0, M ′
ǫ is Markov for eachǫ and, by

Theorem 7.4, all entries have positive resistance. Thus,M ′
ǫ is a perturbed Markov matrix.

By Corollary 7.19, to show thatM ′
ǫ ∼ Mǫ, it suffices to verify that the edge fromq

to p is not part of any minimal spanning tree ofMǫ. Specifically, ifσ ∈ T (Mǫ, k) is a

spanning subtree rooted atk containing this edge (i.e.,σ(q) = p), then the resistance ofσ

is not minimal (i.e.,σ 6∈ T (Mǫ, k)). Therefore, assume we are givenσ ∈ T (Mǫ, k) with

σ(q) = p and consider the associated directed spanning tree,T .

Let {C1, . . . , Cm} be the strongly connected components ofG (M0). As in Chapter 6,T

defines a pre-order on the vertices ofG (Mǫ) so thatσ(j) ≺ j for j 6= k. By re-indexing, if

necessary, we may assume that the states ofMǫ have been indexed to respect this preorder,

so thati ≺ j ⇒ i < j, i.e., ancestors always have smaller indices. In particular, we may

assume thatk = 1. This induces a preorder on theCs so thatCs ≺ Ct iff min Cs < min Ct.

By re-indexing again, we may assume thatmin Cs < min Ct ⇒ s < t. In particular, we

must have1 ∈ C1.

We may now proceed by induction to construct a new directed spanning tree,T cor-

responding toσ, with strictly smaller resistance thanT . Specifically, we will construct a

spanning tree rooted at1 which only contains 0-resistance edges within eachCs. More-

over, there will be at most one edge inT between distinct communicating classes, i.e.,

∀s > 1, ∃js ∈ Cs s. t. σ(js) = σ(js) ∈ Cu andu < s. Intuitively, we will choose edges of

T to build a directed tree on the communicating classes (specified byjs), which will serve

to link a set of 0-resistance spanning trees spanning each class into an directed tree rooted

at1.

SinceC1 is a strongly connected component ofG (M0), by Lemma 6.2, it contains

an directed tree rooted at1 consisting entirely of 0-resistance edges spanningG (M0) |C1
,

which definesσ(j) for j ∈ C1. For any1 < t ≤ m, assume that we have definedσ over
⋃t−1

s=1 Cs and a sequencejs ∈ Cs such that∀1 < s < t, σ(js) = σ(js) ∈ Cu for someu < s.

It suffices to show that we may extendσ to Ct and definejt ∈ Ct so thatσ(jt) = σ(jt) ∈ Cu

for someu < t.

Let jt = min Ct. Sinceσ(jt) < t, if σ(jt) ∈ Cu, min Cu < jt = min Ct, so thatu < t.

As before, Lemma 6.2 guarantees the existence of an directedtree rooted atjt spanning

G (M0) |Ct
. This definesσ on Ct − {jt} and we takeσ(jt) = σ(jt). By induction, we

eventually obtain a subgraph ofG (Mǫ) consisting ofn − 1 edges which contains a path
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from each vertex ofG (Mǫ) to 1, which is thus an directed spanning tree rooted at 1.

SinceT only contains edges ofT , plus edges with resistance 0, and we know it does

not include the edge fromq to p, r (σ, Mǫ) ≤ r (Mǫ, σ)− rp,q < r (Mǫ, σ). In particular,σ

did not have minimal resistance, the edge fromq to p is not part of any minimal spanning

tree ofMǫ, andT (Mǫ, k) = T
(
M ′

ǫ, k
)

for arbitraryk.

Since all other off-diagonal entries ofMǫ andM ′
ǫ agree, all necessary entries of the

resistance and cost matrices agree. In particular, Corollary 7.19 implies thatM ′
ǫ ∼Mǫ. By

repeating this construction sufficiently many times, we mayeliminate all non-zero resis-

tance edges within any communicating class.

Lemma 7.23. If 0 < ri,j, rj,k < ∞, f � 0, and r(f) = ri,j + rj,k, thenMǫ ≃ M ′
ǫ =

Mǫ + f(ǫ)
(
ei,k − ek,k

)
.

Proof. As in the proof of Lemma 7.22,M ′
ǫ is a Markov matrix for eachǫ with entries inC+.

If (Mǫ)i,k 6≃ 0, G
(
M ′

ǫ

)
= G (Mǫ). Otherwise, sinceri,j, rj,k < ∞, (Mǫ)i,j , (Mǫ)j,k 6≃ 0,

so that there is an edge fromek to ei in G (Mǫ). In either case,P
(
M ′

ǫ

)
= P (Mǫ), so that

M ′
ǫ is a regular, perturbed Markov matrix. It remains to show that Mǫ ≃M ′

ǫ.

Observe that
(
M ′

ǫ

)
i,k

= (Mǫ)i,k + f(ǫ). If ri,k < ri,j + rj,k, Theorem 7.4 implies that

r
((

M ′
ǫ

)
i,k

)
= ri,k. In this case, Corollary 7.19 implies thatMǫ ≃M ′

ǫ.

Now consider the case whenri,k = ri,j + rj,k. We will show that ifσ ∈ T (Mǫ, s) is

a spanning subtree rooted ats with σ(k) = i, then there is another spanning subtree,σ ∈

T (Mǫ, s), rooted ats with σ′(k) = j, andr
(
σ′, Mǫ

)
≤ r (Mǫ, σ). Thus, by Theorem 7.18

Mǫ ≃ M ′
ǫ. Therefore, assume we are givenσ ∈ T (Mǫ, s) with σ(k) = i and consider

the associated directed spanning tree,T . If we remove the edge(ek, ei), we are left with

two directed subtrees,T1 andT2, where we may assume thati ands are inT1 andk is

in T2. Nodej must be in one of these subtrees. Ifj is in T1, by adding the edge fromk

to j we obtain a tree with total resistance which has decreased byri,j . Formally, defining

σ′(t) = σ(t), for all t 6= k, andσ′(k) = j, r
(
σ′, Mǫ

)
= r (Mǫ, σ)− ri,j < r (Mǫ, σ).

Otherwise,j is in T2. Deleting the edge fromj in T2 splits it into two smaller trees,T ′
2

andT ′′
2 , where we may assume thatj is in T ′′

2 andk is in T ′
2 . By adding the edges fromk

to j and fromj to i, we obtain a tree with total resistance no greater than before, but which

does not include the edge fromk to i. Formally, definingσ′(t) = σ(t), for all t 6= k, j,

σ′(k) = j, σ′(j) = i, r
(
σ′, Mǫ

)
≤ r (Mǫ, σ)− ri,k + ri,j + rj,k = r (Mǫ, σ).



116

7.6 Reduction of PMMs

We now wish to generalize the reduction construction of Chapter 5 so that we may apply it

to a perturbed Markov matrix. Since the definition of the reduction, given in Theorem 5.6,

was originally stated in terms of matrix inverses and subtraction (which are problematic

in the class of perturbed matrices), it is not obvious that the result is a perturbed Markov

matrix. As with scaling, this will require careful analysis. As mentioned in section 7.5,

our algorithm in section 7.7 is guided by the need to eliminate sets of indices which only

require the inversion ofreal-valued (i.e., zero-resistance) matrices. Thus, our calculations

will be guided by the zero-resistance subgraph,G− (M0) of G− (Mǫ).

Specifically, in this section we will:

• show that ifs ⊂ Sn is open with respect toM0, it is also open with respect to

Mǫ ∈ PMM(n);

• generalize Theorem 4.5 to PMMs, proving that
(
I − (Mǫ)s,s

)−1

∈ Pert(|s|) for

Mǫ ∈ PMM(n) ands ⊂ Sn open, giving formulas for its resistance and cost matrices

in terms of minimum resistance walks (cf. Theorems 5.8 and 7.7);

• show that if we apply the reduction construction to anMǫ ∈ PMM(n) for ǫ ≻ 0,

with respect to a fixed open set of indices,s, we obtain an̂Mǫ ∈ PMM(|s|);

• we derive formulas for the resistance and cost matrices of the reduction in terms of

the resistance and cost matrices ofMǫ, which shows that reduction preserves asymp-

totic equality;

• generalize Theorem 5.12 to PMMs;

• show that reduction preserves equivalence of PMMs defined insection 7.4; and

• show that for the purposes of computingssd (Mǫ), we may compute the reduction

while only inverting a constant matrix.

As mentioned above, we will want to apply the reduction construction to sets of indices

which are open with respect to the (unweighted) zero-resistance subgraph,G− (M0). We

must first verify that this is feasible.
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Lemma 7.24.LetMǫ be ann×n perturbed Markov matrix. Ifs ⊂ Sn is open with respect

to M0, it is open with respect toMǫ.

Proof. By Lemma 4.5 b), sinces ⊂ Sn is open with respect toM0, I − (M0)s,s =

πs (I −M0) ıs is invertible. Thus,|πs (I −M0) ıs| 6= 0, which implies that|πs (I −Mǫ) ıs| 6=

0 for ǫ � 0. Thus, by the contrapositive of Lemma 4.5 c),s ⊂ Sn must be open with respect

to Mǫ for ǫ ≻ 0, or equivalently, with respect toMǫ as a perturbed matrix.

Lemma 7.24 implies that, forǫ � 0, we may apply our reduction construction to any

perturbed Markov matrix,Mǫ, to eliminate any set of states,s, which are open with respect

to the unperturbed matrix,M0. We now show that the result is a perturbed Markov matrix.

The difficulty is that, in general, we cannot invert a perturbed matrix, since this might

involve subtraction or division. However, in this specific case, we may express the inverse

in terms of multiplication and addition alone. To do so, we will need to generalize some

more notation, this time from section 5.2.

For anyσ ∈ Sn (k), corresponding to a walk of lengthk in G (Mǫ), we will define

its weight inG (Mǫ), W (Mǫ, σ) = Πt∈Sk

(
(Mǫ)σt,σt−1

)
. Notice that this is simply (the

equivalence class of) the function, which atǫ � 0 is given by the weight ofσ in Mǫ.

By Corollary 7.5 b),W (Mǫ, σ) ∈ C+. Thus, we may also define theresistance of

σ in Mǫ as R (Mǫ, σ) ≡ R (W (Mǫ, σ)). Similarly, we define thecost ofσ in Mǫ as

C (Mǫ, σ) ≡ C (W (Mǫ, σ)). By Corollary 7.5 b), the resistance and cost of the walk,σ,

satisfy the following equations:

R (Mǫ, σ) = R (W (Mǫ, σ)) = R
(
Πt∈Sk

(
(Mǫ)σt,σt−1

))
=
∑

t∈Sk

R
(
(Mǫ)σt,σt−1

)
(7.3)

C (Mǫ, σ) = C (W (Mǫ, σ)) = C
(
Πt∈Sk

(
(Mǫ)σt,σt−1

))
= Πt∈Sk

C
(
(Mǫ)σt,σt−1

)
(7.4)

Notice that although this notation exactly mirrors the casewhenσ represents a spanning

tree, the meaning will be clear from the context, depending whetherσ represents a tree or

a walk.

Just as the stochastically stable distribution is defined interms of minimum resistance

spanning trees, the reduction is defined in terms of minimum resistancewalks. However,

since the collection of walks is infinite, we must argue that such a collection of minimum

resistance walks is well-defined.
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Lemma 7.25. For any n × n perturbed Markov matrix,Mǫ, set of indicess ⊂ Sn, and

individual indicesi and j, there exists a setS (Mǫ, s, i, j) ⊂ Sn (s, i, j) such that, if

σ1 ∈ S (Mǫ, s, i, j) and σ2 ∈ Sn (s, i, j), thenR (Mǫ, σ1) ≤ R (Mǫ, σ2), i.e., the set

of minimal resistance walks fromj to i passing throughs is well-defined. Moreover,

minσ∈Sn(s,i,j) R (Mǫ, σ) exists and is equal toR (Mǫ, σ) for all σ ∈ S (Mǫ, s, i, j).

Proof. Consider the sets

R ≡ {R (Mǫ, σ) | σ ∈ Sn (s, i, j)} andR ≡ {R (Mǫ, σ) | σ ∈ Sn (s, i, j) s. t. σ is a path}

These are both positive sets of real numbers, so thatinfR andinfR are well-defined. Since

any path is a walk,infR ≥ infR. Since we may convert any walk into a path, by simply

dropping cycles from the walk, for eachr ∈ R, there is anr ∈ R such thatr ≤ r. Thus,

infR ≤ infR, so thatinfR = infR. Finally, since there are only finitely many possible

paths fromj to i, infR = minR. That is, the infimum is attained at some specific path.

Since a path is a walk, andinfR = infR, the infimum is attained forR, as well, so that

minR = infR = infR = minR = minσ∈Sn(s,i,j) R (Mǫ, σ).

Define

S (Mǫ, s, i, j) =

{
σ ∈ Sn (s, i, j) | R (Mǫ, σ) = min

σ∈Sn(s,i,j)
R (Mǫ, σ)

}

If σ1 ∈ S (Mǫ, s, i, j) andσ2 ∈ Sn (s, i, j), thenR (Mǫ, σ1) = minσ∈Sn(s,i,j) R (Mǫ, σ) ≤

R (Mǫ, σ2). By definition,minσ∈Sn(s,i,j) R (Mǫ, σ) = R (Mǫ, σ) for all σ ∈ S (Mǫ, s, i, j).

We will partition this set of minimum resistance walks by their length, to define

S (Mǫ, s, i, j, k) = Sn (s, i, j, k) ∩ S (Mǫ, s, i, j)

as well.

We now show that
(
I − (Mǫ)s,s

)−1

∈ C+ and give formulas for its resistance and cost

matrices in terms of minimum resistance walks.

Lemma 7.26. Let Mǫ be ann × n perturbed Markov matrix,s ⊂ Sn be an open set

of indices with respect toM0, and (Mǫ)s,s the corresponding principal submatrix. Then

(Mǫ)
(u)
s,s =

∑u−1
j=0 (Mǫ)

j
s,s converges uniformly to

(
I − (Mǫ)s,s

)−1

∈ Pert(n, n). Moreover,

R

((
I − (Mǫ)s,s

)−1
)

i,j

= min
σ∈Sn(s,i,j)

R (Mǫ, σ) and

C

((
I − (Mǫ)s,s

)−1
)

i,j

=
∑

σ∈S(Mǫ,s,i,j)

C (Mǫ, σ)
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Proof. SinceMǫ has only finitely many entries, there is an interval,[0, δ], over which all of

its entries, and hence all of the entries of(Mǫ)
(u)
s,s =

∑u−1
j=0 (Mǫ)

j
s,s, are continuous and non-

negative. By assumption,s is open with respect toM0, and by Lemma 7.24 with respect to

Mǫ for sufficiently smallǫ. Assume thatδ has been chosen so thats is open with respect

to Mǫ for ǫ ∈ [0, δ]. Thus, by Lemma 4.5,(Mǫ)
(u)
s,s converges to

(
I − (Mǫ)s,s

)−1

≥ 0 for

eachǫ ∈ [0, δ].

Now observe that
∥∥∥(Mǫ)

n
s,s

∥∥∥
1

is a non-negative continuous function forǫ � 0, since it

is the maximum of a finite set of non-negative, continuous functions (i.e., the column sums

of (Mǫ)
n
s,s). Since

∥∥∥(Mǫ)
n
s,s

∥∥∥
1

is bounded by some0 ≤ c < 1 for eachǫ ∈ [0, δ], we may

assume that it is uniformly bounded on[0, δ] by 0 ≤ c < 1 . In particular,M (s)
ǫ converges

uniformly to
(
I − (Mǫ)s,s

)−1

on [0, δ].

Since[0, δ] is compact, the entries of(Mǫ)
(u)
s,s are uniformly continuous on[0, δ] (Whee-

den and Zygmund, 1977). Since(Mǫ)
(u)
s,s converges uniformly to

(
I − (Mǫ)s,s

)−1

, the

entries of
(
I − (Mǫ)s,s

)−1

are continuous and non-negative on[0, δ] (Wheeden and Zyg-

mund, 1977). Finally, if an entry of
(
I − (Mǫ)s,s

)−1

is 0 for someǫ ∈ (0, δ], since this is

the sum of a non-negative series, all the terms in the series must be 0. But all the terms are

in C+[0, ∗], so that they must be identically 0, so that the limit must be in C+[0, ∗].

To show that
(
I − (Mǫ)s,s

)−1

∈ C+, we must compute the resistance and cost of each

of its entries. Consider the(i, j)th entry ofM (k)
ǫ , for some fixedi, j ∈ Sn. By Theorem 7.4,

et
i (Mǫ)

(k)
s,s ej =

k−1∑

u=0

et
i (Mǫ)

u
s,s ej =

k−1∑

t=0

∑

s∈P(S,i,j,t)

(Mǫ)s ∈ C
+

Therefore, by Theorem 7.4 again,

rk = R
(
M (k)

ǫ

)
i,j

= r




k−1∑

t=0

∑

s∈P(S,i,j,t)

(Mǫ)s


 = min

0≤t≤k−1
min

s∈P(S,i,j,t)
r (s, Mǫ)

Also observe that

inf
k

rk = inf
k

min
s∈P(S,i,j,k)

r (s, Mǫ)

= inf
s∈P(S,i,j)

r (s, Mǫ) = min
s∈P(S,i,j)

r (s, Mǫ)
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Now take

k′ = min
{
k | P (S, i, j) ∩ P (S, i, j, k) 6= ∅

}
and

s′ ∈ P (S, i, j) ∩ P
(
S, i, j, k′

)

This then implies that

rk
′
+1 = r

(
s′, Mǫ

)
= min

s∈P(S,i,j)
r (s, Mǫ) = inf

k
rk

i.e., the infimum is attained fork = k′ + 1, so it is a minimum. In particular,r = mink rk

is well-defined andR
(
M (k)

ǫ

)
i,j

= r for at least one value ofk.

Now considerǫ−r
(
M (k)

ǫ

)
i,j
∈ C+, by Theorem 7.4.

ǫ−r
(
M (k)

ǫ

)
i,j

= ǫ−r
k−1∑

t=0

∑

s∈P(S,i,j,t)

(Mǫ)s

=

k−1∑

t=0

∑

s∈P(S,i,j,t)

ǫ−r (Mǫ)s

DefiningP (S, i, j, k) = P (S, i, j) ∩
⋃k−1

t=0 P (S, i, j, t), we also have

ck = lim
0
+

ǫ−r
(
M (k)

ǫ

)
i,j

=
∑

s∈P(S,i,j,k)

c0 (s, Mǫ)

As before,ǫ−r
(
M (k)

ǫ

)
i,j

is continuous and the limit,ǫ−r (I −Mǫ)
−1
i,j , is continuous on

[0, δ]. Therefore,

lim
0
+

ǫ−r (I −Mǫ)
−1
i,j = lim

k→∞
ck =

∑

s∈P(S,i,j)

c0 (s, Mǫ)

Moreover,ck is a non-decreasing function ofk, with ck
′
+1 > 0, so thatlim0

+ ǫ−r (I −Mǫ)
−1
i,j >

0. This implies thatr
(
(I −Mǫ)

−1
i,j

)
= r and

(
I − (Mǫ)s,s

)−1

∈ Matn

(
C+
)
. In addition,

this shows that

C0

(
(I −Mǫ)

−1)
i,j

=
∑

s∈P(S,i,j)

c0 (s, Mǫ)
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We may now show that the reduction of a perturbed Markov matrix is also a perturbed

Markov matrix. Moreover, the resistance of the(i, j)-th entry is minimum resistance of

paths fromj to i whose interior states are all inS.

Theorem 7.27.Under the assumptions of Lemma 7.26, forǫ � 0, the reduction,̂Mǫ, with

respect toS of Mǫ is a perturbed Markov matrix with

R
(
M̂ǫ

)
i,j

= min
s∈P(M,S,i,j)

r (s, Mǫ) and

C0

(
M̂ǫ

)
i,j

=
∑

s∈P(S,i,j)

c0 (s, Mǫ)

Proof. PartitioningMǫ according toS gives Mǫ =


 M̃ǫ N ǫ

Ñǫ (Mǫ)s,s


. If |S| = k,

M̃ǫ ∈ Matn−k

(
C+
)
, Ñǫ ∈ Matk,n−k

(
C+
)
, andN ǫ ∈ Matn−k,k

(
C+
)
. By Lemma 7.26,(

I − (Mǫ)s,s

)−1

∈ Matk

(
C+
)
. SinceM̂ǫ = M̃ǫ + N ǫ

(
I − (Mǫ)s,s

)−1

Ñǫ, Theorem 7.4

implies thatM̂ǫ ∈ Matn−k

(
C+
)
. In addition, Theorem?? guarantees that̂Mǫ is regular.

The formulas for its resistance and cost matrices follow directly from Lemmas 7.4 and

7.26.

It is important to point out that our reduction constructionpreserves both equivalence

and weak equivalence of perturbed Markov matrices. Also, Theorem 5.12 generalizes to

this setting.

Theorem 7.28.Assume thatMǫ andM ′
ǫ are perturbed Markov matrices,S is a set of states

that does not include a closed class ofM0 or M ′
0, and

(
M̂ǫ, pǫ, iǫ

)
and

(
M̂ ′

ǫ, p
′
ǫ, i

′
ǫ

)
are the

reductions ofMǫ andM ′
ǫ, respectively, with respect toS. If Mǫ ⌣ M ′

ǫ, thenM̂ǫ ⌣ M̂ ′
ǫ.

Likewise, ifMǫ ∼M ′
ǫ, thenM̂ǫ ∼ M̂ ′

ǫ. Finally, Mǫ ∼iǫ
M̂ǫ.

Proof. By Theorem??, P
(
M̂ǫ

)
= P

(
M̂ ′

ǫ

)
. Let vǫ andv′

ǫ be the stable distributions of

Mǫ andM ′
ǫ, while v̂ǫ andv̂′

ǫ are the stable distributions of̂Mǫ andM̂ ′
ǫ, respectively. Notice

that, by Corollary??, iǫv̂ǫ is an extension of̂vǫ, which necessarily has 0-resistance entries.

Thus,iǫv̂ǫ must contain 0-resistance entries. In particular, by Theorem 7.4,r (‖iǫv̂ǫ‖1) = 0,

and likewiser
(∥∥i′ǫv̂′

ǫ

∥∥
1

)
= 0.

By Theorem 5.12,‖iǫv̂ǫ‖1 vǫ = iǫv̂ǫ and
∥∥i′ǫv̂′

ǫ

∥∥
1
v′

ǫ = i′ǫv̂
′
ǫ for ǫ � 0. If Mǫ ⌣ M ′

ǫ,

for everys ∈ S, r ((v̂ǫ)s) = r ((iǫv̂ǫ)s) = r (‖iǫv̂ǫ‖1 (vǫ)s) = r ((vǫ)s) = r
((

v′
ǫ

)
s

)
=

r
(∥∥i′ǫv̂′

ǫ

∥∥
1

(
v′

ǫ

)
s

)
= r

((
i′ǫv̂

′
ǫ

)
s

)
= r

((
v̂′

ǫ

)
s

)
. Thus,M̂ǫ ⌣ M̂ ′

ǫ.
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If Mǫ ∼ M ′
ǫ,

i0bv0

‖i0bv0‖1
= v0 = v′

0 = i
′
0bv

′
0

‖i′0bv
′
0‖1

. In particular, applying the common left-

inverse,π, of section 5.2 to both sides bv0

‖i0bv0‖1
= bv

′
0

‖i′0bv
′
0‖1

. Since these are both distributions,

we must in fact havêv0 = v̂′
0, so thatM̂ǫ ∼ M̂ ′

ǫ.

Finally, notice how Theorem 5.12 implies thatMǫ ⌣iǫ
M̂ǫ. Lemma 7.26 insures that

(iǫ)i,j ∈ C
+. Finally, we have already observed thatr (‖iǫv̂ǫ‖1) = 0, so thatMǫ ∼iǫ

M̂ǫ.

We now show that we may compute the reduction while only inverting a constant ma-

trix. For the following Lemma, letMǫ be a perturbed Markov matrix with a non-trivial

communicating class ofM0, let S0 be all but one representative of that class, and let

Mǫ =


 M̃ǫ N ǫ

Ñǫ (Mǫ)s,s


 by partitioningMǫ according toS0.

Theorem 7.29. If
(
M̂ǫ, pǫ, iǫ

)
is the reduction with respect toS0 of Mǫ, thenM̂ǫ ∼ M̂ ′

ǫ,

whereM̂ ′
ǫ is the unique perturbed Markov matrix whose off-diagonal entries equal those of

M ′
ǫ = M̃ǫ + N ǫ

(
I −M0

)−1
Ñǫ.

Proof. For concreteness, let|S| = m, with staten − m as the chosen representative.

First, observe that by Lemma 7.22 and Theorem 7.28, we may assume that the entries

of R
(
(Mǫ)s,s

)
are either 0 or∞. By Lemma 7.26, the entries ofR

((
I − (Mǫ)s,s

)−1
)

are also either 0 or∞. In particular,R
((

I −M 0

)−1
)

= R

((
I − (Mǫ)s,s

)−1
)

and

R
(
M̂ǫ

)
= R

(
M ′

ǫ

)
. Therefore,G

(
M̂ǫ

)
= G

(
M ′

ǫ

)
andP

(
M̂ǫ

)
= P

(
M ′

ǫ

)
. SinceM̂ǫ is

regular, we may apply Lemma 7.21 to obtain̂M ′
ǫ.

7.7 The SSD Algorithm

In this section, we present our algorithm for computing the SSD of a PMM and prove that

it is correct. Intuitively, given a PMM,Mǫ, the algorithm is as follows:

1. Examine the corresponding unperturbed, Markov matrix,M0; this corresponds to

line 2 in Algorithm 2.

2. If it is unichain, then, as we will shortly observe, its unique stable distribution is

precisely the SSD ofMǫ, so we are done; this corresponds to lines 3-4 in Algorithm 2.



123

3. Otherwise, take a maximal reduction ofMǫ, i.e., reduce each of its communicating

classes to a singleton; this corresponds to line 5-6 in Algorithm 2.

4. Then apply the non-uniform scaling construction of Lemma7.16, and iterate (via tail

recursion); this corresponds to lines 7-8 in Algorithm 2.

Algorithm 2 To Compute the SSD of a PMM.
1: function v0 = SSD(Mǫ) {
2: C = commClasses(M0);
3: if (C.numClosed== 1)
4: return (stab (M0));
5: if (C.nonTrivial> 0)
6: (Mǫ, i, C) = reduce(Mǫ, C);
7: (Mǫ, D) = nonUniformScale(Mǫ, C);
8: return (normalize(iD (SSD(Mǫ))));
9: }

Algorithm 3 To Reduce a PMM.
1: #define uniformScale(M) (hasZeroOnDiagonalP(M) : (I + M)/2 ? M)
2: function (Mǫ, i, C) = reduce(Mǫ, i, C) {
3: Mǫ = uniformScale(Mǫ);
4: i = identityMatrix(Mǫ.dim());
5: for (c = C.first(); c.next() 6= NULL; c = c.next()) {
6: s = c.members().rest();
7: c.setMembers(c.members().first());

8: Mǫ = (Mǫ)s,s + (Mǫ)s,s

(
I − (M0)s,s

)−1

(Mǫ)s,s;

9: i = iPs




I
(
I − (M0)s,s

)−1

(M0)s,s


;

10: }
11: return (Mǫ, i, C);
12: }

We begin by observing that, by Theorem 7.10 and the comments following, as well as

Theorem 7.28, at any step in the algorithm, we may replaceMǫ by an equivalent PMM

without affecting the final result (i.e., the SSD). In particular, we may representMǫ by

its pair of resistance and cost matrices. Theorem 7.6 then tells us how to carry out any

subsequent algebraic operations (i.e., addition and multiplication of PMMs).
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We now prove that our termination condition in step 2 is correct.

Theorem 7.30.GivenMǫ ∈ PMM(n), if M0 is unichain, thenstab M0 = {ssd Mǫ}.

Proof. Lettingvǫ ≡ stab (Mǫ), by definition,Mǫvǫ = vǫ for ǫ ≻ 0. Taking limits, we have

M0v0 = v0, that is,ssd Mǫ = v0 ∈ stab M0. SinceM0 is unichain,stab M0 is a singleton,

so thatstab M0 = {ssd Mǫ}.

Next, observe how we implicitly appeal to Corollary 7.12 andTheorem 7.29 in step 3,

and the corresponding call toreduce. In this way, we reduce each communicating class,

while only inverting aconstantmatrix. Notice also how in line 9 of Algorithm 3, we accu-

mulate theunperturbedinclusion of the reduction,ı0, in the (real-valued) matrix,i. This

is correct by Theorem 7.15. Finally, note that as we iterate through each communicating

class ofMǫ, reduce eliminates all the elements of each classexceptthe first, updating its

set of member to beonly the first. Thus, it returns an updated communicating class decom-

position, corresponding to the reduced result. This means that we do not need to recompute

from scratch before the call tononUniformScale.

Finally, Lemma 7.16 guarantees that step 4 is correct. Moreover, the algorithm is guar-

anteed to make progress to termination. Specifically, Corollary 7.17 guarantees that even-

tually either the condition of line 3 or line 5 holds. Thus, either we terminate immediately

or we reduce the dimension ofMǫ, guaranteeing that we will terminate eventually.



Part III

Two Related Algorithms
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Chapter 8

GraphRank

In this chapter, we discuss the problem of ranking and frame asolution in terms of a multi-

objective linear program. We then show how to compute Paretooptimal solutions, as well

as suggest how to find socially optimal solutions. We will assume we are given a set of

individuals and for selected ordered pairs,(i, j), a positive value,di,j ≥ 0, indicating that

j is superior toi by di,j units. For example, if the individuals are sports teams,di,j may

represent the positive differential in points scored or games won (e.g., teamj won di,j

more times against teami than it lost). We can represent this data naturally as a weighted,

directed graph,G = (V, E, d, s, e), where the vertices,V , correspond to the individuals

being ranked, the edges,E, correspond to the set of comparisons, ands(α), e(α) : E → V

are the starting and ending vertices ofα, respectively. We will assume thatV andE are

finite. The objective is then to determine a ranking function, x : V → R which is consistent

with the given data, as well as optimal, in some sense.

If the corresponding graph is not connected, then vertices in different components are

necessarily incomparable, so we will assume thatG is connected. If the corresponding

undirectedgraph is connected and acyclic, then there is a unique solution to the corre-

sponding system of equations,x (e(α))− x (s(α)) = dα, ∀α ∈ E, up to a constant shift.

In general, this ranking problem is complicated by the existence of undirected cycles in

the graph which lead to an inconsistent system of equations.While there are general tech-

niques for solving such over-determined systems of linear equations, we would prefer a

technique which is motivated by this specific application.

One approach taken in the literature for undirected graphs is to simply throw out the
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smallest number of edges to obtain a directed acyclic graph (DAG) and apply standard

topological sort techniques to the result (Kenyon-Mathieuand Schudy, 2007; Ailon, 2007).

This has the advantage of avoiding ties, but does not addresshow to optimallysort indi-

viduals in the resulting graph. Thus, we take an alternativeapproach which will lead to a

non-trivial ranking whenever possible. We give one justification for this approach here and

address it in further detail in Section 8.3.

For a ranking to be consistent with the data, we must at least have0 ≤ x (e(α)) −

x (s(α)) ≤ dα, ∀α ∈ E. In other words, if the data indicates that teami is better than

teamj, it should be ranked no worse. We wish to create an “informative” ranking, by

distinguishing individuals from one another whenever possible. It is easy to show that

these constraints imply that any feasible ranking must be constant on directed cycles. That

is, with these constraints it is impossible to use a feasibleranking to distinguish between

individuals within a directed cycle. However, by collapsing all cycles to single vertices,

we obtain a DAG and we can sort the vertices in strictly increasing order. Therefore,

topological sort on unweighted graphs can be viewed as an optimization problem, where

we are trying to minimize the number of strict equalities in our constraints. This objective

has the nice property of treating the data “fairly” by handling all the given edges in the

same manner.

However, a ranking should not overstate the degree of superiority of teami overj. That

is, we should impose the additional constraintsx (e(α))− x (s(α)) ≤ dα, ∀α ∈ E. Now

instead of distinguishing individualswheneverpossible, we can also seek to do so asmuch

as possible. That is, we want a ranking which is maximal with respect to the multiple

objectives,fs,t(x) = x(t) − x(s), such that(s, t) = (s(α), e(α)) with α ∈ E. Notice

that if we consider unweighted graphs as the case whendα ≡ 1, this will automatically

minimize the number of tight left-hand side constraints, sothis is a natural generalization

of the previous problem.

Formally, given a weighted, directed graph,G = (V, E, d), we restrict attention to the

set of valuations onG, C(G), satisfying the corresponding system of linear constraints:

C(G) = {x : V → R | 0 ≤ x (e(α))− x (s(α)) ≤ dα, ∀α ∈ E} .

Observe thatC(G) 6= ∅, since it contains every constant function onV . Now define a

pre-order (with corresponding partial order and equivalence relation) onC(G), �, so that

x � x′ iff x (e(α)) − x (s(α)) ≤ x′ (e(α)) − x′ (s(α)) , ∀α ∈ E. Our goal is then to
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solve the multi-objective, linear program,Rank(G): computex∗ ∈ maxC(G), that is, find

a Pareto optimal, feasible ranking.

This type of system of constraints has been well-studied in operations research, par-

ticularly in the theory of scheduling (Corman et al., 2001).The graph is then called a

PERT (Program Evaluation and Review Technique) chart. However, the classical problem

generally involvesminimizingthe difference between the largest and smallest values ofx,

which in our case would yield the trivial ranking,x(v) ≡ 0. However, we might wish to

refine our search to a Pareto optimal solution which is socially optimal with respect to some

aggregation function, such asmaxs, t∈V x(t)− x(s) or
∑

α∈E x(e(α))− x(s(α)).

In the latter case, the problem may be recast as a standard linear program, where a

solution may always be taken at a vertex ofG(G), corresponding to a consistent collection

of tight constraints. Intuitively, the tight constraints of the form x (e(α)) − x (s(α)) =

dα correspond to a choice of edges, while the remaining equality constraints,x (e(α)) =

x (s(α)) should only be those forced by the geometry ofG. This suggests that we pursue

a general approach to finding Pareto optimal solutions corresponding to maximizing the

difference on selected edges, using the geometry ofG to infer the subsequent equality

constraints.

We will carry out this program in Section 8.2 and give an algorithm for computing a

Pareto optimal solution. We then discuss related work and future directions for research.

We conclude by outlining applications of these techniques to voting and information re-

trieval.

8.1 Existence of Solutions

In this section, we discuss some background results relatedto the problem,Rank(G),

introduced in the previous section. Most importantly, we will show that solutions exist,

and that feasible rankings are constant on strongly connected components (SCCs) ofG.

SCCs are most easily described in terms of the natural preorder of the vertices, given by

the “leads to” relation,;, wherei ; j iff there is a directed path inG from i to j. SinceG

is connected, for eachs, t ∈ V , there is a sequence{vi}
k
i=0 ⊂ V such thats ; v0 ;v1 ;

· · · ;vk ; t. This relation defines an equivalence relation,∼, wherei ∼ j iff i ;

j andj ; i, a corresponding partial order on the set of equivalence classes, which we will
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denote by�, and astrict partial order,≺. The strongly connected components ofG are

simply equivalence classes with respect to∼. They are also often called “communicating”

classes.

Given anundirectedwalk in G, we may define its length by summing the weights of

the edges, where we weight a forward edge asdα and a reversed edge as0. Let lG(s, t) be

the length of the shortest such walk froms to t. SinceG is connected, this set of walks is

non-empty, so thatlG(s, t) is well-defined for alls, t ∈ V .

Lemma 8.1. If x ∈ C(G), x(t)− x(s) ≤ lG(s, t). In particular, if s ; t, x(s) ≤ x(t).

Proof. Consider any undirected walk froms to t. For each forward edge, we havex (e(α))−

x (s(α)) ≤ dα. For each reversed edge, we have0 ≤ x (e(α)) − x (s(α)), so that

x (s(α)) − x (e(α)) ≤ 0. When we sum these inequalities, the left-hand side telescopes

to x(t) − x(s), while the right-hand side yields the length of the undirected walk. Since

this inequality holds for all such walks, it holds for the shortest such one, i.e., when the

right-hand side islG(s, t). If s ; t, then there is an undirected walk fromt to s consisting

entirely of reversed edges, so thatlG(t, s) = 0, x(s)− x(t) ≤ 0, andx(s) ≤ x(t).

We can now prove thatRank(G) has at least one solution. For the following, we will

assume only that there is a well-defined operation,I, taking a directed graph to pairs of its

vertices,I(G) ⊂ V × V , and thatx � x′ iff x(t)− x(s) ≤ x′(t)− x′(s), ∀ (s, t) ∈ I(G).

For example,

I(G) = {(s, t) | degin(s) = degout(t) = 0} or {(s, t) | s = s(α), t = e(α), α ∈ E} .

Lemma 8.2. If x′ − x is constant, thenx ∼ x′. Moreover, ifx ∈ C(G), thenx′ ∈ C(G).

Proof. If x′ = x + c, x′
(
t′
)
− x′

(
s′
)

= x
(
t′
)
− x

(
s′
)
, ∀ s′, t′ ∈ V . Since∼ andC(G)

are defined solely in terms collections of such differences,the conclusions of the Lemma

follow.

Theorem 8.3.max C(G) 6= ∅.

Proof. Let M = maxs,t∈V lG(s, t). By Lemma 8.1−lG(v, u) ≤ x(u) − x(v) ≤ lG(u, v),

so that|x(u)− x(v)| ≤ max {lG(u, v), lG(v, u)} ≤ M . By Lemma 8.2, there is a repre-

sentative of each equivalence class ofC(G) in

C ′(G) ≡

{
x ∈ C(G) |

∑

v∈V

x(v) = 0

}
.
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For anyv ∈ V , if N = |V |, |x(v)| = |x(v)| = 1
N

∣∣∑
u∈V x(u)− x(v)

∣∣ ≤ 1
N

∑
u∈V |x(u)− x(v)| ≤

1
N

NM = M . Thus,C ′(G) is closed and bounded, hence compact. Consider

D(x) ≡
∑

(s, t)∈I(G)

x(t)− x(s).

This is continuous onC ′(G) and hence attains a maximum there at somex∗. This must be

maximal inC(G), for if x ≺ x′, we can assume without loss of generality thatx′ ∈ C ′(G),

so thatD(x) < D
(
x′
)
, which is a contradiction.

Observe that whenG is strongly connected, the constant solution is the unique (up to

constant shift) solution toRank(G). More generally, any feasible ranking is constant on

strongly connected components ofG.

Theorem 8.4. If x ∈ C(G) ands and t are in a common cycle (i.e.,s ∼ t), thenx(s) =

x(t). In particular,x(v) is constant on strongly connected components.

Proof. Sinces ∼ t, s � t, andx(s) ≤ x(t), by Lemma 8.1. Likewise,x(t) ≤ x(s), so that

x(s) = x(t) for s andt within the same strongly connected component.

8.2 Computing Pareto Optimal Solutions

In this section we show how to solveRank(G) from the Introduction by using four ba-

sic operations, reversing 0 weight edges, collapsing cycles, dropping multiple edges, and

“shifting” vertices, to recursively simplify the problem.In so doing, we give a constructive

proof of existence of solutions toRank(G). We begin by showing how we may reduce

the problem on an arbitrary graph to a corresponding problemon a simple, directed acyclic

graph without 0 edges, obtained by reversing 0 edges, collapsing cycles and then dropping

all but the smallest of multiple edges.

Given a a weighted, directed graph,G = (V, E, d, s, e), let E0 = {α ∈ E | dα = 0}

be the set of 0 weight edges. We may define a new graphT (G) = (V ′, E ′, d′, s′, e′) with

V ′ ≡ V , whereE ′ is essentially the same asE, except we introduce the reverse of the edges

in E0. Specifically,E ′ ≡ E×{0}∪E0×{1}, with d′
(α,0) ≡ dα, d′

(α,1) ≡ 0, s′(α, 0) ≡ s(α),

s′(α, 1) ≡ e(α), e′(α, 0) ≡ e(α), ande′(α, 1) ≡ s(α). Notice thatC(G) = C(T (G)), since

we are simply adding redundant equality constraints.
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Theorem 8.5. The set of feasible rankings forG andT (G) are identical, that is,C(G) =

C(T (G)). Likewise,x �G x′ iff x �T (G) x′. In particular,max C(T (G)) = maxC(G).

Proof. Givenx ∈ C(G) andα′ = (α, i) ∈ E ′, there are two cases to consider. Ifi = 0,

thenα ∈ E and0 ≤ x (e(α))−x (s(α)) ≤ dα. Sinces′(α, 0) = s(α), e′(α, 0) = e(α), and

d′
(α,0) = dα, 0 ≤ x

(
e′(α, 0)

)
− x

(
s′(α, 0)

)
≤ d(α,0). If i = 1, thenα ∈ E0 anddα = 0.

Therefore,0 ≤ x (e(α)) − x (s(α)) ≤ dα = 0 and0 ≤ x (s(α))− x (e(α)) ≤ 0 = d(α,1).

Sinces′(α, 1) = e(α) and e′(α, 1) = s(α), 0 ≤ x
(
e′(α, 1)

)
− x

(
s′(α, 1)

)
≤ d(α,1).

Therefore,x ∈ C(T (G)).

Conversely, ifx ∈ T (G) andα ∈ E, then0 ≤ x
(
e′(α, 0)

)
− x

(
s′(α, 0)

)
≤ d(α,0). As

before,s′(α, 0) = s(α), e′(α, 0) = e(α), andd′
(α,0) = dα, so that0 ≤ x (e(α))−x (s(α)) ≤

dα andx ∈ C(G).

Now assume thatxi ∈ C(G) = C(T (G)), i = 1, 2, andx1 �G x2. Givenα′ = (α, i) ∈

E ′, there are again two cases to consider. Ifi = 0, thenα ∈ E, and sincex1 �G x2,

x1 (e(α)) − x1 (s(α)) ≤ x2 (e(α)) − x2 (s(α)), so thatx1

(
e′(α, 0)

)
− x1

(
s′(α, 0)

)
≤

x2

(
e′(α, 0)

)
−x2

(
s′(α, 0)

)
. If i = 1, thenα ∈ E0, xi (e(α)) = xi (s(α)), andx1

(
e′(α, 1)

)
−

x1

(
s′(α, 1)

)
= 0 ≤ 0 = x2

(
e′(α, 1)

)
− x2

(
s′(α, 1)

)
. Thus,x1 �T (G) x2.

Conversely, assume thatx1 �T (G) x2. Givenα ∈ E, thenα′ = (α, 0) ∈ E ′. Since

x1 �T (G) x2, x1

(
e′(α, 0)

)
− x1

(
s′(α, 0)

)
≤ x2

(
e′(α, 0)

)
− x2

(
s′(α, 0)

)
. Therefore,

x1 (e(α))− x1 (s(α)) ≤ x2 (e(α))− x2 (s(α)), so thatx1 �G x2.

Given a a weighted, directed graph,G = (V, E, d, s, e), let [v] =
{
v′ ∈ V | v′ ∼ v

}
.

We wish to define a graphP (G) = (V ′, E ′, d′, s′, e′), whereV ′ = {[v] | v ∈ V }. That

is, the vertices ofP (G) correspond to the strongly-connected components ofG. Since

strongly-connected components are unions of cycles, we have effectively collapsed each

cycle to a single vertex. To guarantee that the result is simple, we discard all loops and re-

tain only the smallest weight edge between any two vertices.Specifically, givens′, t′ ∈ V ′

with s′ = [s] andt′ = [t], such thats ≺G t andEs
′
,t
′ ≡

{
α ∈ E | s (α) ∈ s′, e (α) ∈ t′

}
6=

∅, chooseαs
′
,t
′ = arg minα∈E

s
′
,t
′
dα, and takeE ′ to be the set of all such edges. Finally, take

d′ = d|E′, s′(α) = [s(α)], ande′(α) = [e(α)]. Notice that by construction,s′
(
αs

′
,t
′

)
= s′

ande′
(
αs

′
,t
′

)
= t′.

Now observe that there is a natural, order-preserving correspondence betweenC(G)

andC(P (G)).
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Theorem 8.6. The mappingp given byp(x)(v) = x([v]) is a bijective, order preserv-

ing correspondence betweenC(P (G)) and C(G). In particular, p (max C(P (G))) =

max C(G).

Proof. We first show that, ifx′ ∈ C(P (G)), x ≡ p
(
x′
)
∈ C(G). Givenα ∈ E, we

must show that0 ≤ x (e(α)) − x (s(α)) ≤ dα. By definition, x (e(α)) − x (s(α)) =

x′([e(α)]) − x′([s(α)]). If s(α) ∼ e(α), this is 0 and we are done. Otherwise, let-

ting t′ ≡ [e(α)]) and s′ ≡ [s(α)], we haves(α) ≺G e(α) and α ∈ Es
′
,t
′ , so that

x′([e(α)]) − x′([s(α)]) = x′
(
t′
)
− x′

(
s′
)

= x′
(
e′
(
αs

′
,t
′

))
− x′

(
s′
(
αs

′
,t
′

))
. Since

x′ ∈ C(P (G)), 0 ≤ x′
(
e′
(
αs

′
,t
′

))
− x′

(
s′
(
αs

′
,t
′

))
≤ dα

s
′
,t
′ ≤ dα. Sincex (e(α)) −

x (s(α)) = x′
(
e′
(
αs

′
,t
′

))
− x′

(
s′
(
αs

′
,t
′

))
, we have shown thatx ∈ C(G).

Now observe that, by Theorem 8.4, anyx ∈ C(G) is constant on equivalence classes,

[v], so that the inverse mapping,p−1 (x) ([v]) = x(v), is well-defined. Ifx′ = p−1 (x), we

must show thatx′ ∈ C(P (G)). If α ∈ E ′, thenα = αs
′
,t
′ with s′(α) = s′ ande′(α) =

t′. Moreover,s′ = [s(α)] and t′ = [e(α)] andx′
(
e′ (α)

)
− x′

(
s′ (α)

)
= x′ ([e(α)]) −

x′ ([s(α)]) = x (e(α))− x (s(α]), which is between0 anddα = d′
α, sincex ∈ C(G).

Finally, it remains to show thatp andp−1 are order-preserving functions. Assume that

x1 � x2 with xi ∈ C(P (G)), and considerα ∈ E. For convenience, lett = e(α),

s = s(α), and observe thatp (xi) (t)− p (xi) (s) = xi([t])−xi([s]). There are two cases to

consider. Eithers ∼G t or s ≺G t. In the first case,xi([t]) = xi([s]), we havep (x1) (t) −

p (x1) (s) = 0 ≤ 0 = p (x1) (t) − p (x1) (s). Otherwise,s ≺G t andα ∈ E[s],[t], so that

α [s], [t] ∈ E ′ with [s] = s
(
α[s],[t]

)
and[t] = e

(
α[s],[t]

)
. Sincex1 � x2, x1([t])− x1([s]) ≤

x2([t])−x2([s]), or equivalently,p (x1) (t)−p (x1) (s) ≤ p (x1) (t)−p (x1) (s). Therefore,

p (x1) ≤ p (x2).

Conversely, assume thatx′
1 � x′

2 with x′
i ∈ C(G). Letx′

i = p (xi) and considerα ∈ E ′.

Thenα = α[s],[t], with s(α) = s ande(α) = t. Sinces′(α) = [s] ande′(α) = [t], we must

show thatx1([t])−x1([s]) ≤ x2([t])−x2([s]). Sincex′
1 � x′

2, x
′
1(t)−x′

1(s) ≤ x′
2(t)−x′

2(s).

By definition,x′
i(t) = xi([t]) andx′

i(s) = xi([s]). Therefore,x1([t])− x1([s]) ≤ x2([t]) −

x2([s]), as desired, so thatx1 � x2.

We now introduce a novel operation to “shift” a vertex. This corresponds to feasible

pivot in a simplex tableau forC(G), or equivalently, a change of variables that forces

x (e(α))−x (s(α)) = dα. Specifically, given a weighted, directed graph without self-loops,
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G = (V, E, d, s, e), we will say that an edge,α ∈ E, is feasibleiff dα = mine(β)=e(α) dβ.

For any feasible edge,α, we then define a graphRα(G) which is identical toG, but with a

new set of edge weights. Specifically, letRα(G) = (V, E, d′, s, e) with

d′
β ≡





dβ − dα, if e(β) = e(α)

dβ + dα, if s(β) = e(α)

dβ, otherwise

.

As before, there is a corresponding mapping,rα, taking valuations onRα(G) to valua-

tions onG.

Theorem 8.7.Consider the mappingrα, given by

rα

(
x′
)
(v) ≡





x′(v) + dα, if v = e(α)

x′(v), otherwise

This is bijective, order-preserving correspondence between:

domain rα ≡
{
x′ ∈ C(R(G)) | x′(e(β))− x′(s(β)) ≥ dα, if e(α) = s(β)

}

and

im rα = {x ∈ C(G) | x(e(β))− x(s(β)) ≥ dα, if e(α) = e(β)} .

Proof. We first show thatx ≡ rα

(
x′
)
∈ C ′ ≡ {x ∈ C(G) | x(e(β))− x(s(β)) ≥ dα, if e(α) = e(β)},

for anyx′ ∈ domain rα. Givenβ ∈ E, by assumption,0 ≤ x′ (e (β)) − x′ (s (β)) ≤ d′
β,

with dα ≤ x′ (e (β)) − x′ (s (β)), if e(α) = s(β). If e(β) = e(α), thend′
β = dβ − dα,

x′ (e(β)) = x (e(β))−dα, andx′ (s(β)) = x (s(β)), sinces(β) 6= e(β) = e(α). Therefore,

0 ≤ dα ≤ x (e(β))− x (s(β)) ≤ dβ. In particular,x (e(α))− x (s(α)) = dα.

Similarly, if s(β) = e(α), thend′
β = dβ+dα, x′ (s(β)) = x (s(β))−dα, andx′ (e(β)) =

x (e(β)), sincee(β) 6= s(β) = e(α). Sincedα ≤ x′ (e (β)) − x′ (s (β)) ≤ d′
β, 0 ≤

x (e(β))− x (s(β)) ≤ dβ.

Finally, if e(α) 6= s(β), e(β), thend′
β = dβ, x′ (s(β)) = x (s(β)), andx′ (e(β)) =

x (e(β)). Thus,0 ≤ x (e(β))−x (s(β)) ≤ dβ for all β ∈ E, with dα ≤ x(e(β))−x(s(β)),

whene(α) = e(β). In other words,x ∈ C ′, so thatim rα ⊂ C ′. Conversely, ifx ∈ C ′,

we may then definex′(v) = x(v) − dα, if v = e(α), andx(v), otherwise. The previous

calculations may all clearly be reversed, to show thatx′ ∈ domain rα.
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We now observe that bothrα andr−1
α are order-preserving. Ifx ≡ rα

(
x′
)
, then for any

s, t ∈ V , notice thatxi(t)− xi(s) = rα (xi) (t)− rα (xi) (s)− c, wherec = −dα, dα, or 0,

depending on whethers and/ort equale(α). In any case,x1(t)−x1(s) ≤ x2(t)−x2(s) iff

rα (x1) (t)− rα (x1) (s) ≤ rα (x2) (t)− rα (x2) (s), for all s, t ∈ V . In particular,x1 � x2

iff rα (x1) � rα (x2).

Lemma 8.8. If x′ � x ∈ C(G) for x′ ∈ im rα, thenx ∈ im rα.

Proof. Assume thatx′ � x ∈ C(G), x′ ∈ im rα. Then, for anyβ ∈ E, x(e(β)) −

x(s(β)) ≥ x′(e(β))−x′(s(β)). By Theorem 8.7, ife(α) = e(β), x′(e(β))−x′(s(β)) ≥ dα.

Therefore,x(e(β))− x(s(β)) ≥ dα, and again by Theorem 8.7,x ∈ im rα.

Lemma 8.9. rα (max C (Rα(G)) ∩ domain rα) ⊂ max C(G).

Proof. Let x1 ∈ max C (Rα(G)) ∩ domain rα andrα (x1) � x ∈ C(G). By Lemma 8.8,

x = rα (x2), for x2 ∈ domain rα. Therefore, by Theorem 8.6,x1 � x2, which implies that

x1 ∼ x2, sincea1 is maximal. Thus,rα (x1) ∼ rα (x2) = x, again by Theorem 8.6. In

particular,rα (x1) ∈ max C(G).

Combining these results gives Algorithm 4 which computes Pareto optimal rankings.

Algorithm 4 To SolveRank(G).
1: function x = rk (G) {
2: G′ = P (T (G))
3: if

(
G′.numVertices== 1

)

4: return (p(0));
5: Choose a feasibleα ∈ E such thate(α) is maximal.
6: G′ = Rα

(
G′
)

7: return
(
rα

(
p
(
rk
(
G′
))))

;
8: }

Theorem 8.10.Algorithm 4 produces a solution toRank(G).

Proof. By construction,Rα

(
G′
)

has a 0 weight edge, so thatT
(
Rα

(
G′
))

will have at

least one fewer strongly connected components thanG. Thus, after the initial call, line

2 decreases the number vertices by at least 1. In particular,we are eventually left with a

trivial graph, containing a single vertex and no edges. Thus, the algorithm is guaranteed to

terminate.
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If G′ is trivial, by Lemma 8.2, the constant rankingx(v) = 0 is clearly the unique

feasible ranking, up to equivalence. Moreover, Theorems 8.6 and 8.5 imply thatp takes this

optimal ranking forG′ to an optimal ranking forG. Moreover, by line 5,G′ is a simple,

acyclic directed graph. Thus, there can be no edges,β, such thate(α) = s(β). In particular,

domain rα = C (R (G)), so that we may apply Lemma 8.9, along with Theorems 8.6 and

8.5 to prove that line 7 is correct.

Notice that after the initial call tork(G), we may optimize the subsequent calls toP

andT , since we know precisely those edges which became 0 inG, and there will only be

one non-trivial strongly connected component ofT (G). In practice, we might expect these

calls to be of roughly constant cost, so that the entire algorithm should be linear in the size

of G.

8.3 Related Work

The problem of ranking from a directed graph has been studied. However, the approach

has been to simply throw out the smallest cumulative weight of edges to obtain a directed

acyclic graph (DAG), and apply standard topological sort techniques to the result (Kenyon-

Mathieu and Schudy, 2007; Ailon, 2007). While this approachhas generated a lot of inter-

est, since it is an NP-hard problem to solve exactly, one could argue, however, that throwing

away edges is not realistic. For example, ifG consists of a 3-cycle with equally weighted

edges, while throwing away an edge will lead to an ordering ofthe vertices, the resulting

order will depend crucially on which edge is thrown away, even though the edge can only

be chosen “randomly”. The value of such a strict ordering is dubious, since the available

evidence indicates that the vertices are indistinguishable.

When the edges are weighted, this approach becomes even moreproblematic. Consider

the case whereda,b = 1, db,c = 2, anddc,a = 3. If we throw out smallest edge,(a, b), we

obtain the orderingb < c < a, even though the data indicates thata andb are the most

similar. If we throw out largest edge,(c, a), the situation is even worse, since we obtain the

orderinga < b < c, although the data indicates thata is superior toc by the widest margin.

Moreover, this approach only reduces the problem to rankinga DAG, and does not

address how tooptimallysort individuals in the resulting graph. Thus, we studied anal-

ternative which leads to a non-trivial ranking whenever possible, that is, when the graph is
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not strongly connected with non-zero weight edges between the strongly connected com-

ponents. In practice, if a given statistic leads to a strongly connected graph, we suggest that

we should look for different statistics to reduce the numberof cycles until the result is not

strongly connected. Consider our original example of sports teams. An initial approach

might be to simply weight an edge fromi to j by number of games won byj overi. But in

sports where teams play each other many times, this will produce a 2-cycle between almost

every team. By combining the number of wins and the number of losses as the difference,

we obtain a graph with many fewer cycles. If necessary, we canemploy additional statistics

to break “ties” in the resulting ranking.

8.4 Applications

Another interesting example of statistical aggregation comes from the field of information

retrieval. Ailon (2007) considers the problem of aggregating partial rankings produced by

different Web search engines. Each partial ranking gives a graph of pairwise comparisons

between consecutive members of each ranking. We may then average the graphs together,

weighted according to our belief in the quality of the results of each engine, to obtain a

directed graph for whichRank(G) may give useful results.

Conjecture: Alternatively, if we are given cardinal ranking and average the correspond-

ing tournament graphs, we obtain a graph where the weights reflect the number of head-to-

head wins, on which we may then solveRank(G). This ranking scheme will then satisfy

the Condorcet criteria.

8.5 Conclusion

In this paper, we discuss the problem of ranking and frame a solution in terms of a multi-

objective linear program. We then show how to compute Paretooptimal solutions, as well

as suggest how to find socially optimal solutions. We then suggest a modified version of

the algorithm which we believe will compute corresponding socially optimal rankings.
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Chapter 9

QuickRank

9.1 Introduction

A fundamental problem in the field of social network analysisis to rank individuals in a

society according to their implicit “importance” (e.g., power or influence), derived from

a network’s underlying topology. More precisely, given a social network, the goal is to

produce a (cardinal)ranking, whereby each individual is assigned a nonnegative real value,

from which an ordinal ranking (an ordering of the individuals) can be extracted if desired.

In this paper, we propose a solution to this problem specifically geared toward social net-

works that possess an accompanying hierarchical structure.

A social network is typically encoded in alink graph, with individuals represented by

vertices and relationships represented by directed edges,or “links,” annotated with weights.

Given a link graph, there are multiple ways to assign meaningto the weights. On one hand,

one can view the weight on a link fromi to j as expressing the distance fromi to j—a

quantity inversely related toj’s importance. On the other hand, one can view each weight

as the level of endorsement, or respect,i grantsj—a quantity directly proportional toj’s

importance. We adopt this latter interpretation.

Under either interpretation (weights as distances or weights as endorsements), a social

network can be seen as a collection of judgments, one made by each individual in the

society. Correspondingly, we seek a means of aggregating individual judgments into a

single collective ranking. In other words, we consider the aforementioned fundamental

problem in social network analysis as akin to a key question in voting: how to aggregate

139
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the preferences of many individuals into a single collective persuasion that reflects the

preferences of the population as a whole.

Given a link graph, perhaps the most basic ranking scheme is degree centrality, in which

i’s rank is a combined measure of its indegree, the strength ofthe endorsementsi receives,

and outdegree, the strength of the endorsementsi makes. It is straightforward to compute

this metric. However, it could be argued that it is also sensible to take into account inferred

endorsements: e.g., ifi endorsesj and j endorsesk, then i endorsesk in a sense. At

the opposite end of the spectrum lie ranking schemes that incorporate all such inferred

endorsements.

Central to these alternatives is a hypothesis due to Bonacich (1972): an individual

is deemed important if he is endorsed by other important individuals. In other words,

the strength of an endorsement should be construed relativeto the rank of the individual

making the endorsement. In terms of our voting analogy, Bonacich suggests relating the

collective ranking to the sum of all individual judgments, each weighted by its respective

rank as determined by the collective. The fixed point of this averaging process—the prin-

cipal eigenvector of the link graph—defines Bonacich’s metric, also known as eigenvector

centrality. Although intuitively appealing, the computation of this fixed point can be pro-

hibitive in large networks.

Recently, computer scientists have developed related schemes to rank web pages based

on the Web’s underlying topology. Viewed as a social network, web pages are individuals

and hyperlinks are links. The most prominent approach to ranking web pages is the Page-

Rank algorithm (Page and Brin, 1998; Page et al., 1998), uponwhich the Google search

engine is built. PageRank aggregates the information contained in the Web’s hyperlinks to

generate a ranking using a process much like Bonacich’s method for computing eigenvector

centrality.

In this paper, we present QuickRank, an efficient algorithm for computing a ranking in

anhierarchical social network. Many social networks are hierarchical. One apt example

already mentioned is the Web, where the individuals are web pages, the network structure is

provided by hyperlinks from one web page to another, and an explicit hierarchical structure

is given by the Web’s domains, subdomains, and so on. Anotherfitting example is the

Enron email database, where individuals are employees, thenetwork structure is given by

emails from one employee to another, and an explicit hierarchical structure is given by the
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corporate hierarchy. Yet another compelling example is a citation index. In this case, the

individuals are publications, the network structure is dictated by the references from one

publication to another, and an explicit hierarchical structure is given by the categorization

of publications by fields (e.g., computer science), subfields (e.g., AI, theory, and systems),

and so on.

As we sketch the key ideas behind the QuickRank algorithm in this introductory section,

we allude to the sample hierarchical social network shown inFigure 9.1, a network of web

pages within a domain hierarchy. The web pages, indicated bygray rectangles, are the

individuals in this society. Social relationships betweenthese individuals (i.e., hyperlinks

between web pages) are shown as dashed lines with arrows. Thedomain hierarchy is drawn

using solid lines with domains and subdomains as interior nodes, indicated by solid black

circles, and web pages as leaves (gray rectangles).

Figure 9.1: A sample hierarchical social network.

Up to normalization, a ranking is a probability distribution. Given any normalized rank-

ing (i.e., probability distribution) of the individuals inan hierarchical social network, by

conditioning that global distribution on a particular subcommunity (e.g., CS), we can derive

aconditionalranking of only those individuals within that subcommunity(e.g., Pr[page 1|

CS], Pr[page 2| CS], etc.). Likewise, from the respective marginal probability of each sub-

community, we can infer what we call amarginalranking1 of subcommunities themselves

(e.g., Pr[AI | CS], Pr[theory| CS], etc.). Conversely, it is straightforward to recover the

global ranking by combining the conditional and marginal rankings using the chain rule.

For example, Pr[page 1] = Pr[page 1| AI] Pr[AI | CS] Pr[CS].

1Viewing each interior node as the root of a subtree, we informally refer to the ranking of the children
of an interior node as a marginal ranking, although such a ranking is technically aconditionalmarginal
ranking, conditioned on the subcommunity defined by that subtree.
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Hence, to compute a global ranking of the individuals in an hierarchical social network,

it suffices to compute marginal rankings at all interior nodes (i.e., rank the children of all

interior nodes), and combine those marginal rankings via the chain rule. To facilitate re-

cursive implementation, QuickRank localizes the computation of each marginal ranking:

any links to or from leaves outside the subtree at hand are ignored in such computations.

Beyond this computational motivation, localizing marginal ranking computations can be

motivated by the following “peer-review principle:”endorsements among peers (i.e., mem-

bers of the same subcommunity) should be taken at face value,while other endorsements

should be considered as only approximate.

Intuitively, it is plausible that ranking information among individuals in a tightly-knit

community would be more reliable than ranking information among individuals who are

only loosely connected. Recall the citation index, a natural example of an hierarchical so-

cial network. When a researcher cites a topic in his area of expertise, he is likely to select

the most appropriate references. In contrast, if for some reason a researcher with exper-

tise in one area (e.g., computer science) is citing a result in another (e.g., sociology), he

may choose only somewhat relevant references. Hence, we contend that the peer-review

principle, which justifies localized marginal ranking computations, befits at least some ap-

plication areas.

To fully implement the peer-review principle it is necessary to define some notion of

approximate endorsements. To this end, we interpret an endorsement by an individuali in

communityA for another individualj 6= i in another communityB 6= A as comprising part

of an endorsement byA of B. More precisely, we aggregate endorsements by individuals

in A for individuals inB into an endorsement byA of B by first scaling the endorsements

from eachi to eachj by i’s marginal rank, and then summing the resulting weighted en-

dorsements. If we were to replace the targetj of an endorsement by any otherj′ ∈ B, the

resulting aggregate endorsement remains unchanged. In this sense, the original endorse-

ment is viewed as “fuzzy” or “approximate.” Moreover, by interpreting links originating

at i asi’s judgment, this aggregation process can be seen as an application of Bonacich’s

hypothesis (to obtain endorsements of eachj ∈ B by A) followed by a summation over all

j ∈ B (to obtain an endorsement ofB).

Together, the principle of peer review and Bonacich’s hypothesis lead to the QuickRank

algorithm, which we illustrate on the example in Figure 9.1.We begin by restricting the
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link graph to, say, the AI subdomain, thereby constructing alocal link subgraph. Next, we

apply any “flat” ranking scheme (e.g., degree and eigenvector centrality and PageRank) to

this link subgraph to produce a marginal ranking of the pagesin the AI subdomain (i.e., a

distribution over1 and2). Then, we scale the links from1 to 4 and2 to 3 by the marginal

ranks of1 and2, respectively, to generate links from AI to4 and3. Finally, we sum these

results to produce an aggregate link from AI to theory.

Repeating this procedure for the theory and systems subdomains, we “collapse” each of

the CS subdomains into a leaf, and substitute these subdomains for their corresponding web

pages in the link graph. We then proceed recursively, constructing a local link subgraph,

and computing a marginal ranking of the CS subdomains. Combining this marginal ranking

with the marginal rankings of the web pages in each CS subdomain yields a single marginal

ranking of all the web pages in the CS domain. We repeat this process until the entire

hierarchy has been collapsed into a single node, at which point we obtain a ranking of all

pages in theedu.brown domain.

We conclude this introduction by noting the following property of QuickRank: The

relative global ranking between two individuals is determined by their local ranks in the

smallest community to which they both belong.This property follows from the fact that

scaling is the only operation which is performed on rankings(conditional rankings are

scaled by marginal ranks), but scaling does not affect relative rankings.

Overview This paper purports to contribute to the literature on social network analysis

by introducing the QuickRank algorithm. As suggested by theprevious example, Quick-

Rank is parameterized by a “BaseRank” procedure (i.e., a flatranking scheme, such as

degree centrality) used to compute marginal rankings. We begin in the next section by

precisely defining BaseRank procedures and identifying desirable properties of such pro-

cedures. In Section 9.3, we present pseudocode for the QuickRank algorithm. We also

consider to what extent QuickRank preserves our previouslyidentified desirable properties

of BaseRank procedures. Then, in Section 9.4, we provide sample QuickRank calculations.

Our first example illustrates the distinction between standalone “BaseRanks” and “Quick-

Ranks,” the rankings output by these schemes. A further example shows how QuickRank

is potentially more resistant to link-spamming than corresponding BaseRank procedures.

We conclude in Section 9.8. A discussion of related work is deferred to the QuickRank

technical report, currently in preparation.
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9.2 A Unified View of Flat Ranking Algorithms

QuickRank is parameterized by a flat (i.e., non-hierarchical) ranking algorithm, or a “Base-

Rank” procedure. In this section, we precisely define a BaseRank procedure, and we for-

mulate the four flat ranking schemes mentioned in the introduction as such. We also present

four desirable properties of BaseRank procedures, and discuss to what extent the four afore-

mentioned ranking schemes satisfy these properties.

9.2.1 Preliminary Definitions

A social network encodes relationships among individuals in a society. Such a network can

be represented by alink graph. Individualsi, j ∈ I are represented asvertices, and the

fact that individuali relates to individualj is represented by a directedlink from vertexi

to vertexj, augmented by a nonnegative real-valued weight indicatingthe strength ofi’s

relationship toj.

A judgmentis a nonnegative, real-valued vector indexed onI. We define an equivalence

relation on judgments withr1 andr2 equivalent ifcr1 = r2. For our purposes, aranking

is such an equivalence class〈r〉 (although we often refer to a ranking by any representative

of the class). A ranking has exactly one representative thatis a probability distribution,

which can be obtained by normalizing any other representative. Further, a ranking repre-

sents a consistent estimate of the relative merit of pairs ofindividuals: i.e., for all pairs of

individualsi andj, the ranking ofi relative toj, namelyri

rj
∈ [0,∞], is well-defined.

A link graph is a nonnegative, real-valued square matrix indexed onI. We restrict

attention to the case where the weights in the link graph may reasonably be interpreted as

endorsements, rather than distances.2 A judgmentgraph is a link graph further constrained

to havepositivediagonal entries. Each column in a judgment graph represents the judgment

of one individual. The requirement that the diagonal be positive can be interpreted to mean

that individuals are required to judge others relative to themselves. Whereas rankings are

scale invariant, judgments are scale dependent.

In the introduction, we presented ranking schemes as operating on link graphs. That

was a convenient oversimplification. More precisely, they map a judgment graph and a
2It is conceivable that QuickRank can be suitably modified to handle the distance interpretation by redefin-
ing the peer-review notion of approximation as aggregatingby taking a minimum instead of summing,
but we have not yet explored any applications of this sort.
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prior ranking to aposterior ranking. We view the inference of a judgment graph from a

link graph as a preprocessing step. This step might consist of inserting self-loops: replacing

zeros on the diagonal with ones. In the case of the Web or a citation database, for example,

such self-loops would model each web page or publication as implicitly referring to (i.e.,

endorsing) itself.

Analogously, we define aBaseRankprocedure as a higher-order function that takes a

judgment graph to a mapping which infers a posterior rankingfrom a prior. When used

within the QuickRank algorithm, we require that the posterior ranking output by the Base-

Rank procedure be normalized to a probability distribution. The prior ranking may be

viewed as the persuasion of the “center” (i.e., the implementer of the ranking scheme). A

BaseRank procedure then is a means of aggregating the judgments of the individuals in the

society, and the center, into a single collective posteriorranking.

Given a judgment graphR and a prior ranking〈r〉, Bonacich’s hypothesis suggests

that we may infer a collective judgment asr′ = Rr. In this way, individualj’s posterior

position is the sum of each individuali’s conception ofj, weighted by the prior rank ofi.

By ignoring scale inr′, we can infer the posterior ranking〈r′〉. Note that the result of these

two inference steps is well-defined, in that〈r′〉 depends only on〈r〉 and not onr itself. We

use the termlinear to describe a BaseRank procedure whose mapping from a prior ranking

to a posterior abides by Bonacich’s hypothesis.

This inference rule shows up naturally in the case of two simple types of judgment

graphs, namely, finite-state, discrete-time, stationary Markov processes and Bayesian up-

dating. In the former case, the judgment graph corresponds directly to the probability

transition matrix of the Markov process and the inference rule follows the corresponding

reallocation of probability. In Bayesian updating, one is given a prior probability distribu-

tion ri = Pr[Ai] over eventsAi, together with the conditional probabilitiesRii = Pr[B |

Ai] of some common eventB. The Bayesian approach infers the posterior distribution

r′i = Pr[Ai | B] precisely as above: i.e.,r′i =
(Rr)i

‖Rr‖1
. In fact, any judgment graph can be

expressed as the composite of these two types, a matrix with constant column sums and a

diagonal matrix.
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9.2.2 Sample BaseRank Procedures

We now describe how the four ranking schemes mentioned in theintroduction (i.e., in-

degree, outdegree, eigenvector centrality and PageRank) can be viewed BaseRank proce-

dures. We assume that the link graph has been pre-processed,with self-loops inserted as

necessary, to yield an “initial” judgment graph. Since the inference step is fixed, the key

step in a linear BaseRank procedure is the way in which a “final” judgment graph is inferred

from the initial judgment graph. The degree centrality metrics and PageRank are examples

of linear BaseRank procedures, as is eigenvector centrality under certain assumptions (see

Theorem 9.2).

The indegree and outdegree of individuali are defined respectively, as follows: given

an initial judgment graphR,

IN(i) =
∑

j

Rij OUT(i) =
∑

j

Rji (9.1)

Both these centrality metrics can be understood as linear BaseRank procedures that infer a

posterior ranking from a uniform prior. Indegree is simply the identity function: the initial

and final judgment graphs are identical. Outdegree is the transpose operation: the initial

and final judgment graphs are transposes of one another.

The PageRank algorithm is parameterized by a valueǫ ∈ (0, 1) and a distributionv,

often referred to as a “personalization vector.” In a preprocessing step, the columns of the

judgment graph are normalized to yield a Markov matrixM . PageRank operates on the

convex combination ofM with the rank one Markov matrixvJ t (whereJ ambiguously

denotes any vector of all1’s), namelyMǫ = (1 − ǫ)M + ǫvJ t. This matrix is easily

seen to beunichain(see Chapter 1), hence with a unique stable distributionv∞. Moreover,

Haveliwala and Kamvar (2003) have shown thatMǫ has a second largest eigenvalue of1−ǫ,

so thatlimk→∞ Mk
ǫ v0 = v∞, for any initial distributionv0, with convergence as(1 − ǫ)k.

This result follows alternatively by writingv∞ as the limit of a geometric series:

Theorem 9.1. If M is a Markov matrix andMǫ = (1− ǫ)M + ǫvJ t, then

v∞ = lim
k→∞

Mk
ǫ v0 = ǫ

∞∑

i=0

(1− ǫ)iM iv (9.2)

This theorem implies that PageRank is a linear BaseRank procedure, which takes an

initial judgment graphM to a final judgment graphǫ
∑∞

i=0(1 − ǫ)iM i. The prior ranking
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corresponds to the personalization vector and the posterior ranking is a discounted sum of

all the inferred rankings (including the prior).

Unlike degree centrality and PageRank, which we have shown are linear BaseRank

procedures, eigenvector centrality is not. Given a judgment graphR and an prior ranking

v0, the algorithm infers a sequence of posterior rankingsvn+1 = Rvn

‖Rvn‖1
. It can be shown

that this sequence eventually converges to a fixed pointv∞, which can be interpreted as the

collective ranking. Moreover, this iterative process can be expressed as a linear inference

v∞ = Rαv0

‖Rαv0‖1
, whereα, and henceRα, depend on the support ofv0. In particular, eigen-

vector centrality is apiecewise-linear BaseRank procedure. In the special case where the

judgment graph is strongly-connected (i.e.,R is irreducible), eigenvector centrality is lin-

ear, becauseRα is constant (i.e., independent ofα) andv∞ is independent ofv0. Formally,

Theorem 9.2. If a judgment graphR ≥ 0 is irreducible with non-zero diagonal, there

exists a unique rankingv > 0, such that‖v‖1 = 1 andRv = ρ(R)v, whereρ(R) is the

magnitude of the largest eigenvalue ofR. Moreover, for anyv0 ≥ 0, if vn+1 = Rvn

‖Rvn‖1
,

limn→∞ vn = v. That is,v∞ = v and for allα, Rα = vJ t.

9.2.3 Generalized Proxy Voting

If we view each individual’s rank as a collection of proxy (i.e., infinitely divisible and

transferable) votes, then a judgment graph may be interpreted as aproxy-vote specification

indicating how each individual is willing to assign his proxy votes to others. Given a

prior ranking (i.e., an initial allocation of proxy votes),the posterior inferred by a linear

BaseRank procedure is a reallocation based on the results ofa single round of proxy voting.

More generally, ingeneralized proxy-voting(GPV), individuals cast their votes repeatedly

over time (i.e., each posterior serves as a prior in the next round), until ultimately, the

sequence of posteriors is averaged into a final vote count: i.e., a final ranking.

While historically PageRank has been viewed in terms of a “random-surfer” model (cf.

Page et al. (1998)), Theorem 9.1 suggests that it may be more aptly viewed as a GPV

mechanism with a discount factorγ ∈ [0, 1). In particular, for a given prior rankingv,

the posterior computed by PageRank can be expressed as(1 − γ)−1∑∞
i=0 γiM iv. Notice

that this is just the average of the inferred rankingsM iv, wherei is distributed geometri-

cally with meanγ. It is natural to generalize to allow weighting by arbitrarydistributions,
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∑∞
i=0 αiM

iv, or even as the limit of such,limN→∞

∑N
i=0 αi,NM iv. Formally, we define a

generalized proxy-voting mechanism as a (linear) BaseRankprocedure that takes an initial

judgment graphM into a final judgment graphlimN→∞

∑N
i=0 αi,NM i.

Observe that all the flat ranking schemes mentioned above, except outdegree, are not

only linear BaseRank procedures, but can be seen as GPV mechanisms as well. Indegree is

a trivial instance of GPV withαi,N = δi,1. By Theorem 9.1, PageRank is a GPV mechanism

with αi,N = ǫ(1−ǫ)i. Finally, if we restrict attention to irreducible judgmentgraphs, eigen-

vector centrality is a GPV mechanism, withαi,N =





1
N+1

if 0 ≤ i ≤ N

0 otherwise
. This final

claim follows Theorem 9.2 and the well-known fact thatlimi→∞ si = limk→∞
1
k

∑k−1
i=0 si.

Although outdegree, which takesR to Rt is linear, it is not a GPV mechanism.

9.2.4 Axioms

Next, we identify two types of judgment graphs that have natural interpretations, and on

which a particular behavior for a BaseRank procedure seems preferred. First, consider

the identity matrixI as a judgment graph—theidentitygraph—in which each individual

ranks himself infinitely superior to all others. Such a ranking graph provides no basis

for modifying a prior ranking. Thus, on this input, it seems reasonable that a BaseRank

procedure should act as the identity function (i.e., posterior = prior).

Second, consider the case of aconsensusgraph, that is, a judgment graphxyt, wherex

is a distribution andyi is individuali’s arbitrary scaling factor. In other words, a consensus

graph is a rank 1 matrix: everyone agrees on the rankingx, up to a multiple. Since there is

consensus among the individuals in the society, we contend that any prior ranking should

be ignored. A BaseRank procedure should simply return the consensusx. We restate these

two properties succinctly, as follows:

Identity: BaseRank(I) = id

Consensus:BaseRank(xyt) = x

Another important issue associated with ranking schemes isthat of manipulation via

“link spamming.” The goal of link spamming is to game a ranking system by creating

many false nodes, sometimes called sybils (Cheng and Friedman, 2006), that link to some
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noden, thereby attempting to influence the rank of noden. Web spamming is a particularly

popular form of link spamming (Gyongyi and Garcia-Molina, 2004).

A judgment graph inhabited by sybils takes the following form: M ′ =


 M N

0 M


,

whereM is the original judgment graph (i.e., without the sybils),N describes the links

from the sybils to existing members of the society, andM describes the links among sybils.

Since sybils are new to the community, and hence unknown its original members, we as-

sume that there are no links from those members to sybils.

Observe that generalized proxy-voting mechanisms are spam-resistant in the follow-

ing sense: Given a prior ranking which places no weight on sybils, the posterior ranking

computed with respect to the modified judgment graphM ′ is, for all intents and purposes,

equivalent to the posterior ranking computed with respect to the original judgment graph

M . That is,

Theorem 9.3.If M ′ =


 M N

0 M


, v′ =


 v

0


, andBaseRank(·) = limN→∞

∑N
i=0 αi,N (·)i,

thenBaseRank(M ′)v′ =


 BaseRank(M)v

0


.

For example, since PageRank is a GPV mechanism, we apply Theorem 9.3 to show

that the posterior ranking of non-sybils is unaffected by their presence, if we assign sybils

a prior rank of 0. In other words, if sybils can be detecteda priori, then PageRank may

be rendered immune to such an attack. Although the corresponding Markov matrix need

not be irreducible for such a “personalization” vector, we conclude from Theorem 9.1 that

the Markov process converges forall prior rankingsv0. Note that this conclusion follows

specifically from our interpretation of PageRank as a GPV mechanism, as opposed to the

traditional “random surfer” model.

Table 9.1 summarizes how each of the four ranking schemes discussed in this section

behave with respect to the four properties of BaseRank procedures discussed in this section.

PageRank doesnot satisfy the consensus property because it is always biased to some

degree by the prior ranking. However, using the notation introduced above, if we instead

defineMǫ = (1− ǫ)M + ǫMvJ t, the resulting algorithm satisfies all four properties. This

modified PageRank corresponds to a linear BaseRank procedure with final judgment graph
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Property Indegree Outdegree Eigenvector PageRank
Linear Yes Yes No Yes
GPV Yes No Yes Yes
Identity Yes Yes Yes Yes
Consensus Yes Yes Yes No

Table 9.1: Some properties of ranking schemes.

ǫ
∑∞

i=0(1 − ǫ)iM i+1, that is, the posterior is a discounted sum of all inferred rankings

excludingthe prior.

Fundamentally, QuickRank’s design is based on the two key ideas discussed in the

introduction, namely the peer-review principle and Bonacich’s hypothesis. However, as

QuickRank is parameterized by a BaseRank procedure, it is also designed to preserve the

Identity and Consensus properties. In the next section, we detail the algorithm and argue

informally that it indeed preserves these two properties ofBaseRank procedures, although

it fails to preserve linearity. When we present sample calculations in Section 9.4, we note

that QuickRank preserves the spam-resistance of its BaseRank procedure, and we illustrate

its potential to resist spam even further.

9.3 QuickRank: The Algorithm

QuickRank operates on a hierarchical social network, that is a judgment3 graphR whose

vertices are simultaneously leaves of a treeT . At a high level, QuickRank first ranks the

leaves using the link information contained in the local subgraphs; it then propagates those

local4 rankings up the tree, aggregating them at each level, until they have been aggregated

into a single global ranking. Ultimately,a node’s QuickRank is the product of its own

local rank and the local rank of each of its ancestors.QuickRank is parameterized by a

BaseRank procedure, which it uses to compute local rankings. It also takes as input a prior

ranking of the leaves. It outputs a posterior distribution.

Although we present QuickRank pseudo-code (see Algorithm 5) that is top-down and

recursive, like many algorithms that operate on trees, the simplest way to visualize the

3As above, we assume the link graph has been pre-processed to form a judgment graph.
4Whereas in the introduction, we used the term marginal, we now use the term local to refer to the ranking
of a node’s children. The salient point here is: this rankingis computed using strictly local information.
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QuickRank algorithm is bottom-up. From this point of view, QuickRank repeatedly identi-

fies “collapsible” nodes inT , meaning the root nodes of subtrees of depth 1, and collapses

them into leaf nodes (i.e., subtrees of depth 0) until there are no further opportunities for

collapsing: i.e., untilT itself is a leaf node. Collapsing noden entails: (i) computing a

local ranking atn, that is a ranking ofn’s children, and (ii) based on this local ranking, ag-

gregating the rankings and the judgments ofn’s children into a single ranking and a single

judgment, both of which are associated withn.

Note that QuickRank is a well-defined algorithm: that is, theorder in which local rank-

ings are computed does not impact the global ranking. This property is immediate, since

QuickRank propagates strictly local calculations up the tree in computing its global output.

Moreover, the collapse operation replaces a subtree of depth 1 with a subtree of depth 0 so

that QuickRank is guaranteed to terminate.

Data Structures Algorithm 5 takes as inputTn, subtree ofT rooted at noden, and returns

two data structures: (i) a ranking of all leaves (with support only onTn) and (ii) a judgment,

which is the average of all judgments ofTn’s leaves, weighted by the ranking computed in

(i). At leaf noden, the ranking is simply the probability distribution with all weight onn,

denoteden, and the judgment is given byRn.

Computing Local Rankings Recall that the main idea underlying QuickRank is to first

compute local rankings, and to then aggregate those local rankings into a single global

ranking. Given a collapsible noden, a local ranking is a ranking ofn’s children. To

compute such a ranking, QuickRank relies on a BaseRank procedure.

There are two inputs to this BaseRank procedure. The first isn’s local (i.e., marginal)

prior ranking. The second is a local judgment graphM . Forj andk both children of node

n, the entry ofM in the row corresponding tok and the column corresponding toj is the

aggregation of all endorsements from leaves inTj to leaves inTk, equal to the sum of all

entries in thejth judgment corresponding to leaves ofTk.

Aggregating Rankings and Links To aggregate the rankings ofn’s m children into a

single ranking associated withn, QuickRank averages the rankingsr1, . . . , rm according

to the weights specified by the local rankingr. If we concatenate them rankings into a

matrix Q =
[

r1 · · · rm
]
, then the aggregation of rankings can be expressed simply
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asQr. Also associated with each childj of a collapsible noden is a judgmentlj . These

judgments are aggregated in precisely the same way as rankings.

Algorithm 5 QuickRank(noden)
1: if (n.isLeaf())
2: return (〈n.getJudgment(), en〉);
3: m = n.numChildren()
4: for (j = 1 to m) {
5: 〈lj, rj〉 ← QuickRank(n.getChild(j))
6: for (k = 1 to m) {
7: Mkj = Sum(lj, n.getChild(k))
8: }
9: }

10: P =
[

l1 . . . lm
]

11: Q =
[

r1 . . . rm
]

12: r = BaseRank(M , n.getLocalPriorRanking())
13: return (〈Pr, Qr〉);

We now argue that if the BaseRank procedure satisfies the Identity and Consensus prop-

erties, then so, too, does QuickRank. First, notice that, when restricted to any subcommu-

nity (i.e., square, diagonal block), an identity or consensus graph yields the same type of

graph again. Moreover, aggregating links in such a community within the original graph

(i.e., summing rows and averaging columns) also results in the same type of graph. Con-

sequently, if QuickRank employs a BaseRank procedure with the Identity property, it will

output the prior distribution on the identity graph, since the prior local rankings will remain

unchanged at each level in the hierarchy.

Now consider a consensus graph with rankingx s. t. ‖x‖1 = 1. Restriction to a sub-

community gives a consensus graph on the corresponding conditional distribution ofx.

Likewise, aggregation produces a consensus graph on the corresponding marginal distri-

bution of x. If QuickRank employs a BaseRank algorithm with the consensus property

on a consensus graph, it will gradually replace the prior distribution at the leaves with the

conditional distributions ofx, until it finally outputsx itself.

We conclude this section by pointing out that, even if the BaseRank procedure is linear,

QuickRank may not be expressible as a linear inference. Normalizing local rankings to

form distributions can introduce non-linearities. In the next section, we provide sample

QuickRank calculations.
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9.4 Examples

We now present two examples that verify our intuition regarding QuickRank and illustrate

some of its novel features. Recall that QuickRank, as it operates on an hierarchical social

network (HSN), is parameterized by a prior ranking and a BaseRank procedure.

First, consider the HSN shown in Figure 9.2a. The hierarchy is drawn using solid lines.

The link graph is indicated by dotted lines between the numbered leaves. All weights are

assumed to be 1. Computing QuickRanks for this HSN, varying the BaseRank procedure

among indegree, eigenvector centrality, and PageRank,5 but always assuming a uniform

prior ranking, leads to the rankings, cardinal and ordinal,shown in Table 9.2. The values in

the posterior distributions have been rounded; hence, the ordinal rankings more precisely

reflect the exact values in those distributions.

Figure 9.2: Two examples of hierarchical social networks.

Table 9.2: BaseRanks and QuickRanks from Figure 9.2a and uniform prior.

Indegree Eigenvector PageRank
cardinal {0.13, 0.13, 0.13, 0.13, 0.2, 0.13, 0.13} {0.19, 0.08, 0.16, 0.14, 0.22, 0.10, 0.12} {0.14, 0.32, 0.11, 0.09, 0.14, 0.09, 0.11}

Flat
ordinal 5 > 1 = 2 = 3 = 4 = 6 = 7 5 > 1 > 3 > 4 > 7 > 6 > 2 2 > 1 > 5 > 3 > 7 > 6 > 4

cardinal {0.10, 0.10, 0.19, 0.09, 0.23, 0.11, 0.18} {0, 0, 0.41, 0, 0.59, 0, 0} {0.04, 0.14, 0.25, 0.04, 0.41, 0.06, 0.06}
QuickRank

ordinal 5 > 3 > 7 > 6 > 1 = 2 > 4 5 > 3 > 1 = 2 = 4 = 6 = 7 5 > 3 > 2 > 7 > 6 > 1 > 4

For each BaseRank procedure, we list two pairs of rankings: that which results from

ignoring the hierarchy, and that which results from exploiting it using QuickRank. When

we ignore the hierarchy, all three algorithms rank leaf 1 above (or equal to) 3. However,

since 1 defers to 3 (i.e., 1 endorses 3, but not vice versa), based on our peer-review principle,

5The results of ranking with outdegree are not qualitativelydifferent, but are omitted for lack of space.
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3 should be ranked higher than 1. This outcome indeed prevails in the QuickRanks, for all

three BaseRank procedures.

When using a uniform prior ranking, the resulting rankings are not biased by the depth

at which individuals reside in the hierarchy. If such a bias is desirable, however, it can be

easily achieved with a non-uniform prior. For example, a prior ranking of 1
12
{2, 2, 2, 2, 1, 1, 2}

with indegree as BaseRank yields a posterior ranking of{.10, 0.10, 0.19, 0.12, 0.18, 0.09, 0.23},

which corresponds to an ordinal ranking of7 > 3 > 5 > 4 > 1 = 2 > 6. Whereas 5 was

ranked higher than 7 with a uniform prior, 7 ranks highest with this biased prior.

As an added benefit, QuickRank may be more resistant to link spamming than Base-

Rank procedures that do not exploit hierarchies. To demonstrate this phenomenon, in Fig-

ure 9.2b, we introduce a sybil, leaf 8, into our original example to try and raise the rank of

6 by recommending it highly. Note the multiplicity of links from 8 to 6.

Table 9.3: Fig. 9.2b with Indegree as BaseRank.

Uniform Prior Weighted Prior
cardinal {0.10, 0.10, 0.10, 0.10, 0.15, 0.30, 0.10, 0.05} {0.13, 0.13, 0.13, 0.13, 0.2, 0.13, 0.13, 0.0}

Flat
ordinal 6 > 5 > 1 = 2 = 3 = 4 = 7 > 8 5 > 1 = 2 = 3 = 4 = 6 = 7 > 8

cardinal {0.09, 0.09, 0.18, 0.06, 0.28, 0.14,0.11, 0.06} {0.10, 0.10, 0.19, 0.09, 0.23, 0.11, 0.19, 0.0}
QuickRank

ordinal 5 > 3 > 6 > 7 > 1 = 2 > 4 = 8 5 > 3 > 7 > 6 > 1 = 2 > 4 > 8

Applying QuickRank with indegree as BaseRank to this example yields the rankings

shown in Table 9.3. Using a uniform prior, the sybil is able toraise the rank of 6 over 7

and 6 over 4, whether we exploit the hierarchy (i.e., use QuickRank) or not (i.e., compute

indegrees directly). QuickRank cannot prevent this outcome, since the sybil is an accepted

member of 4’s and 7’s community. However, the influence of thesybil is somewhat miti-

gated under QuickRank. Since the resulting ranking must respect the hierarchy, the effect

of the sybil is to raise the ranks ofboth5 and 6 (i.e., both values in the posterior distribu-

tion). No amount of link spam from a sybil outside their localcommunity can increase the

rank of 6 relative to 5.

Moreover, if one is able to identify sybilsa priori, by setting the prior ranks of sybils

to zero, one can reduce their influence even further. If we usea prior ranking which is

weighted against the sybil, say uniform over 1-7 and zero on 8, Table 9.3 shows that in-

degree produces the same rankings as in Table 9.2, that is,without the sybil, whether we
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exploit the hierarchy or not. In general, Theorem 9.3 statesthat any BaseRank procedure

which is a GPV mechanism will necessarily exhibit this same behavior. QuickRank is not

a GPV scheme (recall that QuickRank is nonlinear but that GPVschemes are linear). Still,

QuickRank preserves the spam-resistance property characteristic of GPV mechanisms.

9.5 Experiments

In this section, we discuss some preliminary experiments weperformed to validate our

QuickRank technique. Specifically, we compare the performance ofQuickRank utilizing

two different BaseRank algorithms (indegree and PageRank)on three sample information

retrieval tasks, the 2002, 2003, and 2004 TREC Topic Distillation Tasks, part of the annual

TREC competition6. As described in the 2003 report, “the topic distillation task involves

finding relevant homepages, given a broad query,” where “a good homepage [corresponds]

to a site which:

• Is principally devoted to the topic,

• Provides credible information on the topic, and

• Is not part of a larger site also principally devoted to the topic.” (Craswell and Hawk-

ing, 2003).

Queries were applied to a corpus of U.S. government web pages, the .GOV test collec-

tion, containing about 1.25 million pages.7 In each of 2002 and 2003, the task involved 50

queries, while in 2004 it used 75 queries. For each query, theTREC organizers compiled

a list of pages which it deemed as sufficiently good responses, or “query-relevant”, for the

task. Specifically, the pages returned by all the entrants tothe competition were rated by

human judges. Those with sufficiently high scores were deemed query-relevant, and a cor-

responding list of “qrels” were then published by the TREC organizers for future research.

Notice that this set of qrels is thus biased to favor competitors against non-entrants of the

competition, such as ourQuickRank implementation.

6http://trec.nist.gov/
7http://ir.dcs.gla.ac.uk/test_collections/
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Apart from the third criteria, the goal of the Topic Distilation (TD) task is to strike a

balance between relevance and “authoritativeness” (authority) in Web search. While we

believe thatQuickRank should provide a meaningful (query-independent) measure of the

authority of a web page (as judged by the community of web pagepublishers), we needed

an additional (query-dependent) technique to filter web pages for relevance to the given

query. We used Apache Lucene, a “high-performance, full-featured text search engine

library written entirely in Java.”8 We then took a convex combination of the resulting rank

scores from each technique, with mixing parameter,α, to obtain the ranking of each page

of a query.

In order to applyQuickRank, we needed to infer a hierarchical, social network on the

corpus of web pages. We used the (unweighted) link graph which the TREC organizers

distributed with the corpus, converting it to a judgment graph as described in section 9.2.2.

We used the URL hierarchy as described in section 9.2.2, except for efficiency, we col-

lapsed subtrees to insure that there were a minimum 200 leaves per node and the hierarchy

had a maximum depth ofk, wherek = 0, . . . , 7. This is clearly not the most informative

hierarchy; it was simply the most readily available one. Thus, in our results we focus atten-

tion to compare depth 0 (i.e., simply applying the BaseRank algorithm) and depth 1. The

branching factor at depth 1 is roughly 250

So that we could compare our results with those of the TREC competitors, we applied

several standard measures to the ranking resulting produced each query. If, for a given

query,H represents the set of all documents retrieved andQrels is the set of documents

judged to be query-relevant, whileHn is the subset ofn top-ranked documents, we may

define the following measures on the retrieval system:9

• Success atn: S@n = [Hn ∩Qrels 6= ∅]

• Recall atn: R@n = |Hn∩Qrels|
|Qrels|

• Precision atn: P@n = |Hn∩Qrels|
|Hn|

• Precision atR: P@R =
|H|Qrels|∩Qrels|

|Qrels|

• Average Precision: AP =
∑|H|

n=1 P@n
[Hn−Hn−1⊂Qrels]

|Qrels|

8http://lucene.apache.org/java/docs/
9While |Hn| = n, we write it out to show the symmetry in the definitions of precision and recall.
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Notice that these measures assume thatH may be orderedwithout ties. SinceQuickRank

makes so such guarantees, these measures may have been unduly affected by the order in

which equally ranked pages were processed. The same set of measures were not applied

uniformly across all three years; we report only those statistics reported from each year.

We give the results of our experiments in Tables 9.4-9.6. Each column represents the

average of the given measure over all queries for that year’scompetition. The rows corre-

spond to the three selected competitors, along with five runsof our algorithm with varying

parameters. We chose to include the top- and bottom-scoringcompetitors for each year,

along with a third competitor which has roughly the median score for reference. Likewise,

we include the results withα = 1, which we label “Lucene”, since the ranking of the query

results is entirely determined by Lucene’s relevance score.

Table 9.4: Comparison with TREC 2002 competitors

P@10 α Algorithm Depth
0.251 - thutd5 -
0.198 0.99 PageRank 0
0.194 - mu525 -
0.190 0.99 Indegree 1
0.190 0.99 Indegree 0
0.184 0.99 PageRank 1
0.182 1 Lucene -
0.057 - ajouai0210 -

For each query, the rank scores produced by Lucene andQuickRank were on very

different scales. The latter tends to be more exponential, while the precise nature of the

former is unclear. In addition,|H| ≫ |Qrels|. Thus, how to combine the two scores was

problematic. We first converted each rank score to a linear, 0to 1 scale; that is, the scores

of consecutively ranked documents were1
|Qrels|

and 1
|H|

apart, respectively. We then used a

simple convex combination, with weight parameterα, to combine the results. Again, since

it is unclear how much weight to assign to topic relevance versus authorithy, we ran our

experiments for various values ofalpha to discover a proper value, which ranged from.95

to .99 over the three years.

Along with the three reference competitors and the results of simply using relevance

score alone (i.e., Lucene), we report the performance ofQuickRank using indegree and
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Table 9.5: Comparison with TREC 2003 competitors

P@10 P@R AP α Algorithm Depth
0.124 0.164 0.154 - csiro03td03 -
0.090 0.114 0.099 0.97 Indegree 1
0.086 0.105 0.097 0.97 Indegree 0
0.082 0.086 0.089 1.00 Lucene -
0.074 0.092 0.088 0.97 PageRank 0
0.062 0.078 0.087 0.97 PageRank 1
0.092 0.092 0.070 - meijihilw1 -
0.032 0.028 0.023 - C2B -

PageRank as BaseRank algorithms. When depth is 0, these techniques are just the standard

algorithms (i.e., without exploiting the hierarchy). Fromthe results in Tables 9.4-9.6, we

can see that indegree at depth 1 generally performed well, and in particular, it always

performed indegree at depth 0. Moreover, it almost always outperformed PageRank at

either depth.

This suggests a number of practical benefits toQuickRank. Remember that PageRank

was designed to mitigate the manipulability of indegree vialink-spamming. However,

from these experiments and our discussion in Section 9.4, wesee that simply by applying

QuickRank with indegree at depth 1, we can limit the influence of link-spamming without

sacrificing the quality of our resulting rankings. Notice that this is even more striking, since

indegree is much simpler and faster to compute than PageRank.

Table 9.6: Comparison with TREC 2004 competitors

S@1 S@5 S@10 P@10 R@1000 AP α Algorithm Depth
0.507 0.773 0.893 0.249 0.777 0.179 - uogWebCAU150 -
0.213 0.680 0.773 0.151 0.590 0.123 0.95 Indegree 1
0.253 0.680 0.813 0.163 0.590 0.120 0.95 Indegree 0
0.333 0.64 0.76 0.199 0.647 0.115 - MU04web1 -
0.227 0.587 0.707 0.135 0.586 0.093 0.95 PageRank 0
0.080 0.400 0.573 0.109 0.569 0.075 1.00 Lucene -
0.187 0.533 0.600 0.097 0.582 0.074 0.95 PageRank 1
0.067 0.147 0.173 0.029 0.147 0.018 - irttil -
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9.6 Discussion: Implicit Hierarchical Structure

Some networks may come equipped with an explicit hierarchical structure (e.g., the Web’s

URL tree), but others may not. For networks in the latter category, it has been argued

that many (social) networks tend to exhibit hierarchical structure at least implicitly (Simon,

1962). To run QuickRank on such a network, it would be necessary to infer this hierarchical

structure. Even for networks in the former category, it may be worthwhile to infer an

alternative hierarchical structure. In the case of the Web for example, QuickRanks may

be more useful if pages are categorized into a topic hierarchy, rather than according to the

URL tree.

It is possible to imagine a number of ways to infer an implicithierarchical structure,

given a network whose nodes are documents (e.g., Web pages, email messages, or publica-

tions). On the one hand, one could rely solely on the textual content of the documents (Blei

et al., 2004). On the other hand, one could rely solely on the underlying graph-theoretic

structure. In the case of the Web, it has been observed that the URL tree is reflective of the

hierarchy that would be inferred based on its graph-theoretic structure (Eiron and McCur-

ley, 2004). In principle, one could also rely on some combination of both approaches.

A difficulty arises in that some nodes in a network may not fit squarely in one category.

For example, Arnold Schwarzenneger could be classified as both an actor and a politi-

cian. Alternatively, an algorithm that infers an implicit hierarchical structure may output a

probability that each node belongs to each category. For example, Arnold Schwarzenneger

could be classified as an actor with probability0.9 and a politician with probability0.1.

We are developing natural extensions of the basic QuickRankalgorithm that operate on

hierarchical structures like these.

9.7 Related Work

The idea of constructing a global ranking by combining combining local rankings is not

new. Indeed the electoral college is based on the same basic principle. Each state holds

a local presidential election, the global outcome of which is determined by weighing the

local outcomes according to the importance—in this case, the size of the Congressional
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delegation—of each state.10

More to the point, Kamvar et al. (2003a) apply similar methodology to rank web pages

in their algorithm, BlockRank, which is designed to exploitthe block structure they ob-

serve in the Web. They do not recursively apply their reasoning, however. They combine

domain and subdomain rankings only once, and then initialize PageRank with the resulting

distribution, in an attempt to speed up the usual PageRank computation.

9.8 Conclusion

Social network, or link, analysis is regularly applied to information networks to compute

rankings (Garfield, 1972; Kleinberg, 1998; Page and Brin, 1998; Page et al., 1998) and to

social networks (Bonacich, 1972; Hubbell, 1965; Katz, 1953; Wasserman and Faust, 1994)

to determine standing. We discuss two examples of information networks with inherent

hierarchical structure: the Web and citation indices. Social networks, like the Enron email

database, also exhibit hierarchical structure. Simon (1962) suggests that such hierarchies

are ubiquitous:

Almost all societies have elementary units called families, which may be grouped into

villages or tribes, and these into larger groupings, and so on. If we make a chart of

social interactions, of who talks to whom, the clusters of dense interaction in the chart

will identify a rather well-defined hierarchic11 structure.

Still, to our knowledge, link analysis procedures largely ignore any hierarchical struc-

ture accompanying an information or social network. In thispaper, we introduced Quick-

Rank, a link analysis technique for ranking individuals that exploits hierarchical structure.

The foundational basis for QuickRank is the peer-review principle, which implies that the

relative ranking between two individuals be determined by their local ranks in the smallest

community to which they both belong. This principle, together with an hypothesis due

10QuickRank, applied to presidential elections, would normalize the popular vote in each state, and then
weigh the resulting distributions by the corresponding number of electoral votes, a process which reduces
to plurality voting.

11Simon’s use of the terminology “hierarchic” is slightly broader than our use of “hierarchical structure,”
by which we mean tree structure. Still, the point remains: hierarchies (or approximations thereof) arise
naturally in societies.
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to Bonacich, leads to a recursive algorithm which is scalable, parallelizable, and easily

updateable.

For a large-scale network such as the Web, we anticipate thatQuickRank will yield sub-

stantial computational gains over standard ranking methods (e.g., calculating PageRanks

via the power method). Moreover, it appears more resistant to link spamming than other

popular ranking algorithms on contrived examples, although it remains to verify this claim

empirically.

In ongoing research, we are attempting to empirically validate the merits of QuickRanks

computed with some BaseRank procedure as compared to the ranking computed by the

BaseRank procedure itself. Specifically we are augmenting Lucene, an open source Web

search engine, with QuickRanks, PageRanks, and indegree ranks in order to measure the

precision and recall of the augmented tool on the topic distillation queries from the TREC

2002, 2003, and 2004 web tracks.
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Appendix A

Review of Linear Algebra

Throughout this thesis, we assume basic knowledge of vectorspaces. Here we remind the

reader of many of those specifics on which we heavily rely.

For any matrix,M , thekernelof M , sometimes called thenullspaceof M , is defined as

follows: ker M = {v ∈ R
n |Mv = 0}. Likewise, here is the definition of theimageof M :

im M = {Mv | v ∈ R
n}. Thespanof a set of vectors is the set of all linear combinations

of those vectors. The image ofM is sometimes called thecolumnspaceof M because it is

the span of the columns ofM .

A finite set of vectors{vi ∈ V | 1 ≤ i ≤ k} is said to belinearly independentiff αi = 0,

for all 1 ≤ i ≤ k, whenever
∑k

i=1 αivi = 0, i.e., 0 cannot be expressed as a non-trivial

linear combination of the vectors in the set. Abasisfor a vector space,V , is a linearly

independent set of vectors whose span isV . Thedimensionof V is the cardinality of any

basis (all bases have the same cardinality).

With these definitions in hand, we now state without proof twoimportant theorems

from linear algebra.

Theorem A.1. For anym× n matrix,M ,

a) dim im M = dim im M t. We call this value therankof M .

b) rk M + dim ker M = n, andrk M + dim ker M t = m.

c) WhenM is square (whenm = n), dim ker M = dim ker M t. We call this value

thenullity of M .

163
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Theorem A.2. For anym× n matrix,M ,

a) If LM = I for somen×m matrixL, we callM left-invertiblewith left-inverseL.

M is left-invertible iff M is injectiveiff ker M = 0.

b) If MR = I for somen×m matrixR, we callM right-invertiblewith right-inverse

R. M is right-invertibleiff M is surjectiveiff ker M t = 0.

c) If M is square, thenM is surjective iffM is injective iffM is invertiblewith inverse

M−1 such thatM−1M = MM−1 = I.

The addition of two matrices is well-defined iff both matrices have the same dimen-

sions. The multiplicationMM ′ of an m × n matrix M and anm′ × n′ matrix M ′ is

well-defined iffn = m′, and the resulting matrix will be of dimensionm × n′. Here are

some simple observations about how the kernel of a matrix behaves with respect to matrix

multiplication and addition.

Lemma A.3. For any matrices,A andB, such thatAB andBA are well-defined (i.e., ifA

is m× n, B is n×m),

a) ker A ∩ im B = B ker AB

b) if B is surjective, thenker A = B ker AB;

c) if B is injective, thenker A = ker BA.

For any matrices,C andD, such thatC + D is well-defined (i.e.,C andD have the same

dimension),

d) if im C ∩ im D = 0, thenker(C + D) = ker C ∩ ker D.

Proof. Proof of part a): Ifv ∈ ker AB, thenA(Bv) = (AB)v = 0, so thatBv ∈ ker A ∩

im B, i.e.,B ker AB ⊂ ker A ∩ im B. Conversely, anyw ∈ ker A ∩ im B may be written

asw = Bv for somev. SinceABv = Aw = 0, v ∈ ker AB, andw = Bv ∈ B ker AB, so

thatker A ∩ im B ⊂ B ker AB. Therefore,ker A ∩ im B = B ker AB.

Proof of part b): Further, ifB is surjective, thenker A ⊂ im B, so thatker A = B ker AB.



165

Proof of part c): Now assume thatB is injective, i.e., ifBv = a andBw = a, thenv = w.

If w ∈ ker BA, thenB(Aw) = (BA)w = 0. SinceB is injective,ker B = 0, and so

Aw = 0, i.e., w ∈ ker A. Therefore,ker BA ⊂ ker A. Likewise, if v ∈ ker A, then

B(Av) = B0 = 0, so thatv ∈ ker BA, ker A ⊂ ker AB, andker A = ker BA.

Proof of part d): Finally, ifv ∈ ker C ∩ker D, then(C +D)v = Cv +Dv = 0+0 = 0, so

thatv ∈ ker(C + D). Conversely, assume thatim C ∩ im D = 0. Now, if v ∈ ker(C + D),

thenCv + Dv = (C + D)v = 0, so thatCv = −Dv = D(−v) ∈ im C ∩ im D. Ty

assumption, this is0, soCv = Dv = 0. Therefore,v ∈ ker C ∩ ker D, andker(C + D) =

ker C ∩ ker D.
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