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Introduction

Probabilistic models pervade almost all areas of compuetense today (e.g., computer vi-
sion, graphics, intelligent agents, and natural languagegssing). One common modeling
tool is that of a finite-state, stationary Markov chain, whis characterized by an initial
probability distribution and a (Markov) transition mattitat satisfies the Markov prop-
erty. The long-term behavior of such a chain can be sumnthbgeanother probability
distribution, which is a particular example oktabledistribution, or “mixed” equilibium.
Under certain conditions, a Markov matrix has a unique stalstribution, which may
then be computed using standard linear algebra technitiugseneral, however, a Markov
matrix may have an infinite number of mixed equilibria, sa thetermining the long-term
behavior of the chain requires more difficult analysis.

Economists and game theorists have also used such modalslyofer example, mar-
ket dynamics and learning in repeated games. It is quite comifior such models to
have multiple mixed equilbria. Since individuals do not ajs behaveationally (i.e., op-
timally), some researchers have introduced an additioadmetere, that captures the
“mistakes” (i.e., sub-optimal choices) that individuatsretimes make, which has the
added benefit of forcing the model to a unique long-run elgiiilm. The resulting model
is called aperturbedMarkov chain, and the corresponding transition matrix enthper-
turbedMarkov matrix (PMM), with entries that afeinctionsof . Of particular interest is
the limit of the stable distributions of a PMM as— 0, the so-calledtochastically stable
distribution (SSD) of a PMM (Kandori et al., 1993; Young, BY9which is known to exist
and is unique.

A naive approach to computing the SSD of a PMM is to simply ta @ a very small
value and to compute the corresponding stable distribuifatie resulting unperturbed
Markov matrix using traditional linear algebra techniquespeating this computation for
a decreasing sequence «f yields a sequence of approximations to the SSD. However,
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without precise analytic bounds on the error of such appmakins (as a function a),
they do not really say anything about the SSD. An exact coatbiial algorithm for com-
puting the SSD is known (Friedlin and Wentzell, 1984), butvblves enumerating certain
spanning subtrees of the graph associated with the PMM.uBecsufficiently expressive
Markov models tend to be very high-dimensional, and bec#husewumber of spanning
subtrees grows exponentially with the dimension, such @nageh is not feasible in gen-
eral.

Recently, Gambin and Pokarowski (2001) have attemptedpmistate-aggregation
techniques to compute stable distributions of high-dirneered Markov matrices. While
these researchers have devised an efficient, recursivataigptheir results are only ap-
proximate. We improve upon past results by presenting al state aggregation technique,
which we use to give the first (to our knowledge) scalableceakyorithm for computing
the stochastically stable distribution of a perturbed Marknatrix. Since it is not com-
binatorial in nature, our algorithm is computationally $éde even for high-dimensional
models. Researchers in economics have already used owaappo study the dynamics
of housing markets. Given the widespread use of Markov nsadetomputer science, we
imagine that it will soon find direct applications there, adlw



Overview

This thesis is divided into three parts. Part | focuses onkishamatrices and their stable
distributions. This part sets the groundwork for Part I, merturbed Markov matrices
(PMMs) and their stochastically stable distributions (SpDt is here where we present
our algorithm for computing the SSD of a PMM. Part Il presemio additional algorithms,
which were inspired by our algorithmic work on computing 8@D of a PMM; however,
making these theoretical connections precise remainsiford work.

Overview of Part |

In more detail, the main goal of Part | is to introduce our nepproach to state aggregation
in a Markov chain, which we catkeduction given in chapter 5. Unlike related techniques,
reduction actually “eliminates” states from considenatlyy compressing time. In fact,
state aggregation is only a side-effect of reduction thaearwhen we choose to eliminate
a maximal number of states.

In Part Il, we show that reduction can be generalized to PMMa manner that is
amenable to (real) analysis. While the primary goal of P&rtd introduce the construction
of chapter 5 for use in Part Il, we will illustrate its usefags immediately (in Part 1) by
proving a number of “structure” theorems for Markov matsicd hat is, we will use the
construction to develop novel proofs of classic resultstenrature of the set of stable
distributions of a Markov matrix.

We first present our reduction construction in the conteXMaifkov matrices deferring
making the connection with Markov chains until later. Altlgh the construction may be
defined algebraically, the intuition behind it is geometBo we begin with a combination
of graph theory and linear algebra in chapter 1, showing higwhaaic properties of a
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Markov matrix, M, may be expressed in terms of its associated graphs, whexettices
of the graph correspond to indices .

Two key concepts defined in chapter 1 apenandclosedsets of vertices in a graph.
We will show, for example, that there always exists a walkfrany vertex in open set that
exits that set, and that we can apply our construction toieéita a set of indices ofM iff s
corresponds to an open set of vertices in the graphf ofVe will also begin to demonstrate
the connection between closed setgbfind its collection of stable distributions.

Because the reduction construction is defined in terms ohatitices, in chapter 2, we
develop sufficient theory to carefully define and analyzéteavior of certain submatrices
of a Markov matrix. In chapter 3, we give a novel proof that” = limy_, % ij:‘ol M
exists for any Markov matrix)/. This will allow us to prove the first of our structure the-
orems, characterizing the set of stable distributions obakdv matrix. Next, in chapter 4,
we give an algebraic characterization of open sets, whiepgres us for chapter 5.

Finally, in chapter 5, we present our main constructredpuction along with another
important one we calécaling For unperturbed matrices, scaling may be recognized as
right-preconditioning, a standard technique used to dabear systems of equations. Re-
duction is more subtle, in that it will allow us to “elimin&dtepen sets of indices.

In this chapter we also define two novel notiongqtiivalencdetween Markov matri-
ces, and show that we may recover the set of stable distritmitf a given Markov matrix
from the corresponding set of any equivalent one. This isratnigial result, in that, even
though reduction produces a Markov matrix of strictly smatlimension, we can still
prove that the result is, in a precise sense, equivalengtotiiginal. Thus, if we are only
interested in computing stable distributions, reduct®m ipowerful tool for simplifying
high-dimensional Markov models.

Overview of Part |l

The heart of Part Il is our algorithm for computing the SSD &MNM, presented in chap-
ter 7, section 7.7. However, we begin by taking time to prdwe Markov Chain Tree
Theorem (MCTT) in detail. As we will explain in the followingaragraph, this theorem
relates the stable distributions of a Markov matrix to théemtion of directed spanning

subtrees of its associated graph. Although it is not contjmutally practical, the MCTT
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provides the theoretical basis for most of chapter 7. Wegmtess novel proof of the MCTT,
which exploits basic properties of the determinant and tvhige feel, has a pleasing geo-
metric flavor to it.

Thus, in chapter 6, we will establish some geometric prelaries on directed spanning
trees. We will show that there always exists a walk from anyexethat enters some closed
set of vertices, and in particular, if a graph contains dyawte closed set, then it contains
a directed, spanning subtree rooted at each vertex of thatMsewill then define a vector,
wys, Which, in the case thal/ is unichain (i.e., its associated graph has a single closed
class), will turn out to be proportional to its unique stadistribution. We will prove that
this is the case by defining another vector in terms of deteants (specifically, as the
diagonal of theadjoint of thelaplacian M — I), which is easily seen to be proportional to
that stable distribution, as well astg,.

In chapter 7, we move on to give a precise definition of a ppediMarkov matrix /.,
and its associated stochastically stable distributiore Key issue throughout the chapter is
that we must be able to take limits agoes to O (i.e., continuity). Thus, the entries\df
must be sufficiently well-behaved, they must remain so ak agsave operate of/,, and,
for sufficiently small, the entries inV/, are either identically zero or positive. These three
conditions on the analytic nature &1, effectively force the entries of a PMM to be in a
certain class of functions, known asgponentially convergeffiinctions.

Continuity is an obvious restriction. Although somewhagwely stated, at this point,
since we will want to perform standard linear algebraic apens on)M,, the second con-
dition is also plausible. The third condition is a bit moreote. As suggested in the
Introduction, M., is supposed to have a unique stable distribution (i.e., d@cilibrium)
for small, positivee. This corresponds to the property thd} be unichainfor sufficiently
smalle > 0. This property is defined in terms of the (unweighted) gragghgection 1.2)
associated witld/, (for each fixed value of > 0), i.e., that it has a unique closed class. For
consistency, it is reasonble to require that tmsveightedyraph not change as we vary
This corresponds exactly to our third requirement on thaesnof a PMM. This allows us
to define the unweighted graph associated Withwhich we will denote by~ _ (M,). and
not worry about whether this refers to the graph of the PMMherdraph of the Markov
matrix for a fixede, since these must be equal.

Thus, in section 7.1, we introduce the class of exponenttaihvergent functions and
Vi



discuss how members of this class behave both algebraigatlyanalytically.  After
first definingperturbedmatrices in section 7.2 (as matrices with exponentiallyveogent
entries), we define perturbédiarkovmatrices PMMs in section 7.3. Using the MCTT, we
show that the unique stable distribution &f, is a perturbed matrix, so that its limit as
e — 0, i.e., the stochastically stable distribution/af, is well-defined. In sections 7.4-7.6,
we show how the concepts of equivalence, scaling, and rieaiuicom chapter 5 generalize
to PMMs.

We then use these constructions, in section 7.7, to givelgarithm for computing the
SSD of a PMM. The two fundamental difficulties with designsugh an algorithm are:

e how to efficiently represent a PMM for algebraic computatemd

e how to carry out the necessary algebraic computatitieut ever invertinga PMM

By a careful appeal to the MCTT, we show that:
e We may represent any PMM by a pair of real-valued matrices, an

¢ by applying reduction to eliminate open sets with respedt/to= lim._,, M., we
need only invert submatrices 61, i.e., unperturbed Markov matrices.

Finally, in order to guarantee that our algorithm makes psgand eventually terminates,
we use scaling in a rather subtle manner (cf. Corollary 7.17)

Overview of Part Il

Part Il presents two additional algorithms, which werepinsd by our algorithmic work
on computing the SSD of a PMM.

In chapter 8, we reformulate the problem of topologicallytieg a directed graph,
usually restricted to directedcyclic graphs, as a multi-objective optimization problem
overarbitrary, weighted, directed graphs. We present an algorithm andeghat it yields
an optimal weighted, topological sort. When combined wititadble empirical techniques
for generating meaningful graphs, this algorithm coulddyiateresting results in several
application domains, including ranking, preference aggtien, and information retrieval.
As such, we have dubbed our algorittBnaphRank. We conjecture that a variation of
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the SSD algorithm, tailored to only compute the “exponenfshe stable distribution, will

compute precisely the same solution@sphRank. If true, this would give us a Markov
chain interpretation for our ranking solution, a la Dworkaét(2001) In brief, we would

model each edge of the original graph as an individual PMM]| @present the entire
graph by a convex combination of all such PMMs. We conjectiiat the “exponents” of
the stable distribution of the resulting PMM vyield the sampéimoal, weighted topological
sort of the original graph as produced GyaphRank.

In chapter 9, we present another algorithm ranking algerittvhich we callQuick-
Rank. This algorithm is recursive, and can be used to rank indaislin social network,
based on an associated hierarchy. For example, thesedundigimay be research articles,
in which case the social network would be given by citati@rg] the hierarchy specified
by areas of specialization.

This is actually not simply a single algorithm, but a wholasd of algorithms parame-
terized by a given “base” ranking algorithm, which we apglgach level in the hierarchy.
One view of our approach is that it suitably modifies a giveas#y’ ranking algorithm so
that the resulting ranking satisfies two intuitively dealke axioms, which we have dubbed
peer reviewandBonacich’s hypothesis

The idea of exploiting a hierarchy in this way has been sugges in previous work.
For example, using only a 2-level hierarchy, determinedmsally by URL domains, with
PageRank as the base ranking algorithm, yields the BlodkRlgorithm of Kamvar et al.
(2003Db). It should be noted that they did not argue to useethats of BlockRank directly,
but only as a good, first approximation to PageRank. In cetjtvge argue that the ranking
scheme ofQuickRank may produce superior results, in that they more acuratdlgcte
the judgements of “local” experts and are resistant to th&ing manipulation technique
of “web-spamming”.

As with GraphRank, we conjecture that, when the base ranking algorithm hasrkdva
chain interpretation (such as in the case of PageRank)attiérmg whichQuickRank pro-
duces may characterized as the SSD of an appropriately dr&id1. While we have been
able to do this for a 2-level hierarchy, this remains an opeblpm for general hierarchies.
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Chapter 1
Markov Matrices and “Markov” Graphs

In this chapter, we compile a collection of definitions anct$aegarding Markov matrices
and their associated graphs. Throughout, we will rely orfdhewing notation. We letS,,
denote the set of integers frofrto n, and we letSY denote the set of integers frabrto n.
Often, S, will represent the index set for anx n square matrix. We will also us€, and
S? to define sequences, where S; — S, defines a sequence & of lengthl + 1. We
will denote thei" element ofr by o, (instead ofr(7)).

1.1 Graph Theory Essentials

We begin with some basic notions from graph theory. Spedifjcae will:
¢ give formal definitions of (un)directed, (un)weighted dnap

e define (strongly) connected components of a graph, as webles and closed sets
of vertices, and

e state and prove some basic properties of open and closeaf setsices that we will
need in subsequent chapters.

1.1.1 Basic Definitions

We will define adirected graph G = (V, E, s,t), as a 4-tuple in which/ is a set of
vertices F is a set ofedgesands : £ — V andt : E — V are mappings from edges
3



to vertices. We will restrict our attention to graphs in whiwothV and £ are finite. In
this figure, vertices are drawn as geometric points, andsagearrows from one vertex to
another. Specifically, the arrow corresponding to an edge, F, starts at the point(«)
and terminates (i.e., ends)#ty). If s(a) = t(«), thena is called aself-loop

We will define anundirectedgraph as a directed grapty, = (V, E, s,t), with the
property that it contains the “reverse” of every edge. Thatdr eachn € E, there exists
ana’ € E such thats(a) = t(a') andt(a) = s(a’). Intuitively, we may view the paiw
anda’ as a single “composite” edge, drawn as an arrow with arrodéea both ends, or
alternatively, as a line segment with no arrowheads at all.

When there are neepeatededges in a grapky, (i.e., when there are no two edges,
a; € E, with the same starting and ending poir#&y;) = s(«,) andt(a,) = t(ay)), we
can represent’ by the set of ordered pair§(s(a),t(a)) € V x V | a € E}. In this case,
s andt are just the respective projections onto the first and secoortlinates of each edge,
and we can refer to the graph simply@s= (V, E'), with each edge represented as a pair
of vertices. The order of this pair matters only when the griapirected.

A walk of lengthl in a (directed or undirected) graph is a sequend)eetuiges,{ozi}ﬁz1
such thatt(a;) = s(a;4,) for 1 < i < [ — 1. The walk starts at(«;) and ends at
t(ay). A pathis a walk that does not revisit any edges or vertices,{@.}ﬁz1 is a path iff
l=Ha |1 <i<l}andl+1 = |{s(a;) |1 <i<I}U{t(ey)|1<i<I}. Note that
since a path is a walk, and since we can always drop edges fwatkao obtain a path,
there is a walk fromv to w iff there is a path fromv to w.

In a graph that has no repeated edges, a walk may also be sgduyfia sequence
o: 8 — Sy of [ + 1 vertices. Herep, = s(ay) is the first vertex in the walk and
) € Eandv, = t(a;) = s(a;qq), foralll <4 <[-1.
In this definition, a path is a walk for which the correspomghnis 1-1 (i.e., distinct inputs

vy, = t(y) is the last, with(v,, , v,, .|
map to distinct outputs), so that no vertex is revisited. eNtbt this second definition is
more general than the first (for graphs that have no repedaigesg since it allows walks
(and paths) of length 0, which we specify by a single verfex}. When we encounter
such walks (and paths), we will say that they both start arulden,.

A cycleis a path of length 1 or more with the additional conditiont e initial and
final vertices are the same; that is, = 0;, or s(«o;) = t(«;). A self-loopis a cycle of
length 1.



Given a directed grapl; = (V, E), its transitive closureG = (V, Er), is defined
such thatv;, v;) € Er iff there is a directed walk (or path) from to v; in G. Because we
allow walks of length O(v;, v;) € Er for all i. This definition allows us to define a natural
preordet on V, given by the “leads to” relationy+, wherev, ~ v; iff (v;,v,) € Ej.
This preorder gives rise to an equivalence relationwherei ~ j (read, %, is strongly
connectedo v,”) iff i ~ j andj ~ i. Equivalence classes with respect~toare often
called thestrongly connected compone8CCs) ofG.?> Note that SCCs are maximal,
meaning they do not contain other SCCs; further, the SCCs péartition the vertices of

(G, meaning each vertex belongs to exactly one SCC.

Similarly, we have a “connects to” relation;~, associated with the undirected graph
corresponding ta. That is,v; «~~ v; iff there is anundirectedwalk (or path) fromu;
to v; in G. The equivalence classes associated with this relationaied theconnected
component®f G. A treeis a connected component with no cycles. A graph is called
completeif there is an edge from every vertex to every other vertex. ofplete graph
consists of only one connected component, which is in fachgty connected.

Thus far, we have restricted our attention to directed amliractedunweightedyraphs.
Much of this thesis is actually concerned with weighted gsapA weighted (directed or
undirected) graph is one augmented with a function £ — R, which assigns a real-
valued “weight” to each edge in the graph. The weight of areed(@), is drawn as a label
on the corresponding arrow, and can be thought of as a codikadiaood of traversingy.
Sometimes, we will be given a weighted gragh= (V, E, d), but will wish to refer to the
corresponding unweighted graph. To do so, we will use thatioot, G_ = (V, E).

Finally, we define theestrictionof a (directed/undirected, weighted/unweighted) graph,
G, with vertex set)/, and edge seff, as follows. Given a set of verticeg, c V, G|,
will be the subgraph with vertex sét;, the setE’ of all edges with both ends it’, and
the corresponding restrictions of all other ancillary flimes (e.g. ).

A preorderis a reflexive (i.e.p ~ v) and transitive (i.e ~ v andv ~ w impliesu ~ w) relation.

2Strongly connected components may also reasonably bel calfemunicating classe® conform with
the literature on Markov chains (see section 5.3).



1.1.2 Open Sets and Closed Classes

We will say that a subset of verticdg, C V, isinvariantiff V' has no outgoing edges, i.e.,
for all (v;,v;) € E, if v; € V', thenv; € V'. An invariant SCC is referred to ascéosed
class. Ifi’ does not contain a closed class, we will say tHais open Vertices that are do
not belong to a closed class are callexhsient

Note that the terms “open” and “closed” are not opposites.h&Closed” refers only
to single (invariant) SCCs, while “open” can refer to a sevettices larger than a single
SCC. In fact, the vertices in an open set need not even be ctmtheHowever, any single
SCC is either open or closed. If it is not open, it contains s@msed class, which must
be the entire SCC since SCCs are maximal, and so it is clobgds hot closed, it cannot
contain a closed class since SCCs are maximal, and so itis ope

We prove two simple lemmas in this section. The first is aniiiviobservation about
closed classes, namely that there is always a walk entemshteaminating in a closed class.
It follows immediately from this fact that every directecagh contains a closed class. The
second is an intuitive observation about open classes, Ipdheg there is always a walk
exiting an open class. This second lemma follows as a singpisarjuence of the first.

Lemma 1.1. Starting from any vertex in a directed graph there exists a walk terminating
in a closed class. In particular, every directed graph camsea closed class.

Proof. Let{C,,...,C,,} be the SCCs of/. Pick an arbitrary vertex, and call its SC@, .
If C,, is closed, then we have a walk (of length 0) starting ahd terminating in a closed
class, and we are done. Otherwig, is open, and there is an outgoing edgg ¢,) with
s1 € C,, andt, € C,, for someo, # o,. Now sincev ands; are in the same SCC, there is
a walk fromv to s, and continuing along the edge,, t, ), there is a walk from to ¢, .

As above, ifC,, is closed, there is a walk terminating in a closed class, andre done.
Otherwise, we can repeat the process and find an outgoing(edge) with s, € C,, and
ty € C,, for someo; # o,. Now sincet; ands, are in the same SCC, there is a walk from
t, to s,, and continuing along the edde,, t,), there is a walk from to ¢,. Proceeding
inductively, we either encounter a closed class, in whidease have found a walk from
v terminating in a closed class and we are done, or we contheisgquence of open
SCCs, and the walk from to the vertices in each of these SCCs. In genetak C, ,
t; eC andC, #C

Oi41? Oi41"



Suppose we never encounter a closed class. Since therelafmibaly many SCCs in
G, at some point must include a SCC that it had already included. So for sorme, we
have that; = o;. There is a walk fromv to s;_,, the starting vertex of the incoming edge
to Coj, that has two halves: a walk fromto s;, the starting vertex of the outgoing edge
from C, , and a walk froms; to s,_;. Specifically,s; ~ s;_;. Buts,;_; ~ ¢;_; (because
of the edge(s; 1,t; 1)), andt; , ~ s; (because; , € C, = C,,), SOs;_ | ~ s;. In
particular,s; ~ s;_;, which is a contradiction, sinaié%1 #Cp, =Cy,

As an immediate corollary, for any directed graghthe fact that there is a walk from
any vertexv that terminates in a closed class implies thatontains at least one closed
class.O

Lemma 1.2. A subsel/’ C V of vertices in a directed graplty = (V, E), is open iff for
everyv € V' there is a walk fromy to some vertex ¢ V.

Proof. Assume that/’ is open, and consider an arbitrary vertex; V. By Lemma 1.1,
there is a walk fromy to some vertexy, in some closed clasg, SinceV” is openC ¢ V'.
Chooser € C\ V'. Sincew andz are in the same SCC, there is a walk franto 2. Hence,
there is a walk from to = ¢ V'

Now assume thdt” is not open, i.e., that it contains a closed cl&@3)Ve must produce
av € V' for which no walk inG from v leavesV’. We can choose any < C. Since there
is no edge leaving, there can be no walk fromthat leave€, much less/’. O

1.1.3 Closed Classes in Subgraphs

In this section, we examine the relationship between theetlalasses of a graph and
the closed classes of certain subgraphs and restrictiangarticular, we observe that the
number of closed classes in a graph cannot decrease as wergsexdges. In other words,
the number of closed classes cannot increase as we add new:. éldgs observation will
be particularly relevant in Chapter 7.

Lemma 1.3. Given a directed graplis = (V, E) with V' C V an invariant set of vertices,
if C'is a closed class af’ = G|, then it is also a closed class 6f.

Proof. First, we will show thatC’ is invariant inG. By assumption)” is invariant. So
there are no edges i starting at vertices insidé and ending at verticesutsidel”’. It



remains to show that there are no edges/istarting at vertices insidé’ and ending at
verticesinsideV'. SinceC' is closed in’, there are no such edgesGh. Further, since’
is a restriction oi7, their edge sets coincide on the restricted set of vertidesce, there
cannot be any such edgesGreither, and’’ is invariant inG.

Second, we must show thdtis a SCC ofG, that is, for allv € C', w € V,v ~ win
G iff w € C'. If v ~ w, thenw must be inC’, becaus&’ is invariant inGG. Conversely, if
w € C', thenv ~ win G’, sov must also be strongly connectedutdn G, since any edge
in G’ is also inG. Therefore(' is a closed class af. O

Lemma 1.4. Any closed clasg in a connected compone@it= (V, E) of a directed graph
(G is also a closed class @f.

Proof. Connected components have no incoming or outgoing edgésjsmvariant, and
the restrictionG|; is exactlyG. Hence, we can apply Lemma 1.3 with = G andC’ = C
to conclude tha€ is a closed class af. O

Lemma 1.5.1f G ¢ GwithV = V andE C E, then every closed class 6f contains
some closed class 6f.

Proof. Let C be a closed class @f, and consideﬁ\c. (Note that this restriction is not
well-defined unles$” = V.) By Lemma 1.1,G|, contains a closed class, calldt By
construction( is contained irC, so we have only to argue th@is closed inG. Becaus&

is invariant inG, it is also invariant in7, sinceE’ C E. Hence, we can apply Lemma 1.3,
with G = G, G' = G|,, andC’ = C, to conclude thaf is a closed class o which is
contained irC. O

1.2 Markov Matrices

We will now introduce our fundamental objects of study, Marknatrices and their stable
distributions. Specifically, we will:

e define a Markov matrix, its laplacian, and its set of stab&tridiutions;

e associate a weighted directed graph with any principal subrof a Markov matrix
(i.e., a sub-Markov matrix); and



e carry over the graph-theoretic concepts of Section 1.1 ttkMamatrices in order to
define irreducible and unichain Markov matrices.

Anm x n matrix M hasm rows andn columns. We writeV/; ; to refer to the element
in the " row and;" column of M/. Observe thal/; ; = ¢;Me;, where(e;); = [i = 7.2
i.e.,e; has a 1 in theé" component, and Os elsewhere.

Two special cases of matrices arise when one ofltheensiongeitherm or n) equals
1. Specifically, a&olumnvector is am x 1 matrix; likewise, aow vector is anl x n matrix.
To keep our notation brief, we will index vectors using oneafale instead of two. That
is, for a column vecton, v; = v, ;, and for a row vectow, w; = w, ;. The set of column
vectors of dimension x 1 comprise the vector spaée’. Unless otherwise specified, when
we say “vector,” we mean a column vectorir.

A submatrixof ann xn matrix, M, is obtained by eliminating: < n rows and columns
of M to obtain anln — m) x (n — m) matrix. A submatrix is callegrincipal if the set of
removed rows is the same as the set of removed columns.

We denote thé -norm onR" by || - ||,. For anyv € R", this is the sum of the absolute

n
lolly =) Joil -
i=1

We will use the same notation to denote the correspondingced matrix norm on the set

values of its entries:

of n x n matrices with real-valued entries,
[M]; = max {||[Mv], | v € R", |Jv]|; = 1} ,

and we will take as known the fact (Horn and Johnson, 198594) that

1M][4 :max{z ‘M”‘ 1<) < n} .
i=1

In other words,|| V||, is the maximum of the column sums of the absolute values of the
entries of M. As a matrix norm|| - ||, obeys the triangle inequality (i.g|M + N||; <
M|, + || N||;) and is sub-multiplicative (i.e|,A/N||; < || M| ||N][1)-

We denote the set of all x n square matrices with non-negative, real-valued entries
by Mat,, (R"). A matrix M € Mat, (R") is calledMarkoviff JM = J, whereJ =

3We use Iverson’s convention: for any proposition, [Q] = 1, if @ is true, and 0 otherwise (Knuth,
1997, p. 32).



10

(1,...,1) ambiguously denotes a row vector of 1s of arbitrary length.other words,
all columns in a Markov matrix sum to 1. Observe that: for angrkbv matrix, M,
|M||, = 1; likewise, for any submatrid/’ of M, ||M’||; < 1.

We will sometimes refer to a principal submatrik/, of a Markov matrix,), as a
sub-Markovmatrix. Given a sub-Markov matrixy/, we can define itplacian A (M) =
M — I. By convention, we will abbreviat& (M) asA, A (M,;) asA,, etc.

Notice that if M is Markov, then:

o A, =M,; >0,if i # j, i.e., A has non-negative off-diagonal entries;

o foranyyj, >, Ai; = >, M; =1 M;; <1,ie,A's off-diagonal column
sums are less than or equal to 1; and

o JA=JM—-Jl=J—-J=0,ie.,A'scolumns sum to 0.

Conversely, it is easy to check that\fsatisfies these three conditions, theh= A + I is
Markov.

For any matrix)/ and vector, if Mv = Av, we say that is aneigenvectorof M
with eigenvalue\. Given a Markov matrix, M/, a stablevector of M is an eigenvector
with eigenvalue 1, i.efv = v. A distributionis a vectoro € R" such thatw > 0 and
|v||;, = Jv = 1. So, astable distributioris a stable vector that is also a distribution.

Observe that the set of stable vectors\ofis a subset of the kerrfedf A, sinceMv =
v = lvimpliesthat M —I')v = 0 so thatAv = 0. More specifically, the stable distributions
of M are precisely the non-negative, norm-1 vectorigein\, i.e.,stab (M) = ker AN A,,.
Here,A, = {z > 0| Vi,z; > 0and > " , z; = 1}, the standard-simplex.

We naturally associate a weighted gragh)/) = (V, E,d) with any non-negative
matrix, M > 0. Specifically, letV = {v,...,v,}, with (v;,v;) € Eiff M;; > 0
andd(v;,v;) = M;,;. Graphs obtained in this way cannot have multiple edges thith
same starting and ending vertices. Also, every vertex ih sugraph must have at least one
outgoing edge. By ignoring the weights 611/ ), we obtain the corresponding unweighted
graph,G_(M) = (V. E).

For our purposes)/ will usually be a Markov or a sub-Markov matrix. For example,

the Markov matrix)/ on the left of Figure 1.1 gives rise to the “Markov” weighteggh

“Basic linear algebra concepts that are not defined in the by of the thesis are reviewed in Ap-
pendix A.
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Figure 1.1: Markov Matrix and its associated “Markov” Wetigth Graph

M G (M)
21000 3 5
L2900 ”14'\‘»‘§§”4'§’
3 4 7
0o o0 2 L 4 £/¢<‘ 2/1

;(;‘ l/ﬂ 'U5£5/6

Z 2 3 7 3
0056? A RN
00002

on the right. Intuitively, the entries ai/ correspond to probabilities of traversing the
corresponding edges. We do not include an edge fiaav in the graph when/; ; = 0,
since there is 0 probability of traversing such an edge, stauld not be the case that
v; ~ v;, .., there should not be a walk (or path) frgrto ..

A Markov matrix M is said to bereducibleif G(M) consists of more than one SCC;
otherwise it is said to bereducible To conform with the literature on Markov chains, we
call a Markov matrixunichainiff it has exactly one closed class. By Lemma 1.1, we can be
sure that every Markov matrix has at least one closed clagshét, by Lemma 1.5, if we
increase the number of non-zero entriedffthe number of closed classes cannot increase
and must eventually decrease, since a complete graph takexactly one SCC, which
is necessarily closed.

We will carry over the terminology of strongly connected gmments, closed classes,
and invariant and transient sets of vertice&:i{\/) and apply it to subsets of the indices of
M in S,,. For examples C S, is closed iffV, = {v, | i € s} is closed inG(M). We can
also define the submatri®/, ., of M corresponding to two subsets of indices’ c S,
by removing rowi and columny from M iff i ¢ s andj ¢ s'. This submatrix is principal
iff s = s, in which case we say that/,  is the principal submatrix od/ corresponding
to s. In the next chapter, we will present a more explicit meansooistructing such sub-
matrices.
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Chapter 2
Existence of a Stable Vector

Because the reduction construction we present in Chapterdefined in terms of sub-
matrices, in this chapter, we carefully lay the groundwankgdroving theorems about sub-
matrices. Givers C S,,, we define two special matrices, and:,, that we use to extract
the rows and columns, respectively, whose indices are o another matrix\/. We
then demonstrate how, and:, can be used to permute a matrix, yielding a partition that
isolates the submatrix}/; ;. Further, we prove that, is always injective and that, is
always surjective, and we show how their corresponding e@samd kernels are intimately
related. Finally, and most notably,we show that the laplacf any sub-Markov matrix,
corresponding to a set, has a non-zero kernel, if contains a closed class. In patrticular,
the laplacian of any Markov matrix has a non-zero kernel. [évhis doesot prove the
existence of a stable distribution (because the stableveeed not be non-negative), it
does hint at this important fact, which we will prove in Chexp3.

2.1 Submatrix Construction

Given a subset of indices, C S,,, with cardinalityk = |s|, we can uniquely enumerate
s in increasing order to obtain a sequer@egle. Mathematically, such a sequence is a
bijective mapping fromS, to s, so we can also define its inverse,' : s — S, such
that forj € s, s~'(j) = i iff s; = j. Further, we can enumerate the complement, &t
which has cardinality: = n — &, and its inverse in exactly the same way. For example,
if s = {1,4} C S, sothats = {2,3} C S, thens; = 1, s, = 4, s '(1) = 1, and

13
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s7'(4) =2;ands, = 2,5, = 3,5 '(2) = 1,ands (3) = 2.
Equipped with this notation, we can now present our metheccémstructing sub-
matrices. Fos C S,,, we will define the matrix

,LS:<631 “ e 6Sk)

It is easy to check that multiplying am x n matrix, M, on the right by:, eliminates the
columns of M whose indices are not inand leaves the other columns intact, meaning in
the same order. We will also define the matrix

Again, it is easy to check that multiplying anx n matrix, M, on the left byr, eliminates
the rows of M whose indices are not inand leaves the other rows intact.

Now, given ann x n matrix M and two subsets, s’ C S, M, , = ©,Mu, is the
submatrix that results from removing rawand column;j from A iff i ¢ s andj ¢ s'.

Notice that(Ms s/) = egwsts/ej = (zsei)thS/ej = ei_Mes/, =M, ..
) i,j g J 1]
1 2 3 4
5 6 7 8
Example 2.1. For example, let = {1,4}, andM = . Here,i, =
9 10 11 12
13 14 15 16
10
00 et 1000
<61 e4> = , andr, = = . Further, M1, =
00 el 0001
0 1
1 4
5 8 1 2 3 4 1 4
, T M = ,andr M, = = M, ,. Hence,
9 12 13 14 15 16 13 16
13 16

M , is the (principal) submatrix correspondingsto
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2.2 Matrix Permutations

A permutationof a sets is a bijective mapping — s. Whens C S, is viewed as a
sequence, we can think of a permutation as a reordering @l¢neents of.

Given a permutatiop of S,,, thematrix permutatiorof ann x n matrix M according to
p is a rearrangement df/’s entries resulting in the permuted matfix’ such thatV/; ; =

M’(i)w(j), or equivalently,M{,j =M In the graph-theoretic representation of

P 0 ()"
M, G(M), this corresponds to relat[;elii;z:] tﬁ)e vertices, withounngjilag the edges or their
weights.

Using the submatrix construction given above, for any subse S,,, we can define
permutation matrice®, and P! such thatP’M P, is a permutation of\/ that moves the

principal submatrixV/; ; to the lower-right-hand corner off.

If P, = ( s 1 ) sothat?! = | ° |, then
ﬂ-s
" Ty Mg ms Mo, Mss Ms,
PSMPS - M ( Zg 'ls ) - = ’ ’
Tg ﬂ-sMZE 71-3-1\47'3 MS,§ Ms,s

We will refer to this collection of sub-matricéd ., M ,, M, 5, and/; ; as apartitioning
of M with respect tos. Now recalling our enumeration efands, with cardinalitiesk and

k, respectively, let

L
. s (i),i €53
ps(i) =q
k+s'(i),i€s

We will see thatP! M P, is a matrix permutation af/ according tap,.

1 2 3 4
_ 5 6 7 8
Example 2.2. With s = {1,4} C S, andM = as above,
9 10 11 12
13 14 15 16
0100 1 2 3 4 0010 6 7 5 8
. 0010 5 6 7 8 1000 10 11 9 12
PIMP, = _
1 000 9 10 11 12 0100 2 3 1 4
0001 13 14 15 16 0001 14 15 13 16
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1 4 5 8 2 3
so thatV has the partitioning/, , = My, = M, 5=
13 16 9 12 14 15
6 7 _
andM; ; = with respect t.
10 11

Notice thath/; ; = (P{MP,), i) ».()- Forexample), , = 2,and(PiMP,), 1) ,.2) =
(PIMP,)s; =2.0

Theorem 2.3.Givens C S, withp, : S, — S, and the matrice®,, P! as defined above,
p. Is a permutation of5,, and P! M P, is the permutation of\/ according top, for any
n X n matrix M.

Proof. First we will show thatp, is a permutation of5,. Recall thats™* ands ' are
bijective mappings — S, ands — S, with k + k = n. So fori € S,, p, is a bijective
mappings — S; if i € 3, andp, is a bijective mapping — (k + S,) if i € s. Here
(k+S,) = {k+1]1¢€ S.}. Inthe first casel < p,(i) < k, and in the second,
k+1 < py(i) <k +k =n. The domaing, 5 are disjoint withs Us = S,,, and the images
Sz, (k + S,) are disjoint withS; U (k + S;) = S,,, sop, is a bijective mapping, — S,,,
that is, a permutation of,,. This leads to the formula for

1. gi» 1
ps (i) =
Si—&s

IN
IN
En

1

EN!

+1

IA

1< n

Now for M’ = P{MP,, we will show thatM; ; = M )~ Notice thatM] ; =

O
eiM'e; = e;PiMP,e; = (Pse;)'M(Pye;). But Py, is thei" column of P,, which by
definition ise;. if @ < k and €, - otherwise. In other wordsP.e; = €, 1) Similarly,

r ot o
oty SOMiy = € Me gy = Mo o
of M according to,. O

Pe;=e " andP!M P, is the permutation

Corollary 2.4. For the permutation matri¥°, corresponding tas C S,,, P! = P!, that
is, P'P, = 1I.

Proof. P{P, = P;I1P, = I', the permutation of according tg,. ThenI; ; = L1 =10y
and sincep; ' is bijective,p; ' (i) = p,'(j) iff i = j. SoI,; = 1iff i = j, andl}; =0
otherwise. Thatis]’ = I, soP! = P, '. O
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Corollary 2.5. For the permutation matri¥>, corresponding tos  S,,, P, and P! are
Markov. The product of Markov matrices (of the same dimenssgoMarkov, and, in par-
ticular, and P! M P, is Markov for anyn x n Markov matrix, ).

Proof. By definition, the columns ofP, are the standard basis vectors. Thus they are
non-negative and sum tg and P, is Markov. In particular,JP, = J. Therefore,J =
JP,P;' = JP;' = JP!, so that the columns aP! sum to 1 as well. Sinc&’ is non-

negative P! is also Markov.

If M, M, are Markov and of the same dimension, thenM, > 0 andJ (M, M,) =
(JM,) M, = JM, = J, so thatM, M, is Markov. SinceP! and P, are Markov, so is
P!MP,, whenM isn x n and Markov.oO

2.3 Projection and Inclusion

For a subset C S, with & = |s|, 2, has dimension x k, andr, has dimensiot x n. So
by left-multiplication,z, is a mappindgR* — R", andr, is a mappindR” — R*. We call:
aninclusionoperator, because fore R*, w = 1,u € R" is the vector whose coordinates
with indices ins are given by the coordinates of(in order), while its coordinates with
indices ins are all 0. Likewise, we calt, a projectionoperator, because fof € R", the
coordinates ofv’ = m,v’ € R* are just the coordinates of with indices ins.

—_

Example 2.6.Let s = {1,4} C S, andv = e R*. The vectorw = m,v =

=~ W N

1000
0001

is the projection ofy on R%. The vectoru = 1w =

=~ W N
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is the inclusion ofiw in R, O

o o O =
= o O O
[
= O O =

Next, we will defineR® = span {¢; | i € s}, a subspace dk" of dimensionk. Simi-
larly, R® = span {¢; | i € 5} is a subspace A" of dimensionk. The next lemma high-
lights the key algebraic and geometric properties of thesggtion and inclusion opera-
tors.

Lemma 2.7. Givens C S,
a) ma, =1 = w5, T, = 0 = may, andigmg + 1,71 = 1
b) keriz =0 = ker,, imms = RE, andim 7, = R¥;
¢) ime; = R® = ker 7, andim s, = R® = ker 7.

Proof. Proof of part a): Sincé®, and P! are inverses,

s Tsls Ti5l
_ pt . 5 o 5s 5's
[=PP, = (4 1) =

Tl Tl

s s's ss
so thatr,i; = w1, = I andmg, = w15 = 0. Likewise,
t Ts
I =PP, = < I 1 ) = 15 + 1,7,
T

s

Proof of part b): By part a)yrsi; = 7,1, = I. S0,1; andq, are left-invertible, hence injec-
tive with ker 2 = kers, = {0}. Likewise, s andr, are right-invertible, hence surjective
with im 7, = R* andim 7, = RF.
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Proof of part ¢): The fact thatn +; = R® can be seen as follows:

ime, =

st|v€Rk}

= { Uei\viER,eieRk}

szlse | v; € R, e; G]Rk}
- {Z isi\vieR,esiERn}

i=1
= span{ej |7 € s}
— R®

Likewise,im 1, = R,

Now sincengi, = 0, it follows thatime, C ker m5. Conversely, ifu € ker 7, then by
part a),v = (1575 + 1,7,) V = 15TV + 1,V = 1w, Buteymow € ima,. Thusker g C
im,, so thatker 7, = im ¢, = R®. Likewise,im 1; = ker 7, = R®,

(I

The compound operationr, takes any vector € R" and maps it to a vectar € R*
such that, = v, if 7 € s andu; = 0 otherwise. This allows us to take any vectok R",
and easily decompose it as= v, + v5, with v, € R® andv; € R,

1
: 2 A :
Example 2.8. As in Example 2.6, les = {1,4} C S, andv = € R". Define
3
4
10 1 1
0 0 1000 2 0 . ,
Vg = 1,0 = 1550 = = . Similarly, define
0 0 0 001 3 0
0 1 4 4
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0 0 1 0
1 0 0O 1 00 2 2
Ug = 1550 = = . Now observe that, € R?,
01 0 010 3 3
0 0 4 0

v, € R®, andv, + v, = v. O

Theorem 2.9.Givens C S, R" = R® @ R®. Further, for anyv € R", v = vz + v,, with
vs = 1m0 € R® andv, = 1,m0 € R,

Proof. Supposev € R° N R*, v # 0. Thenv = Y, a;e;, andv = Y. bje;, with

j€s Vit
a;, b; # 0 for somei, j. Butthen) |, __a;e; — > .. b;e; = 0, which is impossible since the

JjES I
standard basis vectors are linearly independenRSo R® = 0.

Now for anyv € R", by Lemma 2.7a)y = [v = (1575 + 1,7,) v = 15750 + 1,0 =
vs + v,. Sinceim ¢, = R® andimz, = R?, it follows thatv, € R® andv, € R®. But then

v € R® + R, so thalR" = R® + R°. ThereforeR" = R* & R®. O

2.4 Existence Theorem

In this section, we compile a collection of basic facts regag the structure of a Markov
matrix, its closed classes, and stable vectors, which wilhéeded in subsequent chapters.
Most notably, we show that the laplacian of any sub-Markotrixecorresponding to a set

s', has a non-zero kernel, if contains a closed class. In particular, the laplacian of any
Markov matrix has a non-zero kernel, which contains a litygadependent set of vectors
corresponding to its closed classes.

Lemma 2.10.Let M be ann x n Markov matrix, and a subset of indices— S,,, wheres
is a closed class or union of closed classed/bf

a) M, =0.
b) M, , is Markov.
c) If ' is a subset of indices such thatt s’ C S,,, thene,(ker A, ;) C 1, (ker Ay y).

d) 2, (stab M&S) C stab M.
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Proof. Proof of part a): By assumption, is a union of closed classes. So there are no
edges inG(M) from s to 5, which means thafl/; , = 0, foranyl < i < [s] and
13j§hL&HM@Q”:AI

54,851

so(Mg,S)ij = 0, and)M/; , is the zero matrix.
Proof of part b): By part a),

55 Mg,s

. M., 0
PIMP, = = ’
Ms,? Ms,s Ms,? Ms,s

Since P! M P, is Markov, its columns sum tb, and in particular the columns @/, , sum
to 1. FurtherM, , > 0, sinceM > 0. Hence M, , is Markov.

Proof of part c): Take any € ker A, ,, so that)/, ,v = v. Becauses C s', R C R*, and
soim, C imey, sinceims, = R* andim:y = R*. In particular,;,v € ime, So there
exists a’ € R*! such that o' = 2,u. Now observe the following:

My ' =m Mg
= 7w M
=7 I M
= 7 (1575 + 1,m,) Mav by Lemma 2.7 a)
= oz Mo + o m Mgy

= m oMz v + 7o M v

=0+ 7w, M; v by part a)
= T 12,V by assumption
/
=T/ /v
= by Lemma 2.7 a)

Thus,v’ € ker Ay o, ande, (ker A, ;) C 2y <ker As’,s’)-

Proof of part d): Consider € stab M, sov > 0, Jv = 1, andv € kerA;,. We
will apply part c) withs’ = S,. The columns of,, are the standard basis vectors in
R", ¢;, such that € s'. But sinces’ = S,,, this includes all of them, and, = I. So

0 =,0 € Tker A = ker A. Hence, we need only show thatis a distribution. Since
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v,1, > 0, it follows thato > 0. 9, = U1 fori € s, andy;, = 0 otherwise, soJu =

S B = Y@ = 30 v, = Ju = 1. so thati € stab M.,
(I

Theorem 2.11.Let M be ann x n Markov matrix.
a) ker A # 0.
b) Forany subset of indices C S,, such thats’ contains a closed clasker Ay g #0.

Proof. Proof of part a): The matri/ is Markov, so/M = .J. ButthenM'J" = (JM)" =
J'. This implies that A" — I)J" = 0, soJ" € ker A, meaninglim ker A" # 0. Finally, by
Theorem A.1ldimker A # 0, soker A # 0.

Proof of part b): By assumption; contains a closed class. Calkit By Lemma 2.10 b),
M;  is Markov, so by part a)ker A, ; # 0. Pickv € ker A, such thatv # 0. Now
by Lemma 2.10 )y (ker A ) C 2y <ker AS/,S/), so there exists’ € ker A/ s such that
10 = 1,0'. Further, by Lemma 2.7 b), is injective, so’ # 0. Thereforeker A+ # 0.

O

As a consequence of this theorem, every Markov matfixhas a stable vector. In
fact, this is true of any principal submatrix/; ,, of M containing a closed class, By
Lemma 2.10 c), any stable vector ik, , can be extended to be a stable vectakbfThus,
the kernel ofA contains a stable vector @ff corresponding to each of its closed classes,
and these vectors are necessarily independent (since rieéyn-zero on disjoint sets of
indices). Once we show, in Chapter 3, that every Markov méatis anon-negativestable
vector, and hence a stable distribution, Lemma 2.10 d) ikéiVise guarantee the existence
of a set of independent stallestributionscorresponding to the closed classes/bf



Chapter 3
Existence of a Stable Distribution

Given any distributiony,,, and a Markov matrix)\/, of the same dimension, we can con-
struct a sequence of distributions via iteration,= Mwv,_,, i > 1. While v; need not
converge as — oo, it necessarily converges the Cesaro seng®Marsden, 1974, p. 363),
that |s,N ZZ _o v; converges a8’ — oo. More generally, for any Markov matri®/’ con-
verges in the Cesaro sense (Doob, 1953), that is, the maffix= limy .., + ZN e
is well-defined. Since; = M'v,, this implies that; converges in the Cesaro sense to
limy . + Z 0 Yo = limy o, ¥ ZN ' Moy = M.

In this chapter, we prove a sharper result. We show that thladen,A, of M induces
a natural splitting o™ into the kernel and the image &f and that\/* is the associated
projection,m,.,, ontoker A. This allows us to prove our first structure theorem for Marko
matrices, in which we characterize the set of stable diginbs of a Markov matrix\/,
in terms of the columns ol/*. Specifically, we prove that/~ e, € stab(M), for all
1 < ¢ < n. This proves the existence of a stable distribution for amyRdv matrix.

Lemma 3.1. If M is Markov, then
a) ker A @imA =R",
b) a:ker A x im A — R", such thatv(v, w) = v + w, is linear and invertible,

c) there are well-defined linear mappings,,, : R" — ker A andn;,, : R" — im A
such that

I) Oé<ﬂ-ker7 7Tim) = Tker + Tim = I!
23
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”) 7TkOlf‘korA = ]' 7Tim|imA = I’
iii) im m,, = ker A = ker m,,,,, and

V) im 7, = im A = ker m,.

Proof. We first show thaker A Nim A = 0. Takev € ker ANim A. Sincev € imA,
there existsw such thatv = Aw = (M — Iw = Mw — w so thatMw = v + w.
In addition, sincev € ker A, Av = 0, and Mv = v. Therefore, by a straightforward
induction, M*w = w + kv for anyk > 1. Solving forv yieldsv = 1 (M’“ —I)w.
st o, = [ (3~ 2) ], < 4~ 1] o, < 3 (o], ), <
%(||M||’f+ ||1||1) Jwll, = 2|Jw|l,. Sinced < |[v]|, < |Jwll,, which is as small as we
like for largek, it follows that||v||, = 0, and therefore = 0.

For general vector spacelm (V' + W) = dim V +dim W —dim (V N W). Applying
this identity toV = ker A andIW = im A, and using the fact that N 1/ = 0, we have that
dim (ker A +im A) = dim ker A +dimim A. By Theorem A.1dim im M + dim ker M =
n for anym x n-dimensional matrix)/, dim (ker A + im A) = n, andker A+im A C R",
so it must be the case thiatr A & im A = R".

This means that the mapping: ker A x im A — R", such thatx(v, w) = v + w, for
v € ker A andw € im A, is surjective. It is also injective. f = a(v,w) = v + w, then
v = —w, that is,v andw are multiples of one another. Bute ker A andw € im A, so
v,w € ker ANim A = 0. In particular,y = w = 0, soker o = (0, 0). Further,« is linear,
since it is just addition.

Thus, there exists an inverse linear mapping’ : R” — ker A x im A, corresponding
to a pair of linear mappingsr,., andm,,,, with imm,, C ker A andimm,,, C imA.
In particular, (e, Tim) = Tker + Tim = I, SINCEV = (aa_l) v = « (a_lv) =
A (Meer Vs Tim?) = Mier¥ + T ¥ = (Tier + i) V-

Moreover, ifv € ker A, sincen(v,0) = vand(v,0) = &' (V) = (T, Tim®), TV =
v. In particular,my. |, , = I, SO thaker A C im m,. Since by definitionim m, C ker A,
imm,, = ker A. Also, m,v = 0, soker A C kerm,,. Supposew € kerm;,. Then
w = Tw = (M + M)W = MW + TipgW = Tew. Thenw € imm,, = ker A, and
ker m;,,, C ker A, soker 7;,, = ker A.

Similarly, if v € im A, sincea(0,v) = vand(0,v) = a ' (V) = (T, Tim?)s TinV =
v. In particular,r;,|. , = I, so thaim A C im7,,,. Since by definitionjm m;,, C im A,
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imm, = imA. Also, m,v = 0, sSOimA C kerm,,. Supposew € kermg,,. Then
w = Tw = (Mger + M)W = MW + Ty = Tpw. Thenw € imm, = im A, and
ker m, C im A, soker 7., = im A.

[l

Although we will prove thaf\/> is well-defined without it, the following lemma, which
characterizes,.,, will also will turn out to provide an interesting charadtetion of /.

Lemma 3.2. For any Markov matrix,\/, there exists exactly one matrik/’, satisfying the
following conditions:

MM = M (3.1)
MM = M (3.2)
MM = M (3.3)
tk M = dimker A (3.4)

In fact, we must havé/’ = 7., andI — M’ = r,,, from Lemma 3.1.

Proof. ExistenceWe begin by showing thal/’ = . satisfies Equations 3.1-3.4. Equa-
tion 3.1 is equivalent toM — I)m,, = Am., = 0, which is clearly true, sincan m,, =
ker A. Likewise, Equation 3.2 is equivalenttg..(M — ) = m., A = 0, which is also true,
sinceim A = ker 1. Equation 3.3 follows from Lemma 3.1 c)ii). Sing@ m,,, = ker A
andm, |, = I, we haver,m,, = [T, = m. Finally, Equation 3.4 follows from the
definition of rank (cf. Theorem A.1) and the fact thatm,., = ker A.

Uniqueness.Equation 3.1 implies thah M’ = 0, so thatim M’ C ker A, and, by
Equation 3.4, we havéim im A" = rk M’ = dim ker A, so thatim M’ = ker A. Likewise,
Equation 3.2 implies that/’A = 0, so thatim A C ker M’. By Equation 3.4dimim A =
n—dimkerA =n —rk M =n— dimim M’ = dim ker M’, soim A = ker M’ as well.

By Equation 3.3M'(I — M') = M' — M’ = 0, so thatim(I — M) C ker M'. Thus,
(M, (I — M")) is mapping fronR" toim M’ x im A" = im M’ x ker M" = ker A x im A
such that, using the notation of Lemma 3:(M’, A") = M’ + A’ = I. Since inverses are
unique, we must have that’ = m,,, andl — M' = 7,,. O

Next, we prove thafl/> exists, and further, that it is the unique matrix satisfying
conditions of Lemma 3.2. In particula¥/> = m,. Hencem,, is Markov.



26

Theorem 3.3. For any Markov matrix,M, the sequence of Markov matricelly =
& 3205 MY converges tal/> as N — oo. Moreover,M™ = m,, and itis Markov.

Proof. First, we show thaf\/*°, the limit of My asN — oo, is well-defined. We will
appeal to the classic result from real analysis which sagt dhsequence converges iff
every subsequence has a convergent subsequence with a ndmit@Royden, 1968, p.
37, ex. 11). Sincé/y is a bounded sequende € |||, < 1, so thaty ' || M7]], <
N), any subsequence is also bounded. Thus, by a standardergénom real analysis,
(Royden, 1968, p. 37, ex. 8), every subsequence, in turna ltasvergent subsequence,
call it My .

By Lemma 3.1, any vector, = m,v + mi,v. If {v,..., v} is a basis foker A, then
there exisp, € R* andw € R" such thatr,.v = >.*_, B0, € ker A (i.e.,>.F_, B0, is a
stable distribution of\/?, j > 0) andr,,,v = Aw. So,

1 N;—1
_ J
Myv = ﬁz Z M’v
7=0
1 N;—1 k
_ Ly lzmmw
i =0 r=1
k 1 N;—1
N; 4
r=1 7=0
k 1
= Z/BTUT_‘_F |:MNZ'UJ—'UJ]

r=1

oo N% [Mle - w} = 0, it follows thatlim,; ., Myv = >, Bv, =
TerV- ThALISlim,_, o My, = Tiey..

Since every such convergent subsequence hasattinelimit, m,.,, we know that)/,,

Now sincelim,

7

converges. It must necessarily converge to the same linaiha®f its subsequences. That
is, it must also converge ta.,.

Finally, we argue thafi/> is Markov. Observe that/, is Markov for all N. It is
non-negative by definition, andMy = J+ S>>V M7 = LS TMT = LS =
J. Now sinceMy > 0, M = limy_, My > limy_.0 = 0. Moreover,/ M~ =

We close this chapter with our first structure theorem in Whiee characterize the
stable distributions of/ in terms of A/>°. Specifically, we show that each column/af*
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is a stable distribution of//. This result immediately implies that every Markov matrix,
M, has a stable distribution.

Corollary 3.4. For any Markov matrixM/, stab(M) = stab (M*) = M>™A,,. In partic-
ular, for all i, M*e; € M™A, = stab (M) = stab(M).

Proof. By Theorem 3.3 and Lemma 3.2/ = =, andl — M~ = m,, So that
ker A* = ker (I — M) = kerm,. Then, by Lemma 2.10iii)ker A™ = ker A. There-
fore,stab (M) =ker A N A, =ker AN A, = stab(M).

By Theorem 3.3M " is Markov, so that\/*A,, € A,,. SinceM>™A,, C im M™ =
im ., = ker A, it follows that M A,, C ker A N A, = stab(M). Conversely, ifv €
stab(M), sincev € ker A, M*v = mv = v, by Lemma 3.1¢)ii). Thusy € M A,
sincev € A,,. O

010 ¢
: 00 § : :
Example 3.5. For example, conside¥/ = . By induction, one may
001 3
000 %
easily check that
iiseven [iisodd 0 3 <1 — 2i>
iisodd [iiseven 0 l(l—%)
M = | d 1 103 2 and
0 0 1 i(1-4)
0 0 0 5
(v is odd [vis odd N
e S R =
N-1 [~ is odd [~ is odd N
i M = % o 2N % + 2N 0 % + 3]1\/212“1
N &~ 1, 12V
=0 0 0 3 + 3NN T
N
0 0 0 =%
11 1
2 2 3
11 1
sothatM™ = | * 2 ° . In particular, we see tha/ e, = 2M e, + 1M e,
001 5
00 0

S = O O
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1
3 0
1 0
SinceM™e, = M®¥e, = | * | andM™e; = are clearly stable distributions of
0 1
0 0

M, all the columns of\/> are instab(M), as Corollary 3.4 predicts]



Chapter 4
Sub-Markov Matrix Invertibility

We begin this chapter by constructing a sets of walks in actite weighted graph corre-
sponding to a given matrix. We then show how by aggregatiaguéights of such walks
we arrive at an alternate formula for the powers of a matriralfy, we apply these tools
to Markov matrices to obtain results about the invertipitit sub-Markov matrices.

4.1 Sequences and Walks

Let S,(1) = {o: S — S,} be the set of sequences $f of length! + 1. Likewise,
let S,(i,4,1) = {0 €S,(l) | 0y = j ando; = i} be the set of sequences ) of length
[ + 1 starting withj and ending with.. For any set € S,,, we also define,, (s, ,7,1) =
{o0 €8,(i,7,1) | o, € s, VO < t < [} to be the set of sequencesip of lengthl + 1 from
j toi that include elements afonly. Note thatj and: do not themselves need to besin
so for anys, S,,(s,4,j,1) = S, (4,7,1). Finally, S, (s, 4, 5) = U2, Su(s,1, j, 1) is the set of
all such sequences of arbitrary length (greater than 1).

For any non-negative matri®/ > 0, and for any set C S,,, we defineP,, (s, i, 7,1) C
S,.(s,1,4,1) as follows:

Pus(s,i, 1) = {aesn(s,z',j,n | M, . #0, v0§t<l}.

t4+1:0¢

This represents the set of walks of lengtim (1) from v; to v, that include vertices in

V, only. In addition,Py,(s,4,7) = U,2, P(s,1,J, 1) is the set of all such walks of arbitrary

length (greater than or equal to 1). There are correspora#figitions forP,, (i, j, ) and
29
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P (1), representing the set of walks @(1/) of length! that start at; and end at;, and
the set of walks irG(M) of lengthl, respectively.

Lemma 4.1. For anyn x n Markov matrix,M, for any sets C S,, that is open in/, and
forany;j € s, U;c, Pu(s, 4,5, n) is a proper subset df),_ s Pas (4, j, n).

Proof. CertainlylJ,., Pa(s. 1, j,n) isasubsetaf),.s Pa(i, j,n), sincelJ;cg Pas(i, j, )
corresponds to walks ig/(M) of lengthn starting atv;, and(J,., Py (s,4,j,n) corre-
sponds to those same walks with the additional conditiohttiey end ins and include
only vertices ins.

SinceV; is open, by Lemma 1.2, from any vertex 0 there is a walks that starts
atv; and ends at some vertex ¢ V.. SinceM is Markov, every vertex ir;()/) must
have at least one outgoing edge,csoan be extended to a wadk of lengthn. But then
0" € Uies, Pulisj,n), anda’ ¢ Ui, Pu(s,i,5,n), since it containg), ¢ V. Thus
Uics Par(s,4, 4, n) is a proper subset ¢f|,. s Pu (4, j,n). O

4.2 Matrix Powers and Walks

Given ann x n matrix, M, and a sequence of indicese S,,(1), [ > 1 we will define

(4.1)

Ok0k—1 "

W (M, o) EﬁM

The matrix entryM,, corresponds to the weight on the edge from  to v, in

k1 Ok—1
G(M). So the functioriV (M, o) has a graph-theoretic interpretation as the “total” weight
of the walko in G(M), where we aggregate weights by multiplication. Sequenées o
indices of length 1 correspond to walks of length 0, so foitaythe usual convention that

a product over an empty set isit;(M, o) = 1 whenevewr € S,,(0).

Lemma 4.2. For anyn x n matrix, M, ando € S,,(1), W (M, o) # 0 iff o is a walk in the
graphG(M), that is, iffc € P,,(1). Additionally, for anyi, j € S,
Yo WMo = Y W(M,o).
o€S,, (ij)]) o€P (i,4,])
Proof. If o € Py (I), thenM, , # 0,forall1 < <. SinceW (M, o) is the product
of non-zero values, it itself is not zero. Conversely}if M, o) # 0, all of the terms in the
product must be non-zero, samust be a walk of length i.e.,o € P, (1).
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By definition, Py, (i, 5,1) C S, (i,7,1) C S, (). By the above argumerity (M, o) = 0,
foro € S, (i,7,1) \ Py (i, 7,1). Thus, when summing over ail € S, (i, j, (), we can drop
the zero terms, so that yW(M, o) =3 yW(M, o). O

UeSn(lvjvl UEP]M (7’7]71

We can now give a graph-theoretic interpretation of matawers in terms of walks in
G(M). In words, for anyn x n matrix M, the (i, )" entry in M' can be computed as the
sum of the “total” weights of all walks i6:( M) from j to i of lengthl.

Lemma 4.3. For anyn x n matrix M, <Ml)' = epy iy WM, 0).

i, 7
Proof. Using the facts that the standard basis vectpran be used to isolate matrix entries
(M, ; = ¢t Me;) and decompose the identity matrik€ >_;_, e,ef), we have

(M) = entle,
Z7J
= eM...Me.
ZH,_/ J

[ times

= e MIM...MIMe,

t t t
= eM Z € r | M... M (Z 67‘167‘1> Me;

r_1=1 ri=1

n n
o t ¢ t
= 3 Y elMe, e M...Me, ¢l Me,

r_1=1 ri=1
n n
= g o g M, M. . M, M. .
r_1=1 ri=1

We now apply the substitution(k) = r,, o(0) = 7, o(l) = 4, so that each choice of
values for the summation variablds; , . .., ,_, }, represents a unique choicewof S} —
S,., a sequence of length+ 1 which starts aj and ends at. So this set obs is precisely
S, (i,7,1). Thus,

! _
(M) = Y Moo Moy Moy My,

Z?j
TES, (4,4,0)

= Z W(M,o)

TES, (4,5,0)

= > W(M,o).

OEP]M (7'7.]71)

The final equality follows from Lemma 4.21
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4.3 Sub-Markov Matrix Invertibility

We will now show that the laplacian ;, of a sub-Markov matrix)/, , is invertible iff
s is open with respect td/. The first half of this theorem will be crucial for specifying
the reduction presented in Chapter 5, and its generalimpoesented in Chapter 7. The
second half will come into play when we make the connectiawéen the reduction on
Markov matrices and the associated construction on Markains, in section 5.3.

First, we must prove the following technical lemma relatimglks in the graph of a
principal submatrix)/; ;, and certain walks in the graph 6f.

Lemma 4.4. For anyn x n Markov matrix,M, for any sets C S,,,

Yoo WM 0)= ) W(M)
UEPM&S (4.4,1) UIEPM(s,si,sj,l)
Proof. Recall that becaus#/, ; contains only the rows and columns &f with indices in
s, (M) = M, . Foranyo € Pu, (4,5,1), 00 = jando;, = i. SOW (M, ,,0) =
l .

[hiei (Moo, = (Mo )iy, (Mys)oy 5 = My,s, - M, .. Now we can define
anewo’ such thavy, = s;, 0] = s;, andoy, = s, forall 1 < k <[ — 1. Since all interior
indiceso” are ins, o’ € Py (s, s;, s;,1). MoreoverW (M, ,, o) = W (M, o").

We can also go the other direction. For afyc P, (s, s;, s;, 1), there is a correspond-

ing o € Py (i,5,1) given byo, = s (o},) for 0 < k < 1. Similarly, W (M,o') =
W (M, o). So there is a one-to-one correspondence between element,, (i, j,!)
and elements’ € Py, (s, s;, s;,1) with W (M, ., o) = W (M, ¢), and, therefore,

Yoo WM 0= Y WM

UEPM&S (4,5,0) UIEPM(s,si,sj,l)

O

Theorem 4.5.1f M is ann x n Markov matrix, with a principal submatrix\/; ;, defined
by an open set of indices,C S,,, then

a) For allintegersi > 0, || M: ||, < ¢\ for somed < ¢ < 1, andlim; ., M., = 0.
b) I — M, isinvertible, and(/ — Ms,s)_l =%, M.,

Inversely, ifs contains an entire closed class bf, then
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c) I — M, is notinvertible, and
Proof.

Proof of part a): Let: = ||M,||, > 0. We first show that| M ||, is bounded above by
clnl. sinceM is Markov, and sincélZ, , is a submatrix of\Z, 0 < | M|, < 1. Since
the matrix norm is sub-multiplicative, for all || M5! (|, < || M|, || Ms]l, < [|M24l,
so the sequenciM ||, i > 1, is decreasing. Looking at eveny' term, we have the

subsequencgM < (||M7, b ", k> 0. Settingk = | L], nk <i,s0 M| <
S n ST

HM”k <c _CL.J

To prove that: < 1, we will show that the" column sum of\/7’, (i.e., thes column sum
of M) is strictly less than 1, so that all column sums\éf, are strictly less than 1:

1= Y () (4.2)

i€,

=Y ) WMo (4.3)

1€5, 0€Py(4,55,m)

> > ) W(Mo) (4.4)

1€S O'EPJM (S,Z’,Sj,?’L)

= > > WMo

1€5)5] 0€EPs (5,54,55,1)

- > Z W(M,,,0)

1ES|q) UGPM (4,4,m)

= M},). . 4.5

2 ( ) (4.5)
Equation 4.2 follows from the fact thatM = J, so that/M"™ = J, i.e., all column
sums ofM"™ equal 1. Equation 4.3 follows from Lemma 4.3. Equation 4lb¥es from
Lemma 4.1. SincéJ,_ Py(s,1,5;,n) is a proper subset Qﬂiesn Pa(i, 55,n), when we
restrict the sum we throw away some positive terms. Finally,rewrite the equation in
terms of walks mG( SS) to arrive at Equation 4.5. Therefore, tli& column sum of
M, < 1for arbitraryj, so||MZ,||, < 1.

Now, sinced < ¢ = ||M, < 1, it follows thatlim, .. c*/ = 0. Further, since

n
$,51]1
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0 < || M|, < s, itfollows thatlim, ., || M.,||, = 0. Finally, since the entries Fl’ ,
are non-negative and bounded abovq\Ms,s}}l, lim, . Mj,s =0.

Proof of part b): By part a)y 2, ||M:, |, < Yo Oc . If we setk = [%], then every
n consecutive terms in this sum (for apye N, pn < i < (p + 1)n) can be grouped
by a constant: (specifically,k = p), so thaty"° clvl = n 32 F = 2. Hence, the

summationy .~ HM;S is bounded above by a convergent series, and so it converges.

I

Further, since the entries M;S are all non-negative and bounded abovd\tz)y;S the

K
summatior .~ ) M , also converges.

Next, we argue thaf":°, M., is the inverse of I — M, ). Since both matrices are square,
by Theorem A.2, it suffices to show that the sum is a rightdisgeas follows:

0o j—1
= M) Y M= (1= M) lim Z M,
=0 i

= }E&Z ~ %20
= ler&(MO — M)

= I— lLIgOMgS

= 1. :

The final step in this derivation follows by part a).

Proof of part c): Inversely, assumecontains an entire closed class df. By Theo-
rem2.11a)ker A, # 0. But(/ —M, ) = (=1)(M,—1) = (=1)A,, SOker(I =M, ) =
ker A, ; # 0, andl — M, is not invertible.

Proof of part d): As above, by Theorem 2.11la}; A, ; # 0. So there exists € ker A,
with v # 0. Now M, ;v = v, S0 (lim,_ ., M. )v = lim;_ (M} ,v) = lim;_,, v = v. But
v # 0. Thereforelim, ., M., # 0.

O



Chapter 5
Two Useful Constructions

In this chapter, we present our two fundamental constrastiecaling and reduction. We
will show that the result of these constructions applied t®Mlakov matrix is another
Markov matrix which is, in a certain sense, equivalent, iattthe stable distributions of
the former can be recovered from those of the latter. Appaigpgeneralizations of these
constructions to perturbed Markov matrices will form thesibaof our main algorithm,
presented in Chapter 7.

In addition, the reduction construction will allow us to ghen the structure theorem
shown in Corollary 3.4 by proving Theorem 5.17 and CorolBid8. We will also give a
Markov chain interpretation of the construction in sectto®. This will allow us to prove
that the construction “composes” well; that is, if we use ftitst eliminate one set of states,
s1, and then proceed to eliminate an additional set of stajesye could obtain the same
result by simply eliminating all the states, U s,, at once.

5.1 Scaling

In this section, we introduce the notion of-equivalent Markov matrices, wheie is a
matrix satisfying certain conditions. We will see thatuititzely, if we are only interested
in stable distributions, we may replace any Markov matrishvaine that isD-equivalent.

Definition 5.1. If M, and M, are Markov matrices, we will say that/, is D-equivalent
to M,, and write M, ~, M,, iff D > 0 has a non-negative left-inverse aker A, =
Dker A,. WhenD = I, we will say that)/, is equivalento M, and write M, ~ M;.

35
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In the next Lemma we see that that that for two matrices whieh’aequivalent,D
induces a 1-1 correspondence (i.e., a bijective mappinigydsn their sets of stable dis-
tributions. We will justify the term “equivalent” in Sectio5.2, by showing that the other
direction holds; that is, two matrices are equivalent iythhave the same set of stable
distributions.

Lemma5.2. If M, and M, are Markov matrices)M, ~, M,,withD,L > 0andLD = I,

thenD*(v) = ”gﬁ is a bijective mapping fromtab (M) to stab (M).

Proof. First, observe thaD® mapsstab (M,) to stab (M, ). The matrixD mapsker M,
to ker M, while the mappingD” normalizes that result, dividing byDv||,. SinceD is
non-negative, the image efab (M,) underD” is non-negative, norm-1 vectorskar M, .
Next, we will show thatD" is bijective.

Injective: If D*(v) = D*(w) for v, w € stab (My), thenDuv = kDuw for k = {72+ >
0. S0,0 = Dv — kDw = D(v — kw). Further,0 = LD(v — kw) = v — kw. Hence,
v = kw. Butv andw are distributions, s = Jv = Jkw = kJw = k, andv = w. Thus,

D" is injective fromstab (M) into stab (M;).

Surjective: For anyw € stab (M;) C ker(A;), since M, is D-equivalent toM,,

w = Du for someu € ker (A,). Letv = 4. u = LDu = Lw > 0, SOv € stab (My).
_ Du _ w w0  Dv o w/lullh . w/lully, . w

Now Dv = it = qupy @MdD™ = i5or = wdh = T/l = Tel, = @ THUS,

D" is surjective fromstab (M) ontostab (M, ), and hence a bijection betweetrab (1,)
andstab (M;). O

We now give a simple construction that operates on certairk®bdamatrices and pro-
ducesD-equivalent results. For any Markov matriX,, and any diagonal matrix), with
0< D;;andD;; (1—M,,) <1 (i.e., D, is positive and sufficiently small) for alle 5,
we defineM, = AD + I (and the corresponding, = AD). We say thatM, is the
result ofscaling M by D. Note thatD is diagonal with positive diagonal entries; hence,
it is invertible with positive inverse (it is easy to checlattD ™" is also diagonal, with
D;! = (D,;)~"). In particular, it has both left and right inverses, anchisstboth injective
and surjective.
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For example, if

1 1 1 1 5 1 1
303 1 5 00 6 2 8
— | 1 1 3 — 3 — 1 1 3
M = 113 and D = 020, then Mp = £ 0 2
1 1 1 1
010 00 1 011

These correspond to the graphs in Table 5.1.

Table 5.1:G(M) andG (Mp) with D = diag(s, 3, 3).

GM) wn

N[
(=]

1
3 1
2

IS
|
oo

N[

1
3

\/\
U2

=l Wl

U3 Vo U3

By looking at the corresponding graphs, we see that scaynfy ladjusts the weight
of the self-loop at each vertex with a proportional adjusttre# the weights on the corre-
sponding outgoing edges. Whén is close to0, the weight of the self-loop atis large
(nearl), and whenbD), ; is close to(l — Mm)_l, the the weight of the self-loop is small
(near0). In Section 5.3, we will see that this may be viewed int@ilyvas adjusting the
“diameter” of each vertex, in that the corresponding scedkov process spends either
more or less time at that vertex.

Lemma 5.3. Given a Markov matrix\/, and any diagonal matrixD, with0 < D, ; and
D;; (1 —M;;) <1foralli € S,, Mpis a Markov matrix andV/j, ~, M.

Proof. We first show that\/, is Markov. Since/A = 0, JMp, = JAD + J = J, so the
columns of M, sum to 1. Moreover, all the off-diagonal entries/df, are nonnegative,

1,J

(MD),; andM,D > 0, so(MD),; > 0. Finally, we must show that all the diagonal

7’7]
entries of A/, are nonnegative. Observe th@t/,,),; = (AD +1);;, = (AD);; + I;; =

N;Di;+1=(M;;, —1)D;; +1=(=1)(1 = M,;;)D;; + 1. Now (1 — M;;)D;; < 1, so
(=11 - Mi,i)Dz‘,z‘ > —1,80(Mp);; > —1+1=0.

i
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SinceD is non-negative with a non-negative invergds surjective. So, by Lemma A.3b),
ker A = Dker AD = Dker Ap. Thatis,Mp ~p M. O

We can use this scaling construction to produce infinitelpyridarkov matrices which
are equivalent to a given Markov matrix. In particular, wednthe following Corollary.

Corollary 5.4. Given a Markov matrix\/, if 0 < e and emax; (1 — M,;) < 1, then
M. = Ae + 1 is a parameterized family of Markov matrices equivalentto

Proof. Letting D, = eI, M. = Mp,_ so that Lemma 5.3 implies that, ~, M. ButD
is simply scalar multiplication. So by Lemma 5Ky A = D_ker A, = eker A, = ker A,
andM, ~ M. O

5.2 Reduction

In this section, we present a construction which allows u&liminate” an open set of
indices, s, of a Markov matrix,M. Specifically, it produces a Markov matrix of strictly
smaller dimension which is equivalent in the sense of Dédimib.1. In this way, iteduces
the dimensionality of the matrix in a principled manner thaés not lose any information
regarding its long-term behavior. In Section 5.3, we wi# feat this corresponds directly to
compressing the time spent in the corresponding states afdv chain to 0. Graphically,
it effectively collapses the corresponding vertice&in\/).

For M Markov with s € S,, an open set of indices i/, we may define:

I
1 = P, , (5.1)
_As_,sl MS,E
b= <I ~ Mg AL )P;,and (5.2)
M = phi+1. (5.3)
0 3 1
Example 5.5. In the Markov matrix\/ = 10 i , the vertex with index 3 is an
0 3 3

open set. We will take the reduction of with respect to; = {3}.
s is already positioned in the lower-right corneraf, so the permutation matricéd
andP! are just the identity.
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1
WehaVGA&s:(—% )lAs_,;:<_2 ))Ms,gz j |M§s:<0 %)
1
10
10 3
Sowecancalculate=| 0 1 |,p= R
01 =
0 1 2
-1 1 1 10
_ 10 14 2 10 0 3
M = phit] = ) 1 -1 1 01 |+ - '
0o i -3 0

0
Theorem 5.6. For M, 1, p, and M as defined above,
a) 1,p>0andJp =J,
b) p is surjective, and is injective.
©) M = Mys — My A 1M,

d) M is Markov.

Proof.
By Theorem 4.5b),

A= (- M) =1im > M >0

M, < and)V; ; are also both non-negative, gand: are both well-defined and non-negative.
We now show that the columns pfsum to 1. Sinceé! M P, is Markov, JP!M P, = J. In
particular,J M, ; + JM; , = J. Therefore JM; , = J — M, = JI — JM, , = —JA,

so that

Jp = (1 =M AT ) PE= (I JALAL) P

— <J] JI)PSt:JPst:J

Proof of part a): Proof of part b): Let = |s|. Thenpisk x n andzisn x k. Now p
has rankk because its columns include the standard basi&®for Similarly, » has rank
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k because the columns df include the standard basis f&*, andrk: = rk:'. Then
rk p+dim ker p’ = k, sodim ker p* = 0, andp is surjective. Similarlyyk ¢ +dim ker: = k,
sodim ker = 0, ands is injective.

Proof of part c):

—

M = ph+1

1 t I

- (1 M. A )PSAPS )
7 7 _‘/\s_,s1 Ms,§

1 Ass My, I

= (1 M AT 1 +1
Ms,§ As,s _As_,s Ms,§
. 1
= < AE,E - ME,S As_,s Ms,@ 0 ) 1 + I
_As_,s Ms,§

= Aa@ - Mg,s As_,slMs,E +1
= M§,§ - ME,S As_,slMs,E

Proof of part d): Since-A; !, M, M, ,, M, > 0, M > 0. The columns of\/ also sum
to 1, since/ M = J(pAr+ 1) = JAv+ J = J, because/A = 0. So M is Markov.
O

This motivates the following definition.
Definition 5.7. Thereductionof M with respect tos is the triple,(]\//f,p, 2).

We will refer top and+ as theprojectionandinclusionoperators of the reduction, since
they are surjective and injective mappings, respectivélg. will also sometimes refer to
M itself as the reduction.

Now we will examine the effect of this construction on theregponding graphs. We
will show that the entries af/ may be identified with walks of length at least 1@Gn (M)
between vertices ift; which only pass through vertices in. *

For convenience, we will defif@(M) = (G_(M)),, so that there is a path fromto
vin G_(M) (or, equivalently, inG(A)) iff there is a walk from fromu to v in G_(M) iff

That is, whose interior/non-end vertices ard/jn In particular, this vacuously includes walks of length
1, since such walks have no interior vertices.
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(u,v) is an edge ifP(M). We will denote any of these equivalent propositions bribfty

(u,v) € P(M).

Theorem 5.8.If M is Markov withs € S, an open set of indices in/, (Z\?) =
Z7.7

ZoepM(s,gi@) W(M,o), and P (]\7) = P(M)|,., wherev; in P (]\/4\>T corresponds

tovs inP (M),

Proof. From Theorem 5.6 and Theorem 4.5b), we have— Mys — Mg A M5 =
M§,§ + Mg,s (Z}ﬁo Més) Msg = ME,@ + Z;Zo MES Mésts,E' Therefore’(‘]ﬁ) -

2y

(M), + 20 (M ML)

By Lemma 4.3 and Lemma 4. ‘{lMS )i = (M5 i = Zaemg,g(i,j,l) W(Mss,0) =
D oePy(s5,5,,0) WM, o). We may requwe that the interior vertices of the walke in s
(Pu(s,5;,5;,1) instead ofPy,(5,5;,35,,1)), since walks of length have no interior ver-
tices.

If we letk = |s| andk = [3], My, isk x k, M. isk x k, andM, 5 is k x k. Applying
matrix multiplication and Lemma 4.3,

(M Mlbs) = i (M ML) (M, 2),5)
= (2 (M50 (M1, <Mss>qj>
- qz;z;((Mss>zvp<M;s>pq<Mss>q])
_ éé (0L )., UEPZMWMSS, o) | (4.3),.

Looking at these terms in the scope of the entire maltfix

k k
(MES Mé,sM&g), . Z Z 5i5p Z W(M U) Ms K )
i, =1 p=1 €PN (5,55,54,1)
k k
_ Z Z Z Mg, o M o o M M, 5,

q=1 p=1 \o€Pr(5,5p,54:0)

= > W(M,o').

olepl\/f (8731' 7§j 7l+2)
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By applying the substitution; = 5;, 07 = s,, 0}, = So,,  TOr2 <k <1, Oli1 = Sp,
01,5 = 5;. Now ¢’ corresponds to a walk of lengtht 2, and all interior indices of’ are
in s, s00” € Py(s,s;, 55,1+ 2), and since we are summing over all possibilitiesfand
g, the set ot is all of Py, (s, s;, 55,1 + 2).

Now, (A/i)” - (MEE)U + E?OO (M‘ Ml M ‘)i’j - EaePM(s,Ei,ng) W(M ) +
> %0 Za’ePM(sg 5;,142) W(M,o') =377 1Zoe7ﬂM (5,5:,5;.0) W(M, o) = ZUEPM(SE 5;) W(M, o),
sincePy,(s,5;,5;) = U;’ilPM(s,sl,sj,l).

If there is an edge(v;,v;) € P (M), fori # j, then there a walk of length at least 1
fromv; tov; in G (M). If i, j € 5, this walk may then be decomposed into a concatenation
of walks whose interior vertices are i) which originate and terminate .. Each of these

walks correspond to an edgedh(]\?), and together they make a walkdh(]\/i) and a
single edge irP (]\7) Conversely, any edge between distinct vertice@i@/\i) corre-
sponds to a walk id~ (]\7) which corresponds to a walk @& (1/) and an edge if® (M).

Since, by definition, both graphs also contain all self-g@ (]\7) =P (M)|,.. O

053
Example 5.9.Recall that in Example 5.5, we calculated thattheredudfdd = | 1 0 i
05 3
. 3
with respect to the open set= {3} is M = ‘11
1 =
4

Now we can see that is the result we would expect from our gcapimtuition. In M,
there is no path with interior vertices ifrom v, back to itself, sd/w\L1 = 0. There is one
such path (of length one - it has no interior vertices) frgno v, with weight 1, soZ/w;1 =
1.

j/\/[\m and]\/iz2 are more complicated. There are infinitely many paths beggnat v,
and ending at, or v, with interior vertices ins, since there is a self-loop af.

So ]\//71,2 is the sum of the weight of the ed@®, 1) and the weights of all paths which
begin a2, cycle at3 i times, and end at That is,]\/fm = Myo+> 700 My s(Ms3)' My =

P+ Tn =i b=
Similarly, M22 = 0 M, 3(M3 5)Mso =37, i(%)% = i- 0

Theorem 5.8 leads to the following important geometric propof the reduction con-
struction. Intuitively, it says that the reduction of an oset is open.
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Theorem 5.10.1f s and s’ are open sets of indices 8f such thats U s is also open, and
M is the reduction of\/ with respect tos, thens ' (s") ={j € S5 | 5; € s'}, theindices
of M that correspond to indices isf, is open with respect tor.

Proof. Consider any ifi € 5" (s'). By Lemma 1.2, sinceUs’ is open with respect td/,
ands; € s, there is an edge i (M) from v, to somev,, , wheres, € sUs' =505
That is, by Theorem 5.8, there is an edgé’Jir(]\/J\) fromjtok ¢ 5" (s'). Hence, by

Lemma 1.25 " (s') is open with respect td/. 0

Corollary 5.11. If M is unichain or irreducible, then for any open set,so is the corre-
sponding reductio/.

Proof. First, observe thal/ is unichain iff there is an open set, with |s| = n — 1. For
example, ifM is unichain and is a chosen index in the closed class, thea S,, — {i} is
open. Conversely, if there is an open setyith |s| = n— 1,5 = {i} can only be contained
in at most one closed class. In particularjifthas more than one closed class, at least one
of them must be contained in Since, by Lemma 1.1}/ has at least one closed class, it
must have exactly one, that i/ must be unichain.

Now assume that/ is unichain and is open. Then there must be soine s which is
in its closed class. In particulas,, — {i} is open. If we take’ = S, — {i} — s, then we
may apply Theorem 5.10 to conclude tRat (s') is open with respect td/. Sinces’ C 3,
|s'Ns| = || =[5 -1, and)/ is |s|-dimensional, we may conclude th is unichain.

If M isirreducible, therP (M) must be complete. Sing@ (f\/f) =P (M), P (]\7)

must be complete, as well. In particulds, is irreducible.C

We will show in Section 5.3 that if we consider a Markov prages,, with transition
matrix, M, and any initial distribution)/ corresponds to another Markov chakn,, which
is just X,, except that we pass through states @fithout pause. We will likewise obtain
a compelling probabilistic interpretation pfas a mapping from the initial distribution of
X, to that of)?*.

While there is no obvious probabilistic interpretation:pfit possesses several use-
ful properties. Most importantly, the reduction constioict‘preserves” the kernel of the
laplacian in the following sense.

Theorem 5.12.Given a Markov matrix}/ and an open set of indices, using the notation
of Theorem 5.6,has a non-negative left-inverse;,, andker A = 2 ker A, so thath/ ~, M.
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A0
Proof. Consider the matrix3 = . Multiply it on the left by three invertible
0 I
. I MES . . I _MES I 0
matrices: A, = © |, which has invers T, A = ,
0 I 0 I 0 A,
: o I 0 :
which has well-defined invers . because is open (by Theorem 4.5\ ; =
0 A,

—(I — M) isinvertible), and4; = P;, which has inversé’ .

I 0 I M., A O
AgAQAlB - PS '
A, 0 I 0 I
A M,
= PS ’
0 Ay
A@,E_ME,SAS_,;MS,E ME,S
0 Ag g

Mg, I 0
Ay A M5 T
= P, (P/AP) ( ) (5.5)

— AP, .
_‘/\s_,s1 Ms,? I

Equation 5.4 follows from Theorem 5.6 c), and Equation 5.%eigritten according
to the principal submatrix permutation df. Now sinceA;, A,, A; are invertible, in
particular they are injective. So by Lemma A.3&pr A;A,A,B = ker B. That is,

I 0 A O
ker AP, = ker .
—A M5 I 0 I

I
Now consider Lemma 2.7 with = S, — S5, so thati, = Vg =

Ty = (I 0),and7r5/ — <0 ]). Since(

o

(5.4)

A§§

s§

o >
~ o
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<0 I ),We then have

A0 I\ . 0
ker — ker A(10)+ (o 1)
0 I 0 I
= ker _Zgl//iﬂ'gl + ZS/']TS/]
= ker -25/ /A\ng} Nker v 7] by Lemma A.3d)
= ker _/A\wgf} Nker 7 by Lemma A.3¢)
= ker _/A\wgf} MNim o by Lemma 2.7 c)
= 1 ker [/A\ﬂgrzgr] by Lemma A.3a)
=1y ker A . by Lemma 2.7 a)
. I O - . t
To summarize, we havieer A P, = 1o ker A. P, has inverseF,
_As_,slMs,E I
1 0 ) 1 0 . ] .
and has invers , SO in particular both matrices are
_As_,slMs,E I As_,slMs,E I
surjective, and therefore by Lemma A.3b),
1 0 1 0
kerA = P, ker AP,
_As_,slMs,E I _As_,slMs,E I
I 0 —~
= P, 1 ker A
A M5 1
1 0 —~
= P, ker A
A M5 1 0
= P, ker A
_As_,sl Ms,@
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Ts . .
It is easy to check that; = ( I 0 ) = 7o P! > 0is a left-inverse of:
ﬂ-s
. I I
Tt = Ty PP = ( I 0 ) =1.
_‘/\s_,s1 Ms,§ _As_,s1 Ms,?

Now since: has a non-negative left-inverse, ald A = 1 ker A M ~, M by defini-
tion. O

Theorem 5.12 and Lemma 5.2 then give the following impontesiilt.

Corollary 5.13. Given a Markov matrix/ if s is an open set of indices, with corresponding
reduction}\/, then:*(v) = —2— is a bijective mapping frorstab (]\7) to stab (M).

el

This allows us to give simple and direct proofs of importamnticture theorems for
Markov matrices. For example, we may prove the uniquenestabfe distributions in a
very general setting, without restrictive assumptionspafrandicity or ergodicity, etc.

Theorem 5.14.Given a Markov matrix\/ with k closed classeslim ker A = k.

Proof. Take any maximal, open set of indices, Thens must have exactly one element
from each distinct closed class bf, so thats| = k. Now consider the reductiod/, with
respect tes. Since there are no walks between closed classes, by Théoﬁe(m/i) =0

2V
fori # j. In particular, M/ = I andker A = R*. Therefore, by Corollary 5.18im ker A =

k.O

Corollary 5.15. Every unichain Markov matri/ with closed classs, has a unique stable
distributionv such that, # 0 < i € s.

Proof. By Corollary 3.4,|stab M| > 1. More specifically, by Lemma 2.10 dytab M
contains,, v, wherev € stab M, ., the stable distribution of the principal submatri, ..
SinceM is unichain, by Theorem 5.1djm ker A = 1. Thus, ifv,w € stab M C ker A,
we would have) = kw. However, sincé = Jv = kJw = k, v = w, so thafstab M| = 1,
namely,stab M = {1,7}.
Lettingv = +,0, considers’ = {i | v; # 0}. We first show that’ C s by considering

the contrapositive. If ¢ s, theni = 5, for some;j. Thereforey; = ejv = ez v = ejmsv =
ejms1,0 = 0, by Lemma 2.7 a).
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Sincev € kerA, v = Mv. Foranyi € s —s,0 = v, = elv = elv = e!Mv =
MY ve; = .. ve;Me;, sincev; = 0forallj € s —s'. Sincev; > 0 and
eiMe; > 0forall j € s', we must have;Me; = 0 for all j € s'. That s, there are no
edges fromj € s'toi € s — s in G(M). In particular, there are no walks frofne s’ to
i € s —s'. Sinces is an SCC, this is impossible, unless- s’ = 0, i.e.,s’ = s. In other
words,v; #0 < i € s. O

This immediately gives the following well-known result hhoaind Johnson (1985).

Corollary 5.16. Every irreducible Markov matrid/ has a unique stable distribution,>
0.

This leads to the following structure theorem for Markov ntats (cf., the proof of
Theorem 2.1 in (Karlin and Taylor, 1981, p. 4)). The redutttmnstruction provides a
conceptually satisfying, constructive proof.

Theorem 5.17.Given a Markov matrix\/, with closed classes/, j = 1,...,k, let Mj
be the principal submatrix o8’ with unique, stable distributiony. Letv’ =1 7’

e ker A = span {’Ul, e ,vk};
e ker (A) = span (stab (M)); and

e everyv € stab M is a convex combination of = 7/, i.e., v = Y7 a;0’ for
: k

Proof. We should first observe that, by Lemma 2.10, is Markov. Moreover, since
G_ (M,) is strongly connected/; is irreducible. Therefore, by Corollary 5.16/, does
have a unique, stable distributia, > 0.
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JTa
Now defineD = < ot P ) >(0andL = : > (). Notice that

JT

Jravy - Jmavy

LD =

JT vy e JT Ry

JTa 181@1 e Jma zswk

stkzsﬂl e stklsmk

Jo' -0

= oo, =1
0 - Jo

By Lemma 2.10,D mapsR” into ker A. By Theorem 5.14, mapR* = ker I ontoker A,
so thatker A = im D = span {vl, e ,vk}. Since{vl, e ,vk} C stab M C ker M, we
may infer thatspan {vl, e ,vk} C spanstab M C ker M. In particular,spanstab M C
ker M.

Since D is left-invertible, it is also injective. In other word$, ~, M. In fact,
sincev; € stabM, JD = ( Jup - Juy, ) = J, so that for any € stabl = A,
|Dv|, = JDv = Jv =1,andD" = D onA,. Thatis, by Lemma 5.2) gives a bijection
of A, with stab M. In particular, element istab M is a convex combination of the'. O

We may now give a further characterizationnavhens is maximal.

Corollary 5.18. Given a Markov matrix\/ and any maximal, open set of indiceswith
corresponding reductior(,]\//f, Dy1),

e there is a 1-1 correspondence, between the’ from Theorem 5.17 and;, such
thats,; € s’, and

e v’ o 1e,;), thea(j)" column of..
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Proof. First, remember from the proof of Theorem 5.14, if wellet |s|, for each;j € S,
sNs’| = 1. Thus, there is a well-defined mapping,: S, — S, such thats N s’ =
{5 }- Moreover,M = I, and: mapsker A = R” ontoker A, i.e.,imz = ker A. In
particular, for a giveny, v/ = 13, for somes.

But from Theorem 5.12, we know that is a left-inverse for, so that3 = m’ =
ms,,0. The components of aree;3 = e;m ¥ = ek 2,77, which is 0 unless, €

s/, that is,r = a(j). Thus, has exactly one non-zero component add= 13
> res, 1e,elf = zea(j)eg(j)ﬁ. In particular,y’ o 1€4(j)- O

Theorem 5.19.Under the assumptions and notation of Corollary 5.18, i o', then
o u(p) !t = ( PO PR ) and
o M™ =u(p) 'p.

Proof. Lets be a maximal, open set of states with corresponding redu(ﬁﬂ/ff, p,1). From
the proof of Theorem 5.14, we know thiat = 7. We will begin by deriving two additional
properties of such a maximal reduction.
Sincel = M = pAr+ I, we see thapA: = 0. In fact, we may show thatA = 0, that
is,p(M — I) = 0 orpM = p. Using the notation of Theorem 5.6,
M§,§ Mg,s

pM = (1 M AL )PP, Py = (Mg = Mo AT Mg My, — Mg A M
Ms,§ Ms,s

= (M My - M A (A4 0) )P = (T M A ) PL=p

S,8

In addition, we may show that the produgt, is an invertible diagonal matrix. Again,
I
using the notation of Theorem 5.6; = ( I —M; A} ) PP, =
7 7 _‘/\s_,s1 Ms,§
I+ M K_QMS,E. Since! is diagonal, it suffices to show that A;jM&3 is diagonal
with non-negative entries.

As in the proof of Theorem 5.8,

M AS2M, = My, (fj M’f) (fj Mé,s> M, = fj 3 M MY M,
k=0 1=0 k=0 [=0

To prove that this is diagonal, it suffices to show that, forar 0 andi # j, eﬁMEs M;sMsgej =

0. As before, thisis equal tp; (5,5,5,041) M,. As in the proof of Theorem 5.14, when
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i # j, there are no walks iG/()/) from 5; to 5, sinces; ands; are in different closed
classes. Thus, this sum is 0. By Theorem 56, = .J2, so that the diagonal entries pf
correspond to the column sums:oin particular, since > 0, they are non-negative.

We now prove the first part of the theorem to give a formula:foBy the above dis-
cussion:(p) " is the result of dividing each column by its correspondingsso that the
resulting columns are all distributions. By Corollary5.18 o ue,(,, SO thatr’V) o 1e;
and thej" column ofu(p2) ™" must bev”".

Finally, we will now show that(p:) 'p = M™ by appealing to Theorem 3.3. That is,
we will show that(p2) 'p = m,. First, observe that, by Theorem 5.17 and Corollary 5.18,
im+ = ker A. By Lemma 3.11), forany € R", v = m,v + 0. Sinceim m,,, = imy,
we may writem,, v = 1« for somea. Likewise, sincepA = 0, andim 7, = im A,
v = 0. Thus,o(p2) 'pv = o(pr) " pmev = o(p) 'pra = 100 = m,v. In particular,

1(p) " Tpu = M. O

010 3
_ , 100 3 _
Example 5.20.Returning to Example 3.5 with/ = . | we may verify
0 01 £
6
0001

the conclusions of Theorem 5.19. This matrix has two clodasgses{1,2} and{3}.
ReducingM with respect to the maximal open set= {2,4} yields the2-dimensional

10
S o 10 110 2 2 0
identity matrix with: = andp = . Then,m ,
0 1 001 3 01
0 0
0
1
p) = ° . The two columns of this matrix are clearly the stable disttions
0 1
00

associated with the corresponding closed classes. Maraowdtiplying this on the right
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3303
11 g 1
by p yieldsi(p) 'p=| > 2 * | = M®, as previously computed
001 5
0O 000

We can also justify our definition of equivalence.

Corollary 5.21. For any two Markov matrices\/; ~ M, <= stab (M;) = stab (M,).
That is, two Markov matrices are equivalent if and only ifth@ve the same set of stable
distributions.

Proof. If M, and), are equivalent, theker (A;) = ker (A,) by definition, so thattab (M) =
ker (A1) N'A,, = ker (A,) N A, = stab (M,). Conversely, istab (M;) = stab (M,), by
Theorem 5.17ker (A;) = span (stab (M,;)) = span (stab (M;)) = ker (A,). In particular,
M, and M, are equivalent

5.3 A Markov Chain Interpretation of the Constructions

In this section, we will review the basic definitions regagfiinite-state, stationary, Markov
chains, assuming the reader is familiar with basic proligiaihd measure theory. Our goal
is to show how the construction of section 5.2 correspondscimrresponding construction
on finite-state, stationary Markov chains. discrete-time stochastic proce@w chain) is

a sequenceX, = {X,}2,, of random variables i.e., real-valued measurable funstio
on some shared probability spac€), 11). As is common, we will writePr|w] for the
probability of a measurable subsetC (). Likewise, given a random variablé], we will
write Pr[X € (] for Pr[X~'(8)], assuming that € B, the so-called Borel sets @.°

In this way, we avoid explicit reference to and . We will also writePr[X = z]| for
Pr[X € {z}]. Thesupport suppy, of a random variableX, is the smallest Borel set,
such thatr[X € ] = 1. In this paper, we will restrict attention to those chainsosd
state spaceS = |, suppy, is a finite set, and we establish the convention that S — 3.

2B is the smallest collection of subsets®fwhich contains all half-intervals (i.€lg, 00)) and is closed
under countable unions/intersections and taking compi¢snén particular, it contains all countable
subsets.
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Achain, X, isMarkovifffor all ¢ands,, ..., s, € S,suchthaPr[X, =s;,..., X, =
sol # 0, Pr[Xoy1 = sp1 | Xy = s, Xo = s0] = Pr[Xyyy = s | Xy = ). This
so-calledMarkov property(sometimes called the memoryless property) implies that th
probability of transitions to future states, suchsas, depend only on the present state
and so are independent of the remote past, namely. . ., s, (losifescu, 1980).

A Markov chain isstationaryiff V¢ s.t. Pr(X, =s;] > 0, Pr[X, ., = s, | Xy =
s,] remains constant. Sincés € S, 3t, > 0 such thatPr [th = s] > 0, given an
enumerationy, of the state spacd, there is am x n matrix, M, such thatr[X,,, =
(i) | Xy = u(j)] = M, ;, wheneverPr [X, = «(j)] > 0. Notice that this implies that
n > |S|. When this holds, we say thaf is atransition matrixof the chainconsistent with
.. If n = |S], then) is uniquely defined, and we say thetis aminimaltransition matrix
of the chain.

Notice that if M, and M, are two minimal transition matrices, consistent witrand
Lo, respectively, thed/, = P~'M, P, whereP is the permutation matrix such thaf, =
[t1(7) = 15(7)]. In particular, there is a unique minimatconsistent transition matrix for
which . is increasing. As we will see, using the following Lemma, cae show that, in a
certain sense, the converse holds, as well.

Lemma 5.22. For every sequence, € S, (k),
a) PriX,_,=1t(0g),...X; =1(0})] #0iff 0 € Py, (k) andPr [X,_;, = ¢ (0y)] # 0.
b) More specifically,

PriX, ,=1(00),... X; = 1(op)] = M, Pr X, = ¢ (0p)] (5.6)

Proof. We prove both parts by induction gn Whenk = 0, M, = 1 ando € P,,(0),
so both parts are trivially true. In general, for any S, (k), takes’ € S, (k — 1) so that
o, = o, for 0 < i < k. We may then prove part b) in two cases.

If PrX,_ =t(0g),...X,_1 = t(04_1)] = 0,thenPr [X,_, =t (0g),... X, = t(0})] =
0. Moreover, by induction, we know that eithet [X,_, = ¢ (0y)] = 0, in which case
Equation 5.6 is trivially satisfied, of ¢ P,, (k — 1), in which caseg & P,, (k), as well,
so thatM,, = 0, and Equation 5.6 again holds.
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Now assume thabr [X,_, = ¢ (0y),... X;—1 = t(04_1)] > 0. The Markov property,
along with the induction hypothesis, then implies that

PriX, ,=u(og),.. Xy =1(op)] = PriXy=1(op) [ Xip =1(00),. .. X;oq = t(04-1)]
PriX, p=t(0g), .. Xyo1 =1 (041)]
= Pr{X;=(o}) | Xioy = t(o41)]
My Pr X,y = 1 (oh)]
= M, , M, Pr [Xt_k =1 (06)}

= M, Pr(X,; =1(00)]
where we also appeal to the definition/df, and the fact that,, = (. O

Obviously, the joint distribution of X, }/_,, for anyk, is determined by the joint distri-
bution of X,. Conversely, the sequence of all such joint distributioss,(fork = 0, ...)
determine the joint distribution of th&,. Lemma 5.22 says that, for a stationary Markov
process, this sequence of joint distributions is equivalgmto labelling of the states, to
an initial distribution (i.e., forX,) and a transition matrix}/.

While . allows us to associate states with indices, it is also hetpfassociate states
with the vertices of the standard;simplex,A,,. Specifically, let the statd:) correspond
with the vertex,e; of the standardp-simplex, A,,. That is, given a chainX,, and an
enumeration of its state spacewe may define an associated, vector-valued chain,
where X, (w) = e;, if X;(w) = «(j), and O, otherwise. This form of the chain has the
advantage that we may cleanly establish the connectiorgegttihe probability distribution
of X, and the corresponding distribution vector.

Lemma 5.23. Given a Markov chainX,, and an enumeration of its state spacejefine
the associated, vector-valued chain,, as above. For any, E [)?t} is then a vector with

(E [)Z't}) = Pr[X, =.(j)] forall ;.

J
Proof. By definition,E [Xt} =Y tes, e Pr [Xt = ek] =Y es, € Pr[X, =1 (k)]. Thus,
<IE [X;Dj —¢'E [X;] = Y es chenPrIX, = o (k)] = Pr[X, = . (j)]. O

Alternatively, we may associate states with vertices inraaied graph. Specifically,
we may view a stationary Markov chain with transition mattik in terms of a random
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walk on the weighted graplt; (M), where the state,(i), corresponds to the vertex;.
SinceGG(M) has no repeated edges, a walk of lengtlis equivalent to a sequence of ad-
jacent vertices, which, by Lemma 5.22 a), corresponds tcsaiple sample from X, 17 ,.
Moreover, if we choose the initial vertex according to th&tdoution of X, and the subse-
guent edges according to the edges weights, by Lemma 5.2&tgrobability of obtaining
any given walk is the same as the probability of obtainingateesponding sample from
{X,}Y,. Thus, the graphi(M), and an initial distribution give an alternative, geonetri
characterization of the chain.

As before, we may carry over the terminology of strongly aested components,
closed classes, invariant and transient sets of vertice$ ) from Section 1.1 and apply
it to sets of states of a stationary Markov process. NatiGes represents the conditional
probability of the random walk realizing the specific sequeenf states corresponding to
o, given thatX, = ¢ (o). Thus, a subset of states is invariant iff the probabilityeeér
transitioning away from the set is 0. Likewise, any transgate has a positive probability
of transitioning away from it without ever returning.

Given a chainX,, and a Borel set3 € B, we want to define a new chaif,,, where
we “collapse” the time spent id. To make this precise, define the functiong : @ — R
inductively, as follows. Set; _;(w) = —1, and define

Tﬁ,k(w) = min {t > Tﬁ,k—l(w) | Xi(w) & 5}
with the convention thatin () = co.

Lemma 5.24.1f 7, ,/(w) < oo, forall 0 < k < &/,
Topw)=min{t>0|k+1=[{0<t <t|X,(w) € S}|} (5.7)

Proof. By definition, sincer, ,/(w) < oo, 74/ (w) < 75,/(w), SO thatry ;v (w) < oo,
and so on. In particulal{,Tﬁ,k(w)}Z/:O is an increasing sequence. For the remainder of the
proof, we will drop the notation for evaluation, since alhdam variables (i.e.X,’s and
75,'S) Will always be evaluated at a fixed value, Likewise, we will always assume that
0< k<K,

Now defineT, = {0 < ¢ <t¢| X, € B} andT] = {t' > ¢ | X, € 3}. With this nota-
tion, 75 ), = min 7} We now show that

T3,k—1"

T/ N ,_r,,.ﬁJc == {Tﬁ,k} (58)

T3,k—1
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Sincers, € Ty, ,, we must havers, € T, . Moreover, this is the only value in
TT’Mflﬁ - If t were a different value in the mtersectlon singe is mlnlmumlnTﬁk ¥
we must havey , < ¢. Butsincet € 17, we should have < 7;,, a contradiction.

Now defined(t) = |T;|. Now observe thalT;| = |T, ;| + [X, € 3], so thaté(¢) =
|7},| is non-decreasing. Using this notation, Equation 5.7 mayebeitten asr;, =
min ' ({k + 1}). In particular, we must show that(r, ) = k + 1.

Since ther; ;'s are increasing fob < j < k', we have that

k
TTﬁ,k = TTﬁ,km(Tﬁ,—bTﬁk = Tﬁk U 78,5~ 17Tﬁj
§=0

=

k k
- U 7o | Tﬁvj—l’TﬁJ U rog1 V Lrg; = U {Tﬁd}
j=0 j=0

7=0
Therefore, since the; ;'s are distinct,

—k+1

0 (o) =

Tﬁk

Thus, g, € 0~ ({k + 1}).
Now if 74, is not minimum, then there is some< 75, such thav () = k + 1. Since,
6 (754_1) = k andé is increasing, we must havg, , <t < 74,. As before,

k
T, = T,n (%,—b%k] =1T,N U (Tﬁ,j—lﬂ'ﬁ,j]
=0
k k—1
= U Tt N (Tﬁvj—l’ Tﬁvj} = T'T/'ﬁ,kfl N Tt U U T;B,jfl A TTBJ
. i

= TT/ﬁ,kﬂ NI U U {Tﬁ,j}
=0

= 1; in particular, there is some

Sinceé (t) = |T;| = k + 1, we must hav# rora NI

ter, NI,
Sincet' <t <73, T, C T, ,. Thereforet' € T/ NT,CT,  NT. = {75}

so thatt’ = 74, a contradiction.
Thus, 75, = mind ' ({k + 1}). Sincek € [0,k'] was arbitrary, we have proven

Equation 5.7 forald < k < k. O
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Using the language of Markov chain theoryy, is thek + 1% “hitting time” for 3.
Notice that

{Xt S B} ﬂ {Tﬁ,k—l - t/} ﬁ ﬂt,<t”<t {Xt” S ﬁ} |f t < o0

{Tﬁ,k—l — t/} m mt/<t// {Xt// E /B} |f t = 00
Therefore, by induction, this event be expressed solelgrims ofX, . . ., X,. In this case,

{Tor =t} =

we sayr; ;. is aMarkov time(losifescu, 1980).
We now prove that; ;. is almost always finite, whefi is open. In fact, this effectively
characterizes open sets of states.

Lemma 5.25. A set of statesy, of a finite-state, stationary Markov process,, is open
iff Pr [ﬂrzj X, (B)| = 0,Vj. In particular, if 3 is open,r < 751 < -+ < oo with
probability 1.

Proof. Assume that the process/igonsistent with a matrix)/, with state space$, and
lets = .~*(8). Then, using the notation of Theorem 4.5, tHecolumn sum of\/” is

lsl

ST =Y (), =Y Y We=Y Y M 69

v=1 vES|5| 0€S |5 (v,u,q) vES|5) €S| (v,u,q)

Therefore,

Jj+aq
Pr [ﬂX;l(ﬁ)] = Pr[X;ef,.... X, €8] =Pr[X;€3nS,...,X;,,€6NS]
r=j

10seenylg€ES
= Z Pr [XJ =1 (SUO) o Xy =1 <sgq>}
o€S)4(a)
and
Jj+q
Pr [ﬂ X (5)] = > M PriX;=u(s,)] by Equation 5.6
r=j o€S|5(q)

= > > M PrlX;=u(s.)]

u,vES| 5| 0ES| ) (v,u,q)

=Y JM'e,Pr[X;=1(s,)] by Equation 5.9

UGS‘S‘

= JM* Z e, Pr [Xj = L(Su)}

uES‘S‘
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Thus,

Pr [ﬂ X (ﬁ)] = qlLrEOPr [ﬁ]X ] = qlgglOJM Z e, Pr[X; =1(s,)]

r>j r=j UISIR

If 5 is open, by Theorem 4.5d)m,,_. ., JM" = 0 so thatPr [ﬂr>j (ﬁ)] = 0.

Conversely, assume thBi: [ﬂm 1(6)] = 0, Vj. For anyu/, since(s,) € S,
there is somg for whichPr [X; = «(s,/)] > 0. Moreover,

+q

Pr [h X, (ﬁ)] = JM Z e, Pr[X;=1(s,)] > JMe  Pr (X;=1(s,)] =0
] u€S|y

Since the left-hand side goes to 0@s— oo, andPr [X; = i(s,/)] # 0, we must have

lim,_o, J M'e, . Sinceu’ was arbitrary) = J (lim,_, M") J* = 0, so thatim,_,, M’ =

0. Appealing to the contrapositive of Theorem 4.5 d), we mayctude that? is open.

By definition, 75,(w) < 75,41 (w), with inequality, unless;,(w) = oco. However,
T5+(w) = oo iff {t/ > 750 (w) | Xp(w) & B} =0, thatis Xt/(w) € BVt > 15, 1(w).
Thus,75, < 75, < -+ < 00, outside of the sdt); " (8). But we have just shown
that, wheng is open,

Pr[UﬂX; ] ZPr[ﬂX lz;ozo

Jj rzj r2j

7“>]

Thatis,730 < 735, < --- < oo occurs with probability 10

By Lemma 5.2575, is a Markov time withPr[7; , < oo] = 1. Such a random variable
is known as a&topping time Evaluating a Markov chain at a stopping time is also a random
variable (losifescu, 1980). Thus, (if is open, we may define;, (X,) = X;,,» where
we definerrs, (X,) = min 3, whenr;, = oo. In this way, we have defined the desired
chain, X, = 5. (X.). We will show thatr;, is an operator on Markov chains which
corresponds directly to applying the reduction constactf section 5.2 to the transition
matrix of the chain. Notice that, as we mentioned in secti@fsom a Markov chain point
of view, we have simply reduced the time spent in the statestof0.

We now wish to identify the transition matrix fa; , (X,). The proof will be similar
to that of Theorem 5.8, but we will need to generalize the trmtarom Chapter 1 a bit.

Define

S (80,5, 1,m) = {0 € S, (1,5, L +m) | m = {k € (0,0 +m) | o}, & s}[}
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i.e., sequences of length-m+ 1 starting atj, ending at, whose interior values lie outside
of s exactlym times. Thus, for exampl&,, (s,,7,1,0) =S, (s,1,7,1).

Using this notation, we may now identify the distributionsf = 75, (X.). Thatis,
we can give a formula foPr [)Z’t = x} :

Theorem 5.26.1f X is a finite state, stationary Markov chain with state spaeyhich is
t-consistent with a minimah, xn transition matrix,M, 5 is open, and?* = 75, (X,), then
7 is the state space fak,, so that/ (k) = ¢ (5;) enumerates, wheres = .~'(8) C S,,.
Fort > 0,

PrlX=im] = XN Y M=)

=0 jes Uesn(s’gkvjyht)

+3°% Y MPrX=:(j)] (510

1=0 j€5 0€S, (5,5.,l,t—1)

and

Pr [ Ko =0/ (k)] = 3 iy Pr (X = 1())] (5.11)

J

Where(]\/J\,p, 1) is the reduction oft/ with respect te. That s, the distribution oﬁ'o, is re-
sult of applying the projectiom, to the distribution ofX,,, where we view each distribution
as an column vector, as in Lemma 5.23.

Proof. By definition, 73, (X,) (w) € /3 for all t andw. Notice also that, sinces,) enu-
merates3 N S, ¢ = «(5,) enumerateg. In particular, the state space far, is contained
in G andX, = x iff « = ¢ (5,,) for somek € Sjy.

t . . . .
Now remember that, when; , < oo, {rﬁﬁj}j:_l is an increasing sequence of integers.
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In particular,7;, > t. Thus, by Lemma 5.25,

Pr [Xt = (l{:)} =Pr [)Z't = (k), 15, < oo] =

= Pr [XTM =1 (Ek)] = ZPY [Xl—',-t =1 (5k),l =Tp, — t]
1=0

= [t=0Pr[X, =) I=mp, —t] + Y Pr[Xp=1(5), 1 =75 —1]
I=[t=0]
= [t=0Pr[Xo=1t(50) 750 =0] + Y Pr[Xp,=1(5),0=75,—1]
I=[t=0]
= E=0Pr[Xo=t(), 750 =01+ D> > Pr[Xiu=1(5), Xo = (i)l =g — ]
1=[t=0] j=1

where divided into cases, basedloa 75, — t and the initial state of the process, and we
used a notational trick to pull out thie= 0 term from the summation, when= 0. Notice
that, for all the terms in the summation, we are guarantegd tht > 0.

Assuming thatX, = (), X;1y = ¢ (5¢), [ = 175, — t, andl 4 ¢ > 0 (i.e., in the context

of any of the summation terms), by Lemma 5.2%}226 takes exactly + 1 values in3

and!/ values ing. In this case, we may writ&; = +(o;) for 0 < i < [ + ¢, for some
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o €8S,(s,354,l,t —1),if j & s,ando € S, (s,35y, j, 1, 1), if j € s. Thus,

Pr [)?t:/(k)] = [t=0]Pr[X,=1(5),750 = 0]
+ Z ZPr X = (3) , Xo = 1(4), andl_Tﬁt_t]
=[t=0] j€E€s
+ Z ZPr X = 1 (3,) , Xo = 1(4), andl_Tﬁt_t]
=[t=0] j€Es

= [t= O] Pr [ Xy =1 (5), 750 = 0]

+ZZ Y Pr[Xi=1(0,),0<i<I+1

=[t=0] j€s 0€S5,,(5,5k,5,l,t)

T ZZ > Pr(X;=1(0;),0 <i <1+

=[t=0] JES 0€S,(5,5,4,l,t—1)

= [t = 0] Pr [Xo = L(Sk) T30 = 0}

FY TS MR =)

=[t=0] jJE€s 0€S,,(5,5k,4:l:t)
+ Z o> M PrX=1(j)] (5.12)
—[t=0] JEF 0E€S,,(5,8p.5,l,t—1)
where we appeal to Lemma 5.22 b) for the final step.

Equation 5.12 simplifies to Equation 5.10, wher- 0. Moreover, it implies that the
state space fok, equals all of3, because, for any staték) € 3 C S, there is some for
which Pr [X, = /(k)] > 0. If ¢ = 0, the first term in Equation 5.12 is non-zero, so that
Pr [)Z; - L’(k)} > 0.

Otherwise, by Lemma 5.22, and the fact thahumerates the state spaceXqof

Pr[X, =/(k)] = ) PriX,=1(3), Xo=¢(j)]
JESy
= > PriX;=u(0),i=0,....40=> Y  MPr[Xy=1(j)
JES, 0€S,, (5k,4:t) JES, 0€S,, (5k,4:t)
Since this is hon-zero, it must have at least one non-zeno, @rrresponding to somee
S, ando € S,,(5;,7,t), such thad < Pr [ X, = ¢ (j)|, M,. If [+ 1 is the number of values
of o in 5, then eithew € S, (s,5,7,0,t),if j € s,0rc € S,(s,35;,7,1,t — 1), otherwise.
In any case, Equation 5.10 has at least one non-zero terrhasBit [)Z’t = L/(l{i):| > 0.
Therefore,3 is the state space fox, .
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To prove Equation 5.11, take= 0. SinceS,,(s,sy,j,l,t — 1) = (), Equation 5.12
simplifies to

Pr[)Z'O:L’(k;)} = PrlXo=c(5).m50=0l+ 3.5 Y M, Pr[X,=:(j)]

I=1 j€s o€S, (s,54,5.1,0)

= PriXo=1G)l+Y. > Y M, PrX,=1(j)]

=1 j€s 0g€S,,(8,5.J,)

= PriXo=1G)+>. > > MPriX,;=1(j)]

=0 j€s o€8,,(s,51,7,l+1)

= PrXo=EHY Y D MoPr[Xp=i(s)]

=0 jES‘ | 0€S,(8,5,5;5,1+1)

= PriXo=1()]+ Y Z > M, Pr[X,=1(s;)](5.13)

JES|s) 1=0 0€S,,(5,5),5;,l+1)

Now observe that from Theorem 5.6 and Theorem 4.5 b),

p = (1 N2 )P=(1 -NK) ﬁs)

Ts

-1

= Wg—NK Ty = 7T§—|—ZNMI7TS
=0

Thus, using Lemma 2.7 a), we have

Y o PriXo=1()] = Y ey PriXo=1()]+ D pi, PriXe = ()]

JES, jES j€Es
= Z eppe; Pr [ Xo = ()] + Z eppe; Pr Xy = 1(j)]
Jjes jESs
= Zekﬂe Pr X, =(j +ZekZNM7re Pr X, = (j)]
Jjes jESs
= PriXo=1(5)]+ Y Z N Me;Pr[Xy=1(s;)] (5.14)
]GS‘ S| =0

Comparing Equations 5.13 and 5.14, we see that it only resrtaishow thaEZWMlej
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equalszoesn(s%sjJH) M, . As in the proof of Theorem 5.8,

PR t— —
exNMe;, = E ekNej/ej/M e; = E Mgk,sj, E M
i'€S)y i'€S) a'eSn(s,sj,sj/,l)
= E E Mgkvsj,MJr = E M,
j,ES\S\ olesn (s,sj,sj/,l> €S, (8,5k,55,l+1)

We may also identify a transition matrix for, = 754 (X.). Intuitively, the follow-
ing theorem says that the transition matrix for is the result of applying the reduction
construction of section 5.2 to the transition matrix 6. The proof is similar to that of
Theorem 5.26, but it will be helpful to alter our notation & Idefine

Su(siilm)={o €S, (I+m) |0y, =im={k<l+m)]|o, &s}}

i.e., sequences of length- m + 1, ending at, whose values, excepting the last, lie outside
of s exactlym times. Notice that this time we do not specify the initialualand we do
not exclude it from our count of values

Theorem 5.27.1f X, is a finite state, stationary Markov chain which:tgonsistent with
transition matrix, M/, and 3 is open, thenrg, (X,) is a stationary Markov chain’-
consistent with transition matrixz/w\, where M/ is the reduction ofM with respect to

s =17 (B) and/(j) = u(3;).

Proof. The proof is similar to that of Theorem 5.26. As before, define= 75, (X.), and
recall that.(s,) and.(3,) enumerated N S and 3, respectively. By Lemma 5.25, we may
restrict attention to the case;, < 75,1 < oo and again exploit the fact that< 75,.

Pr [)Ztﬂ = (k) ,)?t =/ (l{:/)] = Pr [)Ztﬂ = (k) ,)?t =/ (k:/) S Taa1 < oo] =

= Z Pr [Xl+m+t+1 =1 (k) , Xonge = L (5y) , 1 = Tgee1 —M—t—1m=75; — t]
m=0 1=0

Assuming thatX,, ., = ¢ (5,/) andm = 75, — t, Lemma 5.24 implies thaX, , ,,, . ;.| =
L(Bp)withl = 75, —m—t—1iff X; € gform+t <i <Il+m+twith X, ,.; = ¢ (5;).
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Thus,

Pr [)Ztﬂ =/ (k), X, =/ (k‘/)] =

ii Z Pr[XerHi:L(Ug),izO,...,l—l—l,m:Tm—t]

m=01=0 ,'cs (8,§k 5, 7l—i—l)

Appealing again to Lemma 5.24, we see thgt,, = ¢ (5,/) andm = 75, —t iff {X; yre !
takes exactly values ing, i.e., we may writeX; = . (o7) for 0 < i < m + ¢, for some
0" € S, (s,5,,m,t). Thus, fore’ € S,, (s,5;,5,/,1 + 1),
Pr [XmHH :L(a,'-) ,izO,...,H—l,m:Tm—t} =

= Z Pr[XmHH:L(a;),i:O,...,l—i—l,X,-:L(a;'),i:O,...,m—i—t]

o'es), (s,Ek/ ;m,t)

Therefore,

D I e

whereo’ x ¢” is the concatenation of the walks given dyands”. Specifically,o;, = o,
for0 <i <m+tando, ., =0}, for0 <i<l+12
Now appealing to Lemma 5.22 b), we have

Pr [)?t+1 =/ (k), X, ="/ (k')} =

DD D My Pr[Xo =1 (of)]

m=0 =0 0/€S7L(s,sk,s / l+1) o'es; (s, Ek/,m,t)

DS S ML P [X, =1 (o])]

m=0 [=0 U/€S7L(S,Sk,3 / l+1) o ES (s3 Syt ;m,t)

= Z > My > MuPr[Xo=u(of)]

m=0 {=0 UESn(s 5krS, l+1) o'es;, (s5,7,m5t)

3Notice that we concatenate amlks rather than as sequences; for exam@el, 4) « (4,7,2) =
(3,1,4,7,2), instead 0f3,1,4,4,7,2).
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We may then exploit Theorem 5.8 as follows,
Py [Xm =/ (k) X =1 (K)] =

=D D SRS

m=0 =0 ;'¢c n(ssksk/l-l—l)

>

o'es), (S,Ek/ ,m,t)
o'es), (S,Ek/ ,m,t)

2.

o"'€Sy (5,8, 1,myt)

M,

M _» Pr [XO =1 (ag)}

JNES:L(S,Ek/,m,t)

SRS

m=05"¢g! (s;5 Syl ;m,t)

M _» Pr [XO =1 (ag)}

Reversing our previous calculations gives

> X

m=0,"¢cg! (855, 7,m,t)

ZPr (X

M _» Pr [XO =1 (06/)] =

m-+t == L/ (k/) 7m

Therefore,

—

Pr [)Z;H —/(k), X, = (k’)} — M, Pr

:Tﬁ,t _t:| — Pl" |:j€t —

M _» Pr [XO =1 (o—{)’)}

M _» Pr [XO =1 (o—{)’)}

M _n Pr [XO =1 (o—()’)}

! (W)

Xo=1 ()]

so that,Pr [)Z’Hl =/ (k)| X, ="/ (k’)} = .7\/4\,‘le whenPr [)Z’t =/ (k;’)] > 0. In partic-
ular X, is a stationary Markov chairi-consistent with transition matriX\/Z .0

We now give an alternative description of the sequengg,
almost always.

Lemma 5.28. Given a Markov chainX,, and an open Borel sef,

Pr[w € Q| 75,(w) for k > 0is an increasing enumeration dft > 0 | X, (w

X,) (w), which applies

)e B} =1
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Proof. DefineT'(w) = {t > 0 | X,(w) € }. We must show that, fat > 0, 75, (w) is an
increasing enumeration @f(w), except on a set of probability 0. However, by definition,
{7sx(w)}r=_1 is a non-decreasing sequence starting at -1. Moreover, aveen; , (w)

is finite, andk # —1, itis in 7. By Lemma 5.25, it is strictly increasing and finite with
probability 1.

Thus, choose an € € for which this is the case. For convenience, in the remaiatier
this proof, we will omit the notation for evaluation hy, since everything can be assumed
to be evaluated ab. It remains to prove that, if ¢ T', thent = 75, for somek > 0. We
may prove this by considering the contrapositive. If forfalk 0, ¢ # 75, there must be
somek > 0 such that ,_, <t < 75,. By definition, sincer; ; is defined as a minimum
value, we must havé, € 3, thatis,t ¢ 7. O

In other words, with probability 17, (X,) is the result of deleting those entriesXf
with values ing3.

Lemma 5.28 implies that this reduction operator is “naturethe sense that it behaves
as expected under iteration. Intuitively, if we first deletgtries from a sequence with
values ing, and then delete from the remaining entries those with vaftugs, we get the
same result as if we had simply deleted those entries withegah3; U f3;.

Theorem 5.29.Given a Markov chainX,, and open Borel setg = 3, U 35, 75, (X,) =
5,+ (75, .+ (X)) with probability 1.

Proof. Let X? = w4, . (X,), X! = 75, (X7), and X, = 7, (X,). Likewise, letT, =
{t>0]X,€B,}, Ty = {t>0|X{ €B,},andT = {t>0| X, € B}. Fork > 0,
we may assume that;, ;, 75, 5, andrg, are increasing enumerations '6f, 7;, and T,
respectively, since, by Lemma 5.28, this holds except on afggobability 0.
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Now notice that

k>0, t =175, , = Fkt' >0t =75 pandt =7,
— It el t= To sincer; . enumerate§;
— 3t'>0, X € B andt =7, , by definition ofT;
— 3t >0, X%,t’ € fiandt =7, , by definition of X7
— 3 >0, X, eprandt =7,
< X, € (3 andt € T, sincer, . enumerated;
< X, € pandX, € 3,
= X, €bNB=pUBRk=7
— teT by definition of T’

In particular, 73, -, . maps ontdl'. Sincerg, 75, : N — N are both assumed to be

strictly increasing mappings, so is their composite. Irtipalar, om0 is an increasing

enumeration of. Since we are assuming that, is theuniqueincreasing enumeration of
2 2

T’ TIB27Tﬁ1,t = Tﬁyt’ andﬂ-ﬁlv* (Tr/B27* (X*)) = 7T1817* (X*) = X = X = X D

Tﬁlu* Tﬁgﬂ'ﬁl,t B,t"

Theorem 5.27 allows us to easily show that the reductiontoect®on on matrices of
section 5.2 is “natural”, as well.

Theorem 5.30.1f M € Mat,(R) is Markov,s = s; U s, IS open with respect td/,
(M, py,1,) is the reduction ofM/ with respect tos;, (Ms, po,is) is the reduction of\/;
with respect tos, = 5, ' (s,), and (]/\J\,p, z) is the reduction of\/ with respect tos, then

M2 - ]/\4\, p - p2p1, andl - Z-l'l.2.

Proof. First, notice that, by Theorem 5.16, is open with respect td/;, so that the
statement of the Theorem makes sense.. i the identity onsS,,, andv is somen-
dimensional distribution, we may define a chak,, which is:-consistent with)/ such
thatPr[X, = j] = v;,Vj € S,. By Theorem 5.27)/, is «,-consistent withX, = 7, (X.)
andPr [Xy = 11(j)] = (p1v);, wheret, = 5,. Likewise, M, is t,-consistent with, =
o (sh) (Y*) = T5,s, (7*) andPr [)?0 = Lz(j)] = (p2p1v)j, wheret, = ;55 = 5. Thus,
if we let X, = , (X,), by Theorem 5.29X, = 7 ., (7., (X.)) = 7, (X,) = X, with
probability 1. Sincex, is Lo-consistent with\/,, andX, is Lo-Consistent with\Z, M = M,.
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Foranyk € S,, if v = ¢, then(pypie,); = Pr [X'O zg(j)] = Pr [)?0 zg(j)] =
(pex);, so thatp = pyp;. Finally, by Theorem 5.12i(v) is the unique extension of an
eigenvecton € ker <J\/4\— I) to an eigenvector itker (M — I). Likewise,i iy(v) is an
extension of an eigenvectore ker (M, — I) first to an eigenvector iker (M, — I), and
then to an eigenvector iter (M — I). Therefore, sincél = M,, by uniqueness; iy (v) =

i(v). O
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Chapter 6
Markov Chain Tree Theorem

In this chapter, we sharpen a result, often known as the Ma@tmin Tree Theorem,
proven for example by Freidlin and Wentzell (Friedlin andnteell, 1984), specifically

for irreducible Markov matrices. It gives a combinatoriatrhula for the unique stable
distribution of an irreducible Markov matrix. Because ttheorem will form the basis
of all key results in Chapter 7, we give a detailed proof. Mwe¥, because wish wish to
apply it tounichainMarkov matrices, we generalize the theorem to that settepresent

a novel proof which exploits the properties of the determirianction.

6.1 Directed Spanning Trees

As given by Theorem 6.17, the Markov Chain Tree Theorem givasmbinatorial formula
for the unique stable distribution of a unichain Markov maitn terms of the weights of its
directed spanning subtrees. In this section, we will:

e define what we mean by a directed tree and show how they areatdiy related
with unichain Markov matrices,

e show how we may enumerate all directed treesnovertices by certain class of
functions ons,,, and

e define a vectorw,,, for any Markov matrix,M, in terms of the collection of all
directed spanning subtrees@f (1), which will turn out to be proportional to the

stable distribution of\/.
71
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6.1.1 DST Facts

A directed graphG that contains a unique directed walk from any vertexGino some
distinguished vertex has been called an “oriented” tree (Knuth, 1997, p. 373). We w
refer to such a graph asdirected tree We will also describe it as beimgoted atv. This
terminology is justified by the following theorem:

Theorem 6.1.1f G = (V, E) is a directed tree rooted at, then

e there is a well-defined functidp, : V' — N such that;(v) = 0 and for all (v, w) €
E, lg(u) = lg(w) + 1;

e v has no outgoing edges, while everye V' \ {v} has exactly one outgoing edge;
and

¢ the undirected graph associated withcannot contain any cycles, i.e., itis a tree.

Proof. Definel; : V' — N such that,(u) is the length of the unique walk i@ from u to

v. By definition,l,(v) = 0. Given a walk between two vertices, say, frano w, the walk
from u to v must be the concatenation of the given walk (frarto w) and the walk from
w to v. This holds for any edgé:, w), solg(u) = lg(w) + 1.

The vertexv cannot have an outgoing edde, «), since that would imply that =
la(v) = lg(u) + 1, andig(u) = —1, which is impossible sinc&;(u) is a length. Since
there is a walk from every otherto v, every other, must have at least one outgoing edge.
It cannot have more than one, however, because that woulg tmp distinct walks from
u tow.

Sincel is strictly decreasing along any walk; cannot contain a (directed) cycle.
In particular, it cannot contain any self-loops. More gailgy the associated undirected
graph,G_, cannot contain an (undirected) cycle. If it did, we couldifan vertex,u, in
the cycle such thal;(u) is maximum among all vertices in the cycle. SinGecontains
no self-loops, the cycle has length at least 1, and therenaredges in the cycle incident
with « in . These edges correspond to directed edgés iBincel(u) is maximum,u
must be the starting vertex for both edges. Butas only one outgoing edge, so this is a
contradiction

We know from Lemma 1.1 that every directed graph containsastlone closed class.
The main result established in this section is: if a diregieghh containexactlyone closed
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class, then it contains directed spanning (i.e., contgiailhvertices) subtrees rooted at each
of the vertices in that class.

We will say that a graph¢z = (V, E), contains astar at v iff for every w € V,
(w,v) € E. Likewise, we will say that7 is starryiff it contains a star at some < V. Note
thatG contains a star at iff there is a walk from every other vertex @ to v.

Lemma 6.2. For any directed graplt = (V, E), G contains a star at the vertexiff G
contains exactly one closed class anig a vertex in that class.

Proof. AssumeG contains exactly one closed clags, and choose an arbitrary vertex
v € C. Now for any other vertexy € V, eitherw € Corw ¢ C. If w € C, w andv are in
the same SCC, so there is a walk framto v. If w ¢ C, w is transient, sincé& contains
only one closed class, so by Lemma 1.1 there is a path frdemminating in a closed class,
which must beC. Letu € C be the vertex at which this path terminates. Sin@ndv are

in the same SCC, there is a walk franto v, and therefore there is a walk fromto v. So
there is a walk inG from every vertex ta, andG, contains a star at.

Conversely, assume th@t- contains a star at. First, by Lemma 1.1¢7 must contain
at least one closed class, callitSecondp must be inC. If it were not, there could be no
walk fromw € C to v, sinceC has no outgoing edges. Third, there cannot be more than
one closed class, since by the same argumevduld have to be in all of thenm

Lemma 6.2 says that & contains exactly one closed class, then it contains a éulect
walk from any vertex inGG to each vertex in that class. In the remainder of this section
we establish a stronger result, namely that the assumptiexactly one closed class
implies that for each vertexin the closed clasg; contains a subgrap@i’ in which there
is auniquedirected walk (which is necessarily a path) from any verteg'i to v (i.e., G
contains directed spanning subtrees rooted at each of theegein the closed class).

Lemma 6.3. For any directed graph¢, G, contains a star at the vertexiff G’ contains a
directed spanning subtree rooted:at

Proof. Assume that7 contains a directed spanning subtree rooted &y definition, it
then contains a (unique) directed walk from any vertex.t@ his means that:- contains
an edge from any vertex ta In other words(7; contains a star at.

Conversely, ifG contains a star at, we can use the well-known graph algorithm
breadth-first search to construct a directed spanningesilbdoted at. Breadth-first search
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starts with the root node, in a graph(G = (V, E). Each vertex reached by the algorithm
is first discovered, then placed in queue, then processed wiedequeued. To process
a vertex, the algorithm discovers and enqueues all undesedwertices adjacent to the
current vertex. It then dequeues the next vertex for pracgs#n this way, the algorithm
processes all vertices a certain number of edges away #rtwefore descending to the
next level of depth. The algorithm uses a “color” decoratmguarantee that no vertex is
processed more than once. Vertices not yet discovered al@ B/Mertices discovered but
not yet processed are GRAY, and processed vertices are BLACK

The pseudo-code below is a modification of the basic algoritBince the edges in a
directed spanning tree point toward the root, this algoritraverses edges backwards, that
is, at any iteration it discovers a vertexff there is an edge pointing from to the vertex
currently being processed. In addition, it keeps track efatiges traversed this way in the
setE’. We will argue that the returned gragh = (V, E'), clearly a subgraph af/, is a
directed spanning tree containedin

Algorithm 1 BFS Tree
@ = new Queue()
E' =0
for (ueV)
color[u] = WHITE
color[v] = GRAY
@.enqueue()
while (1Q.isEmpty() {
u = ().dequeue()
for Gw | (w,u) € E;) {
if (colorfw] = WHITE) {
colorfw] = GRAY
E'.insert(w, u))

.enqueuey)

} }
color[u] = BLACK

}
return (G’ = (V, E'));

For any non-root vertex # v € V,

e v is eventually discovered (turned GRAY) by the algorithmnc® G contains a
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star atv, there is a path from to v in G. Enumerate the vertices on this path
Pi,---,p With p; = v, p, = u, and(p;,p;,_,) € E. Claim: every vertex on the
path will be discoveredp, = v is discovered in the initialization step. Suppgse,

is discovered. Them,_, is enqueued, which guarantees that it will eventually be
processed. When it is processgdis examined, sincép;, p,_;) € E. If p, is GRAY,

it has already been discovered. If not, it is discoverechddrGRAY, and enqueued.
So by inductionp; = u will eventually be discovered.

e there is a path from to v in G’. Enumerate the non-root vertices, . . ., w,, in the
order they are discovered. The firgt,, is discovered because there is an edge, and
therefore a path(w,,v) in GG, and this edge is added . Suppose there is a path
from wy, to v in G’ for all k£ < i. Then whenw; is discovered, an eddev;, w;) is
added toE’ from w;, to the vertex currently being processed. Since all vertizes
discovered before they are processes, i. So there is a path from; to v, and with
the new edge, there is a path framto v in G’. By induction, there is a path from
to v, sinceu is discovered.

e this path is unique. When a non-root vertex is discovered,aiye is added t&’
out of that vertex. Since each vertex is discovered exactbepexactly one edge
leaves each non-root vertex @. The path fromu to v uses the only edge out of
each vertex in the path, so it must be unique.

Thus,G’ is a directed spanning tree by definition.
O

Lemma 6.2 says thd&t contains a star at iff G contains exactly one closed class and
v is in that class. Lemma 6.3 says tl@} contains a star at iff G’ contains a directed
spanning subtree rootedatTherefore,

Theorem 6.4. A directed graph contains a directed spanning subtree rooted at a vertex
v iff G contains exactly one closed class, and a vertex in that class.

6.1.2 DST Construction

We now give a way to represent the set of directed spannirg tiethe complete graph on
n vertices in terms of certain mappings. This will allow us teega constructive proof, in
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Section 6.2, of the Markov Chain Tree Theorem using deteanis

Among all directed unweighted graphs anvertices, we restrict attention to those
which arel-regular, that is, those in which each vertex has a unique outgoing.€tigere
is a 1-1 correspondence between such graphs and the cemappingss : S,, — S,,,
which we will suggestive refer to as “1-regular” mappingge8ifically, for a 1-regular
graphG = (V, E), letmap(G) = o such thawv (i) = j iff (v;,v;) € E. Conversely, any
sucho defines a 1-regular grapls;_ (o), such that(v;,v;) € E iff o(i) = j. Clearly,
G_(map(G)) = G andmap(G_(0)) = 0.

There is also a 1-1 correspondence between 1-regular nggpgin the seét of n x n
square Markov matrices with a single non-zero entry (i)an &ach column, which we will
again refer to as “1-regular”. To any 1l-regular mapping 7', we associate a 1-regular
matrix mat(c) € M as follows: (mat(c)), ; = 1iff o(j) = i. Observe that each column
j of mat(o) is the standard basis vectay;), somat(c) = (e, - - - €,n)). Conversely,
for any matrix M/ € M we can definenap(M) € T such that(map(M)) (j) = i iff
M, ; = 1. Again,mat andmap are inverses and so give a 1-1 correspondence between the
set of 1-regular mappings and.

Finally, note that these correspondences induce a 1-1spmnelence between the set
of 1-regular matrices and 1-regular graphs, which is justisual procedure of associating
with a matrix M its unweighted grapliz_(1/). We will also definemat(G) for any 1-
regular graplG to be the corresponding 1-regular matrix.

Four such 1-regular matrices, with their correspondinglysaare shown in Table 6.1.

Table 6.1: Four 1-Regular Markov Matrices and Graph&l; € M, (equivalently,
map(M;) € T3) and M, € M, (equivalentlymap(M,) € T}).

00 1 01 1 010 111

M=|100]||M=]l100]||M=[100]||M=|000
010 000 00 1 000

G_(M;) @ v G_ (M) @0 G_(M;) @ v G_ (M)

Ug U3 Ug U3 Vg (/\(. U3 Vg U3
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Fori € S, defineM; = {M € M | M;; = 1iff j =i} andT; = {map(M) | M € M,}.
These sets correspond to 1-regular graphs with exactlyef#osp atv;, such as\/; and
M, in Table 6.1. Now restrict attention further to graphs ofalmaiin Markov matrices,
definingM; = {M € M, | M unichai andT; = {map(M) | M € M,}. By defini-
tion, for everyM € M,, G_(M) has exactly one closed class, which must be the single-
ton, {v;}. For example), € M,. Notice that while)M, is unichain, it does not contain a
self-loop. Likewise, whilel/; has a self-loop ats, it has two closed classefy;, v, } and
{vs}, so itis not unichain.

Table 6.2 depicts all members of the geft; with vertices inS;. Note that the diagonal
entries and the entries in the first column of each matrix aterchined by the definition
of M. This leaves two possibilities each for the two non-zereiesin columns 2 and 3,
resulting in the four members. Of these folif,, M,, andM; are unichain (each has only
one closed clasgp, }) so they are members @#(,. M, on the other hand, has two closed
classes{v,} and{v,,v;}, so itis not a member ofA;.

Table 6.2: The setM; of 3 x 3 matrices.
map (M, ), map(M,), map(Ms) € T).

M,, My, M; € M, (equivalently,

111 1 10 1 01 1 00
M=ooo||m=loo1]||m=loo0oo0o]||m=]001
0 00 0 00 010 010
G- (M) G (M) G-(n) &) |- (1,) &)
Uy (% (%) 4—.’(]3 ’U2‘—> Vs UZOUS

Now for o € T, let G° (o) be the graph obtained by removing the self-loop,dtom
G_ (o). We will call the set of all such graphs;, = {G° (¢) | o € T;}. Notice that these
graphs are directed spanning trees. In fact, this methosdtiears all directed spanning
trees rooted at;, as shown in the following theorem. An illustration is givienTable 6.3,
showing the associated Markov matricesyt(c) € M, foro € T,.

Theorem 6.5. D, is the set of all directed spanning treesowertices rooted at;.
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Table 6.3: The seb, of directed spanning trees with verticesdnrooted aty, and their
associated matrices. These are the elementd pivith the self-loops at, removed.

1 1 1 1 1 0 1 0 1
M, = 0 0 0 My = 0 0 1 M; = 0 0 0
0 0 O 0 0 0 010
GO_ <M1> U1 GO_ (Mz) U1 GO_ (MS) . U1
Vo U3 Vo U3 Vo U3

Proof. For any mappingr € T, mat(o) is unichain, sa&_(mat(c)) = G_(o) contains
exactly one closed class, which must be the vertexith the self-loop. By Theorem 6.4,
G_(o) contains a directed spanning tree subgraph rooted &y removing the self-loop
at v;, we obtainG” (o), which, sinceG_ (o) is 1-regular, has no outgoing edges from
and one outgoing edge from every other vertex. But by Thed@dmthe directed span-
ning subtree has no outgoing edges from the rogtand one outgoing edge from every
other vertex.G” (o) is the only possible subgraph with these properties, saaitdsected
spanning tree.

Moreover, every such tree can be constructed in this faskdoren a directed spanning
treeG’ rooted atv;, add a self-loop at; to obtain a 1-regular grapls, with associated-.
Since the directed spanning trééis a subgraph ofy, by Theorem 6.4¢7 contains exactly
one closed class. In particulaniat(o) is unichain, i.e.mat(c) € M,, so thatr € T, and
G (o) = G'. Thus,G’ € D,, andD; is the set of all directed spanning trees rooted aty

6.1.3 The vectorw,,

Now that we have a construction for the set of directed spaytnees, for any given Markov
matrix, M, we may enumerate the directed spanning subtreés ¢1/), and their associ-
ated “weights”. We will see that whelY is unichain, these are closely related to the stable
distribution of M .

Given any Markov matrix)//, and any € T;, we define

W(M, U) = H]—?siMa(j)J (61)
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Intuitively, this is the “total” weight inG(M/) of the edges ii?” (o) (where we aggregate by
multiplication rather than addition), which is a directg@sning tree when € T',. Notice
how we take the product ovgr+ i, so that the “total” weight excludes the weight on the
self-loop ati in G_(o). Notice further that, while we will usually apply this defiioin to
o €T;, W(M, o) is well-defined for anyr € T,.

Given a Markov matrix\/, we now define the vectar,, such that

(wy)i = Y W(M,0) 6.2)

€T,

Theith entry ofw,, is the sum of the “total” weights id:(A/) of all directed spanning
subtrees rooted at.

Example 6.6. Throughout the remainder of this chapter, we will use the kdamatrix

1 1

0 3 1
M=112 i as a running example. To calculate,,),, we must sum over all

1 1

03 3

o € T, which correspond to the matrica$,, M,, M, € M, enumerated in Table 6.2.
First, calculatéV (M, o,), for o; = map(M,); in particular,o, (1) = 1,0,(2) = 1, and
01(3) = 1. Here,W (M, 01) = Ty My, (jy; = My )2 My 35 = MipMys = 5% 5 = 5.
Similarly, W (M, 05) = I M,y ; = My, 2My 33 = My oMoy = 3 X
WM, 05) = T Moy 5) j = Moy 2Moy )8 = Ms2Mis = 3 X 5 = 5
Finally, (wy)1 = X7, W(M,0) = §+5+5 = 3. Repeating this process fore T,

1_
4

4 8

ando € T, we find thatw,, =

Nl= Nl—= oolw

Lemma 6.7. For anyn x n Markov matrixM, all i € S,,, ando € T;, W (M, o) # 0 iff
the directed spanning tree associateditaz (o), is a subgraph o _ (M).

Proof. Abbreviate the directed spanning tree associatedly G. We may enumerate all
the edges o7 as (v;,v,(;)) for j € S, \ {i}. Anedge,(v;,v,(;)), isin G_(M) iffitis
in G(M) iff it has positive weight, i.e. M, ;) ; > 0. Thus,G is a subgraph of;_ (M) iff
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By Lemma 6.7, wher?” (o) is not a subgraph af/_ (M), the corresponding term in
> oer, W(M, o) is zero. ForM Markov, defineT’(M, ) to be only those mappingsin
T, whose associated direct spanning trees are subgrajghs(éf ): i.e.,

T(M,i)={oceT,|G"(0) c G_(M)} (6.3)
We may now give an equivalent definitionof,, with zero terms removed from the sum:

(War)i Z W (M, o) (6.4)

We will use this definition from now on.

Theorem 6.8. The vectorw,, # 0 iff M is unichain. Specifically, if\/ is unichain,
(wyr); # 0iff v; is in the closed class @F(M).

Proof. SupposeM is unichain. By Theorem 6.4 there exists a subgraphc G_(M)
which is a directed spanning tree rooted at the verteif v, is in the closed class of
G_(M). If v; is in the closed class, let € T,; be mapping associated €4 (so thatG; =
G (0;)). Theno; € T(M, 1), and there is at least one term in the Sy WM, o).
Since this is a sum of positive ternisy;,); # 0. If v; is not in the closed clas&; (M) has
no directed spanning subtree roote@,aso7'(M, i) is empty andw,,); = 0.

If M is not unichain, by Theorem 6@( ) has no directed spanning subtree rooted at
any vertex. SAd'(M, i) is empty for alli, andw,, = 0. O

6.2 A Proof Using Determinants

Having established all necessary combinatorial defingtimnsection 6.1, we now move
on the proof of the Markov Chain Tree Theorem. The proof wdpdnd primarily on
the multi-linearity of the determinant function from lirreglgebra. Thus, we will begin by
reviewing basic facts and definitions associated with tierdegnant function. Specifically,
we will:

e review the basic properties of the determinant,

¢ define what we mean by minors, cofactors, and the adjoint cditzixn
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e show how the vectory,,, from section 6.1 naturally occurs as the diagonal of the
adjoint of the laplacian of a unichain Markov matrix,, and

e use linear algebrato show that this must then be propottioniae stable distribution
of M.

6.2.1 Determinants

We begin by recalling some basic facts regarding the detemmifunction on square matri-
ces. For notational convenience, we will sometimes wrjte - - - A v,, for the determinant
of then x n square matrix with);s as columns, wherg € R".

a b
The determinant of & x 2 matrix, = ad — bc. The determinant of an x n
c d

matrix, NV, for n > 2 can be calculated recursively as follows, using the Lapéxgansion
formula. The(4, 7)" minorof N, N, is the(n — 1) x (n — 1) matrix obtained by removing
thei" row and;" column fromN. The (i, j)" cofactor of N, C%/ = (—1)""7|N"7|. Now,
for any row: or columnj of N,

IN| =) N, O =Y N,OF (6.5)
k=1 k=1
1 1
0 2 1%
Example 6.9. For example, the determinant of the matrfix = 10 i can be
0 3 3
calculated by applying the Laplace expansion along thedoktmn: | M| = Ml,lC}V}l +
11
My O + My O = 0x Oyl +1x (=17 2 2 1 0x Oy = —1(5 x5~ x3) =
2 2

.0

|

Theorem 6.10.The determinant function on square matrices has the fofigwiell-known
properties (see, for example, (Horn and Johnson, 1985)):

a) [NM| = [N[[M

, or equivalently, setting; = Me;, so that M| = v, A--- A,

(Nv) A+ A(Nv,) =|N|vg A+~ A, (6.6)
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b) [I| =1and|M | = M|,
c) |N| = 0iff N is notinvertible.

d) [M~'NM| = |N|, and in particular, for any permutation matrik, |P'MP| =
| M].

e) |M'| = [M]
f) If N is block-triangular with square diagonal block®;, then|N| = [, |V,].
g) The determinant function imulti-linear, meaning it is linear in each “factor”, i.e.,

VA A(au; +F )N Ao, =a(vp A A A Ay F U A AWA A,

Another key property of the determinant involves the adjoperatoradj. Theadjoint
of a matrix is the transpose of its matrix of cofactors, f@.anyn x n square matrix)V,

(adj N), ; = O = (=1)"" |[N*] (6.7)
The adjoint satisfies the following equations (Wicks, 1996)
adj(N) N = |N|I = N adj(N) (6.8)

These equations are equivalent to the Laplace expansiowfarfor determinants.

0o 1 1
2 4
Example 6.11.Recall our matrixd/ = [ 1 0
03 3
0 1
MM =) andadj(M),, = (=1) MM = 4
2 2
1
Similarly, M'? = ‘11 ,andadj(M),, = (-1)"*?|M"?| = -1,
2
_1 11
8 8 8
Continuing this process, we find thatj(A/) = [ -1 0 1

|—=
(@)
I
N[
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Now it is easy to check thatdj(M)M = M adj(M) = (I
M| I. 0O

6.2.2 The Stable Distribution

Definew,, to be the vector consisting of the diagonal entriesd&if(A). That is,(w,,); =
adj(A);; = Oy = |A”|. In this section, we will show thaw,, is closely related to
the vectorw,, defined earlier. This will lead to a formula for the stabletidsition of a
unichain Markov matrix in terms of its directed spanningte

In order to proceed, we need a bit of additional notationlgtV') denote the result of
replacing the" column of N by the standard basis vectey,

Example 6.12.For M in the examples above,

1 L 1 3 3 3 3
2 4 8 8 8 8
— — 1 3 — 1 1 1 . — 1
1 1 1 1 1 1
0 3 —3 3 2 3 3
1 1
s 3
Further,R, (A)=| 0 -1 i . Computing the determinant of this matrix (using
1 1
0 3 —3
-1 1
the Laplace expansion formula) yields, (A)| = 1 x l=mix-i-ixls

L1
2 2

g = (wy):1, Which holds in general, as the following lemma shows.

Lemma 6.13. For any Markov matrix, M(w,,), = |R; (A)].

Proof. By the Laplace expansion formula for determinant along'tremlumn,| R, (A)| =
S (RiA))CEL ) = C ) = (FDPRy(A)] = (—1)%|A™] = adj(A),; = (Wy);. O

From our examples, it appears that, = w,,. We will now work to show that this is
(almost) true, in general. We will do this by gradually reimg w,, via a series of lemmas,
until we obtainw,,.

*More formally, R, (N) = N + (I — N)e;e}, so thatR, (N)e; = Ne; + (I — N)esefe; = Nej + (I —
Neili = jl = efli = jl + N(ej — e;li = j]) = e;[i = j] + Neji # j].
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Lemma 6.14. For any Markov matrix, M(wy,); = >_,cr, W(M, o) [R;(A(mat(0)))],
where, by our usual conventiof(mat(c)) = mat(c) — I.

Proof. By Lemma 6.13, remembering that= M — I, we may first write(w,,), in terms
of the columns of?;(A),
(@); = [R; (A)]
= Ae; A ANe; A+ AAe, (6.9)

Since the columns of sumto O (i.e., are iker J), we may write thgith column ofA, Ae;,
interms ofe; ; = e; — ¢, fori # j (i.e., a choice of basis fdter ). We begin, as follows:

A€]:M€]—GJZZMZJ 6 _ZM 6+ _1)6j
=1 1#]
Since thejth column of A/ sums to 1, we obtain the desired expansion:

i#j i#j i#j i#j
Applying Equation 6.10 to Equation 6.9, we have, by the rluigarity of the deter-

minant,
(wl\/l)i - ZMsl,lésl,l/\' Z s, mCs,m
5171 SpFN
= Z Z . Sn)(58171/\.../\61./\.../\58”7”)
s$1#1 SpF#N
= > > (Hj#MsN) (Eos Ao Aeg A AT, ) (6.11)
s1#1 SpFEN

We now apply the substitutiosny = o(j), so that each choice of values for the summation

variables{s,,...,s;,...,s,}, represents a unique choicewof S, \ {i} — S,,. No choice
of o(i) is made because Equation 6.11 does not include a summaton,0Wotice that
the sum now requires(j) # j for all j # i. We may also require;, = o (i) = i to obtain
a unique choice of : S, — S, such thatr(j) = j iff j = i, i.e.,0 € T,. Therefore,
Equation 6.11 may be rewritten as

(EM>Z = Z (H];ézM ) (Ea(l),l ARERNA €; ARRA EJ(n),n)

= Z W(M,0) (Esaya A A€ A ABomyn) (6.12)
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Now conside®, ), A---Ae; A--- A€, . Converting back to standard determinant
notation, we have

Coi A NG AT = | T € Bt
= Rz < E0(1) o éa(i),i e éa(n),n ) ‘
= ( 0(1_61 ea(n)_en>‘
= [B((eoy o ) = 1)
= |R; (A(mat( )] (6.13)

Combining Equations 6.12 and 6.13 give our desired equation

(Wy)i = Y W(M,0) |Ri(A(mat(a)))

O'ETZ'

The formula from Lemma 6.14 may be simplified significantlyce we prove the fol-
lowing lemma.

Lemma 6.15. For any o € T}, |R;(A(mat(c)))| = (—1)""", whenevew € T, and O
otherwise.

Proof. Suppose that € T',. Consider the associated directed spanning ttee, G° (o).
We can assign each vertexdh_ (M) a number according to the length functignon D,
given in Theorem 6.1. By sorting the vertices from low to hightheir value under the
length function, and renumbering the vertices in this sbaler, we achieve the property
that the edge out of each non-root vertex ends at a lower netlvertex. This is because
for (u,w) € E, withu # v;, lo(u) = lg(w) + 1. Sincelg(v;) = 0, v; is renumbered as the
first vertex.

From a matrix perspective, if we permute the rows and coluastording to this
renumbering of the vertices, the result is upper-trianguimce edges always go from a
higher (column) index to a lower (row) index. Moreover, thagbnal contains all 0's
except in the(1, 1)-entry, corresponding to the fact that the graph has a geff-bnly at
the root, which gets renumbered with index 1. Therefore,stmae permutation of is
upper-triangular with -1's on the diagonal, except for a thie(1, 1)-entry, and the same
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permutation ofR; (A) is upper-triangular with -1's on the diagonal, except for im the
(n,n)-entry. By Theorem 6.10d), permuting the rows and columresdwt affect the de-
terminant. So by Theorem 6.10f), the determinant is the yobdf thesel x 1 diagonal
blocks, and R; (A(mat(c)))| = (—1)"".

Now suppose that ¢ T,;. M = mat(c) is not unichain, so it has at least two closed
classes. Pick two such closed classgsands,. By Lemma 2.10, there exists a permu-

xg 0 0
tation matrix such thaP’! M P, = | «, M, 0 |, whereM, and)M, are the Markov
*o 0 M2
principal sub-matrices corresponding 4pand s,, and thex’s are unknown entries. In
particular, it is block lower-triangular, as AP = ¥, A, 0 |[|,withdiagonal
*9 0 AQ

blocks,D; = %o — I, Dy = My — I = Ay, andDy = M, — I = A,. P'R; (A) P is also
block lower-triangular with exactly one of the diagonaldks, D, replaced byr, (Dj),
for somei’ (determined byP andi) andj = 1,...,3.
By Theorem 6.10d),7;(A)| = |P'R; (A) P|, which, by Theorem ), is eithéR, (x, — I)[ |A,] [A],
0| | Ry (A1)||Aal, OF %] |Ay] |Ry (Ag)]. SinceA; andA, correspond to Markov matrices
M, andM,, neither is invertible. In other words, both have determirzero, so there is at
least one zero term in each product, aRgA)| = 0. O

We can now show that,, andw,, are equal, up to a change in sign.
Theorem 6.16.For any Markov matrix M/, @,; = (—1)" " 'w,,.

Proof. Focusing attention on th& components, we must show that
@y = (=1)" Hwy)i = (D" Y W(M,0).
o€T(M,i)
By Lemma 6.14,
(@) = > W(M,0) |Ri(A(mat(0)))] -

O'ETZ'

By Lemma 6.15|R;(A(mat(c)))| = 0, if ¢ ¢ T;. Thus, this simplifies to

> W(M,0) |Ri(A(mat(0)))| .

UGT,L-
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Moreover, whenr € T}, Lemma 6.15 says thaR; (A(mat(0)))| = (—=1)""", so that this
simplifies to

S WO o) (=) = (—) Y WMLa) = (1) Y W),

o€T; o€T; o€T(M,i)

as desireda

Theorem 6.17(Markov Chain Tree Theoremlror any unichain Markov matrix}/, stab M =
{vyr}, where

= | 3 W0)| = ) (6.14)
oeT (M)

with normalizing constant’ = [lwylly = Y (way)y = Yy Yo WM. 0).

Proof. By Theorem 5.14, sincé/ has 1 closed classlimker A = 1. This means that
|A| = 0, and, by Equation 6.8) = |A| [ = adj (A) A. In other words, all rows ofidj(A)
are inker A’. By Theorem A.1dimker A’ = dimker A = 1, sinceA is square, and
J € ker A', so each row ofidj(A) must be a multiple of, i.e., for each row, all entries in
that row must be equal. This means that the columnslf\) are all identical.

Similarly, 0 = |A| I = Aadj(A). In other words, all columns ofdj(A) are inker A.
Now w,, is defined as the diagonal entrieszofj (A). Since the columns afdj(A) are
identical,w,, is also equal to each column. In particular,, € ker A, and alsow,, €
ker A. SinceM is unichain, by Theorem 6.8y,, # 0, and hencgw,,} is a basis for
ker A.

The stable distributions af/ are the positive norm-1 vectors kar A. We know that
wy, IS positive, since its entries are the sums of products otigesveights. By letting
K = |lwyll, andvy, = +wy, we see thaty, > 0, and [luy |, = D7, (wa)i/K =
%HwMH1 = 1, sowv,, is a stable distribution o#/. Sincedimker A = 1, v,, is the unique
stable distribution of\/. O

Example 6.18.Completing the ongoing example, we calculate the normabzaonstant

as follows: K = (wy); + (war)e + (war)s = &, s0vy, = | & |. Indeedp,, is a stable
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1 1 3 3
0 2 % i i1
distribution, sinceVfv,, = [ 1 0 1 Ll=324 [=vwmO
1 1 4 4
0 2 3 i i

Notice that Theorem 6.17 suggests thaf;), may be viewed as the conditional prob-
ability that a randomly selected directed spanning subresoted ati, where the relative
probability of each tree is given by product of the weightg®edges. This implies that, if
we could efficiently sample from the corresponding disttiitiiu of directed spanning sub-
trees, we would have a Monte Carlo algorithm for computing While Broder (1989)
provides such a sampling algorithm, it is not sufficientlgtfeo render the associated pro-
cedure for computing,, competitive with other more direct techniques.



Chapter 7
Perturbed Markov Matrices

We now wish to generalize our our study of Markov matricehdase when the entries
are sufficiently “nice” functions of a non-negative paraengt, to so called “perturbed”
Markov matrices (PMMSs). If we denote such a matrix iy, we will be interested in the
stable distributions ofi/, ase — 0. As such, we will need to combine the linear algebra
and graph theory of Part | with some careful real analysis.

We will show that:

e a PMM, M., has a well-defined stable distributian, which is a “perturbed” matrix
(i.e., column vector),

e v, = lim,_, v, exists, the so-called “stochastically stable distributigGSD) of M.,

e v, only depends o/, up to an equivalence relation (“asymptotic” equality) deéin
over its entries,

e the asymptotic equivalence class of an entry is determigeaid real-valued invari-
ants, which we call theesistanceandcostof the entry, respectively,

¢ likewise, the asymptotic equivalence class of a PMW)], may be specified by two
real-valued matrices (i.e., its resistan&d,M, ), and cost(' (M,)),

e the two constructions from Chapter 5 (i.e., scaling and c&dn), as well as the
corresponding notions of equivalence anekquivalence, generalize to PMMs, and

e by careful application of the Markov Chain Tree Theorem, &e guarantee that we

only need invertonstanimatrices in our constructions.
89
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By alternating these two constructions, we are able to dieefirst exact algorithm for
computingv,. Moreover, since the SSD only depends on the asymptotivaignice class
of M., we may represent all perturbed matrices in the computdyotine corresponding
pair of resistance and cost matrices.

Because we will only be interested in functional values feufficiently small” non-
negative values of, it will be useful to establish the following two conventmnlf Q(¢)
is a proposition containing the variable we will write “Q(e) for e = 0” as an short-
hand for ‘96 > 0 s.t. Q(e) for e € [0,0]". Likewise, “Q(¢) for ¢ > 0" will mean *
36 > 0 s.t. Qe) fore € (0,9]". In other words,e = 0 may be read as “for sufficiently
small non-negative’, while € > 0 will mean “for sufficiently small positive”.

7.1 Exponentially Convergent Functions

In this section, we will establish the groundwork for ourdstwof PMMs by defining pre-
cisely what we mean by “sufficiently nice functions«f The fundamental issue is that
we need to restrict to a class of functions which:

e could serve as entries to a Markov matrix,
e have a well-defined limit as— 0, and

e is closed under basic algebraic operations.

In particular, we will want the collection of (Markowhatrices M., with such entries to be
closed under standard matrix operations. Moreover, wewsilitstab (11, ) to correspond
to a matrix with such entries, so that we may take limits. Idi&on, since we are primarily
interested in functional values as- 0, they will not need to be defined fall non-negative
e. In particular, we will only be interested in such functiasto “asymptotic” equivalence.

Thus, to begin it is natural to require that the entries sti@illeast be positive and
continuous. In fact, we will be a bit more stringent. We waktrict attention to the col-
lection of functions,f(e), which are continuous for sufficiently small non-negatyvend
either positive for sufficiently small positiveor zero for sufficiently small non-negative
We will denote this collection a€'* [0, %], and, using our convention, we may define it as
follows:

C™[0,%] = {f continuous fok = 0 | f(¢) >0, Ve=0o0r f(e) =0, Ve =0}
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Alternatively, if C°[0, 6] denotes the set of real-valued, continuous function® ofj, then

COl0,+] = J{f €C0,6]| f(e) >0,V0<e<dorf(e) =0,70 < e <6}

6>0

However, this collection is too big. Any € C°[0,4] andé’ € (0,4), defines a re-
striction,g € C°[0,0'], so thatg(e) = f(e), forall 0 < ¢ < ¢§'. We would clearly like to
consider those as the “same” functibithus, we define the following relation @' [0, ].

Definition 7.1. For f,g € C™[0, ], we will say thatf is asymptotically equal tg and
write f ~ ¢ iff either:

i) g(e) =0= f(e) fore = 0, or

i) g(e) > 0fore - 0andlim,_+ 29 = 1.

Notice that, ifg € C°[0, ¥, then eithery(e) = 0 for e = 0 or g(e) > 0 for e = 0 (but not
both), so that Definition 7.1 makes sense.

We now show that this relation is, in fact, aguivalenceelation, along with some
other useful facts.

Lemma 7.2. For f;,g; € C°[0,%],i = 1,2,
a) if fi(e) = g1(e) > 0fore = 0, thenf, ~ g;;

b) fi + fo, fifa € CO[O, ], that is, this collection of functions is “closed” under
addition and multiplication;

) ~ is an equivalence relation ofi°[0, «|;

d) if f, ~g,,i=1,2,thenf,f, ~ g,9,, that is,~ is “preserved” under multiplica-
tion.

Proof. The proof of part a) is almostimmediate. Assuming th@a) = g(e) > 0fore > 0,
lim,_ o+ 29 = lim_;+ 1 = 1, so thatf ~ g, by Definition 7.1 ii). Part b) is also clear,

since the sum or product of continuous/positive functiensontinuous/positive.

lMathematically, we want to look at the “germs” 6f [0, c0) at 0 (Warner, 1984).
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To prove part c), we must show thatis reflexive, symmetric, and transitive. For any
f € C7)0,#], eitherf(e) = 0, for e = 0, so thatf ~ f by Definition 7.1i), orf(¢) > 0, so
that, by part a)f ~ f. Thus,~ is reflexive.

Likewise, if f ~ g, eitherg(e) = 0 for ¢ > 0, so we must be in case i) whefife) = 0
for e = 0, as well. In which case, Definition 7.11) gives~ f, as well. Alternatively,

g(e) > 0 for e = 0 and we must be in case ii). Sintien__+ ’;8 = 1, we cannot have

f(e) = 0fore =0, sothatf(e) > 0 for e = 0. We may then say thaim__+ ?Eeg =1,s0

thatg ~ f by Definition 7.1ii). That isx~ is symmetric.

To finish part c), assume thgt~ g andg ~ h. Since we have already shownto be
symmetric, we know that ~ ¢, as well. Now assume thate) = 0 for e = 0, so we must
be in case i), that is, we may conclude tlfgt) = 0 andh(e) = 0 for ¢ = 0, as well. In
particular,f ~ h. Otherwiseg(e) > 0 for ¢ > 0, and we must be in case ii) Therefore,

h(e) > 0 for e - 0 and we may conclude thétn_+ £9 =1 = lim, . Thus,

e) -0 h(

1=1-1= lim @ lim @: lim (&@) = lim &
0" g(€) emo™ h(€) ot \g(€) h(e) ) —o* h(e)
and by Definition 7.1ii),f ~ h. Thus, we have proven thatis transitive.

Now we must prove part d). First consider the case when at ¢eesof thef; or g, is
identically 0. Assume, for example, thAt ~ 0. Using the fact that- is an equivalence
relation, we may reason as follows. By assumptigny f; ~ 0, so thatf,(¢) = 0 = g,(¢)
for e = 0. Thenf,(e) fo(€) = 0 = g,(€)gy(€) for e = 0, and f, f, >~ 0 =~ g, 9.

Otherwise, sincg; ~ g;, lim 19 — 1. Therefore,

e—0" gi(e)
i 1095200 _ g A (0
e—0T 91( )g2< ) e—ot 91(6) o 92(6)

so thatf, f, ~ g19,. O

=1-1=1

Since~ is an equivalence relation, we can partitiofi[0, «] into equivalence classes,
and denote the corresponding collection of equivalensekabyC. In particular, there is
a unique equivalence class containing the constant fumdio For convenience, we will
denote this class (and any member function) by 0, as well.icBdbhat if f 2 0, then
f(e) > 0fore > 0.

Lemma 7.2d) says that multiplication is a well-defined operaonC. To perform
addition, subtraction, or division on equivalence clasgesmust restrict attention to func-
tions which are “nice” enough. A standard restriction isdoKl at only those functions
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which “look like” exponentials, i.e., those classes whiohtin an exponential of the form
ce” € C°[0, %] for ¢, > 0. Thus, we define the set ekponentially convergergoung,
1993) functionsC* C C as those equivalence classes containifigor somer, ¢ > 0. In-
tuitively, we want to focus on the collection of functiofig € CT[0, ] | Ir,c > 0, f ~ ce"}.
For simplicity, we will blur the distinction between an egaiience class €™ and its
member functions. Likewise, we will abuse notation sliglghd write f € C* instead

of f € CT[0,%] and f ~ c€", for somer,c > 0. For example, we may observe that, as
constant function®®* c C*.

Theorem 7.3. There exist function® : C* — [0,00] andC : C* — [0, c0), such that, for
all f,gecC™:

a) foed £0IffC(f)=c>0andR(f) =r < oo, and
b) f =~ 0iff C(f) = 0iff R(f) = oo

Moreover:
a) for f,g € C*, f ~giff C(f) = C(g) and R(f) = R(9);

b) if f is continuous foe = 0 andlim__+ % =1, withc > 0, thenf € C* \ 0 with
R(f)=randC(f) = c.

Proof. First, observe that the mapping: (0, 00) x [0,00) — C* such that(c,7) = c¢’
gives a 1-1 correspondence betwéenc) x [0, cc) andC™ \ 0. Assume that (c;,7,) =
a(cy,19), that iscie™ ~ cye™. Sincec; > 0,1 = 1,2, we are in case ii) of Definition 7.1.
Therefore,l = lim__+ acl — z—; lim_ o+ €72 If 7 > 7y this limitis 0. If r; < 7y, the

Ccoe' 2
0

limitis co. Thus, we must have, = r,. Moreover,1 = Z—;lime_w €
Thus,« is 1-1.

By definition, if f € C*\ 0, thenf ~ ¢ for somec,r > 0. Sincef % 0, we
must have: > 0, so thatf ~ a(c,r). Thus,a maps onta’™ \ 0. In particular, there are
unique functionsR andC, such that R,C) : C*\ 0 — (0,00) x [0, c0) is the inverse
of a. Notice that, if f ~ ce" # 0, then0 < ¢ = C(a(c,r)) = C(ce") = C(f) and
oo >1r = R(a(e,r)) = R(ce") = R(f). Conversely, i) < ¢ = C(f) andoo > r = R(f),
thenf = o(C(f), R(f)) = ce" #0.

C
= é and61 = Co.
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We may extend both functions to all 6f by settingC'(0) = 0 and R(0) = oo. Thus,
if f~0thenC(f)=0andR(f)= oo. Conversely, ifC(f) = 0or R(f) = oo, we must
havef ~ 0, sinceC(f) > 0 andR(f) < cconC™ \ 0.

Next, observe that, sinag@ and R are defined on equivalence classes it g, then
necessarihC'(f) = C(g) andR(f) = R(g). Conversely, ifC(f) = C(g) andR(f) =
R(g), we may show thaf ~ ¢. If C(f) = C(g) = 0, thenf ~ 0 ~ g. Otherwise,
C(f) = C(g) > 0, sothatR(f) = R(g) < oo, andf ~ C(f)e") = C(g)e@ ~ g.

Finally, assume thaf is continuous for = 0 andlim_+ £ = 1. Then we must
havef(e and hencef(e), be positive fore > 0. In particular,f € C \ 0. However, by
assumptiory ~ ce” % 0, so by parta)C'(f) = candR(f) =r. O

By our comments preceding Theorem 7.3, we can and will ale ¥i(f) and R(f) as
functions defined for alf € C*[0, ¥] with f ~ c€", for somer, ¢ > 0, which are constant
on equivalence classes.

We call the functionsR(f) and C(f), of Theorem 7.3, theesistanceand commu-
nication cost respectively, off. The following Lemma shows how the resistance and
communication cost functions behave with respect to anldisubtraction, multiplication,
division, and taking limits.

Theorem 7.4. The following hold for anyf, g € C™.
a) lim_ g+ f(€) = [R(f) = 0]C(f).

b) f+g € C" withR(f + g) = min{R(f), R(g)} and C(f + g) = [R(f + g) =
R(NIC(f) + [R(f + g) = R(9)]C(g)-

o) If R(f) < R(g), or R(f) = R(g) andC(f) > C(g), thenf—g € C*, C'(f — g) =
C(f) = [R(f) = R(9)|C(9), and R (f — g) = R(f).

d) fg € C", withC(fg) = C(f)C(g9) andR(fg) = R(f) + R(g).
&) If g £ 0, R(f) > R(g), and we defin{g) (0) = [R(f) = R(g)] 5D, then € c*,
C(g) o, andR< ) R(f) — R(g).

Proof. We first prove part a). Iff £ 0, by Theorem 7.3 a), sincee C*, f ~ C(f)e"\).
Therefore,

R
C(H[R(f) = 0] = lim C(f)e") = lim (7) lim f(e) = lim_f(e)

5—>OJr e—»O+ f(€> 5—>O e—»O



95

Otherwise,f ~ 0, R(f) = oo, C(f) = 0, and[R(f) = 0]C(f) =0 =lim__+ f ().

We will approach the proof of part b) in by cases. First, asstimat eitherf ~ 0 or
g ~ 0. Since the statement of part b) is symmetricfiand g, we may assume, without
loss of generality, thag ~ 0. Thus,g(e) = 0 and f(e) + g(e) = f(e), fore = 0, so
that, by Lemma 7.2a)f + g ~ f € C*. Moreover, by Theorem 7.3aR(f + g) =
R(f) = min{R(f), 00} = min{R(f),R(g)} andC(f +g) = C(f) = [R(f +g) =
R(NIC(f) + [R(f +g) = R(9)]C(g), as desired.

To complete the proof of part b), we may then assume that 0 andg % 0. In

particular, we know thaf (), g(¢) > 0fore = 0, C(f),C(g) > 0, andlim__+ ﬁ =
I=1lm_ -+ ﬁ By symmetry, we may assume thatg) < R(f).

Lettinge = [R(f) = R(9)|C(f) + C(g), we have

SO+ 9@ 1 o SO )
i, ceR(gg) - E<C(f ) I e O I, C(z)eR@))
= % (C(f) -1+ lim D=9 1 0(g) - 1)
=~ (CWIRY) = Rlg)] + Clg) =1

Thus, we have shown thagt+ g ~ ([R(f) = R(9)|C(f) + C(g))e™®. In particular,
f+g € Ch. Sincef(e) +g(e) > 0fore = 0, f +g 2 0, so by Theorem 7.3a), we
may conclude thaR(f + g) = R(g) = min{R(g), R(f)} andC(f + g) = [R(f) =
R(9)|C(f) + Clg) = [R(f + 9) = R(NIC(f) + [R(f + g) = R(g)]C(g), as desired.

Now consider part c). First, consider the case when 0, so thatR(g) = oo, C(g) =
0, g(e) = 0, for e = 0. Therefore,f(¢) — g(e) = f(e), for e = 0 and, by Lemma 7.2
a), f—g~ [f. Thus,R(f—g) = R(f) and, sinceC(g) = 0, C'(f —g) = C(f) =
C(f)—[R(f) = R(9)]C(g), as desired.

Now assume that 7 0, so thatC'(f), C'(g) > 0. We know thatf (¢) —g(¢) is continuous
for e > 0, since bothf andg are. Therefore, by Theorem 7.3 b), it only remains to cateula
R(f —g) andC(f — g). As in the proof of part b), let = C(f) — [R(f) = R(9)]C(9g).
EitherR(f) < R(g), soC(f) > 0, or R(f) = R(g), so thatC(f) > C(g). In both cases,



96

¢ > 0 and we may compute

. f(e) — gl 1 . f(€) . 9(6) -
ST T <C<f ) lim o C9) B e Rm)

(C(f) 1+C(g)-1- lim eR@)—R(f))

e—0"

Ol ol ol

= —(C(f) = [R(f) = R(g)]C(9)) = 1
Therefore, by Theorem 7.3bj,— g € C*, C (f — g) = c = C(f) — [R(f) = R(g)]C(g),
andR (f — g) = R(f), as desired, completing the proof of part c).

To prove part d), by Lemma 7.2 b), we know that € C, so it remains to show that
fg ~ ce" for appropriately chosenandc. First, consider the case when one of the factors,
say,f ~ 0. Then,C(f) =0, R(f) = oo, andf(e) = 0 for e = 0. Thus,f(e)g(e) = 0 for
e = 0andfg ~ 0. In particular,fg € C*, with C(fg) = 0 = 0- C(g) = C(f)C(g) and
R(fg) = R(0) = 0o = 00 + R(g) = R(f) + R(g) as desired.

Now assume that neither factor is 0, so tld&tf),C(g) > 0, R(f), R(g) < oo,

f(€)gle) > 0for e = 0, andlim_+ ﬁ =1=lim_ % In this case,

= lim 7f(€) lim 79(6)
R(N)+R(9) csot C’(f)eR(f) csot C’(g)eR(g)
Thus, fg ~ (C(f)C(g))e" ™9 andfg € CT. Sincefy 0, the equation§’(fg) =
C(f)C(g)andR(fg) = R(f)+ R(g) then follow directly from Theorem 7.3 a), as desired,
completing the proof of part d).

Now to prove part €), we assume thatt 0 and R(f) > R(g). Thus,C(g) > 0,
R(g) < o0, g(€) > 0 for e = 0, andlim % = 1. First, consider the case when

+
=07 C(g)e

f ~0,sothatC(f) =0, R(f) = oo, and f(e) = 0 for e > 0. Thengg = 0fore > 0,

lim__ -+ 1;8 =0, and§ € C with <§ (0) =0=[R(f) = R(g)]%. Moreover,§ ~ 0,
; —_ 0 — _ Cu o — _
so that! e C™, WIthC(%) =0=g = % andR<§> = 00 = 00 — R(g) =
R(f) — R(g), as desired.
Otherwise f % 0,sothatlC'(f) > 0, R(f) < oo, f(e) > 0fore = 0, andlim__+ ﬁ =
1. Then
i JE
e—ot 9(6)) e—0" C(f €

=1-1=1
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Thus, setting(g) (0) = [R(f) = R(g)]%, L € Cl0,4], and (g) (¢) > 0fore = 0, so
thatZ e €'\ 0. In addition,

f(e)/g(e))

lim = lim lim

ot C(f)e* D19 10 (g) ot C(f)e™) —ot  g(e)

so that! ~ %ER(”_R(!]). In particular,£ e ¢* with R (g

C (i) — ¢U) a5 desiredo
C(9)

N—

= R(f) — R(g), and

~

Parts b) and d) of Theorem 7.4 generalize to finite sums aralpts, as follows.

Corollary 7.5. If f, e C*,i=1,...,k, then

a) f =31 ,f €CwithR(f) = minies, {R(f;)} andC () = 3,4 [R(f) =
R(f)]C (fi)-

b) f =11 f; € CToWith R (f) = s {R(f)} @andC (f) = Tics, C (o).

Proof. Both parts may be proven by induction. First, consider parfhe case wheh = 1
is trivially true, sincef = f,. Fork > 1, let f = EZ.GSH f; and apply Theorem 7.4 D) to
£ and f,,, along with the induction hypothesis, to obtain

Zesk,1

R(f) = R(F+f)=min{R(]),R(f0)} = min{,min R(f) ,R<fk>} = nin{R(f)
Likewise,

c(f) = (f+fk) R(f) = R() (f) (f) = R(f)IC (fi)
= Z[R<f>:R<)R( f))] (fz-) R(f) = R(f)IC (f)

i€Sp_1

Since we want this to equal, s [R(f) = R(f;)]C (f;), it remains to show thdt?(f) =
R(IR(=R(f)]=[R(f)=R(f;)]forie S, ;.

In general, sincéP][Q] = [P and(), this reduces to showing that, for any S,_,
R(f) = R(f;) < R(f) = R(f) andR(f) = R(f;). Equivalently, we must show
thatR(f) = R(f;) < R(f) = R(f) andR(f) = R(f;). This is true |ffR(f) =

R(f;) = R(f) = R(f), or equivalently,R(f) = R(f;) = R(f;) = R(f).
Thus, by the formula foiR given above, it suffices to observe that, for ang S,_;,
(fz) - mmgesk (fj) = R(fz) - mmgesk,l (f])
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The proof of part b) is a bit easier. The casekof 1 is trivial. Whenk > 1, define
f =1,cs, ,f; and apply Theorem 7.4 b) tband f,, along with the induction hypothesis,
to obtain

R(f) = R(ffi)=R(f) +R(f) = ( > R(ﬁ-)) +R(fr) =) R(f)

€Sy, €Sy

Likewise,

C(f) = C(Fh) =CF)C(f) = (e, ,C () C () = ies,C (£)

7.2 Perturbed Matrices

Before defining a PMM (perturbelllarkov matrix), we first define simply a "perturbed
matrix”. Notice that Theorem 7.4 implies th@t is closed under addition and multipli-
cation. Thus, we may defineerturbed matrixas a matrix,M/, € Mat (C*), that is, a
matrix with entries irC*. As we mentioned in Section 7.1, by this we mean a matrix with
entries inC™[0, ] which are exponentially convergent (i.e., whose equivedesiass irC
belongs taC™). Denoting the set of. x m perturbed matrices dert(n, m), and the set
of all perturbed matrices byert, while subtraction and inversion are only defined in very
limited circumstances, we will show thRert is closed under addition and multiplication
(assuming compatible dimensiors).

We begin by extending the definitions BfandC to Pert. For any perturbed matrix/,,
we may define the associatessistancematrix, i (M.), whereR (M), ; = R ((Mg)ij).
We likewise define its associatedstmatrix, C. (M.), whereC (M), ; = C ((Me)ij) 3

We will say that two perturbed matrice®, and)M’, areasymptotically equaind write
M, ~ M’ iff (M,),; ~ (M’e)ij for all 7, j. Notice that, by Theorem 7.3/, ~ M’ iff
C (M) =C (M) andR (M,) = R (M]).

Theorem 7.4 then generalizes as follows.

’Thus, we may also multiply by “scalars”{h", since multiplication byf € C* is the same as multiplying
by /I, the diagonal matrix with all diagonal entries equafto

3In some contexts, this is also known as tmenmunicatiomatrix of M..
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Theorem 7.6. Assume thad/,, M’, € Pert(n, m), while M, € Pert(m, p).
a) M, + M', € Pert(n,m)

b) C (M, + M), = |[R (M, + M), = R(M,),;| ¢ (0),,
+ RO+ M), =R, [ (M),

ii

Q) R(M,.+ M)  =min {R (M,),,, R (M’E)m_}

1,]

d) MEZ\Z € Pert(n, p)

e C (MJTJ)j = e, C (M), C (M’)k] {R <MM)] — R(M,),, +R (Me

f) 1 (MAL) = mingeg, {R(ME)M +R (M)M}

(2]
In particular, addition and multiplication of perturbed rraces is well-defined on equiva-
lence classes undey.

Proof. Parts a), b), ¢) and d) follow immediately from the definis@nd parts b) and d) of
Theorem 7.4. To prove part e), apply Corollary 7.5 and Thaofet d):

c(uin), = o((um) ) e wn (),
(000 (0, )[04, = {00 (5, )]

(1), (1), | (u8) = roa), 4 m(30), ]

Z?]

Y ¢
kES,,
pNe
kES,,
Similarly, by Corollary 7.5 and Theorem 7.4 d)

R(MM,) = R ((MM’)) - R (Z (M), (M)k)

keS,,

_ 152}9?,1 R <(M/E)z’,k <]\Z)kg)

= ggé{ln {R (M/E)i,k +R (AZ)IH}
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7.3 Perturbed Markov Matrices and Stable Distributions

In this section, we formally define what we mean by a “pertdiddarkov matrix, M., and
all the associated concepts from Part I. That is, we define

¢ the weighted and unweighted graphs associated Wjth
¢ the additional graphs associated with the “unperturbedikghamatrix, M,
¢ the stable and stochastically stable distributions/f and

¢ the collections of rooted, directed spanning subtreescessad with M, with their
corresponding weight functions.

The most delicate issue in this section is to prove that @gledistribution is sufficiently
well-behaved (i.e., is a perturbed matrix) so that we mag itklimit ase — 0 to even
define its stochastically stable distribution. This willalve a careful application of the
Markov Chain Tree Theorem from chapter 6, where we will debinth the “resistance”
and “cost” of a subtree, and restrict attention to minimabhedirected, spanning subtrees.

We now define gerturbed Markov matriXPMM) as a perturbed matrik/, such that,
for e = 0, M. is a Markov matrix and is unichain fer = 0.* Notice that to say that/.
is Markov is equivalent to saying thad/,), . = 1 — >, (M,),, € C*. SinceC" is
not closed under subtraction, in general, this is a somesdiatie assumption. We will
denote the set af x n perturbed Markov matrices ByMM(n). We define its associated
perturbed graphas a weighted, directed graph, but where the weight on edghis inC ™.
Formally,G' (M,) = (V, E,d), so thatl’ = {vy,...,v,}, with (v;,v;) € Eiff (M), # 0,
andd (v;, v;) = (M,),,. Notice, in particular, that the graph does not contain dge;)
iff R (ME)M = 00, corresponding to the intuition that current does not flomtigh a wire
with “infinite” resistance. As before, we will denote the @nlying unweighted graph as
G_ (M,), and its transitive closure b (M,) = (G_ (M.)),. Remember thav;, v;) is
an edge irP (M,) iff there is a walk fromw; to v; in G_ (M1, iff there is a path from, to
v; in G_ (M,). Thus, we may call this the “path” graph of..

As before, we define strongly connected components, cldassdeas, invariant and tran-
sient sets of indices in terms of the corresponding cobectif vertices inG_ (M,). We

“This generalizes the usual definition of a perturbed Markatrix, which requires that/, be irreducible.
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should point out that the unweighted graphs correspondifig, tfor eache - 0 (which we
would also denote by7_ (M,)), are all the same (by definition 6f7[0, +]) and equal to
G_ (M,).> That is, although we could interpret the notatién (M, ) in two ways, either
interpretation leads to exactly the same unweighted grdpias, for example, the closed
classes of the perturbed matrix are just the same as thase bfarkov matrix at any fixed,
sufficiently smalle.

Moreover, we define the associatedperturbedgraph,G, (M,) = G(M,), i.e., the
Markov graph on the (unperturbed) Markov matri,. Notice that, since - 0" = ¢ > 0
iff - =0 (andc > 0), G(M,) may also be thought of as the “zero-resistance” subgraph
of G (M,), that is, the weighted directed subgraphCof), ) containing all edgesy;, v;),
with R (d (v;,v;)) = 0 and edge weights given [y (d (v;, v;)).

Let stab (M,) denote the unique stable distribution &f for e > 0 given by Corol-
lary 5.15° Using the notation of Theorem 6.1#tab (M,) = vy, fore = 0. We will
show thatstab (1/,) may be defined at = 0 so that its entries are all i6". In par-
ticular, ssd (M,) = lim__,+ stab (M,) exists. We call this limit thestochastically stable
distributionof ..

To prove this, we will need to extend the notation of ChapterStnceG (M, ) has
weights inC*, we have three notions of the total weight of a directed sebtrFor any
directed spanning tree rootediatorresponding t@ ¢ T, the total weight ofr in A/,
may be defined, just as in Chapter 6 VA M., o) = 11, (M.),; ;- By Corollary 7.5b),
W (M, o) € C*. Thus, we may also define thesistance otr in M, asR (M.,0) =
R(W (M, o)). Similarly, we define theost ofc in M, asC (M,,0) = C (W (M, 0)).
By Corollary 7.5b), the resistance and cost of the tvesatisfy the following equations:

R(M.o) = R(W (M., o)) =R (Hj# (Me)a(j)J) -Y°R ((Me)a(j%]) (7.1)
J#i
C(M.,o) = C(W(M,o))=C (Hj# (Me)a(j)J) | e ((Mﬁ)a(j),j) (7.2)

In particular, sincer € T, o (j) # j for j # 4, so thatR (M., o) andC (M,, o) do not
depend on the diagonal entries entries\/fHf

®In fact, this is the main reason why we define perturbed nestriic terms ot [0, #].

®This is a slight abuse of notation, since, up to this poitith would have referred to the singleton set
containing the stable distribution.



102

Notice that, ifG_(o) is not a subgraph ofr_ (),), it does not contain some edge,
(va(j), vj), o) that(Me)U(j)J ~ (. In terms of the resistance, the resistance of such an edge
is 0o, so that the sumR (M., o) = co. Conversely, if the sum is infinite, the resistance of
some edge is infinite, implying is not a subgraph of'_ (11, ). Likewise,C' (M_ o) =0
iff o is not a subgraph of/_ (M,). Thus, we may define the set of directed spanning
subtrees of_ (M., ), rooted at, as

T(M.,i)={oeT,| R(M,0)<oo}={0€T;|C(M,o0)>0}

As before, letl” (M,) = U, T (M., ).

We now prove the statement above regarditid (1,.). Moreover, we give formu-
las for its resistance and cost in terms of the resistancecastdof the directed spanning
subtrees of7_ (M,).

Theorem 7.7.1f M, € PMM(n), if we define

r; = min R(M,o)andr= min R(M,o)
o€T (M, i) o€T(M,)

T(M,i) = {oc€T;|R(M.,0)=r;} andT(M,)={ceT;|i€S, R(M,o)=r}
then

a) there exists a perturbed column vectetab (M) € Pert(n, 1), which, for each
e > 0, is the unique stable distribution af_,

b) r; = min, 7 R (M., o)andr = min,;r;,

c) R (stab(M.)), =r; —r, and

Zo €T(M, i) C(M,0)
ZUET(AIE) C(JV[670)

d) C(stab(M,)), =

Proof. Using the notation of Theorem 6.17, fix a perturbed Markovrimatl/., and ab-
breviatew,, asw.. We first show thatv,, € Pert(n,1). By Equation 6.4,(w,.), =
> wer iy W (M., 0). Therefore, by Corollary 7.5,), € C* and

R((w))=R| > W(M,o0)| = min R(M,o)=r

oeT (M,
a€T(M, i) (Me)



103

SinceR (M., o) = oo, foranys € T,\T (M., 1), we also have, = min,era, i) B (M, 0) =
min, 7 R (M, o). Moreover, sincd’ (M.) = U, T (M., i),

r= min R(M,o)=min min R (M, o) =minr,
o€T(M,) i oeT(M,,i) i

SetK, = Jw,. ThenK,_ € C* and

KG:Z(wE)i:Z Y WM, o)=Y W(M,0)

i oeT(M, ) oE€T(M,)

Corollary 7.5 again gives

R(KE)ZR Z W(ME,O') = min R(ME,U):T’

o€T(M,) o€T(Mo)

Since M, is unichain, K, > 0 for ¢ > 0, so thatr < oo. Moreover, since: < r;,
Theorem 7.4 e) implies thgt < Pert(n, 1).
Thus, we may definetab (M,) = z=. Fore = 0, by Theorem 6.17, we then have

w,

Un, = 7, = stab (M.). Moreover, by Theorem 7.4 eR (stab (M,),) = R(w,.) —

R(K,)=mr;—r.
By Corollary 7.5 a),

Clw),) = C| > WM,0)|= > [r=R(M,0)C(M,o0)
oeT(M. i) oeT(M. i)
= Z C (M. o)
oc€T(M,,i)
Likewise,

C(K,) = C( Y WM,o)| = ) [r=R(M.,0)]C(M.,0)
ceT(M,)

oceT(M,)
= Z C (M. o)
o€T(M,)

- o C(M,,0
Thus, by Theorem 7.4 )] (stab (M,),) = g(([“;)) = ZZU[,E;;X;’;)C(L@U))' O



104

Example 7.8. To illustrate the ideas of Theorem 7.7, consider

2

l—€e—c¢ € €
2
M, = € l—€e—ce€ €
2 2 3
€ € l—€e—c¢
then
2
—€—¢€ € €
AEIME—I: € —6—62 €
2 2
€ € —e—¢

Let's computgw, ),. First way:

—€ — € €

_ 2, 3, 4
(w); = det ) g | =€ tete
€ —€—¢€

Second way: Find the set of mappings {1,2,3} — {1} — {1,2,3} s.t. o specifies the
parent relation of a directed , spanning tree{an2, 3}. In particular,o(i) # i (i.e., no
loops), for alli € {2,3}. There are three such mappingsi— 1,3 — 1; 2 — 3,3 — 1;
2—1,3— 2.

(W = D T Mop = (M)1o(Mo)is + (M)o (Mg + (M)1a(M)ay = € + € + '

o p#l
Likewise, (w,), = ¢* + 2¢* and (w,), = ¢* + 2¢°. Thus,m = 2 andu, = (1,1,1)". The
entries ofu, correspond to the® terms inw,, which in turn correspond to the directed
spanning trees givenbg.— 1,3 — 1;3+—1,1+—2;2+— 1,1+ 3.
O

By Theorem 7.7, for each index,c S, R (stab (M.)), is well-defined. We will call
this thevirtual energy ati in M,.. By Theorem 7.4a), we have that, (M,)), > 0 iff
R (stab (M,)), = 0. Since, as we have seen in section 5.3, indices correspostattes
in a Markov process, the collection of such indices are dalhe stochastically stabler
groundstates of\/,, since these are precisely the indices for which the stoicladly stable
distribution,v, (), ), has a non-zero component, and the stable distributidn()/,) has

zero virtual energy (i.e., resistance).

"Desai, et. al. (Desai et al., 1994) call this the “statior@der” at;.
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7.4 Equivalence of PMMs and Scaling

Since we are primarily focused, at present, on computingtihehastically stable distribu-
tion (SSD) of a PMM, we introduce an equivalence relation b3 for which the SSD is
invariant. Likewise, we generalize the notion abaequivalence from chapter 5 to PMMs,
where D may itself be a perturbed matrix. As in the non-perturbee cagch an equiva-
lence will allow us to determine the SSD of a PMM from the SS@mwD_-equivalent one.
Specifically, we will

¢ define an equivalence relation on PMMs and show that equivRIgIMs have equal
SSDs,

e observe that asymptotically equal PMMs are equivalent,

e generalize the scaling construction from chapter 5 in twbemspecific settings
(“uniform” and “non-uniform” scaling), which will be cruai to our main algorithm
in section 7.7,

e prove that these two constructions lead to equivalei? eequivalent results, respec-
tively, and

e show these two constructions always guarantee “prograssiii algorithm to a so-
lution.

Because scaling is defined in terms of subtraction and divjdhese results are rather
delicate, since these operations are not generally defimeet.

To begin, we say that two perturbed Markov matrices are adgny if they have asymp-
totically equal stable distributions. To state this foripal

Definition 7.9. Two perturbed Markov matricesy/, and M, are equivalent denoted by
M, ~ M, iff stab (M,) ~ stab (Me')

For example, we can show that asymptotically equal PMMs quévalent.
Theorem 7.10.1f M. ~ M!, thenM_ ~ M.

Proof. This follows from Theorem 7.7, Equations 7.1 and 7.2, andofém 7.3. Specifi-
cally, for M., M, € Pert(n), to show thatV/, ~ M., by Theorem 7.3, we must show that
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R (stab (M,)), = R (stab (M/)). andC (stab (M.)), = C (stab (1)), fori € S,. By
Theorem 7.7, since; andr can be defined with respect 19, it suffices to show that for
allo € T;,, R(M.,0) = R(M.,0) andC (M,,0) = C (M/,0). By Equations 7.1 and
7.2 the resistance and cost of a tree depend only on thealestsand cost matrices. But,
again by Theorem 7.3, sincd, ~ M/, R (M,) = R (M) andC (M,) = C (M/), so that
R (M., 0) =R (M/,0)andC (M., o) =C (M., o) forallo. O

When a uniform scaling of a PMMV/, by f € C" yields another PMM)Z,, they are
equivalent. That is, we have an analog of Lemma 5.3 for PMMs.

Theorem 7.11.Givenf € C*\ 0 and M, € PMM(n), such that
a) R(f) < R(M,),,foralli# j,
b) (M.);,;+ f(e) —1eC",and
c) R(f R( 1) for all j,
1
f

if we defineM = % (M, — I) + I, thenM, € PMM(n) and M, ~ M..

Proof. The proof is similar to that of Lemma 5.3. The real work is iying that)M! €
PMM(n). Sincef % 0 andR(f) < R (M,), ;, we have, by Theorem 7.4 ), th@try), . €
C* foralli # j. Moreover,f(¢) > 0, JA. = ﬁjAE = 0 for e = 0, and by continuity,
also ate = 0. Thus,(Me’)M =1-3 (Me’) ,forall j € S, ande = 0. Moreover, by
Theorem 7.4 e)(Me’)M = (M)J%fl eC’. Thus (M, ) cCct

It is now easy to show that/, ~ M.. Sincef 0 fle) > 0, A, = LA and
ker A, = ker A, so thatstab (M,) = stab (M) for e = 0. In particular, by Lemma 7.2a),

stab (M,) ~ stab (M/), so thatM, ~ M/. O

In particular, when computing an SSD, we can always assuatéi’tWE)M = 0, for
all j.

Corollary 7.12. Given M, € PMM(n), if we defineM! = 1 (M, —I) + I, thenM €
PMM(n), M, ~ M/, and R (Me’)jj =0, forallj €8S,.

Proof. While we could prove this directly fairly easily, we will itsad appeal to Theo-
rem 7.11 withf(e) = 2 % 0. As are all positive, constant functiong,c C+, and by
Theorem 7.4a)C(f) = f(0) = 2 andR(f) = 0. Thus, it only remains to observe
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that, by Theorem 7.4 b\M.),. + f(e) =1 = (M,),, +1 € C". SinceR(f) = 0,
the remaining two conditions of the theorem follow immeeigt Thus, by Theorem 7.11,
M. = %(Me—l) +1 =31(M—1)+1 = (M. +1) e PMM(n), andM, ~ M.
Moreover, by parts b) and e) of Theorem YBZL(ME’)M =0, foralljeS,. O

Notice that equivalent PMMs must have equal virtual enstgence the energy ats
just the resistance of th& component of the stable distribution, and resistance ariamt
under asymptotic equivalence. Likewise, their SSDs aralegince, by Theorem 7.4 a),
the components of their SSDs may be expressed a in terms oédlsance and cost of
their respective stable distributions. Specificalilty,  + stab (M,), = [R (stab (M,),) =
0]C (stab (M,),), which is again is constant on asymptotic equivalence etads addition,

they have the same path graphs.
Lemma 7.13.GivenM,, M PMM(n), if M, ~ M/, thenP (M,) = P (M)).

€

Proof. By Theorems 6.8 and 6.17, sine@b (M,) ~ stab (M),
s={ieS, | (stab(M,)), #£ 0} ={i€eS,| (stab (M])). #£0} =

SinceP (M,) andP (M) are both complete, directed graphs on their correspondirigife)
closed classed/, andV,, sinces = s, they must be equatz

We also should generalize the notion Bfequivalence from section 5.1 to apply to
PMMs.

Definition 7.14. For D, € Pert, we will say that two perturbed Markov matrices!,
and M/, are D -equivalent and write M/ ~p M, iff M ~p_ M, for ¢ = 0 and
R (|| D.stab (M])],) = 0.

We then have the following analog to Lemma 5.2.

Theorem 7.15.1f M, ~p, M, thenDgssd (M) o ssd (M,).

Proof. SinceM, andM! are both unichain, for = 0, we must havetab (M,) o« D, stab (ME’),
so that f(e) stab (M,) = D,_stab (M/) for some function,f. In fact, sincef(e) =
f(e)Jstab (M,) = JD,_stab (M/) = ||D.stab (M/)|,, which by Theorem 7.6d) is in
Pert(1,1),i.e.,f € C*. Byassumptionk (f(e)) = 0, so by Theorem 7.4 af{(f) ssd (M,) =
Dyssd (M]). In particular,D ssd (M) o ssd (M,). O
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Our algorithm in section 7.7 requires that, if it is not uraoh )/, should possess at
least one non-trivial (i.e., containing more than one el@neommunicating class, which
is not always the case for an arbitrary perturbed Markov imyatr,. However, in this case
we may transforml/, to a closely related perturbed Markov matrix.

Lemma 7.16. Given M, PMM(n), such that all communicating classesidf, are single-

tons, defines = min;y7 min,; R (M,), ., whereT is the set of transient states o1,

2,5
Likewise, letc = 2max;gor > . gy  C (M), ;. If M, possesses more than one closed
class or)/, is irreducible withn > 1, then0 < s < oo ande > 0. In addition, if f (¢) = ce”
and
0 ifi+j
(i); =4 fle) ifi=jandjeT
1 otherwise

theni, € Pert(n) and, using the notation of Chapter 5/, = (M,),

23

€ PMM(n) and
M ~; M., fore = 0. Moreover,f satisfies the assumptions of Lemma 7.11 with respect

€

to M., sothatM; = ; (M, — I) + I isi-equivalent taV/..

Proof. We first show thad < s < oco. Notice that since all communicating classes are
singletons; € 7 iff 1 > (M,). .. By Theorem 7.4 a), this is equivalent to

JJ

0 < 1= (My),; = tim (1-(M,),;) = tim 37 (M),
T i

e—0"

Erorl+ (M), ; = Z[R(Me)i,j = 0]C(M.),;

i#j
By definition, s is the minimum resistance of the outgoing edges (excludatfg@ops) of
the closed classes dff,, i.e., indices; ¢ 7. For suchj and alli # j, we must have
[R(M,); ; = 0]C(M,),; ; = 0. This implies thatR(M.), ; > 0 for i # j, so that) < s.

By Lemma 1.5, each closed class/vertex\gf is contained in the closed class f..
Thus, if M, possesses at least two closed classes, since both bottesexte in the closed
class of M, there are paths it_ (M,) between them; in particular, there are outgoing
edges inG_ (M,) from them, so that < oo. Alternatively, if M, possesses only one
closed class/vertex, but/, is irreducible, there are paths (A_ (A/,) from that vertex to
every other vertex; in particular, there is at least one @untgedge, so that < oo in this
case, as well.
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Likewise, sinces is a minimum, there exists some‘ j ¢ 7, such that = R (ME)M.
Sinces < oo, we mustthen have' (M,), ; > 0, aswell. Thusg = 2 max; g7 ZSZR(ME)Z_J C(M);; >
0.

Now observe that the entries@fare either non-negative constantsf¢¢), all of which
are functions irC", so thati, € Pert(n). Moreover, fore == 0, f(¢) > 0, so that) < (4e);
for j € S,. We now show that, foj € S, ande > 0, (i.); ; (1 — (ME)M) < 1, so that,
for e = 0, Lemma 5.3 implies that/, = (Mﬁ)i€ is Markov (by continuity,M , is Markov,
as well) andM, ~; M.. Since(M,);; > 0, (ic);; (1 — (Me)j,j) < (i);,;- But either
(ic);; = 1or sinceR(f) = s > 0, Theorem 7.4a) implies thai.), . = f(e) < 1 for
e > 0.

Since, fore > 0, we are only multiplying some off-diagonal entries by thenszero
number, f(e), G_ (M.) is the same a&'_ (M.,), except for possible differences is their
self-loops. In particular, sinc&/, is unichain, so is\/,. More generally, since we are only
multiplying some off-diagonal entries by C*, (Me)m e Ctfori # j.

To show thatM, € Pert(n), since(HE)M = (M,),, € C"for j ¢ T, it only remains
to verify that(ME)M € C*forj € 7. Inthis case, sinc(a]\_L)j’j = f(e) (M), ;+1—f(e),
by parts b) and d) of Theorem 7.4, it suffices to show that f(¢) € C*. SinceR(f) =
s > 0 = R(1), we may apply Theorem 7.4c) to conclude that f(e) € C*. Thus,
M, € Pert(n).

Next, we verify thatf satisfies the assumptions of Lemma 7.11 with respedt/to
Starting with a), notice that, far # 7, (_) either equalsf(e) (M.), ,, if j € T, or
(M.), ;,if j ¢ T. Inthe former caseR(f) < R( ) , by Theorem 7.4d). In the latter,
the inequality follows by construction, sind®(f) = s < R( ) forall i # j and
j ¢ T. Thus, we have verified assumption a) of Theorem 7.11.

Now observe that, by Theorem 7.4 d)ji€ 7, (ME)jJ—'—f(E)—l = f(e) (M), € c*
andR(f) < R (f(e) (ME)jJ). Thus, assumptions b) and c) are satisfied, in this case. On
the other hand, ij ¢ 7, (01,),+ f(€) —1 = (M,), ,+ f(e) —1 = f(e) [zi L, (M), J} .

We will again want to apply Theorem 7.4 c) to show that thigi§i, as well, with resis-
tance no less thaR(f) = s. There are two cases to consider. For a given7, if there is
somei # j suchthat?(f) = s = R (M,), ;, thenR (Zi# (Me)m) = min; R (M), ; =
s = R(f). In this case( (E#j (ME)@].) = D izils = R(M);;|C (M), ; = s =
R(f) < § < c¢ = C(f). Otherwise,R(f) = s < R(M,),; for all i # j, so that
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R (Z#j (ME)Z,’]) = min;,; R(M,),; > R(f). In either case, the conditions of Theo-

rem 7.4 c) are satisfied, so thét) — [Ei# (ME)M] € C* with resistanceR(f). Thus,
we have verified assumptions b) and b) of Theorem 7.11.

We now show thal/, is i.-equivalent taM.,. Since we already know that/, ~; M,
for e > 0, it only remains to show thak (||i. stab (A)||,) = 0. As in the proof of
Theorem 7.15, we havg(e) stab (M,) = i.stab (M/) for somef € C*, specifically,
f(e) = Ji.stab (M!) = ||i.stab (M/)]|,. Thus, we must show tha(f) = 0.

Therefore, ifv, = stab (M,) andv; = stab (M), i.v, = f(e)v., wheref(e) = ¥
It remains to show that(f) = 0. In particular, since(iﬁvé)j = (vé)j for j ¢ T, it suffices
to show thasupp,s N7 # 0. In this caselim+ f(e) > lim (@'Evg)j = lim+ (vé)j > 0,
forj e supp,; N7, so that(f) = 0.

To see this, lefC,,...,C,,} be the closed classes 6f(1/,), so thatT = Uiz, Ci.
Likewise, let{Ci,...,C,} be the closed classes 6f(M;). By Theorem??, supp,; =
Ujes Cy for someJ’ C {1,...,m’}. Now observe thag (M) C G (M), so that, by
Lemma 1.5, for every < j' < m/, thereisl < j < m so thatC]’./ NC; # 0. In particular,
forany;’ € 7,0 # C;./ NUL G C SUpp,; N7 O

.
ZE,UE

By repeatedly applying Lemma 7.16, we may then guaranteée\ihalways possesses
a non-trivial communicating class, as long as we keep trd¢keocorresponding shift in
virtual energies.

Corollary 7.17. Given anyn x n perturbed Markov matrix)/,, if M, possesses more
than one closed class, there is grequivalent perturbed Markov matrix/., such that
either M/, possesses a non-trivial communicating class or a singlseti@lass, where ¢
Mat,, (C™) is a diagonal matrix. In particular, if we denote the stablstdbutions of M/,
and M/ byv,_ andv., respectively, then, = ﬁ andr ((v,),) =7 ((v.),) +r ((7;5)878).
Similarly, if M, is irreducible withn > 1, the;eeis1 such a matrix}/,, whereM; possesses
a non-trivial communicating class and is irreducible.

Proof. In any case, we will proceed by repeatedly applying Lemm&.714 other words,
at each stepM, = (M,), , for a diagonal matrix),, so thatP (M/) = P (M,). In
particular, if M, is irreducible, then so i87.

Now if M, possesses a non-trivial communicating class, then we nka@yita= 1.
Otherwise, ifM, possesses more than one closed clagd.ds irreducible withn > 1, we
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may apply Lemma 7.16 to obtain apequivalent perturbed Markov matrid/., so that
g (Mé) D G (M,) is a strictly larger graph. We may repeat this constructiofil either
M}, possesses a non-trivial communicating class av/.ifis not irreducible M/, possesses
only one closed class. This is guaranteed to terminate bjrtteeG (1) is complete, if
not soonerg

7.5 Equivalence of PMMs and the MCCT

Our algorithm in section 7.7 will consist of alternately &ppg the scaling construction
from Lemma 7.16 and the reduction construction of Theoredn generalized to PMMs.
However, since reduction involves matrix inversion, welwiént to choose the sets of
indices to eliminate, so that we will only need to invezal-valued (i.e., zero-resistance)
matrices, so that the required calculations are tractdbl¢his section, we appeal to the
Markov Chain Tree Theorem to show how this is always possiBigecifically, we will
show that

e given anM, € PMM(n), we may find an equivalent one for which the off-diagonal
zero-resistance terms are actually constant;

e we may also find an equivalent one for which all edges withirS&¢C (excluding
self-loops) are constant; and

e We may construct an equivalent one which, for each non-zasigtance path from
tov; in G (M,), contains a edge from} to v; with the same resistance.

We first show that the stochastically stable distributioragderturbed Markov matrix
depends only on the off-diagonal entries of the constant,téf, (11, ), of its cost matrix
and the resistance matrig, (11, ).

Theorem 7.18.Assume thad/, and M. are perturbed Markov matrices. If
o T(M,.i)=T(M,i),

« R(M,),,,=R(M),, .Vi#ioeT(M,i)

o(j

for everyl < i < n, thenM_ — M. If, in addition,
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o C (M6>g(j),j =C (Me,)o(j),j ,Vj 7£ o (]) 0 € Uiesn T (ME7 i),
thenM, ~ M.

Proof. Given M, and M satisfying the first three conditions in the statement ofCbeol-
ver(3li) " (M., 0"), for1 < i < n. Thus, Theo-

rem 7.7 implies that ((v.),) = r ((vc),), so thatVf, — M. Likewise,>, 7y ;¢ (M, 0) =
2ot (M) © (M., 0"),andy> , 75y ¢ (M, 0) = > oer(m) © (M., 0"). Therefore, Lemma7.7
implies thatA/, and M. have identical stochastically stable distributions, sat th, ~

M. O

lary, r; = min,epar 57 (M., 0) = min

Corollary 7.19. M. is equivalent to another perturbed Markov matrik//, such that
C. (Me’)l.j is constant with respect iq if i # j, andR (M/).. = 0 for all <.

Proof. Consider(}M,),
O-resistance. By Theorem 7.18]. ~ (ME)&S. Further, denote the cost and resistance

= %] + %ME, a matrix whose diagonal entries necessarily have

matrices of( M. ), , by C. andR, respectively, and define

L= 30, €™ (Co),, fi=3

eftis (Co), ; otherwise

(Me,)zg -

Notice thatkR = R (M). This is clear for all off-diagonal entries. Moreover, theyth
have O-resistance on the diagonal. In fa(dw(’))ivi = (Mo)m = 1+(]\24°)“ > 0. This
also insures tha(Me’)m, > 0, so that)M, is Markov. Moreover(C, = C, (M;), while
g ((M6)8,8> andg (M) share the same underlying unweighted grapfiR). In particu-
lar, P ((ME)&S) = P (M). Therefore, by Theorem 7.18/, ~ (M,), , ~ M. O

Notice that this means that, if we are only interested in aating stochastically sta-
ble distributions, we may represent a perturbed Markov isnatmply by the twon x n
matrices( (M,) andR (M,), and we may assume that, = 0,1 < i < n.

Example 7.20.We may briefly illustrate the construction of Corollary 7 d9follows:

)
N[
)
N[
[T T
N

DO
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As we have seen in Chapter 1, the self-loops of a Markov matay be adjusted to
a certain degree without significantly affecting its dynesniSimilarly, we may specify a
perturbed Markov matrix, with O-resistance diagonal eletsésuch as in Corollary 7.19),
by simply specifying its off-diagonal elements, so longlaairt column sums whea= 0
are all strictly less than 1.

Lemma 7.21.1f M, € Mat, (C*) with 3=, (M,),; < 1for1 < j < nandP (M) is
starry fore > 0, then there is a unigdeperturbed Markov matrix)/,, such that( 1))
(ME)M forl <i#j<n.

ij

Proof. Forl <i # j < n, let (Mﬁ’)m. = (M), ;, and define(ME’)j’j =1 =2 (M)
for 1 < j < n. Now observe that by continuity”, .. (M,), ; < 1, s0 that(ME’)M = 0.
Therefore,(ME’)j’j c CtandR (ME’)M = 0. In particular,R (M) = R(M,), so that
P (M) is starry and, by Lemma 6.2/ is regular fore > 0. Thus, M is a perturbed

Markov matrix of the desired fornm

Given aregular, perturbed Markov matri¥, , consider a submatrix @/, consisting of
all the transitions within a given communicating class\ff. The following Lemma shows
that, without loss of generality, we may assume that suchbenatrix is constant off the
diagonal. For instance, consider Example 7.8: we may drep3tt2)— and(2, 3)—entries
(adjusting the diagonal entries accordingly) without aiag its stochastically stable dis-
tribution, since they are not in any of the minimal resiseagpanning trees.

Lemma 7.22.

For any regular, perturbed Markov matriX,, there is an equivalent on#/, such that
My = My and if[p,q] € P (M), R (Mﬁ’)pq =0 oroo.

Proof. By Corollary 7.19, we may assume that = 0, 1 < i < n. Consider any arbitrary
pair of distinct statesp andgq, in the same communicating class &, with a non-zero
resistance edge,, , > 0, between them. Notice that this impligs# ¢. In this case,
we may defineM] = M, — (M,), , (e,, — €,,), Where{e, ;} is the standard basis for
Mat,, (R). This is justM, without an edge fromy to p. Since[p,q] € P (M,), and
My = My, [p.q] € P (M), andP (M,) = P (M,). In particular,M is regular. Since

8Up to equality inMat,, (C).



114

(Mﬁ’)pq = 0 and (Me’)qq = (M.),, + (M.),, = 0, M is Markov for eache and, by
Theorem 7.4, all entries have positive resistance. Thijds a perturbed Markov matrix.

By Corollary 7.19, to show that/! ~ M., it suffices to verify that the edge from
to p is not part of any minimal spanning tree of.. Specifically, ifo € T (M., k) is a
spanning subtree rooted fatontaining this edge (i.es(q) = p), then the resistance of
is not minimal (i.e.o ¢ T (M., k)). Therefore, assume we are givere T (M., k) with
o(q) = p and consider the associated directed spanningTree,

Let{C,,...,C,,} be the strongly connected component§ ¢f\/,). As in Chapter 67
defines a pre-order on the verticegof)M, ) so thato(j) < j for j # k. By re-indexing, if
necessary, we may assume that the statédg dfave been indexed to respect this preorder,
sothati < j = ¢ < j, i.e., ancestors always have smaller indices. In particula may
assume that = 1. This induces a preorder on tie so thatC, < C, iff minC, < minC,.

By re-indexing again, we may assume thah C, < minC, = s < t. In particular, we
must havel € C,.

We may now proceed by induction to construct a new directeahising tree 7 cor-
responding tar, with strictly smaller resistance thah. Specifically, we will construct a
spanning tree rooted atwhich only contains O-resistance edges within eéchMore-
over, there will be at most one edge 7n between distinct communicating classes, i.e.,
Vs > 1,35, € C, s.t. a(js) = o(j,) € C, andu < s. Intuitively, we will choose edges of
7 to build a directed tree on the communicating classes (Bpédiy j.), which will serve
to link a set of O-resistance spanning trees spanning eash tito an directed tree rooted
atl.

Since(, is a strongly connected component ®@f,), by Lemma 6.2, it contains
an directed tree rooted atconsisting entirely of O-resistance edges spangitg/,) |, ,
which definess(j) for j € C,. For anyl < t < m, assume that we have definedver
Ui;ll C, and a sequencg € C, such that'l < s < t,5(j,) = o(j,) € C, for someu < s.

It suffices to show that we may extefido C, and defingj, € C, so thatz(j,) = o(j;) € C,
for someu < t.

Let j, = minC,. Sinceo(j,) < t, if o(j;) € C,, minC, < j, = minC,, so thatu < t.
As before, Lemma 6.2 guarantees the existence of an dir&eedooted af, spanning
G (M) |c,- This definess on C, — {j;} and we taker(j;) = o(j;). By induction, we
eventually obtain a subgraph gf(M/,) consisting ofn — 1 edges which contains a path
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from each vertex of (M.,) to 1, which is thus an directed spanning tree rooted at 1.

SinceT only contains edges df, plus edges with resistance 0, and we know it does
not include the edge fromtop, r (7, M,) < r (M., o) —r,, < r (M, o). In particular,c
did not have minimal resistance, the edge froho p is not part of any minimal spanning
tree of M., andT" (M., k) = T (M., k) for arbitraryk.

Since all other off-diagonal entries @ff, and M. agree, all necessary entries of the
resistance and cost matrices agree. In particular, Coydlld9 implies that\/! ~ M.. By
repeating this construction sufficiently many times, we relginate all non-zero resis-
tance edges within any communicating class.

Lemma 7.23.1f 0 < 7,7, < oo, f = 0, andr(f) = r;; + r;,, thenM, ~ M, =
M, + f(e) (ei,k - ek,k)-

Proof. Asin the proof of Lemma 7.22\/! is a Markov matrix for eachwith entries inC™.
If (M.);,, #0,G (M) = G (M,). Otherwise, since; ;, 7, < co, (M), ;,(M.);, # 0,
so that there is an edge fromto e; in G (M,). In either caseP (M) = P (M,), so that
M! is a regular, perturbed Markov matrix. It remains to showi fia~ M.

Observe tha(ME’)M = (M), + f(€). W 3y < 1y + 1%, Theorem 7.4 implies that
r <(ME’)Z_ k) = ;. In this case, Corollary 7.19 implies thaf, ~ M//.

Now consider the case when,, = r; ; + ;. We will show that ifo € T (M., s) is
a spanning subtree rootedsawith o (k) = i, then there is another spanning subtrees
T (M., s), rooted ats with (k) = j, andr (o', M,) < r (M,, o). Thus, by Theorem 7.18
M, ~ M. Therefore, assume we are givenc T (M., s) with o(k) = i and consider
the associated directed spanning trée,If we remove the edgé&:,, ¢;), we are left with
two directed subtreeg; and7,, where we may assume thatnd s are in7; andk is
in 7,. Nodej must be in one of these subtrees.;j lis in 7;, by adding the edge frorh
to j we obtain a tree with total resistance which has decreased,byrormally, defining
o'(t)=o(t), forallt # k,ando’ (k) = j,r (o, M.) =r (M., 0) —r;; <71 (M.0).

Otherwise,j is in 7,. Deleting the edge fronin 7; splits it into two smaller trees,
and7;’, where we may assume thais in 7;" andk is in 7;. By adding the edges froin
to j and fromjy to i, we obtain a tree with total resistance no greater than eefart which
does not include the edge froimto i. Formally, definings’(t) = o(t), for all t # k, j,
o'(k)y=7j,0'(j)=1di,r (o, M) <r(M.,o)—rip+ri;+rjy=7r(M,0).0O
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7.6 Reduction of PMMs

We now wish to generalize the reduction construction of @Grap so that we may apply it
to a perturbed Markov matrix. Since the definition of the i&dn, given in Theorem 5.6,
was originally stated in terms of matrix inverses and sufhiwa (which are problematic
in the class of perturbed matrices), it is not obvious thatrésult is a perturbed Markov
matrix. As with scaling, this will require careful analysifs mentioned in section 7.5,
our algorithm in section 7.7 is guided by the need to elingrssts of indices which only
require the inversion akal-valued (i.e., zero-resistance) matrices. Thus, our taioms
will be guided by the zero-resistance subgragh,(M,) of G_ (M,).
Specifically, in this section we will:

e show that ifs C S, is open with respect td/,, it is also open with respect to
M, € PMM(n);

e generalize Theorem 4.5 to PMMs, proving tt(alt— (ME)&S) € Pert(|s]) for
M, € PMM(n) ands C S,, open, giving formulas for its resistance and cost matrices
in terms of minimum resistance walks (cf. Theorems 5.8 aid§l 7.

e show that if we apply the reduction construction to/dh € PMM(n) for e > 0,

)i

with respect to a fixed open set of indicesye obtain ani/\i € PMM([s

e we derive formulas for the resistance and cost matriceseofétuction in terms of
the resistance and cost matrices\éf, which shows that reduction preserves asymp-
totic equality;

e generalize Theorem 5.12 to PMMs;
¢ show that reduction preserves equivalence of PMMs definsddtion 7.4; and

e show that for the purposes of computisgl (M,), we may compute the reduction
while only inverting a constant matrix.

As mentioned above, we will want to apply the reduction cartiion to sets of indices
which are open with respect to the (unweighted) zero-f@stst subgraphG:_ (M,). We
must first verify that this is feasible.
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Lemma 7.24.Let M, be ann x n perturbed Markov matrix. I§ C .S,, is open with respect
to M,, itis open with respect ta/,.

Proof. By Lemma 4.5b), since C S, is open with respect td/,, I — (M,),, =
7, (I — My) 1, isinvertible. Thus|r, (I — M) 1,| # 0, whichimpliesthdtr, (I — M, ),| #
0 for e = 0. Thus, by the contrapositive of Lemma 4.5¢€); S,, must be open with respect
to M, for € > 0, or equivalently, with respect td/, as a perturbed matrixa

Lemma 7.24 implies that, far > 0, we may apply our reduction construction to any
perturbed Markov matrix)/,, to eliminate any set of states,which are open with respect
to the unperturbed matrix/,. We now show that the result is a perturbed Markov matrix.

The difficulty is that, in general, we cannot invert a peradhnatrix, since this might
involve subtraction or division. However, in this specifase, we may express the inverse
in terms of multiplication and addition alone. To do so, wél weed to generalize some
more notation, this time from section 5.2.

For anyo € S, (k), corresponding to a walk of lengthin G (M,), we will define
its weight inG (M,), W (M, 0) = Ilcg, ((ME)%OH). Notice that this is simply (the
equivalence class of) the function, whicheat 0 is given by the weight o# in M..

By Corollary 7.5b),WW (M_, o) € C*. Thus, we may also define thresistance of
oin M, asR (M, o) = R(W(M,o)). Similarly, we define theost ofo in M, as
C(M.,o)=C(W(M,0o)). By Corollary 7.5 b), the resistance and cost of the walk,
satisfy the following equations:

R(M,0) = R(W(M;0)) = R (Hes, (M0, ) = 3 B((M),,, , )7:3)

C(M0) = CW (M) =C (Thes, (M, ,)) = Ties,C (M), (J:4)

Notice that although this notation exactly mirrors the ca®eno represents a spanning
tree, the meaning will be clear from the context, dependihgtivero represents a tree or
a walk.

Just as the stochastically stable distribution is definggrms of minimum resistance
spanning trees, the reduction is defined in terms of minimesistancevalks However,
since the collection of walks is infinite, we must argue thattsa collection of minimum
resistance walks is well-defined.
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Lemma 7.25. For anyn x n perturbed Markov matrix)/,, set of indicess C S,,, and

individual indicesi and j, there exists a sef (M., s,i,5) C S, (s,4,7) such that, if
o, € S(M,s,i,j) andoy, € S, (s,4,j), thenR (M., 0,) < R(M,o0,), i.e., the set
of minimal resistance walks from to ¢ passing throughs is well-defined. Moreover,
MiN,es (5.5 12 (M, o) exists and is equal t& (M., o) forall o € S (M., s,1, j).

Proof. Consider the sets
R={R(M_,o)|oc€S,(sij)} andR ={R (M., o) |c €S, (si7j)st. oisapath

These are both positive sets of real numbers, sditfid& andinf R are well-defined. Since
any path is a walkinf R > inf R. Since we may convert any walk into a path, by simply
dropping cycles from the walk, for eachc R, there is arr € R such thatr < r. Thus,
inf R < inf R, so thatinf R = inf R. Finally, since there are only finitely many possible
paths fromj to i, inf R = minR. That is, the infimum is attained at some specific path.
Since a path is a walk, aridf R = inf R, the infimum is attained foR, as well, so that
minR = inf R =inf R = minR = Milyes (5.0 B (M, o).

Define

c€S,,(5,8,7)

If oy € S(M,,s,4,j) ando, € S, (s,1, ), thenR (M., 0y) = min,es (55 R (M, 0) <
R (M., 0,). By definition,min,cs (5,5 R (M., 0) = R(M,,0)forallo € S (M., s,i,j). O

We will partition this set of minimum resistance walks byitHength, to define

S (M67 S7li7j7 k) = Sn (S7Ii7j7 k) m S (ME7 877'7.]>
as well.
-1
We now show tha{ 7 — (Me)s,s> € C* and give formulas for its resistance and cost

matrices in terms of minimum resistance walks.

Lemma 7.26. Let M, be ann x n perturbed Markov matrixs C S, be an open set
of indices with respect t,, and (M), , the corresponding principal submatrix. Then
(M)W = Z}:& (Me)i,s converges uniformly té[ — (Me)s,s> - € Pert(n,n). Moreover,

s,8

068’” (877/7.7)

C((I—(ME)S’S>_1)M - Y M0

c€S(M_,s,i,j)

R(([—(Me)w)_l)i‘ —  min R(M,o0) and
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Proof. SinceM, has only finitely many entries, there is an inter\Palﬁ] over which all of
its entries, and hence all of the entries{ME)S‘g = Z;‘;& (M)’
negative. By assumption,is open with respect td/,, and by Lemma 7.24 with respect to

.. are continuous and non-
M_ for sufficiently smalle. Assume thab has been chosen so thais open with respect
to M, for ¢ € [0,4]. Thus, by Lemma 4.5,)/,)!") converges tc([ — )ss) > 0for
eache € [0, §].

Now observe thaH (M)
is the maximum of a finite set of non-negative, continuousftians (i.e., the column sums
of (M,)7,)- SlnceH ”78

assume that it is uniformly bounded @ndlby0 < c < 1. Inparticular, M) converges

uniformly to <[ — (M, )Ss) on |0, 4].

IS a non-negative continuous function tok- 0, since it
1

is bounded by somé < ¢ < 1 for eache € [0, ¢], we may

Since[0, 6] is compact, the entries ()M ) are uniformly continuous oft), 5] (Whee-

den and Zygmund, 1977). SmcﬁM) converges uniformly t(([ — ME)&S) , the
-1
entries of([ — (M,), S) are continuous and non-negative [0né] (Wheeden and Zyg-

mund, 1977). Finally, if an entry oé[ )Ss> - is O for some: € (0, 4], since this is
the sum of a non-negative series, all the terms in the senss$ Ine 0. But all the terms are
in C*[0, %], so that they must be identically 0, so that the limit mustrb€1 [0, ).
To show that(] — (M,), S) B € C*, we must compute the resistance and cost of each

of its entries. Consider thg, j)" entry ofME(’“), for some fixed, j € S,,. By Theorem 7.4,

k—1 k—1
(M)W e, =3l (M) e;=>" Y (M), ect
u=0 t=0 s€P(S,i,j,t)

Therefore, by Theorem 7.4 again,

(k) o . .
= R<M ) Z Z (M), _ogrgl?—lsepr%,rz‘l,j,t)r(s’ME)

=0 seP(S,i,j,t)

Also observe that

infr, = inf min r(s, M,)
k k sep(svlvjvk)

= inf r(s,M,)= min r(s,M,)
S€P(S,i,j) sEP(S,i,7)
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Now take
' = min{k|P(S,i,j)NP(S,ijk)#0} and
s € P(S,i,j)NP(S,ijk)
This then implies that

e =1 (M) = i o M = i

i.e., the infimum is attained fdr = £’ + 1, so it is a minimum. In particular, = min, r,,

is well-defined and? (Mﬁ’”) = for at least one value df.
Zh]

Now considek™" (Me(k))‘ € C", by Theorem 7.4.
7‘7.7

) - e Y ),

=0 seP(S,i,j,t)

e
—_

t

i
o

SEP(S,i,j,t)
DefiningP (S, i, 5, k) = P (S,i,7) N U,y P (S,i, 7, t), we also have

¢, = lime " (Me(k)> ‘
ij

0+

= Z Co (57 ME)
SEP(S,i,j,k)

As beforee™" (M*) is continuous and the limit,” (I — M,);}, is continuous on
i ”
0, 0]. Therefore,

lime™" (I — M,)

0+

1 .
= khm o = E co (s, M,)
—0Q0
s€P(S,i,j)

Moreover c, is a non-decreasing function bfwith ¢,- ., > 0, sothatim+ ¢ " (I — ME);J.1 >

-1
0. This implies that- ((I — ME);J.1> = rand (I — (ME)S,S> € Mat,, (C*). In addition,
this shows that
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We may now show that the reduction of a perturbed Markov madralso a perturbed
Markov matrix. Moreover, the resistance of tfiej)-th entry is minimum resistance of
paths fromj to i whose interior states are all 1

Theorem 7.27.Under the assumptions of Lemma 7.26,dor 0, the reduction,/\//fe, with
respect taS of M, is a perturbed Markov matrix with

R(]\Z) = min  r(s,M,) and
2,] s€P(M,S,i,j)
Co(M.) = M,
0 i Z co (s, M)
s€P(S,i,5)
Proof. Partitioning M, according toS gives M, = _ If S| =
Ne (ME>s,s

M, € Mat,_, (C*), N, € Mat,,,_, (C*), andN, € Mat,_,, (C*). By Lemma 7.26,
1 _— — _ -1 -

(1 _ (ME)M) € Mat, (C*). SinceM, = M, + N, (I - (Me)&s) N., Theorem 7.4

implies that]\Z € Mat,,_,, (C*). In addition, Theoren?? guarantees thaZ/\ZZ is regular.

The formulas for its resistance and cost matrices folloveatly from Lemmas 7.4 and
7.26.0

It is important to point out that our reduction constructgmeserves both equivalence
and weak equivalence of perturbed Markov matrices. Als@ofém 5.12 generalizes to
this setting.

Theorem 7.28.Assume that/, and M/, are perturbed Markov matrices, is a set of states
that does not include a closed class\d@f or M, and( o Des @ E) and (Me,pﬁ, 6) are the

reductions ofM, and M., respectively, with respect t8. If M, — M., thenM — M
Likewise, ifM, ~ M, thenME ~ Me. Finally, M, ~;_ ]\Z

Proof. By Theorem??, P <J\Z) =P <J\Z’> Let v, andv. be the stable distributions of
M, andM!, while 5, and?’ are the stable distributions of, and’, respectively. Notice
that, by Corollary??, i.v, is an extension of,, which necessarily has 0-resistance entries.
Thus,i. v, must contain O-resistance entries. In particular, by Téeor.4, (||i.v.]|,) =0
and likewiser (||i.7;|,)

By Theorem 5.12]|zﬁvﬁ||1 = 4,0, vl = oL fore = 0. If M, — M,
for everys € 8, r((@),) = r((i5),) = r (i, (v)) = r((w).) = r((),) =
r(lll, (),) = ((0),) = (@),). Thus, M, — A
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If M, ~ M/, 2% — y W particular, applying the common left-

€ ligolly ||Zovo||

inverser, of section 5.2 to both S|dq§v°— IF ﬁ % Since these are both distributions,

we must in fact have, = 5, so thatd, ~ M.
Finally, notice how Theorem 5.12 implies thaf. —; ]\Z Lemma 7.26 insures that
(ic); ; € C". Finally, we have already observed thdf|i.v.|,) = 0, so thatM, ~;. M.

We now show that we may compute the reduction while only itiwgra constant ma-
trix. For the following Lemma, letV/, be a perturbed Markov matrix with a non-trivial

communicating class of/,, let S, be all but one representative of that class, and let

M, N, o |
M, = ~ by partitioningM, according taS,.
Ne (M)

$,8

Theorem 7.29.If (Z\Z,pg,ig) is the reduction with respect 8, of M., then]\Z ~ ]\Z’

where]\//fﬁ’ is the unique perturbed Markov matrix whose off-diagonalies equal those of

M/ =M, +N,(I-M,) "N,

Proof. For concreteness, 1e§| = m, with staten — m as the chosen representative.
First, observe that by Lemma 7.22 and Theorem 7.28, we mayresshat the entries

-1
of R ((ME)&S) are either 0 oro. By Lemma 7.26, the entries dt <<I — (M6)8,3> )

are also either 0 oso. In particular, R ((I _MO)_1> =i ((I - <ME)373> _1) and

R (]\Z) = R (M]). Thereforeg (]\Z) =G (M) andP (]\Z) =P (M]). Sincell, is
regular, we may apply Lemma 7.21 to obta/iﬁ. O

7.7 The SSD Algorithm

In this section, we present our algorithm for computing tBs®®f a PMM and prove that
it is correct. Intuitively, given a PMMJ/,, the algorithm is as follows:

1. Examine the corresponding unperturbed, Markov mat¥fy; this corresponds to
line 2 in Algorithm 2.

2. If it is unichain, then, as we will shortly observe, its gué stable distribution is
precisely the SSD af/,, so we are done; this corresponds to lines 3-4 in Algorithm 2.



recursion); this corresponds to lines 7-8 in Algorithm 2.
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3. Otherwise, take a maximal reductionf, i.e., reduce each of its communicating
classes to a singleton; this corresponds to line 5-6 in Atigor 2.

4. Then apply the non-uniform scaling construction of Lenvris, and iterate (via tail

Algorithm 2 To Compute the SSD of a PMM.

1: function v, = SSD(M,) {

2:

N kr®

C' = commClasseg\/,);
if (C.numClosed== 1)

return (stab (M,));

if (C.nonTrivial > 0)

(M,,1,C) = reducg M, C);

(M., D) = nonUniformScaléM,, C);
return (normalize(iD (SSD(M,))));

Algorithm 3 To Reduce a PMM.

1: #define uniformScal¢)) (hasZeroOnDiagonal@/) :

2: function (M, i, C) =reduce(M,,i,C) {

3:

4
5
6:
7.
8

9:

10:
11:
12: }

M, = uniformScalg M. );
i = identityMatrix(M,.dim());
for (¢ = Cfirst(); c.next() # NULL;c = c.next)) {

s = c.member§).res{);
c.setMembergc.members§).first());

M, = (Mg + (M), (1= (Mo),.) (),

1
o ( (1- 4)..) " O40),, ) |

return (M., i, C);

(I+M)/27M)

We begin by observing that, by Theorem 7.10 and the commelsving, as well as

Theorem 7.28, at any step in the algorithm, we may repldcdy an equivalent PMM

without affecting the final result (i.e., the SSD). In pauntar, we may represent/, by

its pair of resistance and cost matrices. Theorem 7.6 tHEnug how to carry out any

subsequent algebraic operations (i.e., addition and phigkition of PMMs).
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We now prove that our termination condition in step 2 is otirre
Theorem 7.30.GivenM, € PMM(n), if M, is unichain, therstab M, = {ssd M, }.

Proof. Lettingv, = stab (M,), by definition,M, v, = v, for e > 0. Taking limits, we have
Myvg = vy, thatis,ssd M, = v, € stab M,. SincelM, is unichainstab ), is a singleton,
so thatstab M, = {ssd M, }. O

Next, observe how we implicitly appeal to Corollary 7.12 argeorem 7.29 in step 3,
and the corresponding call teduce In this way, we reduce each communicating class,
while only inverting aconstantmatrix. Notice also how in line 9 of Algorithm 3, we accu-
mulate theunperturbedinclusion of the reduction,, in the (real-valued) matrix, This
is correct by Theorem 7.15. Finally, note that as we iterdateugh each communicating
class ofM,, reduce eliminates all the elements of each classeptthe first, updating its
set of member to benlythe first. Thus, it returns an updated communicating classrde
position, corresponding to the reduced result. This mdaatsite do not need to recompute
from scratch before the call tmonUniformScale

Finally, Lemma 7.16 guarantees that step 4 is correct. M@tethe algorithm is guar-
anteed to make progress to termination. Specifically, Gogoll.17 guarantees that even-
tually either the condition of line 3 or line 5 holds. Thugher we terminate immediately
or we reduce the dimension 81,, guaranteeing that we will terminate eventually.
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Two Related Algorithms
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Chapter 8

GraphRank

In this chapter, we discuss the problem of ranking and fras@wtion in terms of a multi-
objective linear program. We then show how to compute Paxetional solutions, as well
as suggest how to find socially optimal solutions. We willuamss we are given a set of
individuals and for selected ordered paifs,j), a positive valued, ; > 0, indicating that
J Is superior toi by d, ; units. For example, if the individuals are sports teamys,may
represent the positive differential in points scored or gawon (e.g., team won d, ;
more times against teairthan it lost). We can represent this data naturally as a vieigh
directed graph(G = (V, E,d, s, e), where the verticesy, correspond to the individuals
being ranked, the edgek, correspond to the set of comparisons, afd),e(a) : £ — V
are the starting and ending verticesagfrespectively. We will assume thaét and E are
finite. The objective is then to determine a ranking functionV’ — R which is consistent
with the given data, as well as optimal, in some sense.

If the corresponding graph is not connected, then verticelfierent components are
necessarily incomparable, so we will assume thas connected. If the corresponding
undirectedgraph is connected and acyclic, then there is a unique ealtibi the corre-
sponding system of equations(e(a)) — = (s(«)) = d,, Ya € E, up to a constant shift.
In general, this ranking problem is complicated by the exisé of undirected cycles in
the graph which lead to an inconsistent system of equatldsle there are general tech-
niques for solving such over-determined systems of lingaagons, we would prefer a
technique which is motivated by this specific application.

One approach taken in the literature for undirected graphs simply throw out the
127
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smallest number of edges to obtain a directed acyclic gr@#tG) and apply standard
topological sort techniques to the result (Kenyon-Matled Schudy, 2007; Ailon, 2007).
This has the advantage of avoiding ties, but does not adtimggo optimally sort indi-
viduals in the resulting graph. Thus, we take an alternatp@oach which will lead to a
non-trivial ranking whenever possible. We give one jusddiiien for this approach here and
address it in further detail in Section 8.3.

For a ranking to be consistent with the data, we must at leagth < x (e(a)) —
z(s(a)) < d,, Ya € E. In other words, if the data indicates that teaims better than
team, it should be ranked no worse. We wish to create an “infoweatranking, by
distinguishing individuals from one another whenever pass It is easy to show that
these constraints imply that any feasible ranking must Instemt on directed cycles. That
is, with these constraints it is impossible to use a feas#uh&ing to distinguish between
individuals within a directed cycle. However, by collagsiall cycles to single vertices,
we obtain a DAG and we can sort the vertices in strictly insieg order. Therefore,
topological sort on unweighted graphs can be viewed as amizption problem, where
we are trying to minimize the number of strict equalities ur oonstraints. This objective
has the nice property of treating the data “fairly” by handliall the given edges in the
same manner.

However, a ranking should not overstate the degree of sujigrof teami over;. That
is, we should impose the additional constraints(«)) — x (s(«)) < d,, Ya € E. Now
instead of distinguishing individualghenevepossible, we can also seek to do saragch
as possible. That is, we want a ranking which is maximal wi$pect to the multiple
objectives, f, ,(z) = x(t) — x(s), such that(s,) = (s(a),e(a)) with o« € E. Notice
that if we consider unweighted graphs as the case whegs 1, this will automatically
minimize the number of tight left-hand side constraintsttse is a natural generalization
of the previous problem.

Formally, given a weighted, directed gragh,= (V, F, d), we restrict attention to the
set of valuations o+, C (), satisfying the corresponding system of linear constsaint

C(G)={z: V=R |0<z(e(a)) —2x(s(ar)) <d,, Vo € E}.

Observe that(G) # 0, since it contains every constant function Bn Now define a
pre-order (with corresponding partial order and equivegerelation) orC'(G), <, so that
r =< 2 iff z(e(a)) — 2 (s(a)) < 2’ (e(a)) — 2’ (s(a)),Ya € E. Our goal is then to
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solve the multi-objective, linear prografRank(G): computer” € maxq (), that is, find
a Pareto optimal, feasible ranking.

This type of system of constraints has been well-studiedoerations research, par-
ticularly in the theory of scheduling (Corman et al., 200Ihe graph is then called a
PERT (Program Evaluation and Review Technique) chart. Mewehe classical problem
generally involvesninimizingthe difference between the largest and smallest values of
which in our case would yield the trivial ranking(v) = 0. However, we might wish to
refine our search to a Pareto optimal solution which is slyagitimal with respect to some
aggregation function, such asax; ,cy (t) — x(s) or ) pz(e(a)) — z(s(a)).

In the latter case, the problem may be recast as a standaat pmogram, where a
solution may always be taken at a vertex&f=), corresponding to a consistent collection
of tight constraints. Intuitively, the tight constraintétbe form z (e(a)) — x (s(a)) =
d,, correspond to a choice of edges, while the remaining egquaditstraintsy (e(«)) =
x (s(a)) should only be those forced by the geometrybf This suggests that we pursue
a general approach to finding Pareto optimal solutions sparding to maximizing the
difference on selected edges, using the geometrg b infer the subsequent equality
constraints.

We will carry out this program in Section 8.2 and give an aikipon for computing a
Pareto optimal solution. We then discuss related work ahddulirections for research.
We conclude by outlining applications of these technigwegoting and information re-
trieval.

8.1 Existence of Solutions

In this section, we discuss some background results retatedde problemRank(G),
introduced in the previous section. Most importantly, wdl alow that solutions exist,
and that feasible rankings are constant on strongly coadezmponents (SCCs) 6f.
SCCs are most easily described in terms of the natural peeofdtthe vertices, given by
the “leads to” relatiom-, wherei ~ j iff there is a directed path i& from to j. SinceG
is connected, for eacht € V, thereis a sequem{e;z-}fzo C V such thats ~ vy «~v; ~
---«~1, ~ t. This relation defines an equivalence relatien, wherei ~ jiff i ~
j andj ~ i, a corresponding partial order on the set of equivalen@seks which we will
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denote by=, and astrict partial order,<. The strongly connected components(ofire
simply equivalence classes with respecttoThey are also often called “communicating”
classes.

Given anundirectedwalk in GG, we may define its length by summing the weights of
the edges, where we weight a forward edgé aand a reversed edge @sLet (s, t) be
the length of the shortest such walk fronto ¢. SinceG is connected, this set of walks is
non-empty, so that,(s, t) is well-defined for alls, ¢t € V.

Lemma8.1.If x € C(G), z(t) — x(s) < lg(s,t). In particular, if s ~ ¢, z(s) < z(t).

Proof. Consider any undirected walk frosrto ¢. For each forward edge, we havée(a))—
z(s(a)) < d,. For each reversed edge, we have< z (e(a)) — z (s(a)), so that
z(s(a)) —z (e(a)) < 0. When we sum these inequalities, the left-hand side tepesco
to z(t) — x(s), while the right-hand side yields the length of the undiedctvalk. Since
this inequality holds for all such walks, it holds for the giest such one, i.e., when the
right-hand side i$;(s, t). If s ~ ¢, then there is an undirected walk franto s consisting
entirely of reversed edges, so thatt, s) = 0, z(s) — z(t) < 0, andz(s) < z(t). O

We can now prove th&ank(G) has at least one solution. For the following, we will
assume only that there is a well-defined operatigmaking a directed graph to pairs of its
vertices,I(G) Cc V x V, and thatr < 2 iff z(t) — x(s) < 2'(t) — 2'(s),V (s, t) € I(G).
For example,

I(G) = {(s, 1) | degy,(s) = deg,,(t) =0} or  {(s, 1) [ s = s(a), t = e(a), a € E}.
Lemma 8.2. If 2’ — z is constant, them ~ 2’. Moreover, ifr € C(G), thena' € C(G).

Proof. If 2’ =z + ¢, 2" (') =2/ (s') =2 (') —x (§), Vs, € V. Since~ andC(G)
are defined solely in terms collections of such differenttes,conclusions of the Lemma
follow. O

Theorem 8.3. max C(G) # 0.

Proof. Let M/ = max, ey lg(s,t). By Lemma 8.1-I;(v,u) < z(u) — z(v) < lg(u,v),
so that|z(u) — z(v)| < max{lg(u,v),lg(v,u)} < M. By Lemma 8.2, there is a repre-
sentative of each equivalence clas€gty) in

C'(G) = {x eC(G)| > a(v) = 0} .

veV
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Foranyw € V,if N' = [V, [2(0)] = [2(0)] = 5 [ ev 2(w) — 2(0)] < § Xev [2(u) — 2(0)] <
+~NM = M. Thus,C'(G) is closed and bounded, hence compact. Consider

(s,t)el(G)

This is continuous o’ (G) and hence attains a maximum there at safmeThis must be
maximal inC(G), for if z < 2’, we can assume without loss of generality that C'(G),
so thatD(z) < D ('), which is a contradictiont

Observe that whery is strongly connected, the constant solution is the unigped
constant shift) solution tRank(G). More generally, any feasible ranking is constant on
strongly connected components@f

Theorem 8.4.1f x € C'(G) ands andt are in a common cycle (i.es, ~ t), thenz(s) =
x(t). In particular, z(v) is constant on strongly connected components.

Proof. Sinces ~ t, s < t, andz(s) < z(t), by Lemma 8.1. Likewisey(t) < z(s), so that
x(s) = z(t) for s andt within the same strongly connected component.

8.2 Computing Pareto Optimal Solutions

In this section we show how to soh\Rank(G) from the Introduction by using four ba-
sic operations, reversing 0 weight edges, collapsing syclepping multiple edges, and
“shifting” vertices, to recursively simplify the problerin so doing, we give a constructive
proof of existence of solutions tRank(G). We begin by showing how we may reduce
the problem on an arbitrary graph to a corresponding problewr simple, directed acyclic
graph without 0 edges, obtained by reversing 0 edges, aitigycles and then dropping
all but the smallest of multiple edges.

Given a a weighted, directed grap,= (V, E,d, s,e), let B, = {a € E | d, =0}
be the set of 0 weight edges. We may define a new gigieh = (V' E',d’, s, ') with
V' =V, whereE' is essentially the same &% except we introduce the reverse of the edges
in E,. Specifically,E’ = E x {0} UE, x {1}, with d(, ) = do, d(s1) = 0, 5’ (2, 0) = s(«),
s'(a,1) = e(a), €' (a,0) = e(a), ande’(a, 1) = s(a). Notice thatC'(G) = C(T(G)), since
we are simply adding redundant equality constraints.
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Theorem 8.5. The set of feasible rankings fet andT'(G) are identical, that isC'(G) =
C(T(G)). Likewisex = 2’ iff 2 <) «'. In particular, max C(T'(G)) = max C(G).

Proof. Givenz € C(G) anda’ = (a,i) € E', there are two cases to consideri K 0,
thena € Fand0 < x (e(«w )) 7 (s(a)) < d,. Sinces'(a, 0) = s(a), €'(a, 0) = e(a), and
dio0) = doy 0 < 3 (€' (e, 0 $'(,0)) < dag). If i = 1, thena € E, andd,, = 0.
Therefore) < z (e(a)) — 2 (s(a)) < d, = 0and0 < z (s(a)) — z (e()) < 0 = dy 1)
Sinces'(a, 1) = e(a) ande’(a,1) = s(a), 0 < z((o, 1)) — 2 (s'(a,1)) < dio)-
Thereforexr € C(T(G)).

Conversely, ifr € T(G) anda € E, then0 < z (¢'(a,,0)) — z (s'(«,0)) < d
before,s'(a,0) = s(a), €/(, 0) = e(w), anddy, o) = d,,, S0 tha) < z (e(a))— (s
d, andz € C(G).

Now assume that, € C(G) = C(T(G)),i = 1,2, andz;, = z,. Givena' = (a,i) €
E', there are again two cases to consideri ¥ 0, thena € E, and sincer; =< ,,
21 (e() — a1 (s(0)) < 23 (e() — @ (s(a)), 50 thate; (¢/(,0)) — a1 (/(a,0)) <
2y (¢'(,0)) =25 (s'(a,0)). If i = 1, thena € Ey, z; (e(r)) = z; (s(a)), andz, (¢'(a, 1)) —
2y (s, 1)) =0 < 0=y (', 1)) — a5 (s (v, 1)). Thus,zy <7 22

Conversely, assume that =, z,. Givena € E, thena’ = ( a,0) € E'. Since
T 2@ T 21 (€(a,0) — 21 (5(a,0)) < xy(¢'(a,0)) — x5 (5'(a,0)). Therefore,
1 (e(@) — 21 (s(a)) < 23 (e(@)) — 2 (s(a)), so thatr; =g z,. O

\_/
N~—

E%
S~

(a,0)" As
(@) <

Given a a weighted, directed grapli,= (V, E,d,s,e), let[v] = {v' € V | v/ ~ v}
We wish to define a grap(G) = (V',E',d’, s, ¢), WhereV = {[v] |v e V}. That
is, the vertices ofP(G) correspond to the strongly-connected componentS'.ofSince
strongly-connected components are unions of cycles, we a#gctively collapsed each
cycle to a single vertex. To guarantee that the result islgimye discard all loops and re-
tain only the smallest weight edge between any two vertiSpecifically, givens’ t eV
with s" = [s] andt’ = [t], such that < tandE, , = {a € E|s(a) € ,e(a) et'} #

0, choosey, , = argmin, E d,,, and takel'’ to be the set of all such edges. Finally, take
d =d|, s (o) = [s(a)], ande’(a) = [e(a)]. Notice that by construction; (%’,t') =5
ande’ (as’,t’) =t

Now observe that there is a natural, order-preserving spardence betweef(G)
andC'(P(G)).
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Theorem 8.6. The mapping given byp(z)(v) = z([v]) is a bijective, order preserv-
ing correspondence betwe&l( P(G)) and C(G). In particular, p (max C(P(G))) =
max C'(G).

Proof. We first show that, if:" € C(P(G)), = = p(2') € C(G). Givena € E, we
must show that) < z (e(a)) — z (s(a)) < d,. By definition, z (e(a)) — z (s(a)) =

7' ([e(a)]) — 2'([s(a)]). If s(a) ~ e(a), this is 0 and we are done. Otherwise, let-
ting ' = [e(a)]) ands’ = [s(a)], we haves(a) <g e(e) anda € E,,, so that
7' ([e(a)]) — 2/ ([s(a)]) = 2 (t/) — 7 (s/) = 1 (e/ (%’,t’)) — 2 (s/ (%’,t’))- Since

7 e C(P(@)),0< a2 (e/ (%’,t’)) — 7 (s/ (%’,t’)) < das,’t, < d,. Sincezx (e(a)) —
z(s(a)) =2 (e’ <a817t/)> —a (s’ (as’,t'>>' we have shown that € C(G).

Now observe that, by Theorem 8.4, any= C(() is constant on equivalence classes,
[v], so that the inverse mapping,’ () ([v]) = z(v), is well-defined. Ifz’ = p~"' (z), we
must show that’ € C(P(G)). If a € E', thena = a, with s'(a) = 5" andé'(a) =
t'. Moreover,s' = [s(a)] andt’ = [e(a)] andz’ (¢' (o)) — 2’ (s' (o)) = ' ([e(@)]) —

7' ([s(a)]) = z (e(a)) — z (s(a]), which is betweel andd,, = d.,, sincex € C(G).

Finally, it remains to show thatandp " are order-preserving functions. Assume that
r; X zy With z; € C(P(G)), and considery € E. For convenience, let = e(a),

s = s(a), and observe that(zx;) (t) — p (z;) (s) = ;([t]) — z;([s]). There are two cases to
consider. Eithes ~ t or s < t. In the first caser;([t]) = z;([s]), we havep (z,) () —
p(r1)(s) =0 <0 =p(x)(t) —p(xy)(s). Otherwises < t anda € Ey 4, SO that
as], [t] € E with [s] = s (ayq4) and[t] = e (o ). Sincer; = @y, 24 ([t]) — 2, ([s]) <
2([t]) — 5([s]), or equivalentlyp (z,) (£) —p (1) (3) < p (1) (t) —p (2,) (). Therefore,
p(z1) < p(a2).

Conversely, assume thdf < x, with 2, € C(G). Letz; = p (z;) and considen € E'.
Thena = oy, With s(a) = s ande(«) = ¢. Sinces'(«) = [s] ande’(a) = [t], we must
show thate, ([t]) —z: ([s]) < z5([t]) —2([s]). Sincer| =< a5, 2’ (t) =2’ (s) < @5(t) —a5(s).

By definition, z;(t) = x,([t]) andz;(s) = x;([s]). Thereforex,([t]) — z;([s]) < x5([t]) —
x4([s]), as desired, so that < z,. O

We now introduce a novel operation to “shift” a vertex. Thasresponds to feasible
pivot in a simplex tableau fo€'(G), or equivalently, a change of variables that forces
z (e(a))—z (s(a)) = d,. Specifically, given a weighted, directed graph withouf-ksps,
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G = (V,E,d, s, e), we will say that an edgey < L, is feasibleiff d, = min, s —c(a) dg-
For any feasible edge,, we then define a graph,, (G) which is identical ta&, but with a
new set of edge weights. Specifically, &t (G) = (V, E, d', s, e) with

dy— da, i () = e(a)
dy =< dg+d,, ifs(8)=ela) .

dg, otherwise

As before, there is a corresponding mapping,taking valuations oz, (G) to valua-
tions onG.

Theorem 8.7. Consider the mapping,, given by

{ 7'(v) +d,, ifv=ela)

2'(v), otherwise

This is bijective, order-preserving correspondence betwe
domainr, = {2’ € C(R(G)) | 2/(e(A)) — 2'(5(8)) = d. i e(ar) = 5(8)}

and

imr, ={z € C(G) | x(e(B)) — 2(s(B)) = do, if e(a) = e(0)} .

Proof. We first showthat = r,, (2') € C" = {z € C(G) | z(e(8)) — z(s(B)) > do, if e(a) = e(B)},
for anyz’ € domainr,. Givenj € E, by assumption) < 2’ (e (3)) — 2’ (s (8)) < dj,
with d, < o' (e (8)) — ' (s (8)), if e(a) = s(B). If e(3) = e(a), thend = d; — d,,
' (e(B)) = (e(B)) — da, andz’ (s(3)) = x (s(B)), sinces(B) # e(3) = ( ). Therefore,
0<d, <z(e(B)) —x(s(8)) < dg. Inparticularx (e(a)) — z (s(a)) =

Similarly, if s(8) = e(a), thend; = dg+d,,, ' (s(8)) = z (s(8))—d,, andx’ (e(B)) =
z (e(B)), sincee(3) # s(B) = e(a). Sinced, < 2’ (e(B)) — 2’ (s(B)) < dj, 0 <
2 (e(9) — 2 (s(8)) < d.

Finally, if e(a) # s(8),e(8), thendy = ds, 2’ (s(3)) = x(s(8)), andz’ (e(8)) =
2 (e(B)). Thus0 < = (e(8)) —x (s(8)) < ds forall 8 € B, withd,, < (e(3)) — 2(s(3)),
whene(a) = ¢(3). In other wordsy € C’, so thatimr, C C'. Conversely, ifr € C’,
we may then define’(v) = z(v) — d,, if v = e(a), andz(v), otherwise. The previous
calculations may all clearly be reversed, to show tfat domainr,.
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We now observe that both, andr,,* are order-preserving. i = r,, (m’) then for any
s,t € V, notice thate,;(t) — z;(s) = r, (z;) (t) — ro (z;) () — ¢, wherec = —d,,, d,,, or 0,
depending on whetherand/ort equale(a). In any caser, (t) — x,(s) < xy(t) — x5(s) iff
To (1) (£) — 7o (1) (5) < 1o (22) (1) — 1y (z2) (), forall s, € V. In particularz, < z,
iff v, (xq) X7, (2y). O

Lemma 8.8.1f 2’ <z € C(G) for 2’ € imr,, thenx € imr,.

Proof. Assume thatt’ < z € C(G), ' € imr,. Then, for anys € E, x(e(3)) —

(s(8)) = 2'(e(8)) —'(s(8)). By Theorem 8.7, it(a) = e(8), 2'(e(8)) —2'(s(8)) = da.
Thereforex(e(3)) — z(s(B3)) > d,, and again by Theorem 8.7, imr,. O

Lemma 8.9.r, (maxC (R,(G)) Ndomainr,) C max C(G).

Proof. Let z; € maxC (R,(G)) Ndomainr, andr, (z;) < = € C(G). By Lemma 8.8,
x =1, (x5), for z, € domainr,. Therefore, by Theorem 8.6, < x,, which implies that

Ty ~ Iy, Sincea; is maximal. Thusy, (z;) ~ r,(xy) = z, again by Theorem 8.6. In
particular,r, (z;) € max C(G). O

Combining these results gives Algorithm 4 which computegt®eoptimal rankings.

Algorithm 4 To SolveRank(G).

1: function z =1k (G) {

2: G'= P(T(Q))
if (G'.numVertices== 1)

return (p(0));

Choose a feasible € E such that(«a) is maximal.
G' =R, (G
return (r, (p (tk (G"))));

e R S

Theorem 8.10. Algorithm 4 produces a solution Rank(G).

Proof. By construction,R,, (G') has a 0 weight edge, so th&t(R, (G')) will have at
least one fewer strongly connected components tharThus, after the initial call, line
2 decreases the number vertices by at least 1. In partiouéaare eventually left with a
trivial graph, containing a single vertex and no edges. Tthesalgorithm is guaranteed to
terminate.
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If G’ is trivial, by Lemma 8.2, the constant rankingv) = 0 is clearly the unique
feasible ranking, up to equivalence. Moreover, Theore®s8d 8.5 imply thap takes this
optimal ranking forG’ to an optimal ranking fotz. Moreover, by line 5G" is a simple,
acyclic directed graph. Thus, there can be no edgesych that(«) = s(3). In particular,
domainr, = C (R (G)), so that we may apply Lemma 8.9, along with Theorems 8.6 and
8.5 to prove that line 7 is correatl

Notice that after the initial call tok(G), we may optimize the subsequent callsito
and7’, since we know precisely those edges which became(® ind there will only be
one non-trivial strongly connected componenf@t7). In practice, we might expect these
calls to be of roughly constant cost, so that the entire @lgorshould be linear in the size
of G.

8.3 Related Work

The problem of ranking from a directed graph has been studisvever, the approach
has been to simply throw out the smallest cumulative weifletiges to obtain a directed
acyclic graph (DAG), and apply standard topological sarhiteques to the result (Kenyon-
Mathieu and Schudy, 2007; Ailon, 2007). While this approak generated a lot of inter-
est, since itis an NP-hard problem to solve exactly, oneccargue, however, that throwing
away edges is not realistic. For examplegzitonsists of a 3-cycle with equally weighted
edges, while throwing away an edge will lead to an orderinthefvertices, the resulting
order will depend crucially on which edge is thrown away,retteugh the edge can only
be chosen “randomly”. The value of such a strict orderingubkidus, since the available
evidence indicates that the vertices are indistinguighabl

When the edges are weighted, this approach becomes evemproblematic. Consider
the case wheré,, = 1, d,. = 2, andd., = 3. If we throw out smallest edgéq, b), we
obtain the ordering < ¢ < a, even though the data indicates thaandb are the most
similar. If we throw out largest edgé;, a), the situation is even worse, since we obtain the
orderinga < b < ¢, although the data indicates thais superior ta: by the widest margin.

Moreover, this approach only reduces the problem to rankifi@AG, and does not
address how toptimally sort individuals in the resulting graph. Thus, we studiedabn
ternative which leads to a non-trivial ranking wheneversige, that is, when the graph is
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not strongly connected with non-zero weight edges betwkerstrongly connected com-
ponents. In practice, if a given statistic leads to a strponghnected graph, we suggest that
we should look for different statistics to reduce the nundfeaycles until the result is not
strongly connected. Consider our original example of sptams. An initial approach
might be to simply weight an edge froito ; by number of games won bjyoveri. But in
sports where teams play each other many times, this willypea 2-cycle between almost
every team. By combining the number of wins and the numbersHds as the difference,
we obtain a graph with many fewer cycles. If necessary, weeoguioy additional statistics
to break “ties” in the resulting ranking.

8.4 Applications

Another interesting example of statistical aggregatiomes from the field of information
retrieval. Ailon (2007) considers the problem of aggreggapartial rankings produced by
different Web search engines. Each partial ranking givesplgof pairwise comparisons
between consecutive members of each ranking. We may theagevthe graphs together,
weighted according to our belief in the quality of the resuf each engine, to obtain a
directed graph for whicRank(G) may give useful results.

Conjecture: Alternatively, if we are given cardinal rardkisind average the correspond-
ing tournament graphs, we obtain a graph where the weigtestére number of head-to-
head wins, on which we may then solRank(G). This ranking scheme will then satisfy
the Condorcet criteria.

8.5 Conclusion

In this paper, we discuss the problem of ranking and framduwisn in terms of a multi-
objective linear program. We then show how to compute Pargtional solutions, as well
as suggest how to find socially optimal solutions. We thergeagga modified version of
the algorithm which we believe will compute correspondingially optimal rankings.
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Chapter 9

QuickRank

9.1 Introduction

A fundamental problem in the field of social network analysiso rank individuals in a

society according to their implicit “importance” (e.g.,wer or influence), derived from

a network’s underlying topology. More precisely, given &iabnetwork, the goal is to

produce a (cardinabanking whereby each individual is assigned a nonnegative reaéyal
from which an ordinal ranking (an ordering of the individsledan be extracted if desired.
In this paper, we propose a solution to this problem spedtifigeared toward social net-
works that possess an accompanying hierarchical structure

A social network is typically encoded inlek graph, with individuals represented by
vertices and relationships represented by directed edgéds)ks,” annotated with weights.
Given a link graph, there are multiple ways to assign meaturtige weights. On one hand,
one can view the weight on a link fromto j as expressing the distance frano j—a
guantity inversely related tgs importance. On the other hand, one can view each weight
as the level of endorsement, or respedrantsj—a quantity directly proportional tg's
importance. We adopt this latter interpretation.

Under either interpretation (weights as distances or vieigh endorsements), a social
network can be seen as a collection of judgments, one madeadiy iadividual in the
society. Correspondingly, we seek a means of aggregatufigidlual judgments into a
single collective ranking. In other words, we consider th@ementioned fundamental
problem in social network analysis as akin to a key questiovoting: how to aggregate

139
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the preferences of many individuals into a single collexipersuasion that reflects the
preferences of the population as a whole.

Given a link graph, perhaps the most basic ranking schenegied centrality, in which
i's rank is a combined measure of its indegree, the strengtieaddndorsemenigeceives,
and outdegree, the strength of the endorsememizkes. It is straightforward to compute
this metric. However, it could be argued that it is also dalegp take into account inferred
endorsements: e.g., ifendorseg andj endorses:, then: endorses: in a sense. At
the opposite end of the spectrum lie ranking schemes thatpocate all such inferred
endorsements.

Central to these alternatives is a hypothesis due to Bomg@ie72): an individual
is deemed important if he is endorsed by other importantviddals In other words,
the strength of an endorsement should be construed retativee rank of the individual
making the endorsement. In terms of our voting analogy, Bighasuggests relating the
collective ranking to the sum of all individual judgmentach weighted by its respective
rank as determined by the collective. The fixed point of thisraging process—the prin-
cipal eigenvector of the link graph—defines Bonacich’s mealso known as eigenvector
centrality. Although intuitively appealing, the compudet of this fixed point can be pro-
hibitive in large networks.

Recently, computer scientists have developed relatedrsehto rank web pages based
on the Web'’s underlying topology. Viewed as a social netwarb pages are individuals
and hyperlinks are links. The most prominent approach tkingnweb pages is the Page-
Rank algorithm (Page and Brin, 1998; Page et al., 1998), wguoh the Google search
engine is built. PageRank aggregates the information swdan the Web’s hyperlinks to
generate a ranking using a process much like Bonacich’sadétin computing eigenvector
centrality.

In this paper, we present QuickRank, an efficient algoritbncbmputing a ranking in
an hierarchical social network Many social networks are hierarchical. One apt example
already mentioned is the Web, where the individuals are vagle g, the network structure is
provided by hyperlinks from one web page to another, and phaghierarchical structure
is given by the Web’s domains, subdomains, and so on. Andittieg example is the
Enron email database, where individuals are employeesidtveork structure is given by
emails from one employee to another, and an explicit hibareat structure is given by the



141

corporate hierarchy. Yet another compelling example idation index. In this case, the
individuals are publications, the network structure igatied by the references from one
publication to another, and an explicit hierarchical sinoe is given by the categorization
of publications by fields (e.g., computer science), suldiéédg., Al, theory, and systems),
and so on.

As we sketch the key ideas behind the QuickRank algorithimgimtroductory section,
we allude to the sample hierarchical social network showfigmire 9.1, a network of web
pages within a domain hierarchy. The web pages, indicategréyy rectangles, are the
individuals in this society. Social relationships betwdleese individuals (i.e., hyperlinks
between web pages) are shown as dashed lines with arrowslontegn hierarchy is drawn
using solid lines with domains and subdomains as interidiespindicated by solid black
circles, and web pages as leaves (gray rectangles).

edu.brown

edu.brown/cs edu.brown/econ

Figure 9.1: A sample hierarchical social network.

Up to normalization, a ranking is a probability distributidGiven any normalized rank-
ing (i.e., probability distribution) of the individuals ian hierarchical social network, by
conditioning that global distribution on a particular sabununity (e.g., CS), we can derive
aconditionalranking of only those individuals within that subcommur{iyg., Pr[page 1
CS], Pr[page 2 CS], etc.). Likewise, from the respective marginal probihof each sub-
community, we can infer what we callmarginalranking of subcommunities themselves
(e.g., Pr[Al| CS], Pr[theory| CS], etc.). Conversely, it is straightforward to recoves th
global ranking by combining the conditional and marginalkiags using the chain rule.
For example, Pr[page 1] = Pr[page Al] Pr[Al | CS] Pr[CS].

1\ﬁewing each interior node as the root of a subtree, we inédlnrefer to the ranking of the children
of an interior node as a marginal ranking, although such kimgris technically aconditionalmarginal
ranking, conditioned on the subcommunity defined by thatrseb
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Hence, to compute a global ranking of the individuals in ardrichical social network,
it suffices to compute marginal rankings at all interior ro@ee., rank the children of all
interior nodes), and combine those marginal rankings \e@actiain rule. To facilitate re-
cursive implementation, QuickRank localizes the compaoadf each marginal ranking:
any links to or from leaves outside the subtree at hand am@éghin such computations.
Beyond this computational motivation, localizing mardirenking computations can be
motivated by the following “peer-review principleéhdorsements among peers (i.e., mem-
bers of the same subcommunity) should be taken at face wahile, other endorsements
should be considered as only approximate

Intuitively, it is plausible that ranking information amg@individuals in a tightly-knit
community would be more reliable than ranking informationcag individuals who are
only loosely connected. Recall the citation index, a natexample of an hierarchical so-
cial network. When a researcher cites a topic in his areaértise, he is likely to select
the most appropriate references. In contrast, if for sorasea® a researcher with exper-
tise in one area (e.g., computer science) is citing a reswhbother (e.g., sociology), he
may choose only somewhat relevant references. Hence, wientbthat the peer-review
principle, which justifies localized marginal ranking comgtions, befits at least some ap-
plication areas.

To fully implement the peer-review principle it is necessar define some notion of
approximate endorsements. To this end, we interpret anresih@nt by an individualin
communityA for another individuaj # ¢ in another communitys # A as comprising part
of an endorsement byt of B. More precisely, we aggregate endorsements by individuals
in A for individuals in B into an endorsement by of B by first scaling the endorsements
from eachi to eachj by i's marginal rank, and then summing the resulting weighted en
dorsements. If we were to replace the targef an endorsement by any othgrc B, the
resulting aggregate endorsement remains unchanged.slseahse, the original endorse-
ment is viewed as “fuzzy” or “approximate.” Moreover, byenpreting links originating
at¢ asi’s judgment, this aggregation process can be seen as awcatpii of Bonacich’s
hypothesis (to obtain endorsements of eaeh B by A) followed by a summation over all
j € B (to obtain an endorsement 6.

Together, the principle of peer review and Bonacich’s higpsis lead to the QuickRank
algorithm, which we illustrate on the example in Figure Qe begin by restricting the
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link graph to, say, the Al subdomain, thereby constructitaral link subgraph. Next, we
apply any “flat” ranking scheme (e.g., degree and eigenveetatrality and PageRank) to
this link subgraph to produce a marginal ranking of the pagése Al subdomain (i.e., a
distribution overl and2). Then, we scale the links fromto 4 and2 to 3 by the marginal
ranks ofl and2, respectively, to generate links from Al #oand3. Finally, we sum these
results to produce an aggregate link from Al to theory.

Repeating this procedure for the theory and systems sulideymee “collapse” each of
the CS subdomains into a leaf, and substitute these subdsioatheir corresponding web
pages in the link graph. We then proceed recursively, coaistilg a local link subgraph,
and computing a marginal ranking of the CS subdomains. Caimdpthis marginal ranking
with the marginal rankings of the web pages in each CS subithoyiedds a single marginal
ranking of all the web pages in the CS domain. We repeat tlisgss until the entire
hierarchy has been collapsed into a single node, at whiaft pa obtain a ranking of all
pages in thedu. br own domain.

We conclude this introduction by noting the following progyeof QuickRank: The
relative global ranking between two individuals is detared by their local ranks in the
smallest community to which they both beloridhis property follows from the fact that
scaling is the only operation which is performed on rankifgsnditional rankings are
scaled by marginal ranks), but scaling does not affectivelaankings.

Overview This paper purports to contribute to the literature on daweawork analysis
by introducing the QuickRank algorithm. As suggested bypfrevious example, Quick-
Rank is parameterized by a “BaseRank” procedure (i.e., adtdting scheme, such as
degree centrality) used to compute marginal rankings. Vgenbe the next section by
precisely defining BaseRank procedures and identifyingralde properties of such pro-
cedures. In Section 9.3, we present pseudocode for the Raidkalgorithm. We also
consider to what extent QuickRank preserves our previadslytified desirable properties
of BaseRank procedures. Then, in Section 9.4, we providelea@uickRank calculations.
Our first example illustrates the distinction between staipde “BaseRanks” and “Quick-
Ranks,” the rankings output by these schemes. A further pleaghows how QuickRank
is potentially more resistant to link-spamming than cqoesling BaseRank procedures.
We conclude in Section 9.8. A discussion of related work igided to the QuickRank
technical report, currently in preparation.



144

9.2 A Unified View of Flat Ranking Algorithms

QuickRank is parameterized by a flat (i.e., non-hierardhreaking algorithm, or a “Base-
Rank” procedure. In this section, we precisely define a BaskRrocedure, and we for-
mulate the four flat ranking schemes mentioned in the inttbdn as such. We also present
four desirable properties of BaseRank procedures, andsiito what extent the four afore-
mentioned ranking schemes satisfy these properties.

9.2.1 Preliminary Definitions

A social network encodes relationships among individuassociety. Such a network can
be represented by lank graph Individualsi,j; € 7 are represented a®rtices and the
fact that individual relates to individuaj is represented by a directédk from vertex:

to vertexj, augmented by a nonnegative real-valued weight indicahiegstrength of’s
relationship toj.

A judgmenis a nonnegative, real-valued vector indexed okiVe define an equivalence
relation on judgments with' andr? equivalent ifer' = r*. For our purposes, mnking
is such an equivalence clags (although we often refer to a ranking by any representative
of the class). A ranking has exactly one representativeishatprobability distribution,
which can be obtained by normalizing any other represemtatrurther, a ranking repre-
sents a consistent estimate of the relative merit of paimsdividuals: i.e., for all pairs of
individualsi andj, the ranking ofi relative toj, namely™t € [0, oc], is well-defined.

A link graphis a nonnegative, real-valued squaré matrix indexed orWe restrict
attention to the case where the weights in the link graph reaganably be interpreted as
endorsements, rather than distartésjudgmentgraph is a link graph further constrained
to havepositivediagonal entries. Each column in a judgment graph represle@judgment
of one individual. The requirement that the diagonal betp@scan be interpreted to mean
that individuals are required to judge others relative enteelves. Whereas rankings are
scale invariant, judgments are scale dependent.

In the introduction, we presented ranking schemes as apgran link graphs. That
was a convenient oversimplification. More precisely, thegpra judgment graph and a

2Itis conceivable that QuickRank can be suitably modifiecetiodie the distance interpretation by redefin-
ing the peer-review notion of approximation as aggregdaiyngpking a minimum instead of summing,
but we have not yet explored any applications of this sort.
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prior ranking to aposteriorranking. We view the inference of a judgment graph from a
link graph as a preprocessing step. This step might corfsisd@rting self-loops: replacing
zeros on the diagonal with ones. In the case of the Web ortocitdatabase, for example,
such self-loops would model each web page or publicatiomgdigitly referring to (i.e.,
endorsing) itself.

Analogously, we define BaseRanlprocedure as a higher-order function that takes a
judgment graph to a mapping which infers a posterior rankiam a prior. When used
within the QuickRank algorithm, we require that the posteranking output by the Base-
Rank procedure be normalized to a probability distributidrhe prior ranking may be
viewed as the persuasion of the “center” (i.e., the implderenf the ranking scheme). A
BaseRank procedure then is a means of aggregating the judgofehe individuals in the
society, and the center, into a single collective postedaking.

Given a judgment grapl® and a prior rankingr), Bonacich’s hypothesis suggests
that we may infer a collective judgment s= Rr. In this way, individual;j’s posterior
position is the sum of each individués conception ofj, weighted by the prior rank af
By ignoring scale in”’, we can infer the posterior rankirig’). Note that the result of these
two inference steps is well-defined, in tHat) depends only oi) and not onr itself. We
use the terntinear to describe a BaseRank procedure whose mapping from a priking
to a posterior abides by Bonacich’s hypothesis.

This inference rule shows up naturally in the case of two &ntypes of judgment
graphs, namely, finite-state, discrete-time, stationagyKdv processes and Bayesian up-
dating. In the former case, the judgment graph correspoirdstly to the probability
transition matrix of the Markov process and the inferende follows the corresponding
reallocation of probability. In Bayesian updating, oneiigeg a prior probability distribu-
tion r; = Pr[A;] over events4,, together with the conditional probabilitids; = Pr[B |
A;] of some common evenB. The Bayesian approach infers the posterior distribution
r; = Pr[A; | B] precisely as above: i.e:; = %. In fact, any judgment graph can be
expressed as the composite of these two types, a matrix asitst@ant column sums and a

diagonal matrix.
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9.2.2 Sample BaseRank Procedures

We now describe how the four ranking schemes mentioned imntheduction (i.e., in-
degree, outdegree, eigenvector centrality and PageRank)e viewed BaseRank proce-
dures. We assume that the link graph has been pre-procegifiedelf-loops inserted as
necessary, to yield an “initial” judgment graph. Since thietience step is fixed, the key
step in a linear BaseRank procedure is the way in which a "fjadgment graph is inferred
from the initial judgment graph. The degree centrality mestand PageRank are examples
of linear BaseRank procedures, as is eigenvector cegtradier certain assumptions (see
Theorem 9.2).

The indegree and outdegree of individuare defined respectively, as follows: given
an initial judgment grapt#,

ING) =Y Ry ouT(i) = Y Ry (9.1)

Both these centrality metrics can be understood as lineseBank procedures that infer a
posterior ranking from a uniform prior. Indegree is simpig identity function: the initial
and final judgment graphs are identical. Outdegree is tmsp@se operation: the initial
and final judgment graphs are transposes of one another.

The PageRank algorithm is parameterized by a valge (0, 1) and a distributiony,
often referred to as a “personalization vector.” In a prepssing step, the columns of the
judgment graph are normalized to yield a Markov matrix PageRank operates on the
convex combination ofi/ with the rank one Markov matrix.J* (where.J ambiguously
denotes any vector of all's), namely M, = (1 — e)M + evJ'. This matrix is easily
seen to beinichain(see Chapter 1), hence with a unique stable distributiopnMoreover,
Haveliwala and Kamvar (2003) have shown thathas a second largest eigenvalué ef,
so thatlim,,_, ., M"v, = v, for any initial distributionu,, with convergence a&l — ¢)".
This result follows alternatively by writing,, as the limit of a geometric series:

Theorem 9.1.1f M is a Markov matrix and\/, = (1 — €)M + evJ', then

RT k. _ Niqgi
Voo = l}Lrgo MZv, = e;(l €)'M'v (9.2)
This theorem implies that PageRank is a linear BaseRanlegue, which takes an
initial judgment graph/ to a final judgment graph>_>° (1 — ¢)'M". The prior ranking
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corresponds to the personalization vector and the postaéing is a discounted sum of
all the inferred rankings (including the prior).
Unlike degree centrality and PageRank, which we have shoenirrear BaseRank

procedures, eigenvector centrality is not. Given a judgrgespph R and an prior ranking

vy, the algorithm infers a sequence of posterior rankings = H}'};U%' It can be shown

that this sequence eventually converges to a fixed pQintvhich can be interpreted as the
collective ranking. Moreover, this iterative process carelpressed as a linear inference
Vg = Hlfavvooﬂl, wherea, and hence?,,, depend on the support of. In particular, eigen-

vector centrality is giecewisdinear BaseRank procedure. In the special case where the

judgment graph is strongly-connected (i.B.is irreducible), eigenvector centrality is lin-
ear, becaus&, is constant (i.e., independent®f andv, is independent of,. Formally,

Theorem 9.2.If a judgment graphR > 0 is irreducible with non-zero diagonal, there

exists a unique ranking > 0, such thatj|v||; = 1 and Rv = p(R)v, wherep(R) is the

Ruv,
[[Rvp Iy

magnitude of the largest eigenvalue ®f Moreover, for anyy, > 0, if v, ., =
lim, .. v, = v. Thatis,v,, = v and for alla, R, = vJ".

9.2.3 Generalized Proxy Voting

If we view each individual’'s rank as a collection of proxye(i. infinitely divisible and
transferable) votes, then a judgment graph may be integbaet goroxy-vote specification
indicating how each individual is willing to assign his pyoxotes to others. Given a
prior ranking (i.e., an initial allocation of proxy voteghe posterior inferred by a linear
BaseRank procedure is a reallocation based on the resaltsiodle round of proxy voting.
More generally, irgeneralized proxy-votinGPV), individuals cast their votes repeatedly
over time (i.e., each posterior serves as a prior in the raxtd), until ultimately, the
sequence of posteriors is averaged into a final vote co@ntaifinal ranking.

While historically PageRank has been viewed in terms of adcen-surfer” model (cf.
Page et al. (1998)), Theorem 9.1 suggests that it may be nmbiye\aewed as a GPV
mechanism with a discount facter € [0,1). In particular, for a given prior ranking,
the posterior computed by PageRank can be expressdd-as) " > >, 7'M v. Notice
that this is just the average of the inferred rankidd&, wheres is distributed geometri-
cally with meary. It is natural to generalize to allow weighting by arbitrakigtributions,
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S, a;M'v, or even as the limit of suchim y_.. S~ a; yM'v. Formally, we define a
generalized proxy-voting mechanism as a (linear) BaseRermtedure that takes an initial
judgment graph/ into a final judgment graphm _. . ZiN:O ai,NM".

Observe that all the flat ranking schemes mentioned aboeepéxutdegree, are not
only linear BaseRank procedures, but can be seen as GPV metisaas well. Indegree is
atrivial instance of GPV withy; y = ¢, ;. By Theorem 9.1, PageRank is a GPV mechanism
with o; v = €(1 —e)". Finally, if we restrict attention to irreducible judgmegraphs, eigen-

o . _ ﬁ ifo<i<N .
vector centrality is a GPV mechanism, with y, = . This final
0 otherwise
claim follows Theorem 9.2 and the well-known fact thiat, .. s, = lim;,_, % Zf;ol S;.

Although outdegree, which takésto R’ is linear, it is not a GPV mechanism.

9.2.4 Axioms

Next, we identify two types of judgment graphs that have radtunterpretations, and on
which a particular behavior for a BaseRank procedure seesferped. First, consider
the identity matrix/ as a judgment graph—thdentity graph—in which each individual
ranks himself infinitely superior to all others. Such a rawgkgraph provides no basis
for modifying a prior ranking. Thus, on this input, it seenesasonable that a BaseRank
procedure should act as the identity function (i.e., paster prior).

Second, consider the case af@nsensugraph, that is, a judgment graph’, wherez
is a distribution and; is individuali’s arbitrary scaling factor. In other words, a consensus
graph is a rank 1 matrix: everyone agrees on the rankjng to a multiple. Since there is
consensus among the individuals in the society, we conteatchiny prior ranking should
be ignored. A BaseRank procedure should simply return theexsus:.. We restate these
two properties succinctly, as follows:

Identity: BaseRank(l) = id
Consensus: Base Rank(zy') = =

Another important issue associated with ranking schemésatsof manipulation via
“link spamming.” The goal of link spamming is to game a ramksystem by creating
many false nodes, sometimes called sybils (Cheng and Faied?006), that link to some
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noden, thereby attempting to influence the rank of nad&Veb spamming is a particularly
popular form of link spamming (Gyongyi and Garcia-Molin@02).

A judgment graph inhabited by sybils takes the followingniord/’ = ]\04 % ,
where M is the original judgment graph (i.e., without the sybil8),describes the links
from the sybils to existing members of the society, andlescribes the links among sybils.
Since sybils are new to the community, and hence unknowrriggnal members, we as-
sume that there are no links from those members to sybils.

Observe that generalized proxy-voting mechanisms are $psistant in the follow-
ing sense: Given a prior ranking which places no weight onlsythe posterior ranking
computed with respect to the modified judgment graphis, for all intents and purposes,
equivalent to the posterior ranking computed with respet¢hé original judgment graph
M. That s,

M N v
Theorem 9.3.1f M’ = [ o ] U= {
0 0

BaseRank(M)v
0

,andBaseRank(-) = limy_, o Zi]\;o a; N (),

thenBase Rank(M')v" =

For example, since PageRank is a GPV mechanism, we applydme®.3 to show
that the posterior ranking of non-sybils is unaffected ksirtpresence, if we assign sybils
a prior rank of 0. In other words, if sybils can be detecsegriori, then PageRank may
be rendered immune to such an attack. Although the correlspgpmMarkov matrix need
not be irreducible for such a “personalization” vector, voadude from Theorem 9.1 that
the Markov process converges falt prior rankingsu,. Note that this conclusion follows
specifically from our interpretation of PageRank as a GPVharism, as opposed to the
traditional “random surfer” model.

Table 9.1 summarizes how each of the four ranking schemesassied in this section
behave with respect to the four properties of BaseRank droes discussed in this section.
PageRank doesot satisfy the consensus property because it is always biasedme
degree by the prior ranking. However, using the notatiorothiced above, if we instead
defineM, = (1 — €)M + eMvJ', the resulting algorithm satisfies all four properties.sThi
modified PageRank corresponds to a linear BaseRank pracedtirfinal judgment graph
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Property | Indegree Outdegree Eigenvector PageRank
Linear Yes Yes No Yes

GPV Yes No Yes Yes
Identity Yes Yes Yes Yes
Consensus Yes Yes Yes No

Table 9.1: Some properties of ranking schemes.

e, (1 — e’ M, that is, the posterior is a discounted sum of all inferremkigs
excludingthe prior.

Fundamentally, QuickRank’s design is based on the two kegddliscussed in the
introduction, namely the peer-review principle and Boohs hypothesis. However, as
QuickRank is parameterized by a BaseRank procedure, is@sddsigned to preserve the
Identity and Consensus properties. In the next section,et&ldhe algorithm and argue
informally that it indeed preserves these two propertieBageRank procedures, although
it fails to preserve linearity. When we present sample datmns in Section 9.4, we note
that QuickRank preserves the spam-resistance of its Bakgikacedure, and we illustrate
its potential to resist spam even further.

9.3 QuickRank: The Algorithm

QuickRank operates on a hierarchical social network, #hatjudgmentgraph? whose
vertices are simultaneously leaves of a tféeAt a high level, QuickRank first ranks the
leaves using the link information contained in the localgralphs; it then propagates those
local’ rankings up the tree, aggregating them at each level, inetji have been aggregated
into a single global ranking. Ultimately node’s QuickRank is the product of its own
local rank and the local rank of each of its ancesto@uickRank is parameterized by a
BaseRank procedure, which it uses to compute local ranklhgkso takes as input a prior
ranking of the leaves. It outputs a posterior distribution.

Although we present QuickRank pseudo-code (see Algoriththdi is top-down and
recursive, like many algorithms that operate on trees, timplest way to visualize the

3As above, we assume the link graph has been pre-processedta judgment graph.

*Whereas in the introduction, we used the term marginal, weuse the term local to refer to the ranking
of a node’s children. The salient point here is: this rankingpmputed using strictly local information.
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QuickRank algorithm is bottom-up. From this point of viewjiGkRank repeatedly identi-
fies “collapsible” nodes ifl", meaning the root nodes of subtrees of depth 1, and collapses
them into leaf nodes (i.e., subtrees of depth 0) until theeena further opportunities for
collapsing: i.e., untill’ itself is a leaf node. Collapsing nodeentails: (i) computing a
local ranking atr, that is a ranking ofi’s children, and (ii) based on this local ranking, ag-
gregating the rankings and the judgmentssfchildren into a single ranking and a single
judgment, both of which are associated with

Note that QuickRank is a well-defined algorithm: that is,ah@er in which local rank-
ings are computed does not impact the global ranking. Thipeaty is immediate, since
QuickRank propagates strictly local calculations up tee tn computing its global output.
Moreover, the collapse operation replaces a subtree ohdegith a subtree of depth 0 so
that QuickRank is guaranteed to terminate.

Data Structures Algorithm 5 takes as inpuf,, subtree of’ rooted at node, and returns
two data structures: (i) a ranking of all leaves (with suppoty onT),) and (ii) a judgment,
which is the average of all judgmentsBf’s leaves, weighted by the ranking computed in
(). At leaf noden, the ranking is simply the probability distribution with ateight onn,
denoteck,,, and the judgment is given by,,.

Computing Local Rankings Recall that the main idea underlying QuickRank is to first
compute local rankings, and to then aggregate those lon&lngs into a single global
ranking. Given a collapsible node a local ranking is a ranking af’s children. To
compute such a ranking, QuickRank relies on a BaseRank qguoee

There are two inputs to this BaseRank procedure. The firssikcal (i.e., marginal)
prior ranking. The second is a local judgment graph For j andk both children of node
n, the entry ofM in the row corresponding tb and the column corresponding fas the
aggregation of all endorsements from leaveg’jrio leaves inl}, equal to the sum of all
entries in thejth judgment corresponding to leavesiof

Aggregating Rankings and Links To aggregate the rankings afs m children into a
single ranking associated with QuickRank averages the rankings. .., ™ according
to the weights specified by the local ranking If we concatenate the: rankings into a

matrixQ = | ' ... ™ |, then the aggregation of rankings can be expressed simply
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asQr. Also associated with each chijdof a collapsible node is a judgment’. These
judgments are aggregated in precisely the same way as gankin

Algorithm 5 QuickRank(node:)

. if (n.isLeaf))

2 return ((n.getJudgmerty, e,,));

3: m =n.numChildren()

4: for (j =1tom) {

5. (I,7) — QuickRanKn.getChild;))
6

7

8

9

> B

for (k=1tom) {
M,; = Sum(’, n.getChild k))
¥

)
10: P=[1" ... 1]
11: Q = [ I }
12: r = BaseRanky/, n.getLocalPriorRanking())
13: return ((Pr, Qr));

We now argue that if the BaseRank procedure satisfies thétidand Consensus prop-
erties, then so, too, does QuickRank. First, notice thagnariestricted to any subcommu-
nity (i.e., square, diagonal block), an identity or consesngraph yields the same type of
graph again. Moreover, aggregating links in such a commumithin the original graph
(i.e., summing rows and averaging columns) also resultsersame type of graph. Con-
sequently, if QuickRank employs a BaseRank procedure Wwehdentity property, it will
output the prior distribution on the identity graph, sinlee prior local rankings will remain
unchanged at each level in the hierarchy.

Now consider a consensus graph with ranking t. ||z||;, = 1. Restriction to a sub-
community gives a consensus graph on the correspondingticorad distribution of x.
Likewise, aggregation produces a consensus graph on thesponding marginal distri-
bution of z. If QuickRank employs a BaseRank algorithm with the congensoperty
on a consensus graph, it will gradually replace the priarihistion at the leaves with the
conditional distributions of, until it finally outputsz itself.

We conclude this section by pointing out that, even if thedBaenk procedure is linear,
QuickRank may not be expressible as a linear inference. Bliimg local rankings to
form distributions can introduce non-linearities. In thexhsection, we provide sample
QuickRank calculations.
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9.4 Examples

We now present two examples that verify our intuition regagdQuickRank and illustrate
some of its novel features. Recall that QuickRank, as itatesron an hierarchical social
network (HSN), is parameterized by a prior ranking and a Basé& procedure.

First, consider the HSN shown in Figure 9.2a. The hierarsltyawn using solid lines.
The link graph is indicated by dotted lines between the nuethbéeaves. All weights are
assumed to be 1. Computing QuickRanks for this HSN, vanjiegBaseRank procedure
among indegree, eigenvector centrality, and PageRdmk,always assuming a uniform
prior ranking, leads to the rankings, cardinal and ordisiabwn in Table 9.2. The valuesin
the posterior distributions have been rounded; hence, riffieal rankings more precisely
reflect the exact values in those distributions.

a) b)

Figure 9.2: Two examples of hierarchical social networks.

Table 9.2: BaseRanks and QuickRanks from Figure 9.2a arfidramprior.

Indegree Eigenvector PageRank
cardinal| {0.13,0.13,0.13,0.13,0.2,0.13, 0}13 {0.19, 0.08, 0.16, 0.14, 0.22, 0.10, O}1f {0.14, 0.32, 0.11, 0.09, 0.14, 0.09, O}11
Flat
ordinal 5>1=2=3=4=6=7 5>1>3>4>7>6>2 2>1>5>3>7>6>4
cardinal| {0.10, 0.10, 0.19, 0.09, 0.23, 0.11, O}18 {0,0,0.41,0,059,0,0 {0.04,0.14, 0.25, 0.04, 0.41, 0.06, 0}0
QuickRank
ordinal 5>3>7>6>1=2>4 5>3>1=2=4=6=17 5>3>2>7>6>1>4

For each BaseRank procedure, we list two pairs of rankirfugt which results from
ignoring the hierarchy, and that which results from exjgjtit using QuickRank. When
we ignore the hierarchy, all three algorithms rank leaf 1vab@r equal to) 3. However,
since 1 defersto 3 (i.e., 1 endorses 3, but not vice verssgdaan our peer-review principle,

*The results of ranking with outdegree are not qualitatiifferent, but are omitted for lack of space.
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3 should be ranked higher than 1. This outcome indeed psavaihe QuickRanks, for all
three BaseRank procedures.

When using a uniform prior ranking, the resulting rankings ot biased by the depth
at which individuals reside in the hierarchy. If such a bedesirable, however, it can be
easily achieved with a non-uniform prior. For example, apranking o%{z 2,2,2,1,1,2}
with indegree as BaseRank yields a posterior rankifgle¥, 0.10, 0.19,0.12,0.18, 0.09, 0.23},
which corresponds to an ordinal ranking@of> 3 > 5 >4 > 1 = 2 > 6. Whereas 5 was
ranked higher than 7 with a uniform prior, 7 ranks higheshwhis biased prior.

As an added benefit, QuickRank may be more resistant to liaknggng than Base-
Rank procedures that do not exploit hierarchies. To dematesthis phenomenon, in Fig-
ure 9.2b, we introduce a sybil, leaf 8, into our original exderto try and raise the rank of
6 by recommending it highly. Note the multiplicity of linksoim 8 to 6.

Table 9.3: Fig. 9.2b with Indegree as BaseRank.

Uniform Prior Weighted Prior
cardinal| {0.10, 0.10, 0.10, 0.10, 0.15, 0.30, 0.10, 3.05 {0.13, 0.13, 0.13, 0.13, 0.2, 0.13, 0.13,p.
Flat
ordinal 6>5>1=2=3=4=7>38 5>1=2=3=4=6=7>38
cardinal| {0.09, 0.09, 0.18, 0.06, 0.28, 0.14,0.11, 3.0 {0.10, 0.10, 0.19, 0.09, 0.23, 0.11, 0.19,)0.0
QuickRank
ordinal 5>3>6>7>1=2>4=238 5>3>7>6>1=2>4>8

Applying QuickRank with indegree as BaseRank to this exanylds the rankings
shown in Table 9.3. Using a uniform prior, the sybil is abledse the rank of 6 over 7
and 6 over 4, whether we exploit the hierarchy (i.e., use KRank) or not (i.e., compute
indegrees directly). QuickRank cannot prevent this ougmsince the sybil is an accepted
member of 4’s and 7’s community. However, the influence ofaylal is somewhat miti-
gated under QuickRank. Since the resulting ranking mugieshe hierarchy, the effect
of the sybil is to raise the ranks bbth5 and 6 (i.e., both values in the posterior distribu-
tion). No amount of link spam from a sybil outside their locammunity can increase the
rank of 6 relative to 5.

Moreover, if one is able to identify sybibs priori, by setting the prior ranks of sybils
to zero, one can reduce their influence even further. If weaupdor ranking which is
weighted against the sybil, say uniform over 1-7 and zero,ofe8le 9.3 shows that in-
degree produces the same rankings as in Table 9.2, thaitligutthe sybil, whether we
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exploit the hierarchy or not. In general, Theorem 9.3 stdtasany BaseRank procedure
which is a GPV mechanism will necessarily exhibit this samledvior. QuickRank is not
a GPV scheme (recall that QuickRank is nonlinear but that GEhémes are linear). Still,
QuickRank preserves the spam-resistance property ckastict of GPV mechanisms.

9.5 Experiments

In this section, we discuss some preliminary experimentparéormed to validate our
QuickRank technique. Specifically, we compare the performand@wtkRank utilizing
two different BaseRank algorithms (indegree and PageRamk)ree sample information
retrieval tasks, the 2002, 2003, and 2004 TREC Topic Dasitadh Tasks, part of the annual
TREC competitiof As described in the 2003 report, “the topic distillatioakanvolves
finding relevant homepages, given a broad query,” where tal gjomepage [corresponds]
to a site which:

¢ Is principally devoted to the topic,
e Provides credible information on the topic, and

e Is not part of a larger site also principally devoted to thadd (Craswell and Hawk-
ing, 2003).

Queries were applied to a corpus of U.S. government web ptggesGOV test collec-
tion, containing about 1.25 million pagésn each of 2002 and 2003, the task involved 50
gueries, while in 2004 it used 75 queries. For each query] REeC organizers compiled
a list of pages which it deemed as sufficiently good respgomseguery-relevant”, for the
task. Specifically, the pages returned by all the entrantseéa@ompetition were rated by
human judges. Those with sufficiently high scores were ddeajaery-relevant, and a cor-
responding list of “qrels” were then published by the TREGamizers for future research.
Notice that this set of grels is thus biased to favor compegiagainst non-entrants of the
competition, such as o@uickRank implementation.

6http://trec.ni st. gov/

7http: /lir.dcs.gla.ac.uk/test _collections/
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Apart from the third criteria, the goal of the Topic Distitat (TD) task is to strike a
balance between relevance and “authoritativeness” (atghan Web search. While we
believe thaQuickRank should provide a meaningful (query-independent) measitteeo
authority of a web page (as judged by the community of web padpishers), we needed
an additional (query-dependent) technique to filter webepdgr relevance to the given
qguery. We used Apache Lucene, a “high-performance, falitfieed text search engine
library written entirely in Java® We then took a convex combination of the resulting rank
scores from each technique, with mixing parameteto obtain the ranking of each page
of a query.

In order to applyQuickRank, we needed to infer a hierarchical, social network on the
corpus of web pages. We used the (unweighted) link graphhwihie TREC organizers
distributed with the corpus, converting it to a judgmenfayras described in section 9.2.2.
We used the URL hierarchy as described in section 9.2.2 pexoe efficiency, we col-
lapsed subtrees to insure that there were a minimum 200dgerenode and the hierarchy
had a maximum depth df, wherek = 0,...,7. This is clearly not the most informative
hierarchy; it was simply the most readily available one. Shu our results we focus atten-
tion to compare depth O (i.e., simply applying the BaseRdg&rahm) and depth 1. The
branching factor at depth 1 is roughly 250

So that we could compare our results with those of the TRECpetitors, we applied
several standard measures to the ranking resulting prddemeh query. If, for a given
query, H represents the set of all documents retrieved @nél s is the set of documents
judged to be query-relevant, whilg,, is the subset ofi top-ranked documents, we may
define the following measures on the retrieval system:

e Success at: SQn = [H, N Qrels # (]

e Recall atn: RGn = W
rels|
e Precision atn: PQn = %

|H‘Qrels‘ﬂQrels‘

e Precision atR: PQR = [Orels]

[Hn—Hn,l CQrels]

e Average PrecisionAP = Zlﬂl Pan Orels]

®ht t p: / /1 ucene. apache. org/javal/ docs/

*While |H,,| = n, we write it out to show the symmetry in the definitions of psean and recall.
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Notice that these measures assume thatay be orderedvithout ties SinceQuickRank
makes so such guarantees, these measures may have begnafifedted by the order in
which equally ranked pages were processed. The same setastinas were not applied
uniformly across all three years; we report only those &tiat reported from each year.

We give the results of our experiments in Tables 9.4-9.6 hEEatumn represents the
average of the given measure over all queries for that yeargpetition. The rows corre-
spond to the three selected competitors, along with five ofinsir algorithm with varying
parameters. We chose to include the top- and bottom-scodnpetitors for each year,
along with a third competitor which has roughly the mediamrsdor reference. Likewise,
we include the results with = 1, which we label “Lucene”, since the ranking of the query
results is entirely determined by Lucene’s relevance score

Table 9.4: Comparison with TREC 2002 competitors

P@10 « |Algorithm |Depth
0.251| - thutd5 -
0.198/0.99 PageRank O
0.194| - mu525 -
0.190(0.99| Indegree| 1
0.190{0.99| Indegree| O
0.184(0.99 PageRank 1
0.182| 1 -
0.057| - |ajouai021Q -

For each query, the rank scores produced by LuceneCanckRank were on very
different scales. The latter tends to be more exponentiallewthe precise nature of the
former is unclear. In additionH| > |@rels|. Thus, how to combine the two scores was
problematic. We first converted each rank score to a linetar,J0scale; that is, the scores
of consecutively ranked documents W%‘im andﬁ apart, respectively. We then used a
simple convex combination, with weight parameteto combine the results. Again, since
it is unclear how much weight to assign to topic relevancewgruthorithy, we ran our
experiments for various values @fpha to discover a proper value, which ranged frai
to .99 over the three years.

Along with the three reference competitors and the restlsmply using relevance

score alone (i.e., Lucene), we report the performand®uwétkRank using indegree and
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Table 9.5: Comparison with TREC 2003 competitors

P@10 P@R| AP | « | Algorithm |Depth
0.124/0.164{0.154 - |csiro03td03 -

0.090(0.114/0.099 0.97| Indegree 1
0.086|0.105/0.097/0.97| Indegree | O
0.082|0.086/0.089 1.00
0.074/0.0920.088 0.97| PageRank
0.062|0.078 0.087/0.97| PageRank
0.092(0.092/0.070 - | meijihilwl -
0.032(0.028 0.023 - C2B -

Rl of

PageRank as BaseRank algorithms. When depth is 0, thesegeeh are just the standard
algorithms (i.e., without exploiting the hierarchy). Frdhe results in Tables 9.4-9.6, we
can see that indegree at depth 1 generally performed wall,iraparticular, it always
performed indegree at depth 0. Moreover, it almost alwaypartormed PageRank at
either depth.

This suggests a number of practical benefitQtockRank. Remember that PageRank
was designed to mitigate the manipulability of indegree link-spamming. However,
from these experiments and our discussion in Section 9.4e&dhat simply by applying
QuickRank with indegree at depth 1, we can limit the influence of linkuspning without
sacrificing the quality of our resulting rankings. Noticatlthis is even more striking, since
indegree is much simpler and faster to compute than PageRank

Table 9.6: Comparison with TREC 2004 competitors

S@1| S@5|S@10P@10R@1000 AP | « Algorithm Depth
0.507/0.773 0.893| 0.249| 0.777 |0.179 - |uogWebCAU150 -
0.2130.680 0.773| 0.151| 0.590 |0.1230.95 Indegree 1
0.253 0.680 0.813| 0.163| 0.590 |0.120,0.95 Indegree 0
0.333 0.64| 0.76 | 0.199| 0.647 |0.115 - MUO4web1 -
0.227,0.587)0.707| 0.135| 0.586 |0.0930.95 PageRank 0
0.08010.400 0.573| 0.109| 0.569 |0.075/1.00 -
0.187/0.533 0.600| 0.097| 0.582 |0.0740.95 PageRank 1
0.067/0.147/0.173| 0.029, 0.147 |0.018 - irttil -




159

9.6 Discussion: Implicit Hierarchical Structure

Some networks may come equipped with an explicit hieraatlsitucture (e.g., the Web’s
URL tree), but others may not. For networks in the latter gatg, it has been argued
that many (social) networks tend to exhibit hierarchicalaure at least implicitly (Simon,
1962). To run QuickRank on such a network, it would be necgdeanfer this hierarchical
structure. Even for networks in the former category, it maywmorthwhile to infer an
alternative hierarchical structure. In the case of the Wirbekample, QuickRanks may
be more useful if pages are categorized into a topic hieyarakther than according to the
URL tree.

It is possible to imagine a number of ways to infer an implig@rarchical structure,
given a network whose nodes are documents (e.g., Web pagas neessages, or publica-
tions). On the one hand, one could rely solely on the textoaient of the documents (Blei
et al., 2004). On the other hand, one could rely solely on tigetying graph-theoretic
structure. In the case of the Web, it has been observed iatRh tree is reflective of the
hierarchy that would be inferred based on its graph-theosétucture (Eiron and McCur-
ley, 2004). In principle, one could also rely on some comtiameof both approaches.

A difficulty arises in that some nodes in a network may not fitasgly in one category.
For example, Arnold Schwarzenneger could be classified #s dwo actor and a politi-
cian. Alternatively, an algorithm that infers an implicieharchical structure may output a
probability that each node belongs to each category. Fanpbe Arnold Schwarzenneger
could be classified as an actor with probability and a politician with probability.1.
We are developing natural extensions of the basic QuickRégdrithm that operate on
hierarchical structures like these.

9.7 Related Work

The idea of constructing a global ranking by combining camrig local rankings is not
new. Indeed the electoral college is based on the same hasoipte. Each state holds
a local presidential election, the global outcome of whlklétermined by weighing the
local outcomes according to the importance—in this case sibe of the Congressional
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delegation—of each staté.

More to the point, Kamvar et al. (2003a) apply similar metblody to rank web pages
in their algorithm, BlockRank, which is designed to explbieé block structure they ob-
serve in the Web. They do not recursively apply their reasprinowever. They combine
domain and subdomain rankings only once, and then inéd&ageRank with the resulting
distribution, in an attempt to speed up the usual PageRamipatation.

9.8 Conclusion

Social network, or link, analysis is regularly applied téoirmation networks to compute
rankings (Garfield, 1972; Kleinberg, 1998; Page and Bri®8l%age et al., 1998) and to
social networks (Bonacich, 1972; Hubbell, 1965; Katz, 1,98d8sserman and Faust, 1994)
to determine standing. We discuss two examples of infoonatietworks with inherent
hierarchical structure: the Web and citation indices. 8lawetworks, like the Enron email
database, also exhibit hierarchical structure. SimonZ}186ggests that such hierarchies
are ubiquitous:

Almost all societies have elementary units called familisich may be grouped into
villages or tribes, and these into larger groupings, andrsoliowe make a chart of
social interactions, of who talks to whom, the clusters ofsgeinteraction in the chart

will identify a rather well-defined hierarcHit structure.

Still, to our knowledge, link analysis procedures larggjgare any hierarchical struc-
ture accompanying an information or social network. In graper, we introduced Quick-
Rank, a link analysis technique for ranking individualsttiveploits hierarchical structure.
The foundational basis for QuickRank is the peer-reviewmgpile, which implies that the
relative ranking between two individuals be determinedhsrtiocal ranks in the smallest
community to which they both belong. This principle, togatlwith an hypothesis due

%QuickRank, applied to presidential elections, would ndizeathe popular vote in each state, and then
weigh the resulting distributions by the corresponding hanof electoral votes, a process which reduces
to plurality voting.

Ysimon’s use of the terminology “hierarchic” is slightly lagber than our use of “hierarchical structure,”
by which we mean tree structure. Still, the point remaingrdrichies (or approximations thereof) arise
naturally in societies.
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to Bonacich, leads to a recursive algorithm which is scalapbrallelizable, and easily
updateable.

For a large-scale network such as the Web, we anticipatQiliakRank will yield sub-
stantial computational gains over standard ranking metltied)., calculating PageRanks
via the power method). Moreover, it appears more resistalibk spamming than other
popular ranking algorithms on contrived examples, alttoitigemains to verify this claim
empirically.

In ongoing research, we are attempting to empirically \zédhe merits of QuickRanks
computed with some BaseRank procedure as compared to tkimgasomputed by the
BaseRank procedure itself. Specifically we are augmentuwehe, an open source Web
search engine, with QuickRanks, PageRanks, and indegnke imaorder to measure the
precision and recall of the augmented tool on the topiclditon queries from the TREC
2002, 2003, and 2004 web tracks.
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Appendix A

Review of Linear Algebra

Throughout this thesis, we assume basic knowledge of vepamres. Here we remind the
reader of many of those specifics on which we heavily rely.

For any matrix M/, thekernelof M, sometimes called thaullspaceof M, is defined as
follows: ker M = {v € R" | Mv = 0}. Likewise, here is the definition of theageof M:
im M = {Mv | v € R"}. Thespanof a set of vectors is the set of all linear combinations
of those vectors. The image 6f is sometimes called th@olumnspacef M because it is
the span of the columns a@fl.

Afinite setof vectordv; € V' | 1 <i < k} is said to bdinearly independeriff a; = 0,
forall 1 < i <k, Wheneveer:1 a;v; = 0, i.e., 0 cannot be expressed as a non-trivial
linear combination of the vectors in the set. bAsisfor a vector spacel/, is a linearly
independent set of vectors whose spalf isThedimensiorof V' is the cardinality of any
basis (all bases have the same cardinality).

With these definitions in hand, we now state without proof tmportant theorems
from linear algebra.

Theorem A.1. For anym x n matrix, M,
a) dimim M = dimim M"’. We call this value theankof M.
b) rk M + dimker M = n, andrk M + dim ker M" = m.

¢) When) is square (whemn = n), dimker M = dim ker M. We call this value
thenullity of M.
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Theorem A.2. For anym x n matrix, M,

a) If LM = I for somen x m matrix L, we call M left-invertiblewith left-inverseL.
M is left-invertibleiff M is injectiveiff ker M = 0.

b) If M R = I for somen x m matrix R, we call M right-invertiblewith right-inverse
R. M isright-invertibleiff M is surjectiveiff ker M = 0.

c) If M is square, thed/ is surjective iffM is injective iffM is invertiblewith inverse
M~'suchthat "M = MM~ = 1.

The addition of two matrices is well-defined iff both matsdeave the same dimen-
sions. The multiplicatiom/ M’ of anm x n matrix M and anm’ x n’ matrix M’ is
well-defined iffn = m/, and the resulting matrix will be of dimensioen x »n’. Here are
some simple observations about how the kernel of a matriaveshwith respect to matrix
multiplication and addition.

Lemma A.3. For any matricesA and B, such thatd B and B A are well-defined (i.e., il

ism x n, Bisn x m),
a) ker ANim B = Bker AB
b) if B is surjective, thetker A = B ker AB;
c) if Bis injective, therker A = ker BA.

For any matrices( and D, such thatC' + D is well-defined (i.e.C’ and D have the same
dimension),

d) if imC Nim D = 0, thenker(C' + D) = ker C' Nker D.

Proof. Proof of part a): Ifv € ker AB, thenA(Bv) = (AB)v = 0, so thatBv € ker AN

im B, i.e., Bker AB C ker A Nim B. Conversely, anyv € ker A Nim B may be written
asw = Bv for somev. SinceABv = Aw = 0, v € ker AB, andw = Bv € Bker AB, SO
thatker ANim B C Bker AB. Thereforeker ANim B = Bker AB.

Proof of part b): Further, i3 is surjective, thetker A C im B, so thatker A = B ker AB.
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Proof of part c): Now assume thatis injective, i.e., ifBv = a and Bw = a, thenv = w.
If w € ker BA, thenB(Aw) = (BA)w = 0. SinceB is injective,ker B = 0, and so
Aw = 0, i.e.,w € ker A. Thereforeker BA C ker A. Likewise, ifv € ker A, then
B(Av) = B0 =0, so thatv € ker BA, ker A C ker AB, andker A = ker BA.

Proof of part d): Finally, ifv € ker C'Nker D, then(C'+ D)v = Cv+ Dv =040 =0, SO
thatv € ker(C' + D). Conversely, assume that C'Nim D = 0. Now, if v € ker(C' + D),
thenCv + Dv = (C + D)v = 0, so thatCv = —Dv = D(—v) € imC NimD. Ty
assumption, this i8, soCv = Dv = 0. Thereforep € ker C' N ker D, andker(C' + D) =
ker C' Nker D.

0
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